JP4571262B2 - Water storage equipment purification equipment - Google Patents

Water storage equipment purification equipment Download PDF

Info

Publication number
JP4571262B2
JP4571262B2 JP2000047107A JP2000047107A JP4571262B2 JP 4571262 B2 JP4571262 B2 JP 4571262B2 JP 2000047107 A JP2000047107 A JP 2000047107A JP 2000047107 A JP2000047107 A JP 2000047107A JP 4571262 B2 JP4571262 B2 JP 4571262B2
Authority
JP
Japan
Prior art keywords
water
pipe
water storage
tank
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000047107A
Other languages
Japanese (ja)
Other versions
JP2001232371A (en
Inventor
英也 宮崎
元晴 羽畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritsu Koki Co Ltd
Daiki Ataka Engineering Co Ltd
Original Assignee
Noritsu Koki Co Ltd
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritsu Koki Co Ltd, Daiki Ataka Engineering Co Ltd filed Critical Noritsu Koki Co Ltd
Priority to JP2000047107A priority Critical patent/JP4571262B2/en
Publication of JP2001232371A publication Critical patent/JP2001232371A/en
Application granted granted Critical
Publication of JP4571262B2 publication Critical patent/JP4571262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えばプール等の貯水施設の浄化装置に関する。
【0002】
【従来の技術】
貯水施設の一形態であるプールや公衆浴場は、多くの施設利用者が入水や入湯することで、水や湯(以下、貯水という)の中に大腸菌等の雑菌や分泌有機物が含まれた状態になりやすい。従って、施設利用者がこれらの施設を快適に利用できるようにするためには、貯水の浄化処理を定期的に行なう必要が生じる。
【0003】
この貯水の浄化処理には、次亜塩素酸ソーダを使用するのが一般的である。次亜塩素酸ソーダは、殺菌作用と酸化作用を兼ね備えており、この殺菌作用を利用して貯水中の雑菌を殺菌すると共に、酸化作用を利用して貯水中の分泌有機物を凝集させて貯水の透明度を向上させることができるからである。
【0004】
プールを例に取れば、貯水中の残留塩素濃度を0.4〜1ppm(規定量)の範囲内に遵守することが施設提供の条件として義務付けられているが、貯水の殺菌及び貯水の透明化のための施策として、施設利用者がプールを利用することのない時間帯、例えば夜間に、次亜塩素酸ソーダを規定量の約5倍程度の残留塩素濃度となるように貯水に投与する、いわゆるスーパークロリネーションが広く採用されている。
【0005】
そして、スーパークロリネーションは、次の二つの方法が従来より公知である。即ち、第一の方法は、次亜塩素酸カルシウムからなる錠剤を施設管理者が貯水内に直接投入する方法であり、第二の方法は、貯蔵タンクに入れられた次亜塩素酸ソーダを定量ポンプにより貯水内に注入する方法である。
【0006】
【発明が解決しようとする課題】
しかしながら、上記第一の方法は、プールの容積を考慮して必要とする錠剤の数量を決定し、この数量分を貯水内に投入することで、目標とする残留塩素濃度を目指すものであり、また、上記第二の方法は、プールの容積を考慮して次亜塩素酸ソーダの注入量を算出し、この注入量分を定量ポンプにより注入することで、目標とする残留塩素濃度を目指すものであるが、何れにしても残留塩素濃度が計算通りになりにくいという問題があった。
【0007】
従って、従来は、施設管理者が次亜塩素酸ソーダ投与後の貯水の残留塩素濃度を測定し、測定濃度が所望する残留塩素濃度よりも低ければ、さらに次亜塩素酸ソーダを投与し、一方、測定濃度が所望する残留塩素濃度よりも高ければ、貯水を希釈するという作業が生じるため、極めて面倒となる。しかも、この作業は夜間に行なわれるため、人件費がかかる原因にもなる。
【0008】
また、次亜塩素酸ソーダは漂白作用が強いため、皮膚に付着するようなことは極力避けるべきであるが、錠剤を直接手に取ったり、市販の次亜塩素酸ソーダを貯蔵タンクに移し替る作業を伴う従来の方法では、これを保証し得ない。
【0009】
そこで、本発明は上記の如き問題点に鑑みてなされたもので、人手に頼ることなく、指定された時間に自動的且つ正確に貯水の濃度管理を行なうことができ、しかも、次亜塩素酸ソーダに直接触れる機会を無くすことができる貯水施設の浄化装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る貯水施設の浄化装置は、貯水槽に貯えられた貯水を浄化するための貯水施設の浄化装置であって、貯水槽に貯えられた貯水を循環すべく、循環ポンプを備えた配管の一端及び他端が接続された貯水槽を対象に、食塩水を電気分解して次亜塩素酸ソーダを生成する生成手段と、得られた次亜塩素酸ソーダを前記配管に注入する注入手段と、該配管の注入箇所よりも上流側で貯水中の残留塩素濃度を測定する測定手段と、測定濃度が所定範囲内に収まるように注入手段を制御する制御手段とを備え、さらに、注入手段の制御を時間指定可能にするための時計手段を備えてなることを特徴とする。
【0011】
上記構成からなる貯水施設の浄化装置によれば、次亜塩素酸ソーダを生成する処理、得られた次亜塩素酸ソーダを貯水槽に注入する処理、貯水中の残留塩素濃度を測定する処理、そして、注入手段を制御する処理によって、貯水中の残留塩素濃度は予め設定された所定範囲に自動的に収められることとなる。さらに、時計手段を用いることで、指定された時間に所望する残留塩素濃度を得ることができるのである。
【0012】
従って、本発明に係る貯水施設の貯水の浄化方法の如く、食塩水を電気分解して得られた次亜塩素酸ソーダを貯水槽に注入し、この貯水中の残留塩素濃度を測定すると共に、測定濃度が所定範囲に収まるように次亜塩素酸ソーダの注入を制御する、これらの一連の処理を指定された時間に自動で行なうという方法を実施することができるのである。
【0013】
そして、これら一連の処理を、施設利用者が貯水施設を利用することのない時間帯に自動で行ない、また、所定範囲を例えば0.4〜1ppm(規定量)の約5倍程度の値に設定しておくならば、施設利用者が利用することのない時間帯である例えば夜間に、貯水の殺菌及び貯水の透明化を自動的に行なうため、翌日には衛生的且つ透明度の高い貯水を得ることができて、施設利用者は貯水施設を快適に利用することができる。
【0014】
また、これら一連の処理を指定された時間に行なう方法として、例えば、指定された第一の時間に自動で開始し、且つ、指定された第二の時間に自動で終了する方法や、指定された時間に自動で開始し、且つ、測定濃度が所定範囲内になった後に自動で終了する方法等が採用可能である。
【0015】
【発明の実施の形態】
以下、本発明に係る浄化装置をプール施設に適用した実施形態について、図1に基づき説明する。
【0016】
本実施形態に係る浄化装置は、大別すると、食塩水を電気分解して次亜塩素酸ソーダを生成する生成装置1と、該生成装置1により得られた次亜塩素酸ソーダを貯水槽(プール)25に注入する注入装置20とで構成されている。
【0017】
前記生成装置1は、供給された水道水を貯留する給水タンク3と、食塩水を生成する塩溶解槽8と、次亜塩素酸ソーダを生成する無隔膜の電解槽11と、供給された貯水(プール水)を貯留する定水槽13とを備えている。
【0018】
そして、給水タンク3と塩溶解槽8とは、配管5を介して接続され、給水タンク3と電解槽11とは、配管6を介して接続され、塩溶解槽8と電解槽11とは、配管9を介して接続されている。また、配管6の途中位置には、ポンプ7が介装されており、給水タンク3内の水道水を電解槽11に供給可能となっている。さらに、配管9の途中位置には、ポンプ10が介装されており、塩溶解槽8内の食塩水を電解槽11に供給可能となっている。
【0019】
また、定水槽13内には、残留塩素濃度計14が配設されており、該定水槽13内に供給された貯水中の残留塩素濃度を測定することが可能である。
【0020】
尚、生成装置1において、2は、図示しない水道配管に接続され、水道水を給水タンク3内に供給するための配管であり、4は、給水タンク3内に貯留された水道水を外部に排出するための排水管であり、15は、定水槽13内に貯留された貯水を外部に排出するための排水管であり、17は、電解槽11内で発生したガスを外部に排出するための排気管である。
【0021】
また、前記注入装置20は、前記生成装置1の電解槽11と配管16を介して接続され、該電解槽11から供給された次亜塩素酸ソーダを貯蔵する貯蔵タンク21と、該貯蔵タンク21内に一端が挿入された供給管22と、該供給管22の途中位置に介装された注入ポンプ23とを備えており、該注入ポンプ23を作動させることで、供給管22の他端側から次亜塩素酸ソーダを吐出させることが可能である。
【0022】
そして、上述したポンプ7,10、配管5上に設けられた電磁弁、その他の構成要素は、時計手段としての24時間タイマーやカレンダータイマーを備えた制御部18によって制御が行なわれるようになっている。
【0023】
また、以上の構成からなる浄化装置は、プール施設に設けられた循環装置28に接続される。具体的には、循環装置28は、貯水槽25の底部の一端側と他端側とを連絡する配管29と、該配管29の途中位置に介装された循環ポンプ30及び該循環ポンプ30よりも下流側の濾過器31とから構成されているが、定水槽13に接続された配管12が、循環ポンプ30と濾過器31との間における配管29に接続される一方、貯蔵タンク21に接続された配管22が、濾過器31よりも下流側における配管29に接続されている。
【0024】
本実施形態に係る浄化装置は、以上の構成からなり、次に、流体の流通態様について説明する。
【0025】
プール施設において、循環ポンプ30が作動し、貯水槽25に貯えられる貯水は、貯水槽25の底部の一端側から抜かれて配管29を通り、濾過器31で濾過されてから貯水槽25の底部の他端側に戻される。この時、配管29内を流通する貯水の一部は、配管29から分岐する配管12に流入し、しかる後、定水槽13に貯留される。定水槽13内では、残留塩素濃度計14によって貯水中の残留塩素濃度が測定される。
【0026】
一方、生成装置1において、配管2を介して給水タンク3に貯留された水道水は、所望量分が配管5を通って塩溶解槽8内に送られる。従って、塩溶解槽8内に投入された食塩はこの水道水に溶解され、得られた食塩水は、配管9を通って電解槽11に定量供給される。さらに、電解槽11内では、この食塩水が電気分解されて次亜塩素酸ソーダが生成され、得られた次亜塩素酸ソーダは、配管16を介して注入装置20の貯蔵タンク21に送られる。
【0027】
そして、注入装置20において、制御部18から送られた信号を注入ポンプ23が受信したならば、この注入ポンプ23が作動し、貯蔵タンク21内の次亜塩素酸ソーダは、配管22を通って循環装置28の配管29に送られる。そこで、貯水は、次亜塩素酸ソーダの添加によってその残留塩素濃度が上昇することとなる。
【0028】
本実施形態に係る流体の流通態様は以上の如くであり、次に、注入ポンプ23の制御内容について、通常の濃度管理の場合と、夜間に行なうスーパークロリネーションの場合とに分けて説明する。
【0029】
まず、通常の濃度管理とは、貯水中の残留塩素濃度を法規に定められた規定値(0.4〜1ppm)の範囲内に収めることを言うが、かかる場合の制御内容を図2に示す。
【0030】
即ち、制御部18の記憶部(図示しない)に、上限濃度値を0.6ppm、下限濃度値を0.5ppmに設定すると、残留塩素濃度計14により測定された貯水中の残留塩素濃度が、低い状態(A点)から下限濃度値(B点)に至るまで、注入ポンプ23が作動して、貯蔵タンク21に貯蔵されている次亜塩素酸ソーダが貯水中に注入される。
【0031】
そして、貯水中の残留塩素濃度が下限濃度値を超える(B点〜)と、注入ポンプ23が停止する。この時、次亜塩素酸ソーダが貯水槽25全体に拡散して残留塩素濃度が安定するまでに所定のタイムラグが発生するため、残留塩素濃度が一時的に上限濃度値をも上回る(C点〜)現象が起こり得る。
【0032】
しかる後、貯水中の残留塩素濃度が上限濃度値を下回る(D点〜)と、注入ポンプ23が再び作動する。この時、貯水槽25全体で残留塩素濃度が酸化のために減衰することに加え、既に上記した様に投入される次亜塩素酸ソーダが貯水槽25全体に拡散して残留塩素濃度を安定するまでに所定のタイムラグが発生するため、残留塩素濃度が一時的に下限濃度値をも下回る(E点〜)現象が起こる。
【0033】
以上のように、注入ポンプ23が作動して貯水中の残留塩素濃度が上昇する場合には、その残留塩素濃度が下限濃度値を上回った時に注入ポンプ23が停止する一方、注入ポンプ23が停止して貯水中の残留塩素濃度が下降する場合には、その残留塩素濃度が上限濃度値を下回った時に注入ポンプ23が作動するという制御を採用することで、残留塩素濃度の上がり過ぎ、下がり過ぎを早めに検知して、残留塩素濃度のバラツキを押さえることができる。
【0034】
一方、スーパークロリネーションの場合における制御内容を図3に示す。かかる場合、制御部18の記憶部に、目標濃度値を2ppm(本例では、0.4ppmの5倍)に設定すると共に、24時間タイマーに、注入ポンプ23の作動開始時間を夜間帯のT1 に設定すると、時刻がT1 になった時、残留塩素濃度計14により貯水中の残留塩素濃度を測定すると共に、注入ポンプ23が作動して、貯蔵タンク21に貯蔵されている次亜塩素酸ソーダが貯水中に注入される(A’点)。
【0035】
しかる後、貯水中の残留塩素濃度が目標濃度値に達する(B’点)と、注入ポンプ23が停止する。このように、夜間の時間帯に貯水中の残留塩素濃度を規定値よりも高濃度にすることで、スーパークロリネーションが行なわれ、無人自動的に貯水の殺菌及び貯水の透明化が実施されることとなる。
【0036】
尚、スーパークロリネーションの制御内容は、上述のものに限定されず、例えば、以下の方法も採用することができる。即ち、注入ポンプ23の作動開始時間(第一の時間)を設定すると共に、注入ポンプ23の作動停止時間(第二の時間)を所定時間後に設定し、また、目標濃度値の替わりとしてその近傍の上限濃度値及び下限濃度値を設定すると共に、上述の通常の濃度管理における制御内容を採用することで、貯水中の残留塩素濃度を目標濃度値近傍に安定させた状態からスーパークロリネーションを開始することができるため、より確実な効果が期待できる。
【0037】
また、上述の方法を用いてスーパークロリネーションを毎日自動で行なうことが可能であるが、カレンダータイマーの活用により、所望する日にのみスーパークロリネーションを行なうようにしてもよい。そして、スーパークロリネーションの開始時間設定を日毎に変えることもできる。また、開始時間設定は、夜間のみでなく、昼間であってもよい。要は、施設利用者が利用することのない時間帯にスーパークロリネーションを行なえばよいのである。
【0038】
さらに、24時間タイマーやカレンダータイマーを用いて、指定された時間に、目標濃度値を切り替えるようにしてもよい。これにより、例えば、午前8時から午前12時までは、目標濃度値を0.4〜0.5ppmとし、午後からは、目標濃度値を1ppmとする等、施設利用者が貯水施設を利用する時間帯において、規定量(0.4〜1ppm)の範囲内を維持しつつ、施設利用者の数に応じて目標濃度値を変えることで、貯水中の残留塩素濃度を常に好適な状態に維持することができる。但し、時間によって切り替えられる目標濃度値は、規定量(0.4〜1ppm)の範囲内にのみ設定されるものではない。例えば、指定された第一の時間(施設利用者が貯水施設の利用を開始する時間もしくはその付近の時間)から目標濃度値を0.5ppmとし、指定された第二の時間(施設利用者が貯水施設の利用を終了する時間もしくはその付近の時間)から2ppmとする場合も当然に考えられる。
【0039】
【発明の効果】
上記構成からなる貯水施設の浄化装置及び貯水施設の貯水の浄化方法は、次亜塩素酸ソーダを生成する処理、得られた次亜塩素酸ソーダを貯水槽に注入する処理、貯水中の残留塩素濃度を測定する処理、そして、注入手段を制御する処理を採用しているため、人手に頼ることなく、時間指定して自動的且つ正確に貯水の濃度調整を行なうことができるばかりでなく、次亜塩素酸ソーダに触れる機会が無くなるため、施設管理者の作業上の安全性を担保することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を貯水施設の浄化装置を示すフローダイヤフラム。
【図2】通常の濃度管理における制御状態を示し、(イ)は、貯水中の残留塩素濃度の経時的な変化を表した図、(ロ)は、その際の注入ポンプの制御内容。
【図3】スーパークロリネーションにおける制御状態を示し、(イ)は、貯水中の残留塩素濃度の経時的な変化を表した図、(ロ)は、その際の注入ポンプの制御内容。
【符号の説明】
1…生成装置、8…塩溶解槽、11…電解槽、13…定水槽、14…残留塩素濃度計、18…制御部、20…注入装置、21…貯蔵タンク、23…注入ポンプ、25…貯水槽
[0001]
BACKGROUND OF THE INVENTION
The invention, for example, relates to the purification equipment for water storage facilities of the pool or the like.
[0002]
[Prior art]
Pools and public baths, which are one form of water storage facilities, are a state where many facility users enter and enter hot water, so that water and hot water (hereinafter referred to as water storage) contain bacteria and secretory organic substances such as Escherichia coli. It is easy to become. Therefore, in order for the facility user to be able to use these facilities comfortably, it is necessary to periodically purify the stored water.
[0003]
It is common to use sodium hypochlorite for the purification treatment of the stored water. Sodium hypochlorite has both a bactericidal action and an oxidative action. This bactericidal action is used to sterilize miscellaneous bacteria in the stored water, and the oxidative action is used to agglomerate secretory organic substances in the stored water. This is because the transparency can be improved.
[0004]
Taking a pool as an example, observing the residual chlorine concentration in the stored water within the range of 0.4 to 1 ppm (specified amount) is obligatory as a condition of facility provision, but sterilization of the stored water and transparency of the stored water As a measure for, for the time when facility users do not use the pool, for example, at night, sodium hypochlorite is administered to the reservoir so that the residual chlorine concentration is about 5 times the specified amount. So-called superchlorination is widely used.
[0005]
As for superchlorination, the following two methods are conventionally known. That is, the first method is a method in which the facility administrator directly puts a tablet made of calcium hypochlorite into the water storage, and the second method quantifies sodium hypochlorite in the storage tank. This is a method of injecting water into a reservoir.
[0006]
[Problems to be solved by the invention]
However, in the first method, the number of tablets required is determined in consideration of the volume of the pool, and this amount is put into the water storage, aiming at the target residual chlorine concentration, The second method calculates the injection amount of sodium hypochlorite in consideration of the volume of the pool, and aims at the target residual chlorine concentration by injecting this injection amount with a metering pump. However, in any case, there is a problem that the residual chlorine concentration is not easily calculated.
[0007]
Therefore, conventionally, the facility administrator measures the residual chlorine concentration of the stored water after administration of sodium hypochlorite, and if the measured concentration is lower than the desired residual chlorine concentration, further administers sodium hypochlorite, If the measured concentration is higher than the desired residual chlorine concentration, the operation of diluting the stored water occurs, which is extremely troublesome. Moreover, since this operation is performed at night, it may cause labor costs.
[0008]
In addition, sodium hypochlorite has a strong bleaching action, so it should be avoided to adhere to the skin as much as possible, but you can take tablets directly or transfer commercially available sodium hypochlorite to a storage tank. This cannot be guaranteed with conventional methods involving work.
[0009]
Therefore, the present invention has been made in view of the above problems, and can automatically and accurately control the concentration of stored water at a specified time without relying on human hands, and can further reduce hypochlorous acid. it is an object of the present invention to provide a purification equipment of water storage facilities that can eliminate the opportunity to come into direct contact with soda.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, a purification apparatus for a water storage facility according to the present invention is a purification apparatus for a water storage facility for purifying the water stored in a water tank, and circulates the water stored in the water tank. Therefore, a generation means for electrolyzing saline to produce sodium hypochlorite for a water storage tank to which one end and the other end of a pipe provided with a circulation pump are connected, and the obtained sodium hypochlorite and injection means for injecting into the piping, measuring means for measuring the residual chlorine concentration in the water upstream from the injection point of the pipe, control means for measuring concentration is controlled injection means so as to fall within a predetermined range And a clock means for enabling the time for controlling the injection means.
[0011]
According to the purification apparatus for a water storage facility having the above-described configuration, a process for generating sodium hypochlorite, a process for injecting the obtained sodium hypochlorite into a water tank, a process for measuring the residual chlorine concentration in the stored water, The residual chlorine concentration in the stored water is automatically stored in a predetermined range set in advance by the process of controlling the injection means. Further, by using the clock means, a desired residual chlorine concentration can be obtained at a specified time.
[0012]
Therefore, as in the method for purifying water stored in a water storage facility according to the present invention, sodium hypochlorite obtained by electrolyzing saline is injected into a water storage tank, and the residual chlorine concentration in this water storage is measured, It is possible to implement a method of automatically performing a series of these processes at a designated time, in which the injection of sodium hypochlorite is controlled so that the measured concentration falls within a predetermined range.
[0013]
Then, these series of processes, the facility user performed automatically in a time zone not to use the water storage facility, also of about 5 times the predetermined range, for example 0.4~1Ppm (specified amount) If it is set to a value, the sterilization of the stored water and the transparency of the stored water are automatically performed at the time when the facility user does not use, for example, at night, so the next day is hygienic and highly transparent. The water storage can be obtained, and the facility user can comfortably use the water storage facility.
[0014]
Further, as a method of performing the time specifying these series of processes, for example, to automatically start the first time specified, and, a method of automatically end the second time specified, the finger For example, a method of automatically starting at a predetermined time and ending automatically after the measured concentration falls within a predetermined range can be employed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which a purification apparatus according to the present invention is applied to a pool facility will be described with reference to FIG.
[0016]
The purification device according to the present embodiment can be broadly divided into a generator 1 that electrolyzes salt water to generate sodium hypochlorite, and a sodium hypochlorite obtained by the generator 1 in a water tank ( And an injection device 20 for injecting into a pool 25.
[0017]
The generating device 1 includes a water supply tank 3 for storing supplied tap water, a salt dissolution tank 8 for generating saline, a diaphragmless electrolytic cell 11 for generating sodium hypochlorite, and supplied storage water. And a constant water tank 13 for storing (pool water).
[0018]
The water supply tank 3 and the salt dissolution tank 8 are connected via a pipe 5, the water supply tank 3 and the electrolytic tank 11 are connected via a pipe 6, and the salt dissolution tank 8 and the electrolytic tank 11 are It is connected via a pipe 9. Further, a pump 7 is interposed in the middle of the pipe 6 so that tap water in the water supply tank 3 can be supplied to the electrolytic cell 11. Furthermore, a pump 10 is interposed in the middle of the pipe 9 so that the saline in the salt dissolution tank 8 can be supplied to the electrolytic tank 11.
[0019]
A residual chlorine concentration meter 14 is disposed in the constant water tank 13, and the residual chlorine concentration in the stored water supplied into the constant water tank 13 can be measured.
[0020]
In addition, in the production | generation apparatus 1, 2 is connected to the water pipe which is not shown in figure, and is a pipe | tube for supplying the tap water in the water supply tank 3, 4 is the tap water stored in the water supply tank 3 outside. A drain pipe for discharging, 15 is a drain pipe for discharging the stored water stored in the constant water tank 13 to the outside, and 17 is for discharging the gas generated in the electrolytic tank 11 to the outside. This is an exhaust pipe.
[0021]
The injection device 20 is connected to the electrolytic cell 11 of the generating device 1 via a pipe 16 and stores a storage tank 21 for storing sodium hypochlorite supplied from the electrolytic cell 11, and the storage tank 21. A supply pipe 22 having one end inserted therein and an injection pump 23 interposed in the middle of the supply pipe 22 are provided. By operating the injection pump 23, the other end side of the supply pipe 22 is provided. It is possible to discharge sodium hypochlorite.
[0022]
The above-described pumps 7 and 10, solenoid valves provided on the pipe 5, and other components are controlled by a control unit 18 having a 24-hour timer or a calendar timer as a clock means. Yes.
[0023]
The purification device having the above configuration is connected to a circulation device 28 provided in the pool facility. Specifically, the circulation device 28 includes a pipe 29 that connects one end side and the other end side of the bottom of the water storage tank 25, a circulation pump 30 interposed in the middle of the pipe 29, and the circulation pump 30. Is also composed of a filter 31 on the downstream side, but the pipe 12 connected to the constant water tank 13 is connected to the pipe 29 between the circulation pump 30 and the filter 31, while being connected to the storage tank 21. The pipe 22 is connected to a pipe 29 on the downstream side of the filter 31.
[0024]
The purification apparatus according to the present embodiment has the above-described configuration. Next, a fluid circulation mode will be described.
[0025]
In the pool facility, the circulating pump 30 is operated, and the water stored in the water storage tank 25 is drawn from one end of the bottom of the water storage tank 25, passes through the pipe 29, is filtered by the filter 31, and then is stored at the bottom of the water storage tank 25. Returned to the other end. At this time, a part of the water stored in the pipe 29 flows into the pipe 12 branched from the pipe 29 and then stored in the constant water tank 13. In the constant water tank 13, the residual chlorine concentration meter 14 measures the residual chlorine concentration in the stored water.
[0026]
On the other hand, in the production apparatus 1, a desired amount of tap water stored in the water supply tank 3 through the pipe 2 is sent into the salt dissolution tank 8 through the pipe 5. Therefore, the salt put into the salt dissolution tank 8 is dissolved in this tap water, and the obtained salt solution is supplied to the electrolytic cell 11 through the pipe 9 in a fixed amount. Further, in the electrolytic cell 11, the saline solution is electrolyzed to generate sodium hypochlorite, and the obtained sodium hypochlorite is sent to the storage tank 21 of the injection device 20 through the pipe 16. .
[0027]
In the injection device 20, when the injection pump 23 receives the signal sent from the control unit 18, the injection pump 23 is activated, and the sodium hypochlorite in the storage tank 21 passes through the pipe 22. It is sent to the piping 29 of the circulation device 28. Therefore, the residual chlorine concentration of the stored water is increased by the addition of sodium hypochlorite.
[0028]
The flow mode of the fluid according to the present embodiment is as described above. Next, the control contents of the infusion pump 23 will be described separately for the case of normal concentration management and the case of superchlorination performed at night.
[0029]
First, normal concentration management means that the residual chlorine concentration in the stored water falls within the range of the specified value (0.4 to 1 ppm) stipulated by the law. The control content in such a case is shown in FIG. .
[0030]
That is, when the upper limit concentration value is set to 0.6 ppm and the lower limit concentration value is set to 0.5 ppm in the storage unit (not shown) of the control unit 18, the residual chlorine concentration in the stored water measured by the residual chlorine concentration meter 14 is The injection pump 23 operates from the low state (point A) to the lower limit concentration value (point B), and sodium hypochlorite stored in the storage tank 21 is injected into the stored water.
[0031]
When the residual chlorine concentration in the stored water exceeds the lower limit concentration value (from point B), the infusion pump 23 is stopped. At this time, since a predetermined time lag occurs until sodium hypochlorite diffuses throughout the water storage tank 25 and the residual chlorine concentration becomes stable, the residual chlorine concentration temporarily exceeds the upper limit concentration value (from C point to ) The phenomenon can occur.
[0032]
Thereafter, when the residual chlorine concentration in the stored water falls below the upper limit concentration value (from point D), the injection pump 23 is activated again. At this time, the residual chlorine concentration in the entire water storage tank 25 is attenuated due to oxidation, and the sodium hypochlorite that has already been introduced diffuses throughout the water storage tank 25 to stabilize the residual chlorine concentration. A predetermined time lag occurs until the residual chlorine concentration temporarily falls below the lower limit concentration value (from point E).
[0033]
As described above, when the residual chlorine concentration in the stored water rises due to the operation of the injection pump 23, the injection pump 23 stops when the residual chlorine concentration exceeds the lower limit concentration value, while the injection pump 23 stops. Then, when the residual chlorine concentration in the stored water falls, the control that the injection pump 23 operates when the residual chlorine concentration falls below the upper limit concentration value, the residual chlorine concentration is excessively increased or decreased too much. Can be detected early, and variations in residual chlorine concentration can be suppressed.
[0034]
On the other hand, the control content in the case of superchlorination is shown in FIG. In such a case, the target concentration value is set to 2 ppm (in this example, 5 times 0.4 ppm) in the storage unit of the control unit 18, and the operation start time of the infusion pump 23 is set to the T When set to 1 , when the time reaches T 1 , the residual chlorine concentration meter 14 measures the residual chlorine concentration in the stored water, and the injection pump 23 is operated to store hypochlorous acid stored in the storage tank 21. Acid soda is injected into the reservoir (point A ′).
[0035]
Thereafter, when the residual chlorine concentration in the stored water reaches the target concentration value (point B ′), the injection pump 23 is stopped. In this way, by setting the residual chlorine concentration in the stored water to a concentration higher than the specified value during the night time, superchlorination is performed, and sterilization of the stored water and clearing of the stored water are automatically performed. It will be.
[0036]
In addition, the control content of super chlorination is not limited to the above-mentioned thing, For example, the following methods are also employable. That is, the operation start time (first time) of the infusion pump 23 is set, the operation stop time (second time) of the infusion pump 23 is set after a predetermined time, and the vicinity thereof is used instead of the target concentration value. In addition to setting the upper limit concentration value and lower limit concentration value, and adopting the control contents in the normal concentration management described above, superchlorination starts from the state where the residual chlorine concentration in the stored water is stabilized near the target concentration value Therefore, a more reliable effect can be expected.
[0037]
Although superchlorination can be automatically performed every day using the above-described method, superchlorination may be performed only on a desired day by using a calendar timer. And the start time setting of super chlorination can be changed every day. The start time setting may be not only at night but also in the daytime. In short, it is only necessary to perform superchlorination in a time zone that is not used by facility users.
[0038]
Furthermore, the target density value may be switched at a designated time using a 24-hour timer or a calendar timer. Thereby, for example, from 8 am to 12:00 am, the facility user uses the water storage facility such that the target concentration value is set to 0.4 to 0.5 ppm, and the target concentration value is set to 1 ppm from the afternoon. In the time zone, while maintaining the specified amount (0.4 to 1 ppm) within the range, by changing the target concentration value according to the number of facility users, the residual chlorine concentration in the stored water is always maintained in a suitable state. can do. However, the target concentration value switched according to time is not set only within the range of the specified amount (0.4 to 1 ppm). For example, the target concentration value is set to 0.5 ppm from the designated first time (the time when the facility user starts to use the water storage facility), and the designated second time (the facility user Naturally, it is conceivable that the concentration is set to 2 ppm from the time when the use of the water storage facility is completed or the time in the vicinity thereof.
[0039]
【The invention's effect】
A purification apparatus for a water storage facility and a method for purifying water stored in the water storage facility having the above-described structure are a process for generating sodium hypochlorite, a process for injecting the obtained sodium hypochlorite into a water storage tank, a residual chlorine in the water storage Since the process of measuring the concentration and the process of controlling the injection means are adopted, the concentration of the stored water can be adjusted automatically and accurately by specifying the time without relying on humans. Since there is no opportunity to touch sodium chlorite, the safety of the facility manager can be ensured.
[Brief description of the drawings]
FIG. 1 is a flow diaphragm showing a purification apparatus for a water storage facility according to an embodiment of the present invention.
[Fig. 2] Fig. 2 shows a control state in normal concentration management, (A) is a diagram showing a change with time in residual chlorine concentration in stored water, and (B) is a control content of the injection pump at that time.
FIG. 3 shows the control state in superchlorination, where (a) shows the change over time in the residual chlorine concentration in the stored water, and (b) shows the control content of the injection pump at that time.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Production | generation apparatus, 8 ... Salt dissolution tank, 11 ... Electrolysis tank, 13 ... Constant water tank, 14 ... Residual chlorine concentration meter, 18 ... Control part, 20 ... Injection apparatus, 21 ... Storage tank, 23 ... Injection pump, 25 ... Water storage tank

Claims (4)

貯水槽に貯えられた貯水を浄化するための貯水施設の浄化装置であって、貯水槽に貯えられた貯水を循環すべく、循環ポンプを備えた配管の一端及び他端が接続された貯水槽を対象に、食塩水を電気分解して次亜塩素酸ソーダを生成する生成手段と、得られた次亜塩素酸ソーダを前記配管に注入する注入手段と、該配管の注入箇所よりも上流側で貯水中の残留塩素濃度を測定する測定手段と、測定濃度が所定範囲内に収まるように注入手段を制御する制御手段とを備え、さらに、注入手段の制御を時間指定可能にするための時計手段を備えてなることを特徴とする貯水施設の浄化装置。A purification device of a water storage facility for purifying water stored in a water storage tank, wherein one end and the other end of a pipe provided with a circulation pump are connected to circulate the water stored in the water storage tank targeting, and generating means for generating hypochlorous acid soda brine electrolysis, an injection means for injecting sodium hypochlorite obtained in the pipe, upstream of the injection point of the pipe A measuring means for measuring the residual chlorine concentration in the stored water, and a control means for controlling the injecting means so that the measured concentration falls within a predetermined range. A purification apparatus for a water storage facility, characterized by comprising means. 前記生成手段は、給水タンクと、該給水タンクから供給された給水で食塩を溶解することにより食塩水を生成する塩溶解槽と、該塩溶解槽から供給された食塩水を電気分解することにより次亜塩素酸ソーダを生成する電解槽とを備える請求項1に記載の貯水施設の浄化装置。The generating means includes a water supply tank, a salt dissolution tank that generates salt water by dissolving salt with the water supplied from the water supply tank, and electrolyzing the salt water supplied from the salt dissolution tank. The purification apparatus for a water storage facility according to claim 1, further comprising an electrolytic cell for producing sodium hypochlorite. 前記注入手段は、前記電解槽から供給された次亜塩素酸ソーダを貯蔵する貯蔵タンクと、該貯蔵タンク内に一端が挿入され、他端が前記配管に接続される供給管と、該供給管の途中位置に介装された注入ポンプとを備える請求項1又は2に記載の貯水施設の浄化装置。The injection means includes a storage tank for storing sodium hypochlorite supplied from the electrolytic cell, a supply pipe having one end inserted into the storage tank and the other end connected to the pipe, and the supply pipe The purification apparatus of the water storage facility of Claim 1 or 2 provided with the infusion pump interposed in the middle position of. 前記配管は、前記循環ポンプよりも下流側に濾過器を備え、前記注入手段は、次亜塩素酸ソーダを前記配管の濾過器よりも下流側に注入するものであり、前記測定手段は、前記配管の循環ポンプと濾過器との間で貯水中の残留塩素濃度を測定するものである請求項1〜3の何れか1項に記載の貯水施設の浄化装置。The pipe is provided with a filter downstream of the circulation pump, and the injection means injects sodium hypochlorite downstream of the pipe filter, and the measurement means The purification apparatus for a water storage facility according to any one of claims 1 to 3, wherein a residual chlorine concentration in the stored water is measured between a circulation pump of a pipe and a filter.
JP2000047107A 2000-02-24 2000-02-24 Water storage equipment purification equipment Expired - Fee Related JP4571262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000047107A JP4571262B2 (en) 2000-02-24 2000-02-24 Water storage equipment purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000047107A JP4571262B2 (en) 2000-02-24 2000-02-24 Water storage equipment purification equipment

Publications (2)

Publication Number Publication Date
JP2001232371A JP2001232371A (en) 2001-08-28
JP4571262B2 true JP4571262B2 (en) 2010-10-27

Family

ID=18569412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000047107A Expired - Fee Related JP4571262B2 (en) 2000-02-24 2000-02-24 Water storage equipment purification equipment

Country Status (1)

Country Link
JP (1) JP4571262B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102644336B1 (en) * 2023-07-18 2024-03-07 주식회사 원스케이프 Water treatment system for water dabbing facility

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088865A (en) * 2001-09-18 2003-03-25 Sanyo Electric Co Ltd Water treatment apparatus
JP4197893B2 (en) 2001-12-28 2008-12-17 株式会社オメガ Method and apparatus for producing washing / cleaning sterilizing water
JP4731172B2 (en) * 2005-01-28 2011-07-20 Nkワークス株式会社 Electrolyzer
JP5537582B2 (en) * 2005-02-09 2014-07-02 株式会社東芝 Ballast water purification device, ship and ballast water purification method
JP5132282B2 (en) * 2007-12-03 2013-01-30 アズビル株式会社 Water management device and water management method
JP2009285576A (en) * 2008-05-29 2009-12-10 Shinmaywa Industries Ltd Apparatus for managing residual chlorine concentration by injection into water pipe
JPWO2012117712A1 (en) * 2011-02-28 2014-07-07 日本曹達株式会社 Water treatment apparatus and water treatment method
KR101840234B1 (en) 2016-03-08 2018-03-20 주식회사 우진이엔지 Chlorine water electrolysis apparatus capable of regulating chloride dosage and temperature
JP2018001049A (en) * 2016-06-27 2018-01-11 有限会社イシズチコーポレーション Method for sterilizing pool water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104645A (en) * 1997-10-01 1999-04-20 Matsushita Electric Ind Co Ltd Water purifying apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870482B2 (en) * 1997-05-09 2007-01-17 松下電器産業株式会社 Water purification equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104645A (en) * 1997-10-01 1999-04-20 Matsushita Electric Ind Co Ltd Water purifying apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102644336B1 (en) * 2023-07-18 2024-03-07 주식회사 원스케이프 Water treatment system for water dabbing facility

Also Published As

Publication number Publication date
JP2001232371A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
RU2465910C1 (en) Method and device for obtaining hydrogen-containing flowing medium, applicable for living organisms
JP4571262B2 (en) Water storage equipment purification equipment
JP3957476B2 (en) Water treatment equipment
JPH1099864A (en) Method for producing sterilizing solution and apparatus therefor
KR100679181B1 (en) Sterilizing treatment-apparatus for pool
JP3403258B2 (en) Fluid flow path cleaning method and cleaning device
JP2005006668A (en) Carbonated spring generation method and device
CN109133324A (en) A kind of drinking water treatment equipment and method
KR101840234B1 (en) Chlorine water electrolysis apparatus capable of regulating chloride dosage and temperature
CN112144072A (en) Sodium hypochlorite degassing unit
KR20120134008A (en) Sterilizing method for water treatment apparatus having a plurality of tank
JP2005021798A (en) Method and apparatus for manufacturing ozone water
JP2008049222A (en) Purification system of storage of water institution
JP3999967B2 (en) Water treatment equipment
JP3646541B2 (en) Hypochlorous acid concentration control method in electrolyzed water supply device
JP2021041345A (en) Circulating water sterilization treatment system and control method of circulation water sterilization treatment used thereof
JP4711537B2 (en) Functional sterilization bath
KR20150019755A (en) Manufacturing apparatus for generating hypochlorons acid
JP2005350716A (en) Electrolytic sterilization device for tank
CN213327865U (en) Sodium hypochlorite degassing unit
KR101733429B1 (en) Dental treatment water generating unit
JP4169634B2 (en) Sterilization method
JP2009136723A (en) Chlorine dioxide water generating/injecting device
JP4231340B2 (en) Continuous supply device for high-concentration saline and continuous supply method for high-concentration saline
CN214513802U (en) Sterile water reverse osmosis filtration system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees