JP4572392B2 - Alignment film manufacturing method and porous film manufacturing method - Google Patents

Alignment film manufacturing method and porous film manufacturing method Download PDF

Info

Publication number
JP4572392B2
JP4572392B2 JP2006214310A JP2006214310A JP4572392B2 JP 4572392 B2 JP4572392 B2 JP 4572392B2 JP 2006214310 A JP2006214310 A JP 2006214310A JP 2006214310 A JP2006214310 A JP 2006214310A JP 4572392 B2 JP4572392 B2 JP 4572392B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal molecules
alignment film
film
metal alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006214310A
Other languages
Japanese (ja)
Other versions
JP2008040135A (en
Inventor
勝 山下
智子 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006214310A priority Critical patent/JP4572392B2/en
Publication of JP2008040135A publication Critical patent/JP2008040135A/en
Application granted granted Critical
Publication of JP4572392B2 publication Critical patent/JP4572392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、配向膜の製造方法、及び多孔膜の製造方法に関する。   The present invention relates to an alignment film manufacturing method and a porous film manufacturing method.

従来、有機高分子中に無機物をフィラーとして分散させることによって各種の機能を付与した有機−無機ハイブリッド体が製造されている。   Conventionally, an organic-inorganic hybrid body having various functions has been produced by dispersing an inorganic substance as a filler in an organic polymer.

一方、無機マトリックス中に有機物を分散させた材料の製造方法としては、例えば、金属アルコシキドを含むゾル中に液晶分子を分散させ、該ゾルに電場をかけながらゲル化させることによって配向膜を製造する方法が知られている(下記特許文献1参照)。この方法によれば、無機マトリックス中に光学特性や強度の異方性を有する液晶を導入したハイブリッド体を得ることが可能である。しかしながら、電場強度を高めるためには該ハイブリッド体に電極を近づける必要があり、また、有機分子を任意の方向に配向させるためにはハイブリッド体を任意の向きで電極間に挿入できるように電極間距離を広げる必要があり、電極間距離に比例して印加電圧を高めなければならない等の問題点がある。   On the other hand, as a method for producing a material in which an organic substance is dispersed in an inorganic matrix, for example, liquid crystal molecules are dispersed in a sol containing a metal alkoxide, and the alignment film is produced by gelation while applying an electric field to the sol. A method is known (see Patent Document 1 below). According to this method, it is possible to obtain a hybrid body in which a liquid crystal having anisotropy of optical characteristics and strength is introduced into an inorganic matrix. However, in order to increase the electric field strength, it is necessary to bring the electrodes closer to the hybrid body, and in order to orient the organic molecules in any direction, the hybrid body can be inserted between the electrodes in any direction. There is a problem in that it is necessary to increase the distance and the applied voltage must be increased in proportion to the distance between the electrodes.

また無機多孔体の製造方法としては、基板上に形成したアモルファス膜を共晶分解反応が起こる条件で熱処理して、その共晶分解反応によって基板上に一次元的に成長したセラミック相とそれを取り囲むマトリック相からなる複合膜を形成し、次いで、複合膜中の一次元的に成長したセラミック相をエッチングで除去することによる一次貫通気孔を有するセラミック膜の製造方法が知られている(下記特許文献2参照)。しかしながら、この方法では、気孔の配向方向を任意に制御することができず、しかも孔径は4nm程度に過ぎない。   In addition, as a method for producing an inorganic porous material, an amorphous film formed on a substrate is heat-treated under conditions where a eutectic decomposition reaction occurs, and a ceramic phase grown on the substrate one-dimensionally by the eutectic decomposition reaction is obtained. A method of manufacturing a ceramic film having primary through-holes by forming a composite film composed of an enclosing matrix phase and then removing the one-dimensionally grown ceramic phase in the composite film by etching is known. Reference 2). However, this method cannot arbitrarily control the orientation direction of the pores, and the pore diameter is only about 4 nm.

また、従来、分子オーダーで均一に混合されている系からある特定の分子を選択的に分離する分子ふるい膜として無機多孔体が製造されている(例えば、非特許文献1参照。)。しかしながら、孔径1nm程度以下という非常に小さい細孔を任意の方向に配向させた多孔膜は得られていない。
特開2004−29719号公報 特開平10−182263号公報 「分子混合物分離のための超微細孔セラミック分離膜」,化学と工業,1995年,第48巻,第8号,p.911−913
Conventionally, inorganic porous materials have been produced as molecular sieve membranes that selectively separate specific molecules from a system that is uniformly mixed in the molecular order (see, for example, Non-Patent Document 1). However, a porous film in which very small pores having a pore diameter of about 1 nm or less are oriented in an arbitrary direction has not been obtained.
JP 2004-29719 A Japanese Patent Laid-Open No. 10-182263 “Ultra-fine pore ceramic separation membrane for molecular mixture separation”, Chemistry and Industry, 1995, Vol. 48, No. 8, p. 911-913

本発明の主な目的は、無機マトリックス中に有機化合物を一定方向に配向させた高い配向性を有する有機−無機ハイブリッド体からなる配向膜、及び配向性の良い細孔を有する無機多孔膜を簡単な方法で製造できる新規な方法を提供することである。   The main object of the present invention is to simplify an alignment film composed of an organic-inorganic hybrid material having a high orientation property in which an organic compound is oriented in a certain direction in an inorganic matrix, and an inorganic porous film having fine orientation pores. It is to provide a novel method that can be manufactured by a simple method.

本発明者は、上記目的を達成すべく鋭意検討を行った。その結果、高揮発性を有する有機溶媒と水との混合溶媒中にベンゼン核を2個以上含む液晶分子と金属アルコシキドを分散させたゾル溶液を調製し、該ゾル溶液を基板に塗布した後、ゲル化させる方法によれば、高揮発性有機溶媒の急激な蒸発に伴って、該液晶分子が溶媒の蒸発方向に対して平行に配向して、高い配向性を有する有機−無機ハイブリッド体が得られることを見出した。更に、得られた有機−無機ハイブリッド体から液晶分子を除去することによって、無機マトリックス中に細孔が配向した無機多孔膜が得られることを見出し、ここに本発明を完成す
るに至った。
The inventor has intensively studied to achieve the above object. As a result, after preparing a sol solution in which a liquid crystal molecule containing two or more benzene nuclei and a metal alkoxide were dispersed in a mixed solvent of an organic solvent having high volatility and water, and applying the sol solution to a substrate, According to the gelation method, with rapid evaporation of the highly volatile organic solvent, the liquid crystal molecules are aligned in parallel to the evaporation direction of the solvent to obtain an organic-inorganic hybrid having high alignment. I found out that Furthermore, it has been found that an inorganic porous film having pores oriented in an inorganic matrix can be obtained by removing liquid crystal molecules from the obtained organic-inorganic hybrid, and the present invention has been completed here.

即ち、本発明は、下記の配向膜の製造方法、および多孔膜の製造方法を提供するものである。
1. テトラヒドロフランと水との混合溶媒中に、フェニル基含有アルコキシシランを含
む金属アルコシキドと、ベンゼン核を2個以上有する液晶分子を分散させたゾル溶液を基板上に塗布し、ゲル化させることを特徴とする配向膜の製造方法。
. 上記項1の方法によって配向膜を製造した後、該配向膜から有機化合物を除去する
ことを特徴とする多孔膜の製造方法。
. 有機化合物を除去する方法が、300〜1000℃で焼成する方法である上記項
に記載の多孔膜の製造方法。
That is, this invention provides the manufacturing method of the following oriented film and the manufacturing method of a porous film.
1. A sol solution in which a metal alkoxide containing a phenyl group-containing alkoxysilane and a liquid crystal molecule having two or more benzene nuclei is dispersed in a mixed solvent of tetrahydrofuran and water is coated on a substrate and gelled. A method for producing an alignment film.
2 . A method for producing a porous film, comprising: producing an alignment film by the method according to Item 1; and then removing an organic compound from the alignment film.
3 . Item 2 above wherein the method for removing the organic compound is a method of baking at 300 to 1000 ° C.
The manufacturing method of the porous film as described in any one of.

本発明の配向膜の製造方法では、まず、高揮発性有機溶媒と水との混合溶媒中に、フェニル基含有アルコキシシランを含む金属アルコシキドと、ベンゼン核を2個以上含む液晶分子を分散させたゾル溶液を分散させたゾル溶液を調製する。   In the method for producing an alignment film of the present invention, first, a metal alkoxide containing a phenyl group-containing alkoxysilane and liquid crystal molecules containing two or more benzene nuclei are dispersed in a mixed solvent of a highly volatile organic solvent and water. A sol solution in which the sol solution is dispersed is prepared.

この様なゾル溶液を基板に塗布しゲル化させる方法によれば、ゲル化の際に高揮発性有機溶媒が急速に蒸発し、それに伴ってベンゼン核を2個以上含む液晶分子が一定方向に配向して、高い配向性を有する有機−無機ハイブリッド体を得ることができる。   According to such a method of applying a sol solution to a substrate and gelling, the highly volatile organic solvent rapidly evaporates during the gelation, and accordingly, liquid crystal molecules containing two or more benzene nuclei are in a certain direction. By aligning, an organic-inorganic hybrid having high orientation can be obtained.

高揮発性有機溶媒としては、特に限定的ではないが、常温における蒸気圧が高く、且つ使用する金属アルコキシドと液晶分子の溶解度が高い有機溶媒であって、水と任意の割合で混合できる親水性溶媒を用いることが好ましい。例えば、該高揮発性有機溶媒は25℃における蒸気圧が10kPa程度以上であることが好ましく、11〜35kPa程度であることがより好ましい。この様な有機溶媒の具体例としては、テトラヒドロフラン、アセトニトリル、アセトン、メタノールなどを挙げることができる。   The highly volatile organic solvent is not particularly limited, but is an organic solvent having a high vapor pressure at room temperature and a high solubility of the metal alkoxide and liquid crystal molecules to be used and can be mixed with water at an arbitrary ratio. It is preferable to use a solvent. For example, the highly volatile organic solvent preferably has a vapor pressure at 25 ° C. of about 10 kPa or more, more preferably about 11 to 35 kPa. Specific examples of such an organic solvent include tetrahydrofuran, acetonitrile, acetone, methanol and the like.

ベンゼン核を2個以上含む液晶分子は、立体配座の変化しにくい構造をもつ化合物であり、これを含むゾル溶液をゲル化させる際に、高揮発性有機溶媒の蒸発に伴って該溶媒の蒸発方向に対して平行に配向する。例えば、ゾル溶液を塗布した基板面を水平に設置してゲル化させると、溶媒は基板面に対して垂直方向に蒸発するので、液晶分子を基板面に対して垂直方向に配向させることができる。   A liquid crystal molecule containing two or more benzene nuclei is a compound having a structure whose conformation is difficult to change. When a sol solution containing this is gelled, the solvent of the solvent is evaporated along with the evaporation of the highly volatile organic solvent. Oriented parallel to the evaporation direction. For example, when the substrate surface to which the sol solution is applied is placed horizontally and gelled, the solvent evaporates in a direction perpendicular to the substrate surface, so that the liquid crystal molecules can be aligned in the direction perpendicular to the substrate surface. .

本発明では、液晶分子としては棒状の液晶分子が好ましく、具体例としては、4(4−プロピルフェニルエチニル)シアノフェニルベンゾエート、4(4−ブチルフェニルエチニル)シアノフェニルベンゾエート、4(4−ペンチルフェニルエチニル)シアノフェニルベンゾエート、4−シアノフェニル4−エチルベンゾエート、4−シアノフェニル4−プロピルベンゾエート、4−シアノフェニル4−ヘキシルベンゾエート、4−シアノフェニル4−ノニルベンゾエート、4−エチルフェニル4−メトキシベンゾエート、4−ペンチルフェニル4−メトキシベンゾエート、4−エチルフェニル4−ペントキシベンゾエート、4−ペンチルフェニル4−ペントキシベンゾエート、4−シアノフェニル4−エトキシベンゾエート、4−シアノフェニル4−ヘキソキシベンゾエート、ペンチルシアノビフェニール、ヘキシルシアノビフェニール、ヘプチルシアノビフェニール、オクチルシアノビフェニール、ノニルシアノビフェニール等を挙げることができる。これらの液晶分子は、1種単独または2種以上組み合わせて用いることができる。   In the present invention, rod-like liquid crystal molecules are preferable as the liquid crystal molecules, and specific examples include 4 (4-propylphenylethynyl) cyanophenylbenzoate, 4 (4-butylphenylethynyl) cyanophenylbenzoate, and 4 (4-pentylphenyl). Ethynyl) cyanophenylbenzoate, 4-cyanophenyl 4-ethylbenzoate, 4-cyanophenyl 4-propylbenzoate, 4-cyanophenyl 4-hexylbenzoate, 4-cyanophenyl 4-nonylbenzoate, 4-ethylphenyl 4-methoxybenzoate 4-pentylphenyl 4-methoxybenzoate, 4-ethylphenyl 4-pentoxybenzoate, 4-pentylphenyl 4-pentoxybenzoate, 4-cyanophenyl 4-ethoxybenzoate, 4-cyanophenyl Cycloalkenyl 4 hexoxybenzoate, pentyl Lucia Bruno biphenyls, hexyl cyanobiphenyl, heptyl cyano biphenyl, octyl cyanobiphenyl, can be mentioned nonyl cyanobiphenyl like. These liquid crystal molecules can be used alone or in combination of two or more.

金属アルコキシドとしては、テトラエトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン等のアルコシキシラン化合物;チタンテトラブトキシド、チタンテトラプロポキシド等のチタンアルコキシド化合物;ジルコニウムテトラプロポキシド等のジルコニウムアルコキシド化合物等のゾル・ゲル法によって加水分解・縮合反応により無機皮膜を形成できる金属アルコキシドを用いることができる。該金属アルコシキドは、液晶分子を均一に分散させるために、フェニルトリエトキシシラン、フェニルトリメトキシシラン等のフェニル基含有アルコキシシランを含むことが必要である。フェニル基含有アルコキシシランの量は、金属アルコキシドの全量中10〜50モル%程度であることが好ましく、20〜30モル%程度であることがより好ましい。   Metal alkoxides include tetraethoxysilane, tetramethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, octadecyltrimethoxysilane, octadecyltri Alkoxy silane compounds such as ethoxysilane; Titanium alkoxide compounds such as titanium tetrabutoxide and titanium tetrapropoxide; Zirconium alkoxide compounds such as zirconium tetrapropoxide; Metal alkoxides can be used. The metal alkoxide needs to contain a phenyl group-containing alkoxysilane such as phenyltriethoxysilane or phenyltrimethoxysilane in order to uniformly disperse liquid crystal molecules. The amount of the phenyl group-containing alkoxysilane is preferably about 10 to 50 mol%, more preferably about 20 to 30 mol%, based on the total amount of the metal alkoxide.

更に、必要に応じて、金属アルコキシドの一部として、アルミニウムイソプロポキシド、アルミニウムブトキシド等のその他の金属アルコキシドを用いることができる。   Furthermore, as required, other metal alkoxides such as aluminum isopropoxide and aluminum butoxide can be used as a part of the metal alkoxide.

上記した液晶分子の使用量は、フェニル基含有アルコシキシラン100重量部に対して5〜80重量部程度であることが好ましく、10〜50重量部程度であることがより好ましい。   The amount of the liquid crystal molecules used is preferably about 5 to 80 parts by weight and more preferably about 10 to 50 parts by weight with respect to 100 parts by weight of the phenyl group-containing alkoxysilane.

混合溶媒おける各溶媒の使用量は、金属アルコキシド1モルに対して、高揮発性有機溶媒2〜20モル程度と水1〜8モル程度とすることが好ましく、金属アルコキシドがテトラエトキシシランである場合には、高揮発性有機溶媒5〜15モル程度と水2〜4モル程度とすることが好ましい。   The amount of each solvent used in the mixed solvent is preferably about 2 to 20 mol of highly volatile organic solvent and about 1 to 8 mol of water with respect to 1 mol of the metal alkoxide, and the metal alkoxide is tetraethoxysilane. It is preferable that the highly volatile organic solvent is about 5 to 15 mol and water is about 2 to 4 mol.

更に、水と高揮発性有機溶媒の混合溶媒中には、金属アルコキシドの加水分解・縮合反応を進行させるために触媒として酸を添加することが適切である。酸としては、特に限定されないが、硝酸、塩酸、硫酸、リン酸、酢酸等を用いることができる。酸の使用量は、金属アルコキシド1モルに対して、0.005〜0.1モル程度とすることが好ましく、金属アルコキシドがテトラエトキシシランである場合には0.005〜0.01モル程度とすることが好ましい。   Furthermore, it is appropriate to add an acid as a catalyst in the mixed solvent of water and a highly volatile organic solvent in order to advance the hydrolysis / condensation reaction of the metal alkoxide. Although it does not specifically limit as an acid, Nitric acid, hydrochloric acid, a sulfuric acid, phosphoric acid, an acetic acid etc. can be used. The amount of acid used is preferably about 0.005 to 0.1 mol per 1 mol of metal alkoxide, and about 0.005 to 0.01 mol when the metal alkoxide is tetraethoxysilane. It is preferable to do.

金属アルコキシドと液晶分子を含むゾル溶液は、該ゾル溶液を塗布した際に液晶分子の均一な分散状態を維持できるように、塗布前に金属アルコキシドを一部加水分解、縮合させておくことが好ましい。この際の金属アルコキシドの加水分解反応は、使用する金属アルコシキドの加水分解反応の容易さなどによって異なるが、通常60〜90℃程度の加熱下で行うことが好ましい。これにより、縮合生成物のネットワークが形成され易くなる。加水分解・縮合を進行させる程度については特に限定的ではなく、使用する、金属アルコキシド、液晶分子等の種類に応じて、液晶分子の均一な分散状態を維持でき、且つ、該ゾル溶液を塗布する際に均一に塗布できる程度の粘度とすればよい。   The sol solution containing the metal alkoxide and the liquid crystal molecules is preferably partially hydrolyzed and condensed before the application so that the uniform dispersion state of the liquid crystal molecules can be maintained when the sol solution is applied. . In this case, the hydrolysis reaction of the metal alkoxide varies depending on the ease of the hydrolysis reaction of the metal alkoxide to be used, but it is usually preferably carried out under heating at about 60 to 90 ° C. This facilitates the formation of a condensation product network. The degree to which hydrolysis / condensation proceeds is not particularly limited, and it is possible to maintain a uniform dispersion state of liquid crystal molecules according to the type of metal alkoxide, liquid crystal molecules, etc. used, and to apply the sol solution. The viscosity may be such that it can be uniformly applied.

本発明の配向膜の製造方法では、上記した金属アルコキシド及び液晶分子を含むゾル溶液を基板に塗布しゲル化させることによって、高揮発性有機溶媒の蒸発方向に対して平行に液晶分子を配向させることができる。これによって、無機マトリックス中に液晶分子が一定方向に配向した有機−無機ハイブリッド体からなる配向膜を得ることができる。ゾル溶液を基板に塗布する方法については特に限定的ではないが、特に、ディップコーティング法によって塗布する場合には、基板に対してゾル溶液を均一に塗布することができ、迅速に有機溶媒を揮発させることが可能となる。   In the method for producing an alignment film of the present invention, the sol solution containing the metal alkoxide and the liquid crystal molecules described above is applied to a substrate and gelled, thereby aligning the liquid crystal molecules in parallel with the evaporation direction of the highly volatile organic solvent. be able to. Thus, an alignment film made of an organic-inorganic hybrid in which liquid crystal molecules are aligned in a certain direction in an inorganic matrix can be obtained. The method for applying the sol solution to the substrate is not particularly limited, but in particular, when applying by the dip coating method, the sol solution can be uniformly applied to the substrate, and the organic solvent is volatilized quickly. It becomes possible to make it.

基板としては、特に限定はなく、配向膜の使用目的に応じて適宜選択すればよく、例えば、ガラス、シリコン、セラミックス、非磁性の金属等を用いることができ、さらに多孔体を形成させる場合にはこれらの多孔質基材等も用いることができる。   The substrate is not particularly limited and may be appropriately selected depending on the purpose of use of the alignment film. For example, glass, silicon, ceramics, non-magnetic metal, etc. can be used, and further when a porous body is formed. These porous substrates can also be used.

ゾル溶液の塗布量については、特に限定的ではないが、例えば、乾燥後の膜厚が0.05〜2μm程度になる量とすればよい。   The application amount of the sol solution is not particularly limited, but may be an amount that causes the film thickness after drying to be about 0.05 to 2 μm, for example.

基板上に塗布したゾル溶液をゲル化させるには、室温で放置しても良く、或いは、ゲル化反応を迅速に進行させるためには加熱してもよい。ゲル化に要する時間は、ゲル化させる際の温度によって異なり、例えば、室温では1日程度以上保持すればよく、40〜60℃程度に加熱した場合には、3時間程度以上保持すればよい。   In order to gel the sol solution applied on the substrate, it may be left at room temperature, or may be heated in order to cause the gelation reaction to proceed rapidly. The time required for gelation varies depending on the temperature at the time of gelation. For example, it may be maintained at room temperature for about 1 day or more, and when heated to about 40 to 60 ° C., it may be maintained for about 3 hours or more.

上記した方法によって、金属アルコキシドが加水分解・縮合して形成される無機マトリックス中に液晶分子が配向した状態の有機−無機複合体からなる配向膜を得ることができる。得られる配向膜は、無機マトリックス中において液晶分子が一定方向に均一に分散した状態であり、高い強度を有するものとなる。また、偏光作用のある液晶分子を用いる場合には、該液晶分子の配向状態を制御した状態で均一に分散させているため、偏光膜として使用可能である。   By the above-described method, an alignment film made of an organic-inorganic composite in a state where liquid crystal molecules are aligned in an inorganic matrix formed by hydrolysis and condensation of metal alkoxide can be obtained. The resulting alignment film is in a state where liquid crystal molecules are uniformly dispersed in a certain direction in the inorganic matrix and has high strength. In the case of using liquid crystal molecules having a polarizing action, the liquid crystal molecules can be used as a polarizing film because they are uniformly dispersed in a state in which the alignment state of the liquid crystal molecules is controlled.

上記した方法によって得られる配向膜は、更に、該配向膜から液晶分子を除去することによって、任意の方向に配向した細孔を有する多孔膜とすることができる。   The alignment film obtained by the above-described method can be made into a porous film having pores aligned in an arbitrary direction by further removing liquid crystal molecules from the alignment film.

上記配向膜から液晶分子を除去する方法としては、例えば、焼成、溶媒抽出等の方法を採用することができる。   As a method for removing liquid crystal molecules from the alignment film, for example, a method such as baking or solvent extraction can be employed.

焼成によって液晶分子を除去するには、使用している液晶分子の種類に応じて、該液晶分子を分解除去できる温度とすればよい。通常は、300〜1000℃程度、好ましくは500〜700℃程度で、1〜7時間程度、好ましくは1.5〜3時間程度焼成すればよい。   In order to remove the liquid crystal molecules by firing, the temperature may be set at a temperature at which the liquid crystal molecules can be decomposed and removed according to the type of liquid crystal molecules used. Usually, it may be fired at about 300 to 1000 ° C., preferably about 500 to 700 ° C. for about 1 to 7 hours, preferably about 1.5 to 3 hours.

上記方法によって配向膜から液晶分子を除去することによって、該液晶分子と同一の配向方向であって、該液晶分子と同様の径である0.4〜0.7nmの細孔を有する多孔膜を得ることができる。この様にして得られる多孔膜では、細孔が多孔膜を透通する場合には、該多孔膜は分子ふるいやガス分離用フィルターとして有効に使用できる。   By removing the liquid crystal molecules from the alignment film by the above method, a porous film having the same orientation direction as the liquid crystal molecules and having pores of 0.4 to 0.7 nm having the same diameter as the liquid crystal molecules is obtained. Obtainable. In the porous membrane thus obtained, when the pores penetrate the porous membrane, the porous membrane can be effectively used as a molecular sieve or a gas separation filter.

本発明の配向膜の製造方法によれば、ベンゼン核を2個以上含む液晶分子を分散させた高揮発性有機溶媒を含むゾル溶液を基板に塗布してゲル化させることによって、該液晶分子の配向方向を高揮発性有機溶媒の蒸発方向に大して平行方向に制御することができる。その結果、無機マトリックス中に液晶分子が一定方向に配向した有機−無機ハイブリッド体からなる配向膜を得ることができる。得られる配向膜は、無機骨格中で液晶分子が配向して均一に分散しているので、強度が大きく、偏光膜としての使用が可能である。   According to the method for producing an alignment film of the present invention, a sol solution containing a highly volatile organic solvent in which liquid crystal molecules containing two or more benzene nuclei are dispersed is applied to a substrate and gelled. The orientation direction can be controlled to be parallel to the evaporation direction of the highly volatile organic solvent. As a result, an alignment film composed of an organic-inorganic hybrid in which liquid crystal molecules are aligned in a certain direction in an inorganic matrix can be obtained. The obtained alignment film has high strength because the liquid crystal molecules are aligned and uniformly dispersed in the inorganic skeleton, and can be used as a polarizing film.

また、本発明の多孔膜の製造方法によれば、上記配向膜を形成した後、液晶分子を除去するという簡単な方法によって、非常に径の小さい細孔を有する多孔膜を得ることができる。この方法によれば、配向性良く任意の方向に細孔を配向させることが可能であり、例えば、高い透過率および選択性を示す多孔膜を得ることができる。   Further, according to the method for producing a porous film of the present invention, a porous film having pores having a very small diameter can be obtained by a simple method of removing liquid crystal molecules after forming the alignment film. According to this method, it is possible to orient the pores in any direction with good orientation, and for example, it is possible to obtain a porous membrane exhibiting high transmittance and selectivity.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
テトラエトキシシラン:フェニルトリエトキシシラン:テトラヒドロフラン:水:硝酸の割合がモル比で0.8:0.2:10:3:0.0075となるように配合し、さらに4(4−プロピルフェニルエチニル)シアノフェニルベンゾエートをフェニルトリエトキシシラン100重量部に対して10重量部(金属アルコキシドの合計量100重量部に対して2.2重量部)配合し、テトラヒドロフランの沸点温度で二晩還流することによりゾルを製造した。
Example 1
It was formulated so that the ratio of tetraethoxysilane: phenyltriethoxysilane: tetrahydrofuran: water: nitric acid was 0.8: 0.2: 10: 3: 0.0075 in molar ratio, and 4 (4-propylphenylethynyl) ) By blending 10 parts by weight of cyanophenylbenzoate with respect to 100 parts by weight of phenyltriethoxysilane (2.2 parts by weight with respect to 100 parts by weight of the total amount of metal alkoxide) and refluxing at the boiling point of tetrahydrofuran overnight. A sol was produced.

得られたゾルは透明で均質であった。このゾルをディップコート法によって室温でシリコン基板に塗布し、基板をそのまま吊り下げて、室温で1日放置してゲル化させて配向膜を得た。   The obtained sol was transparent and homogeneous. This sol was applied to a silicon substrate at room temperature by a dip coating method, the substrate was suspended as it was, and allowed to gel at room temperature for 1 day to obtain an alignment film.

得られた配向膜は、ほぼ透明で均質な厚さ約0.1μmの膜であり、液晶分子が均一に分散していた。赤外分光光度計で液晶中のシアノ基の吸収を偏光を用いて測定したところ、シアノ基は基板と垂直方向に配向しており、配向率は80%であった。   The obtained alignment film was a substantially transparent and homogeneous film having a thickness of about 0.1 μm, and liquid crystal molecules were uniformly dispersed. When the absorption of the cyano group in the liquid crystal was measured using polarized light with an infrared spectrophotometer, the cyano group was aligned in the direction perpendicular to the substrate, and the orientation ratio was 80%.

比較例1
溶媒としてエタノール(沸点:78℃)を用い、テトラエトキシシラン:フェニルトリエトキシシラン:エタノール:水:硝酸の割合がモル比で0.8:0.2:10:3:0.0075となるように配合し、さらに4−シアノフェニル4−ノニルベンゾエートをフェニルトリエトキシシラン100重量部に対して10重量部(金属アルコキシドの合計量100重量部に対して2.2重量部)配合し、エタノールの沸点温度で二晩還流することによりゾルを製造した。
Comparative Example 1
Ethanol (boiling point: 78 ° C.) is used as a solvent, and the ratio of tetraethoxysilane: phenyltriethoxysilane: ethanol: water: nitric acid is 0.8: 0.2: 10: 3: 0.0075 in molar ratio. In addition, 10 parts by weight of 4-cyanophenyl 4-nonylbenzoate is added to 100 parts by weight of phenyltriethoxysilane (2.2 parts by weight based on 100 parts by weight of the total amount of metal alkoxide). A sol was prepared by refluxing at the boiling temperature overnight.

得られたゾルは透明で均質であった。このゾルをディップコート法によって室温でシリコン基板に塗布し、基板を水平に設置して、室温で1日放置してゲル化させて配向膜を得た。   The obtained sol was transparent and homogeneous. This sol was applied to a silicon substrate by a dip coating method at room temperature, the substrate was placed horizontally, and allowed to gel at room temperature for 1 day to obtain an alignment film.

得られた膜は、ほぼ透明で均質であり、液晶分子が均一に分散していたが、液晶中のシアノ基は配向していなかった。   The obtained film was almost transparent and homogeneous, and liquid crystal molecules were uniformly dispersed, but the cyano group in the liquid crystal was not oriented.

Claims (3)

テトラヒドロフランと水との混合溶媒中に、フェニル基含有アルコキシシランを含む金属アルコシキドと、ベンゼン核を2個以上有する液晶分子を分散させたゾル溶液を基板上に塗布し、ゲル化させることを特徴とする配向膜の製造方法。 A sol solution in which a metal alkoxide containing a phenyl group-containing alkoxysilane and a liquid crystal molecule having two or more benzene nuclei is dispersed in a mixed solvent of tetrahydrofuran and water is coated on a substrate and gelled. A method for producing an alignment film. 請求項1の方法によって配向膜を製造した後、該配向膜から有機化合物を除去することを特徴とする多孔膜の製造方法。 A method for producing a porous film, comprising producing an alignment film by the method of claim 1 and then removing an organic compound from the alignment film. 有機化合物を除去する方法が、300〜1000℃で焼成する方法である請求項に記載の多孔膜の製造方法。 The method for producing a porous film according to claim 2 , wherein the method of removing the organic compound is a method of baking at 300 to 1000 ° C.
JP2006214310A 2006-08-07 2006-08-07 Alignment film manufacturing method and porous film manufacturing method Expired - Fee Related JP4572392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214310A JP4572392B2 (en) 2006-08-07 2006-08-07 Alignment film manufacturing method and porous film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006214310A JP4572392B2 (en) 2006-08-07 2006-08-07 Alignment film manufacturing method and porous film manufacturing method

Publications (2)

Publication Number Publication Date
JP2008040135A JP2008040135A (en) 2008-02-21
JP4572392B2 true JP4572392B2 (en) 2010-11-04

Family

ID=39175215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214310A Expired - Fee Related JP4572392B2 (en) 2006-08-07 2006-08-07 Alignment film manufacturing method and porous film manufacturing method

Country Status (1)

Country Link
JP (1) JP4572392B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052657A1 (en) * 2009-10-27 2011-05-05 株式会社 アルバック Precursor composition for porous film and method for forming porous film
CN111061092B (en) * 2020-01-20 2021-02-23 Tcl华星光电技术有限公司 Liquid crystal display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262617A (en) * 1987-04-10 1988-10-28 ヘキスト・セラニーズ・コーポレーション Liquid crystalline composite
JPH10182263A (en) * 1996-12-20 1998-07-07 Fine Ceramics Gijutsu Kenkyu Kumiai Ceramic film having one-dimensional through pore and its production
JP2004029719A (en) * 2002-05-10 2004-01-29 National Institute Of Advanced Industrial & Technology Oriented film, method and device for manufacturing the same, and porous film
JP2007086383A (en) * 2005-09-22 2007-04-05 National Institute Of Advanced Industrial & Technology Method of manufacturing alignment layer and method of manufacturing porous film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262617A (en) * 1987-04-10 1988-10-28 ヘキスト・セラニーズ・コーポレーション Liquid crystalline composite
JPH10182263A (en) * 1996-12-20 1998-07-07 Fine Ceramics Gijutsu Kenkyu Kumiai Ceramic film having one-dimensional through pore and its production
JP2004029719A (en) * 2002-05-10 2004-01-29 National Institute Of Advanced Industrial & Technology Oriented film, method and device for manufacturing the same, and porous film
JP2007086383A (en) * 2005-09-22 2007-04-05 National Institute Of Advanced Industrial & Technology Method of manufacturing alignment layer and method of manufacturing porous film

Also Published As

Publication number Publication date
JP2008040135A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
TWI430948B (en) A low-dielectric-rate amorphous silica-based coating film, and a low-dielectric-weight amorphous silica-based film obtained from the coating solution
KR102088630B1 (en) Composite of silicon oxide nanoparticles and silsesquioxane polymer, method for producing same, and composite material produced using composite thereof
JP5593611B2 (en) Silicon-based liquid crystal aligning agent, liquid crystal aligning film, and production method thereof
US11878911B2 (en) Method for producing a hydrophilic aerogel granule and application of the product thereof
WO2014012989A1 (en) Dispersion, method for coating objects with this dispersion, and use of the dispersion
JP2007533583A (en) Method for preparing mesoporous material
DE102011011688A1 (en) Coating heat exchanger structure, comprises producing aqueous dispersion of porous sorbent and binding agent, where dispersion is formed on heat exchanger structure or is applied on it, and carrying out film-forming or crosslinking
WO2019069494A1 (en) Coating liquid, method for manufacturing coating film, and coating film
Battisha et al. Physical properties of nano-composite silica-phosphate thin film prepared by sol gel technique
JP4427647B2 (en) Alignment film manufacturing method and porous film manufacturing method
US20140037841A1 (en) Antireflective coatings with controllable porosity and durability properties using controlled exposure to alkaline vapor
TW201915108A (en) Coating liquid, coating film production method, and coating film
JP2016216283A (en) Aerogel, method for producing aerogel and aerogel film
JPH05315319A (en) Semiconductor device and its manufacture
JP4572392B2 (en) Alignment film manufacturing method and porous film manufacturing method
JPH05263045A (en) Film-forming coating liquid and its production
KR101896846B1 (en) Aerogel precursor, preparation method of the same, aerogel prepared by using the same and methode for preparing aerogel using the same
Darmawan et al. Pervaporation membrane for desalination derived from tetraethylorthosilicate-methyltriethoxysilane
JP5035819B2 (en) Method for forming porous silica film and coating solution for forming porous silica used therefor
CN104844014B (en) One kind is based on SiO2Heat-protecting glass of mesopore film and preparation method thereof
Cho et al. Crystallization of poly (vinylidene fluoride)-SiO 2 hybrid composites prepared by a Sol-gel process
KR20200131034A (en) Method for manufacturing of aerogel composition and aerogel composition manufactured by the method
TW202022023A (en) Composite material having modified aerogel powder with special function group
TWI735919B (en) Method for producing a hydrophilic aerogel particle and related application of its product
KR20200131025A (en) Method for manufacturing of thermal insulating material with aerogel and thermal insulating material with aerogel manufactured by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees