JP4571103B2 - Wireless communication device - Google Patents

Wireless communication device Download PDF

Info

Publication number
JP4571103B2
JP4571103B2 JP2006179924A JP2006179924A JP4571103B2 JP 4571103 B2 JP4571103 B2 JP 4571103B2 JP 2006179924 A JP2006179924 A JP 2006179924A JP 2006179924 A JP2006179924 A JP 2006179924A JP 4571103 B2 JP4571103 B2 JP 4571103B2
Authority
JP
Japan
Prior art keywords
frequency
information
wave
switching
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006179924A
Other languages
Japanese (ja)
Other versions
JP2008011210A (en
Inventor
直輝 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006179924A priority Critical patent/JP4571103B2/en
Publication of JP2008011210A publication Critical patent/JP2008011210A/en
Application granted granted Critical
Publication of JP4571103B2 publication Critical patent/JP4571103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、フェージング、特に海面反射による二波干渉の影響を低減する、海上移動体に搭載される無線通信装置に関するものである。   The present invention relates to a radio communication apparatus mounted on a marine mobile body that reduces the influence of fading, particularly two-wave interference caused by sea surface reflection.

一般に無線通信の安定性に影響を与えるものとしてマルチパスフェージングがあげられる。マルチパスフェージングとは、無線通信において送信側から受信側へ電波が届くまでに、直接波以外に伝送路上に存在する障害物からの回折波や反射波が存在し、受信側においてそれらの複数の経路からの到来電波が互いに干渉し、移動体の位置により時々刻々と信号のレベルが変化することをいう。このマルチパスフェージングの影響でデジタル無線通信において周波数選択性フェージングが問題となってくる。複数の到来電波には時間遅延が存在する。この時間遅延が伝送しようとしているデジタル信号のクロック周期の0.1倍程度以上になるとデジタル信号の符号が隣接する符号と干渉を起こし、符号誤りが多発し通信回線の品質を著しく劣化させる。   In general, multipath fading is a factor that affects the stability of wireless communication. Multipath fading refers to the presence of diffracted waves and reflected waves from obstacles existing on the transmission path in addition to direct waves before radio waves reach from the transmission side to the reception side in wireless communication. The incoming radio waves from the path interfere with each other, and the signal level changes every moment depending on the position of the moving body. Due to this multipath fading, frequency selective fading becomes a problem in digital wireless communication. There are time delays in multiple incoming radio waves. When this time delay is about 0.1 times or more of the clock period of the digital signal to be transmitted, the code of the digital signal causes interference with the adjacent code, code errors occur frequently, and the quality of the communication line is remarkably deteriorated.

マルチパスフェージングの中でも、特に海上移動体間通信においては、その通信の安定性に大きく影響を与えるものとして、直接波と海面反射波による二波干渉がある。図5に示すように、移動局1から送出される電波が離れた距離にある移動局2へ到達するときには、直接波と海面反射波となる。通常マルチパスフェージングでは障害物からの反射波や回折波も考慮するべきである。しかし、海上移動体間通信においては、移動局1と移動局2の間には障害物と呼べるものはなく、受信に影響を与える原因としては海面反射波の干渉が支配的であるといえる。移動局1,2が等高度において移動していると仮定した場合において、移動局1から或る周波数で送信された電波を移動局2で受信したときの受信レベルの概略例を図6に示す。受信レベルは、一般的には距離に応じて単純に減衰していくが、特に海上では、周波数を固定して見たとき急激に減衰する谷間が存在する。この谷間は直接波と海面反射波による二波干渉により発生する。したがって、この谷間が存在する位置に移動局2があるときは受信品質が低下する。   Among multipath fading, especially in maritime mobile communications, there is a two-wave interference caused by a direct wave and a sea surface reflected wave that greatly affects the stability of the communications. As shown in FIG. 5, when the radio wave transmitted from the mobile station 1 reaches the mobile station 2 at a distance, a direct wave and a sea surface reflected wave are generated. In general, multipath fading should also consider reflected waves and diffracted waves from obstacles. However, in maritime mobile communication, there is nothing called an obstacle between the mobile station 1 and the mobile station 2, and it can be said that the interference of the sea surface reflected wave is dominant as a cause affecting reception. FIG. 6 shows a schematic example of the reception level when the mobile station 2 receives a radio wave transmitted at a certain frequency from the mobile station 1, assuming that the mobile stations 1 and 2 are moving at the same altitude. . In general, the reception level is simply attenuated according to the distance. However, especially at sea, there is a valley that abruptly attenuates when the frequency is fixed. This valley is generated by two-wave interference caused by direct waves and sea surface reflected waves. Therefore, when the mobile station 2 is in a position where this valley exists, the reception quality is lowered.

上記のようなマルチパスフェージングへの対策としてダイバーシチ方式が有効であることが広く知られている。受信アンテナのスペースダイバーシチ方式を応用した無線通信システムで、受信側にクロック周波数成分検出器等を設け、複数のアンテナで受信される電波のうち、受信電波強度が最も強いものへ受信系を切り替え、その後は単一の受信系統で受信処理を行うという技術が提案されている(例えば特許文献1参照)。
また、海上移動体間通信を行う複数の通信装置でネットワークを構成し、通信装置は自己位置評定装置なるものを用いて二波干渉による受信電波強度の落ち込みを計算し、その電波強度が通信相手の要求するレベルに満たない時には、ネットワークに加入している他の通信装置を経由させることにより、通信相手への情報伝達経路を確保するという技術がある(例えば特許文献2参照)。
また、空中線を構成する複数のアンテナ素子のそれぞれから送出する同一の送信信号の位相量を別々に制御することにより空中線からの電波に指向性を持たせるという技術がある(例えば特許文献3参照)。
It is widely known that the diversity method is effective as a countermeasure against the multipath fading as described above. In a radio communication system that applies the space diversity method of the receiving antenna, a clock frequency component detector etc. is provided on the receiving side, and among the radio waves received by multiple antennas, the receiving system is switched to the one with the strongest received radio wave intensity, Thereafter, a technique of performing reception processing using a single reception system has been proposed (see, for example, Patent Document 1).
In addition, a network is composed of a plurality of communication devices that perform maritime mobile communication, and the communication device calculates a drop in received radio wave strength due to two-wave interference using what is called a self-localization device, and the radio wave strength is the communication partner. There is a technique of securing an information transmission path to a communication partner by passing through another communication device that joins the network when the level required by is not reached (see, for example, Patent Document 2).
In addition, there is a technique for imparting directivity to radio waves from an antenna by separately controlling the phase amount of the same transmission signal transmitted from each of a plurality of antenna elements constituting the antenna (see, for example, Patent Document 3). .

特開平6−311146号公報JP-A-6-31146 特開平9−307494号公報JP-A-9-307494 特開2001−237768号公報JP 2001-237768 A

従来の特許文献1に記載された技術では、受信側において、直接波と海面反射波による二波干渉による影響の少ない方の電波を逐次切り替え、受信される電波のうちから最適な電波強度を持つものを選択するという方法をとっているため、届いた電波が全て微弱であった場合にはマルチパスフェージング低減に対応できない。また、特許文献2に記載の技術の場合、送信側において自己位置および通信相手の位置情報を用いて二波干渉を計算しているが、この方式は中継により通信相手へ情報伝達するようにしているため、中継局が存在することを前提としており、2者間のみによる通信では意図する効果が得られない。さらに、特許文献3に記載の技術の場合、直接波と海面反射波の二波干渉を避ける方法として、固定された空中線を電子的に操作することで送信電波に指向性を与えるようにしているが、そのためには多数のアンテナを使用しなければならない。また、アンテナの数に応じて送信信号の位相量を個々に制御しなければならず、複雑な計算を行う装置が要求される。   In the technology described in Patent Document 1 of the prior art, on the receiving side, the radio wave that is less affected by the two-wave interference due to the direct wave and the sea surface reflected wave is sequentially switched, and the optimal radio wave intensity is selected from the received radio waves. Since the method of selecting a thing is taken, when all the radio waves which arrived are weak, it cannot respond to multipath fading reduction. Further, in the case of the technique described in Patent Document 2, two-wave interference is calculated using the self-position and the communication partner's position information on the transmission side, but this method transmits information to the communication partner by relay. Therefore, it is assumed that a relay station exists, and the intended effect cannot be obtained by communication between two parties. Furthermore, in the case of the technique described in Patent Document 3, as a method for avoiding two-wave interference between a direct wave and a sea surface reflected wave, directivity is given to a transmission radio wave by electronically operating a fixed antenna. However, many antennas must be used for this purpose. In addition, the phase amount of the transmission signal must be individually controlled according to the number of antennas, and a device that performs complicated calculations is required.

この発明は、海上移動体間通信において、二波干渉による影響を送信する際に軽減するようにして、安定性した通信品質の2者間通信を可能にする無線通信装置を得ることを目的とする。   An object of the present invention is to obtain a wireless communication apparatus that enables two-way communication with stable communication quality by reducing the influence of two-wave interference in maritime mobile communication. To do.

この発明に係る無線通信装置は、海上移動体間通信を行う無線通信装置において、GPS信号を受信して自機の位置情報を取得する自己位置計算部と、受信情報から相手機の位置情報、相手機の周波数情報および相手機の切替タイミング情報を分離し、分離した相手機の周波数情報に応じた周波数で受信波を受信させる情報分離部と、自己位置計算部により取得された自機の位置情報、現在使用中の送信波の周波数および情報分離部により分離された相手機の位置情報に基づいて、相手機との間における直接波と海面反射波の経路長の差を算出し、算出した経路長の差と現在の送信波の1/2波長との差を求め、求めた差の絶対値が所定値以下となった場合には、差の絶対値が所定値以上となる波長の周波数を算出し、当該算出した周波数に切り替える指示を出す干渉計算部と、干渉計算部からの周波数の切り替える指示に応じて自機の切替タイミング情報を生成すると共に、情報分離部により分離された相手機の切替タイミング情報に同期して送信波の周波数を、干渉計算部から指示された周波数に切り替える周波数切替部と、自己位置計算部により取得された自機の位置情報、周波数切替部により切り替えられた現在使用中の送信波の周波数情報および自機の切替タイミング情報を送信情報に多重する情報多重部を備えたものである。

The wireless communication device according to the present invention is a wireless communication device that performs maritime mobile communication, a self-position calculation unit that receives a GPS signal and acquires position information of the own device, and position information of the counterpart device from the received information, The information separation unit that separates the frequency information of the partner device and the switching timing information of the partner device, and receives the received wave at a frequency according to the frequency information of the separated partner device, and the position of the own device obtained by the self-position calculation unit Based on the information, the frequency of the transmission wave currently in use, and the position information of the partner aircraft separated by the information separator , the difference between the path length of the direct wave and the sea surface reflected wave between the partner aircraft is calculated and calculated. Obtain the difference between the path length difference and the half wavelength of the current transmission wave, and if the absolute value of the difference is less than or equal to a predetermined value, the frequency at which the absolute value of the difference is greater than or equal to the predetermined value To the calculated frequency An interference calculation section issues an instruction to replace Ri, in accordance with the instruction for switching the frequency from the interference calculation unit generates the switching timing information of its own, in synchronism with the switching timing information of the separated destination via information separator The frequency switching unit that switches the frequency of the transmission wave to the frequency instructed by the interference calculation unit, the position information of the own device acquired by the self-position calculation unit , and the frequency of the currently used transmission wave switched by the frequency switching unit the switching timing information of the information and its own device is obtained and an information multiplexing section for multiplexing the transmission information.

この発明によれば、直接波と海面反射波の二波干渉を考慮して送信波の使用周波数を切り替えるようにしたので、二波干渉の影響を極力抑え、安定した品質の2者間通信を可能にする。   According to the present invention, the use frequency of the transmission wave is switched in consideration of the two-wave interference between the direct wave and the sea surface reflected wave, so that the influence of the two-wave interference is suppressed as much as possible, and stable two-way communication is achieved. enable.

実施の形態1.
図1はこの発明の実施の形態1による無線通信装置の構成を示すブロック図である。この無線通信装置は、例えばTDMA(Time Division Multiple Access;時分割多元接続)方式を用いたデジタルデータ通信を想定したものであり、装置同士でデータリンクを組むため同時通信を行うことができる。また、装置間はGPS(Global Positioning System)信号により同期がとられているものとする。
図1において、自己位置計算部102では、GPS(Global Positioning System)信号から自機の位置情報を取得して情報多重部101へ出力する。情報多重部101では、入力される本来送信する送信データ(音声データの場合も含む)、自機の位置情報、後述の周波数切替部104で選択した現在の通信に使用している周波数情報および切替タイミング情報を多重し、送信情報として送信部103へ出力する。送信部103では、情報多重部101からの送信情報を、周波数切替部104が選択した周波数で発振する電圧制御発振器(Voltage Controlled Oscillator;VOC)を用いて周波数変換し、RF信号(送信波)を生成して空中線105に供給する。空中線105では、送信部103から供給されたRF信号を電波にして送信する。また、空中線105は、相手方の同種無線通信装置からの電波を受信すると、その受信RF信号を受信部106へ出力する。
Embodiment 1 FIG.
1 is a block diagram showing a configuration of a wireless communication apparatus according to Embodiment 1 of the present invention. This wireless communication apparatus assumes digital data communication using, for example, a TDMA (Time Division Multiple Access) system, and can perform simultaneous communication because the apparatuses form a data link. In addition, it is assumed that the devices are synchronized by a GPS (Global Positioning System) signal.
In FIG. 1, a self-position calculation unit 102 acquires the position information of its own device from a GPS (Global Positioning System) signal and outputs it to the information multiplexing unit 101. In the information multiplexing unit 101, input transmission data to be originally transmitted (including voice data), position information of the own device, frequency information used for current communication selected by the frequency switching unit 104 described later, and switching Timing information is multiplexed and output to the transmission unit 103 as transmission information. The transmission unit 103 converts the frequency of transmission information from the information multiplexing unit 101 using a voltage controlled oscillator (VOC) that oscillates at a frequency selected by the frequency switching unit 104, and converts an RF signal (transmission wave). Generated and supplied to the antenna 105. The antenna 105 transmits the RF signal supplied from the transmission unit 103 as a radio wave. Also, when the antenna 105 receives radio waves from the same type wireless communication device of the other party, the antenna 105 outputs the received RF signal to the receiving unit 106.

受信部106は、受信したRF信号を中間周波数に変換した後、アナログ/デジタル変換してベースバンド信号を得る。このベースバンド信号は相手機の送信情報であり、受信データ(相手機の送信データ)、位置情報、周波数情報および切替タイミング情報が含まれており、情報分離部108においてこれらを分離する。分離された相手機の位置情報は干渉計算部107に出力され、相手機の送信データ(本機では受信データ)は図示していない利用回路に出力される。また、分離された周波数情報は受信部106に与えられ、その局部発振器の周波数の切り替えに用いられる。さらに、切替タイミング情報は周波数切替部104に与えられ周波数切り替えの時期設定に用いられる。   The receiving unit 106 converts the received RF signal into an intermediate frequency, and then performs analog / digital conversion to obtain a baseband signal. This baseband signal is transmission information of the counterpart device, and includes reception data (transmission data of the counterpart device), position information, frequency information, and switching timing information, and the information separation unit 108 separates them. The separated position information of the partner machine is output to the interference calculation unit 107, and transmission data of the partner machine (received data in this machine) is output to a utilization circuit (not shown). The separated frequency information is given to the receiving unit 106 and used for switching the frequency of the local oscillator. Further, the switching timing information is given to the frequency switching unit 104 and used for setting the frequency switching timing.

干渉計算部107には、情報多重部101から自機の位置情報と現在送信中の周波数情報が入力されており、これらの情報と相手機の位置情報に基づいて、後述する方法により、自機の現在の使用周波数に対する海面反射波による二波干渉の影響を算出し、相手機が二波干渉による影響の大きい地点いる場合には、予め用意している複数の周波数の中から該当地点で二波干渉の影響を最小にできる周波数を選択し、周波数切り替え指示を周波数切替部104に出す。周波数切替部104では、受け取った指示に従った周波数に切り替える制御信号を送信部103へ与える。この制御信号は、送信部103の局部発振器としてVCOを用いている場合、使用周波数を決めるための可変容量ダイオードに与える制御電圧である。送信部103では、周波数切替部104からの制御信号に従って使用周波数を、相手機がいる地点で二波干渉の影響を最小にする周波数に設定し、設定した周波数を用いて送信情報の周波数変換を行う。なお、この周波数の切り替え動作は通信している相手機と同期を取って行うので、そのため、周波数切替部104からは、選択した周波数情報と共に、切替タイミング情報を情報多重部101で送信情報に多重する。   The interference calculation unit 107 receives the position information of the own device and the frequency information currently being transmitted from the information multiplexing unit 101. Based on the information and the position information of the counterpart device, the interference calculation unit 107 uses the method described later. When the influence of two-wave interference due to sea surface reflections on the current frequency of use is calculated, and the partner aircraft is at a point where the influence of two-wave interference is large, it is necessary to select two of the prepared frequencies at the corresponding point. A frequency that can minimize the influence of wave interference is selected, and a frequency switching instruction is issued to the frequency switching unit 104. The frequency switching unit 104 provides the transmission unit 103 with a control signal for switching to a frequency according to the received instruction. This control signal is a control voltage applied to the variable capacitance diode for determining the operating frequency when a VCO is used as the local oscillator of the transmission unit 103. In transmission section 103, the operating frequency is set to a frequency that minimizes the influence of two-wave interference at the point where the counterpart device is present, according to the control signal from frequency switching section 104, and the frequency conversion of transmission information is performed using the set frequency. Do. Since this frequency switching operation is performed in synchronization with the communicating partner, the frequency switching unit 104 multiplexes the switching timing information together with the selected frequency information into the transmission information by the information multiplexing unit 101. To do.

無線通信装置は以上のように動作するが、送信を行う場合、次のようにするとよい。同一の送信情報を複数回連続で送信し、その連続送信の2回目以降の送信において位相を1回目と異なるように制御する。そうすることで、1回目の送信電波が受信側の相手機において所望の受信電波強度を持たない場合でも、2回目以降の送信が所望の電波強度を持つことで受信が可能になる。   The wireless communication apparatus operates as described above, but when performing transmission, the following is preferable. The same transmission information is continuously transmitted a plurality of times, and the phase is controlled to be different from the first time in the second and subsequent transmissions of the continuous transmission. By doing so, even if the first transmission radio wave does not have the desired reception radio wave intensity at the receiving-side counterpart device, the second and subsequent transmissions can be received with the desired radio wave intensity.

次に、この発明の着想となった理論について説明する。
先に図5および図6を用いて海上移動体間通信におけるマルチパスフェージング現象について述べたが、海上におけるマルチパスフェージングは、図2に例示するように、送信波の使用周波数f1,f2によって発生する位置(移動局1からの距離)が異なる。図2から分かることは、海面反射により起きる受信電波強度の変動は、送信側および受信側の無線通信装置の相対位置と使用する送信周波数に依存しているということである。したがって、使用周波数f1のときの受信レベルの谷間の位置に在る無線通信装置に対しては、その谷間を埋める受信レベルを与える使用周波数f2を用いて送信すればよいことが分かる。この考えを表しているのが図3の太線の受信レベル曲線ある。
また、受信レベルの谷間が一番深くなるのは、図5において、移動局1からの電波の直接波と海面反射波が逆相で移動局2へ到達する時である。このことから、二波干渉が最大となる条件は、無線通信装置間の直接波と海面反射波の経路長の差がλ/2(λは送信波の波長)となる場合であることが分かる。したがって、経路長の差がλ/2となる位置付近に在る相手機に対しては、その波長にならない周波数の送信波を用いて送信すればよいことになる。
Next, the theory that is the idea of the present invention will be described.
The multipath fading phenomenon in the maritime mobile communication has been described with reference to FIGS. 5 and 6, but the multipath fading in the sea is generated by the use frequencies f1 and f2 of the transmission waves as illustrated in FIG. The position (distance from the mobile station 1) is different. It can be seen from FIG. 2 that the fluctuation of the received radio wave intensity caused by sea surface reflection depends on the relative positions of the transmission side and reception side radio communication apparatuses and the transmission frequency used. Therefore, it can be understood that it is sufficient to transmit to the wireless communication apparatus located in the valley of the reception level at the use frequency f1 by using the use frequency f2 that gives the reception level filling the valley. This idea is represented by the thick reception level curve in FIG.
Also, the valley of the reception level becomes deepest when the direct wave of the radio wave from the mobile station 1 and the sea surface reflected wave reach the mobile station 2 in opposite phases in FIG. From this, it can be seen that the condition for maximizing the two-wave interference is when the difference in path length between the direct wave and the sea surface reflected wave between the wireless communication devices is λ / 2 (λ is the wavelength of the transmitted wave). . Therefore, it is only necessary to transmit to a partner device in the vicinity of a position where the path length difference is λ / 2 by using a transmission wave having a frequency that does not become the wavelength.

次に、干渉計算部107の処理の詳細について図4により説明する。なお、図4では、説明を簡単にするために2次元で示すが、実際の3次元空間においてもそのまま拡張することが可能である。
まず、送信側となる移動局1の座標を(x1,y1)とおき、受信側となる移動局2の座標を(x2,y2)とおく。太線で示した移動局1から移動局2へ送信した電波の海面反射波の経路長をL1 とすると、(1)式の関係が成り立つ。
1 2=(x2−x1)2 +(y2+y1)2 (1)
同様に直接波の経路長L2 を求めると、(2)式の関係が成り立つ。
2 2=(x2−x1)2 +(y2−y1)2 (2)
これらの関係から直接波と海面反射波の経路長の差ΔL=L2 −L1 を求める。
Next, details of the processing of the interference calculation unit 107 will be described with reference to FIG. In FIG. 4, two-dimensionally shown for ease of explanation, but it can be expanded as it is in an actual three-dimensional space.
First, the coordinates of the mobile station 1 on the transmission side are set to (x1, y1), and the coordinates of the mobile station 2 on the reception side are set to (x2, y2). When the path length of the sea surface reflected wave of the radio wave transmitted from the mobile station 1 to the mobile station 2 indicated by the bold line is L 1 , the relationship of the formula (1) is established.
L 1 2 = (x2−x1) 2 + (y2 + y1) 2 (1)
Similarly, when the path length L 2 of the direct wave is obtained, the relationship of equation (2) is established.
L 2 2 = (x2-x1) 2 + (y2-y1) 2 (2)
From these relationships, the difference ΔL = L 2 −L 1 between the direct wave and the sea surface reflected wave is obtained.

前述したように、二波干渉が最も影響を与えるのは、直接波と海面反射波が逆相となって受信側に到達したとき、すなわち経路長の差ΔL=λ/2となったときである。そこで、干渉計算部107では、自機の現在の使用周波数からその1/2波長を算出する。次に、移動局間の距離から上記のように算出した直接波と海面反射波の経路長の差と現在の送信波の1/2波長との差を求め、求めた差の絶対値が所定値以下となった場合には、差の絶対値が所定値以上となる波長の周波数を算出する。ここで、差の絶対値が所定値以下となることは、図2において、現在の使用周波数f1において受信レベルが通信を不適当にする谷間にあることを指す。一方、差の絶対値が所定値以上となる波長の周波数の求め方としては、位置情報と使用周波数を対応付けたテーブルを予め準備しておき、その中から最も安定した通信を可能にする周波数を選べばよい。そのための例として、一つの位置情報に対して使用周波数を2つ用意しておき、一方の周波数を使用した時の二波干渉の影響が大きくなる地点においては、他方の周波数に切り替えるというようにすればよい。このことで受信レベルを安定に保つことが可能となる。   As described above, the two-wave interference has the most influence when the direct wave and the sea surface reflected wave reach the receiving side in opposite phases, that is, when the path length difference ΔL = λ / 2. is there. Therefore, the interference calculation unit 107 calculates the half wavelength from the current use frequency of the own device. Next, the difference between the path length of the direct wave and the sea surface reflected wave calculated as described above from the distance between the mobile stations and the half wavelength of the current transmission wave is obtained, and the absolute value of the obtained difference is a predetermined value. When the value is equal to or smaller than the value, the frequency of the wavelength at which the absolute value of the difference is equal to or greater than the predetermined value is calculated. Here, the fact that the absolute value of the difference is equal to or smaller than the predetermined value indicates that the reception level is in a valley that makes the communication inappropriate at the current use frequency f1 in FIG. On the other hand, as a method of obtaining the frequency of the wavelength at which the absolute value of the difference is equal to or greater than a predetermined value, a table that associates position information with the used frequency is prepared in advance, and the frequency that enables the most stable communication among them is prepared. You can choose. As an example for this, two operating frequencies are prepared for one position information, and at the point where the influence of two-wave interference becomes large when one frequency is used, the frequency is switched to the other frequency. do it. This makes it possible to keep the reception level stable.

以上のように、この実施の形態1によれば、海上移動体間通信において、送信情報を送信波に周波数変換する周波数を、相手機との間における直接波と海面反射波の経路長の差が1/2波長とはならない選択値に適宜切り替えて送信を行うようにしたので、海上における移動体間の距離変化に伴って起こる受信レベルの急激な低下を抑え、受信性能を連続して維持できるので、二波干渉の影響を大きく受ける海上移動体間通信において安定した通信品質の2者間通信を可能にする。また、海上移動体の位置関係を用いて簡単な計算で使用周波数を決定するようにしているので、処理時間を短くでき、使用周波数の切り替えをリアルタイムに行うことができる。また、複数のアンテナ構成や複雑な計算を必要とせず、また周波数切り替えにVCOを用いることで、無線通信装置の複雑化、大規模化を抑制することができる。   As described above, according to the first embodiment, in maritime mobile communication, the frequency at which transmission information is frequency-converted to a transmission wave is set to the difference between the path lengths of the direct wave and the sea surface reflected wave with the counterpart device. Is switched to a selected value that does not become half wavelength, and transmission is performed as appropriate, so that a sudden drop in the reception level caused by a change in the distance between moving bodies at sea is suppressed, and reception performance is continuously maintained. Therefore, two-way communication with stable communication quality is enabled in maritime mobile communication greatly affected by two-wave interference. Further, since the use frequency is determined by simple calculation using the positional relationship of the marine mobile body, the processing time can be shortened and the use frequency can be switched in real time. In addition, the use of a VCO for frequency switching does not require a plurality of antenna configurations or complicated calculations, and the complexity and scale of the wireless communication device can be suppressed.

この発明の実施の形態1による無線通信装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the radio | wireless communication apparatus by Embodiment 1 of this invention. 異なる送信周波数を使用した際の受信レベルを示す説明図である。It is explanatory drawing which shows the reception level at the time of using a different transmission frequency. この発明の実施の形態1に係る改善された受信レベルを示す説明図である。It is explanatory drawing which shows the improved receiving level which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る干渉計算部の処理方法を示す説明図である。It is explanatory drawing which shows the processing method of the interference calculation part which concerns on Embodiment 1 of this invention. 海上移動体間通信における電波の伝わり方を表す説明図である。It is explanatory drawing showing how the electromagnetic wave is transmitted in maritime mobile communication. 二波干渉を受けた受信レベルの例を示す説明図である。It is explanatory drawing which shows the example of the reception level which received two-wave interference.

符号の説明Explanation of symbols

101 情報多重部、102 自己位置計算部、103 送信部、104 周波数切替部、105 空中線、106 受信部、107 干渉計算部、108 情報分離部。   DESCRIPTION OF SYMBOLS 101 Information multiplexing part, 102 Self-position calculation part, 103 Transmission part, 104 Frequency switching part, 105 Antenna, 106 Reception part, 107 Interference calculation part, 108 Information separation part

Claims (1)

海上移動体間通信を行う無線通信装置において、
GPS信号を受信して自機の位置情報を取得する自己位置計算部と、
受信情報から相手機の位置情報、相手機の周波数情報および相手機の切替タイミング情報を分離し、分離した相手機の周波数情報に応じた周波数で受信波を受信させる情報分離部と、
前記自己位置計算部により取得された自機の位置情報、現在使用中の送信波の周波数および前記情報分離部により分離された相手機の位置情報に基づいて、相手機との間における直接波と海面反射波の経路長の差を算出し、算出した経路長の差と現在の送信波の1/2波長との差を求め、求めた差の絶対値が所定値以下となった場合には、前記差の絶対値が所定値以上となる波長の周波数を算出し、当該算出した周波数に切り替える指示を出す干渉計算部と、
前記干渉計算部からの周波数の切り替える指示に応じて自機の切替タイミング情報を生成すると共に、前記情報分離部により分離された相手機の切替タイミング情報に同期して送信波の周波数を、前記干渉計算部から指示された周波数に切り替える周波数切替部と
前記自己位置計算部により取得された自機の位置情報、前記周波数切替部により切り替えられた現在使用中の送信波の周波数情報および自機の切替タイミング情報を送信情報に多重する情報多重部を備えたことを特徴とする無線通信装置。
In a wireless communication device that performs maritime mobile communication,
A self-position calculator that receives GPS signals and obtains position information of the own machine;
An information separating unit that separates the position information of the partner machine, the frequency information of the partner machine and the switching timing information of the partner machine from the reception information, and receives a received wave at a frequency according to the frequency information of the separated partner machine;
Based on the position information of the own device acquired by the self-position calculation unit, the frequency of the currently used transmission wave, and the position information of the partner device separated by the information separation unit , When the difference in the path length of the sea surface reflected wave is calculated, the difference between the calculated path length difference and the half wavelength of the current transmission wave is calculated, and the absolute value of the calculated difference is less than the predetermined value An interference calculation unit that calculates a frequency of a wavelength at which the absolute value of the difference is equal to or greater than a predetermined value, and issues an instruction to switch to the calculated frequency;
In response to a frequency switching instruction from the interference calculation unit, the switching timing information of the own device is generated, and the frequency of the transmission wave is set in synchronization with the switching timing information of the partner device separated by the information separation unit. A frequency switching unit for switching to a frequency instructed by the calculation unit ;
Position information of the own device acquired by the self-position calculating unit, and an information multiplexing section for multiplexing the frequency switching section by the switched transmits the switching timing information of the frequency information and the own device in the transmission wave currently in use information A wireless communication apparatus comprising:
JP2006179924A 2006-06-29 2006-06-29 Wireless communication device Expired - Fee Related JP4571103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179924A JP4571103B2 (en) 2006-06-29 2006-06-29 Wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179924A JP4571103B2 (en) 2006-06-29 2006-06-29 Wireless communication device

Publications (2)

Publication Number Publication Date
JP2008011210A JP2008011210A (en) 2008-01-17
JP4571103B2 true JP4571103B2 (en) 2010-10-27

Family

ID=39069009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179924A Expired - Fee Related JP4571103B2 (en) 2006-06-29 2006-06-29 Wireless communication device

Country Status (1)

Country Link
JP (1) JP4571103B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247060A (en) * 1996-03-07 1997-09-19 Nec Corp Transmission space diversity control method and transmission space diversity device
JPH09307494A (en) * 1996-05-13 1997-11-28 Mitsubishi Electric Corp Route selecting communication equipment
JP2006060434A (en) * 2004-08-19 2006-03-02 Fujitsu Ltd Train wireless communication system, and ground station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247060A (en) * 1996-03-07 1997-09-19 Nec Corp Transmission space diversity control method and transmission space diversity device
JPH09307494A (en) * 1996-05-13 1997-11-28 Mitsubishi Electric Corp Route selecting communication equipment
JP2006060434A (en) * 2004-08-19 2006-03-02 Fujitsu Ltd Train wireless communication system, and ground station

Also Published As

Publication number Publication date
JP2008011210A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
EP3363127B1 (en) Method and apparatus for inter-satellite handovers in low-earth orbit (leo) satellite systems
CN107408979B (en) Method and apparatus for avoiding exceeding interference limits of non-geostationary satellite systems
TWI691175B (en) Channel quality feedback in satellite communication systems
EP2979410B1 (en) Channel estimation in wireless communications with beamforming
EP3353969B1 (en) Frequency tracking with sparse pilots
JP2018529293A (en) Low cost satellite user terminal antenna
EP3293890A1 (en) Mobile communication device and method for selecting a beam direction for an antenna
JPWO2009099247A1 (en) Mobile station, mobile radio communication system, mobile radio communication method, and mobile radio communication program
JPH09247060A (en) Transmission space diversity control method and transmission space diversity device
JP2009177313A (en) Base station apparatus and communication method
US8208859B2 (en) Radio communication device and radio communication method
JP4068500B2 (en) Array antenna communication device
JP4571103B2 (en) Wireless communication device
JP2009159453A (en) Wireless communication system, polarization plane adjustment method, base station, and sensor station
JP4806659B2 (en) Array antenna apparatus, array antenna communication method, relay communication system, and relay communication method
JP5833584B2 (en) Wireless communication system
EP3014789B1 (en) Method and transceiver for network diversity in long distance communications
JP5347755B2 (en) Relay device, communication system, and communication method
US8588817B2 (en) Wireless communication device and method
JP4507103B2 (en) GPS interference canceller
JP5672896B2 (en) Antenna system, relay station, and wireless communication system
CN116566459A (en) Satellite control method, service switching method, device and storage medium
JP2006074448A (en) Diversity communication method, and radio communication station
JP2008219784A (en) Signal processor and signal processing method
JP2004343575A (en) Radio communication method and base station device for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees