JP4570064B2 - Radio wave absorption road - Google Patents

Radio wave absorption road Download PDF

Info

Publication number
JP4570064B2
JP4570064B2 JP2001068089A JP2001068089A JP4570064B2 JP 4570064 B2 JP4570064 B2 JP 4570064B2 JP 2001068089 A JP2001068089 A JP 2001068089A JP 2001068089 A JP2001068089 A JP 2001068089A JP 4570064 B2 JP4570064 B2 JP 4570064B2
Authority
JP
Japan
Prior art keywords
radio wave
base layer
reflection
asphalt
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001068089A
Other languages
Japanese (ja)
Other versions
JP2002266308A (en
Inventor
依早弥 横田
淳一 平井
克則 山木
正 吉田
剛行 海老
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2001068089A priority Critical patent/JP4570064B2/en
Publication of JP2002266308A publication Critical patent/JP2002266308A/en
Application granted granted Critical
Publication of JP4570064B2 publication Critical patent/JP4570064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電波吸収道路に関し、とくに道路・車両間又は車両・車両間の通信で使う電波の道路表面での反射に起因する伝送エラーを防ぐことができる電波吸収道路に関する。
【0002】
【従来の技術】
最先端の情報通信技術等を用いて、人と道路と車両とを一体のシステムに含める高度道路交通システム(ITS、Intelligent Transport Systems)が構築されている。このITSは、移動体を含むので通信を無線によって行い、GHz帯から数十GHz帯の信号を使う。即ち、道路交通情報通信システムVICSで2.5GHz帯、自動料金収納システムETCで5.8GHz帯、路車間通信システムで36〜38GHz帯、車車間通信システムで60GHz帯、自動車用レーダシステムで76GHz帯等である。
【0003】
このような1GHz帯以上の周波数では、電波が道路面(路面)で反射してマルチパス障害を起こし易いため、この路面反射を少なくする必要がある。
【0004】
路面反射を防ぐ従来方法の一例が特公昭60-003106号公報に提案されている。この方法は、一方で、道路に必要な耐荷重性及び耐磨耗性をアスファルト舗装により確保し、他方で、電波反射を抑制するため、その舗装に使うアスファルト組成物をフェライト等の無機誘電体フィラー混入のものとしている。さらに表面より見たアスファルト舗装の妨害電波に対する規格化入力インピーダンスZがほぼ1になるように調整している。この場合、空気の規格化入力インピーダンスが1に選ばれているので、空気からZがほぼ1に調整されたアスファルト舗装ヘ入射する電波の反射率を、低く抑えることができる。
【0005】
アスファルト舗装の入力インピーダンスZを上記のように調整できるのは、次の理由による。すなわち、アスファルト舗装の規格化入力インピーダンスZは下記式(1)で与えられるが、その複素比透磁率μrは1であるので、成分組成によって複素比誘電率εrを調整し且つその厚さtを調節することにより特定波長の周波数に対するZの値を1に近いものとすることができる。式(1)において、μrはアスファルト舗装の複素比透磁率、εrはその複素比誘電率、λは反射すべき電波の自由空間中での波長、tはアスファルト舗装の厚さである。
【0006】
【数1】
Z=(μrr)tanh j{(2π/λ)t(μrr1/2} ……………………(1)
【0007】
【発明が解決しようとする課題】
しかし、前記従来方法には、電波の反射抑制に比較的高い限界があり、反射波を十分に弱くできないという問題点がある。
【0008】
以上のアスファルト舗装の場合から予想されるように、道路表面での電波反射を小さくするには、道路表面の材質を、空気との界面での電波屈折率が1に近いものとする必要がある。この電波屈折率の面から望ましい材質は、空気を多く含む発泡体等であり、耐荷重性及び耐磨耗性が必要な道路には適用できない。耐荷重性及び耐磨耗性を有する高密度の無機質材料には、電波屈折率を1に近付ける上で限界があり、従って電波反射抑制効果について限界がある。
【0009】
また、降雨や散水等により道路表面が水で被われると、電波を反射し易くなる。降雨時等の排水を良くし、路面が水で被われるのを防ぐことを、電波反射の抑制と同時に実現することが求められている。
【0010】
そこで本発明の目的は、道路表面での電波反射を小さくすると共に反射波を散乱させて反射の影響を抑制した電波吸収道路を提供することにある。
【0011】
【課題を解決するための手段】
本発明者は、上記目的を達成するために道路表面に凹凸を設ければ、反射電波を散乱させて反射の影響を小さくし、同時に排水性を良くして降雨時や散水時等における電波反射を少なくできることに注目した。
【0012】
図1を参照するに、本発明の電波吸収道路は、路盤3、基層2及び表層1を有する道路において、基層2に比し誘電率が小さく且つ耐荷重・耐磨耗性が高い素材で基層2上に排水性の表層1を設け、その表層1の表面に代表長さが被反射電波の波長の1/10以上であり且つ誘電率が小さい粒状材料4の締固め、接着、埋込み等により凹凸を形成し、表層1の表面からの反射電波をその凹凸により散乱させる。ここに粒状材料4の代表長さとは、球体相当径であり、例えば体積がVである粒の球体相当径dはd=(6V/π)1/3であり、球状の粒状材料4の場合にはその直径dである。
【0013】
凹凸形成用の粒状材料4の代表長さを被反射電波の波長の1/10以上とするのは、材料粒子がそれより小さい場合には、前記凹凸からの電波反射を抑制できないためである。(佐藤勝善、梁起碩、藤瀬雅行、「ミリ波帯における各種アスファルト路面の反射特性」、電子情報通信学会大会講演論文集、ソサイエティB1、10頁、1998年)。また、表層を排水性とすることにより、降雨時や散水時等に水溜り発生と水溜り水面からの電波反射とを防止する。
【0014】
【発明の実施の形態】
図1は、本発明の電波吸収道路の一実施例を示す。この実施例では、路盤3上に好ましくはアスファルト又はコンクリート舗装からなる基層2を設けている。更に、表層1の表面での電波反射を小さくするため、耐荷重性及び耐磨耗性が高く誘電率が小さい材質を敷き締固めて表層1を形成する。
【0015】
また、表層1の表面に、代表長さが被反射電波の波長の1/10以上であり且つ誘電率が小さい粒状材料4を締固め、その締固め圧力を適宜に調整することにより表層1の表面に凹凸を形成する。また、粒状材料4による凹凸は接着、埋込み等で形成してもよいし、締固め、接着、埋込み等の方法を適切に組合せて形成してもよい。表層1の表面からの反射電波をこの凹凸によって散乱させ、反射の影響を小さくする。この粒状材料4としては、砕石や玉砂利等の骨材、人工又は天然の樹脂、ゴム等を用いることができる。
【0016】
更に、降雨時や散水時等における表層1上での水溜り発生と水溜り水面からの電波反射を防止するため、表層1を排水性とすることができる。
【0017】
こうして、本発明の目的、すなわち「道路表面での電波反射を小さくすると共に反射波を散乱させて反射の影響を抑制した電波吸収道路」の提供を達成することができる。
【0018】
【実施例】
路盤3に鋼床板や鋼材の使用により意図的に又は偶発的に電波反射体が形成されている場合に、基層2をアスファルト又はコンクリート舗装とするときは、基層2のアスファルト又はコンクリートに、電波吸収性能を持たせるため、図2に示すように誘電率を高める材料(高誘電率材料)5を混入することができる。高誘電率材料5を使用する理由は、ITSで使用される電波が1GHz帯以上の高い周波数のものであり、道路表面からの電波反射防止がとくに必要であり、しかも基層2における高誘電率材料5による電波吸収効果が期待できるからである。
【0019】
このための高誘電率材料5としては、金属又はその酸化物、酸化鉄又はそのダスト、カーボン、アルミナ焼結体等の無機物の粉末や粒子、及び炭素繊維若しくはカーボンを含む素材、例えばゴム等のカーボン含有物の粉末や粒子を挙げることができる。更に、カーボンを含むゴムである例えばタイヤは25%程度のカーボンを含んでいるので、これをチップ又は粉末にしてアスファルトに混入してもよい。廃タイヤを用いると省資源の点で好ましい。また、前記反射体での反射電波と表層1での反射電波との位相反転による相殺を利用して、道路表面での反射を小さくすることも期待できる。
【0020】
図3は、電波吸収アスファルトからなる厚さ50mmの基層2の上に排水性アスファルトによって厚さ50mmの表層1を形成し、その表層1の表面に粒径20mmの砕石4により凹凸を設けた本発明の電波吸収道路構造の試験体を示す。表層1の排水性アスファルトには、粒径10〜15mmの骨材を使用した。また、基層2の電波吸収アスファルトとして、粒径10mm以下の骨材と共に、アスファルト舗装全量に対し重量比10%の酸化鉄ダストを高誘電率材料として混入したものを使用した。
【0021】
図3の試験体を用いて,自動料金収納システムETCで使われる周波数5.8GHzの電波に対する反射減衰量を測定した。一般に、反射減衰量は、電波をほぼ完全に反射するアルミ板をレファレンスとし、このアルミ板の完全反射と比較して反射率がどの程度減衰したかによって表される。この測定では、測定対象体の表面に対して入射角及び反射角がともに5度である位置に、送受信ダブルリジットガイドアンテナを配置し、ネットワークアナライザにより入射波及び反射波の電界強度を測定して反射率を求めた。測定対象体を厚さ3mmのレファレンス・アルミ板とした時の反射率と、測定対象体を前記試験体とした時の反射率とを比較して反射減衰量を算出した。測定結果の一例を図4に示す。同図において、アルミ板の反射減衰量を0dB(基準値)としている。
【0022】
同図に示すように、この試験体の周波数5.8GHzの電波に対する反射減衰量は約20dBであった。従来の一般のアスファルト舗装道路の周波数5.8GHzにおける反射減衰量は3〜4dBである。また、テレビ電波吸収壁の反射減衰量の一般的目標値は14dBとされている。アスファルト等の構造物に関するこれら従来の電波反射減衰量に較べると、図3の本発明の道路構造試験体がもつ周波数5.8GHzで約20dBの反射減衰量は、かなり大きく、反射電波によるマルチパス障害等に対する障害抑制に貢献するものと期待できる。なお、道路表面に水溜り水面ができると、上記の電波反射減衰量は0dBとなるので、降雨時等にも電波反射減衰を維持して反射電波障害を抑制するには、表層1を排水性とする必要がある。
【0023】
【発明の効果】
以上説明したように、本発明の電波吸収道路は、道路構造の表層を誘電率が小さく且つ耐荷重・耐磨耗性が高い素材で舗装等とし、その表層の表面に誘電率が小さい粒状材料の締固め等により凹凸を形成し、その凹凸により反射電波を散乱させて反射電波の影響を抑制するので、次の顕著な効果を奏する。
【0024】
(イ)道路表面での電波反射を小さくすること、及び道路表面の凹凸により反射波を散乱させることの組合せにより反射の影響を効果的に抑制できる。
(ロ)道路表層を排水性とすることにより降雨時や散水時等に道路表面の排水を図り、水が溜るのを防ぎ、水溜り水面からの電波反射を防止することができる。
(ハ)道路表層での反射防止とその下の基層での電波吸収性能との組合せにより道路表面からの電波反射の影響を総合的に抑制することができる。
【図面の簡単な説明】
【図1】は、本発明の一実施例の図式的断面図である。
【図2】は、本発明の他の実施例を示す図式的断面図である。
【図3】は、本発明による電波吸収道路構造の試験体の説明図である。
【図4】は、図3に示す試験体の反射減衰量の測定結果のグラフである。
【符号の説明】
1…表層 2…基層
3…路盤 4…粒状材料
5…高誘電率材料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radio wave absorbing road, and more particularly, to a radio wave absorbing road that can prevent transmission errors caused by reflection on the road surface of radio waves used in communication between roads and vehicles or between vehicles and vehicles.
[0002]
[Prior art]
Intelligent transportation systems (ITS) that include people, roads, and vehicles in an integrated system have been built using state-of-the-art information and communication technologies. Since this ITS includes mobile objects, it communicates wirelessly and uses signals in the GHz band to several tens of GHz band. That is, the 2.5GHz band for the road traffic information communication system VICS, the 5.8GHz band for the automatic toll storage system ETC, the 36-38GHz band for the road-to-vehicle communication system, the 60GHz band for the inter-vehicle communication system, the 76GHz band for the automotive radar system, etc. is there.
[0003]
At such a frequency of 1 GHz band or higher, radio waves are likely to be reflected on the road surface (road surface) and cause a multipath failure. Therefore, it is necessary to reduce this road surface reflection.
[0004]
An example of a conventional method for preventing road surface reflection is proposed in Japanese Patent Publication No. 60-003106. In this method, on the one hand, load resistance and abrasion resistance necessary for roads are ensured by asphalt pavement, and on the other hand, in order to suppress radio wave reflection, the asphalt composition used for the pavement is made of an inorganic dielectric such as ferrite. Filled with filler. Further, the normalized input impedance Z with respect to the jamming radio waves of the asphalt pavement as seen from the surface is adjusted to be approximately 1. In this case, since the normalized input impedance of air is selected as 1, the reflectance of the radio wave incident on the asphalt pavement in which Z is adjusted to approximately 1 from the air can be kept low.
[0005]
The reason why the input impedance Z of the asphalt pavement can be adjusted as described above is as follows. That is, the normalized input impedance Z of asphalt pavement is given by the following formula (1), but its complex relative permeability μ r is 1, so that the complex relative permittivity ε r is adjusted by the component composition and its thickness By adjusting t, the value of Z for the frequency of the specific wavelength can be made close to 1. In equation (1), μ r is the complex relative permeability of the asphalt pavement, ε r is its complex relative permittivity, λ is the wavelength of the radio wave to be reflected in free space, and t is the thickness of the asphalt pavement.
[0006]
[Expression 1]
Z = (μ r / ε r ) tanh j {(2π / λ) t (μ r / ε r ) 1/2 } (1)
[0007]
[Problems to be solved by the invention]
However, the conventional method has a problem that the reflected wave cannot be sufficiently weakened because there is a relatively high limit in suppressing the reflection of radio waves.
[0008]
As expected from the above asphalt pavement, in order to reduce the reflection of radio waves on the road surface, it is necessary that the material of the road surface has a radio wave refractive index close to 1 at the interface with air. . A desirable material in terms of the refractive index of the radio wave is a foam containing a lot of air and cannot be applied to roads that require load resistance and wear resistance. A high-density inorganic material having load resistance and wear resistance has a limit in bringing the refractive index of the radio wave closer to 1, and thus has a limit on the effect of suppressing radio wave reflection.
[0009]
In addition, when the road surface is covered with water due to rain, water spray, etc., the radio waves are easily reflected. It is required to improve drainage at the time of rainfall and to prevent the road surface from being covered with water simultaneously with suppression of radio wave reflection.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to provide a radio wave absorbing road in which radio wave reflection on the road surface is reduced and reflected waves are scattered to suppress the influence of reflection.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventor has provided unevenness on the road surface to scatter reflected radio waves to reduce the influence of reflection, and at the same time improve drainage to reflect the radio waves during raining and watering. We paid attention to the fact that it can be reduced.
[0012]
Referring to FIG. 1, a radio wave absorbing road according to the present invention is a road having a roadbed 3, a base layer 2 and a surface layer 1, and is made of a material having a lower dielectric constant and higher load resistance and wear resistance than the base layer 2. 2 is provided with a drainable surface layer 1 and the surface of the surface layer 1 is compacted, bonded, embedded, etc. with a granular material 4 having a representative length of 1/10 or more of the wavelength of the reflected radio wave and a low dielectric constant. Unevenness is formed, and the reflected radio wave from the surface of the surface layer 1 is scattered by the unevenness. Here, the representative length of the granular material 4 is a spherical equivalent diameter. For example, a spherical equivalent diameter d of a particle having a volume V is d = (6V / π) 1/3. Is the diameter d.
[0013]
The reason why the representative length of the granular material 4 for forming irregularities is 1/10 or more of the wavelength of the reflected radio wave is that the radio wave reflection from the irregularities cannot be suppressed when the material particles are smaller than that. (Katsuyoshi Sato, Satoshi Liang, Masayuki Fujise, “Reflection characteristics of various asphalt road surfaces in the millimeter wave band”, Proceedings of the IEICE Conference, Society B1, p. 10, 1998). In addition , by making the surface layer drainage, it is possible to prevent a puddle from being generated and radio waves reflected from the puddle water surface during rainfall or watering.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a radio wave absorbing road according to the present invention. In this embodiment, a base layer 2 made of asphalt or concrete pavement is provided on the roadbed 3. Furthermore, in order to reduce the radio wave reflection on the surface of the surface layer 1, the surface layer 1 is formed by laying and compacting a material having high load resistance and wear resistance and a low dielectric constant.
[0015]
Further, a granular material 4 having a representative length of 1/10 or more of the wavelength of the reflected radio wave and having a small dielectric constant is compacted on the surface of the surface layer 1, and the compacting pressure is appropriately adjusted to adjust the surface layer 1's surface. Unevenness is formed on the surface. Moreover, the unevenness | corrugation by the granular material 4 may be formed by adhesion | attachment, embedding, etc., and you may form combining suitably methods, such as compaction, adhesion | attachment, embedding. The reflected radio wave from the surface of the surface layer 1 is scattered by the unevenness to reduce the influence of reflection. As the granular material 4, aggregates such as crushed stones and ball gravel, artificial or natural resins, rubbers and the like can be used.
[0016]
Furthermore, the surface layer 1 can be made drainable in order to prevent the occurrence of water accumulation on the surface layer 1 and the reflection of radio waves from the surface of the water during raining or watering.
[0017]
Thus, it is possible to achieve the object of the present invention, that is, “a radio wave absorbing road in which the reflection of radio waves on the road surface is reduced and the reflected waves are scattered to suppress the influence of reflection”.
[0018]
【Example】
When the base layer 2 is made asphalt or concrete pavement when the radio wave reflector is intentionally or accidentally formed on the roadbed 3 by using a steel floor board or steel material, the base layer 2 asphalt or concrete absorbs radio waves. In order to provide performance, a material (high dielectric constant material) 5 that increases the dielectric constant can be mixed as shown in FIG. The reason for using the high dielectric constant material 5 is that the radio wave used in ITS has a high frequency of 1 GHz band or higher, and it is particularly necessary to prevent radio wave reflection from the road surface. This is because the radio wave absorption effect of 5 can be expected.
[0019]
For this purpose, the high dielectric constant material 5 includes a metal or oxide thereof, iron oxide or dust thereof, carbon, inorganic powder or particles such as alumina sintered body, and a material containing carbon fiber or carbon, such as rubber. The powder and particle | grains of a carbon containing material can be mentioned. Furthermore, for example, a tire which is a rubber containing carbon contains about 25% of carbon, and may be mixed with asphalt as chips or powder. Use of waste tires is preferable in terms of resource saving. Further, it is also expected that reflection on the road surface can be reduced by using cancellation due to phase inversion between the reflected radio wave at the reflector and the reflected radio wave at the surface layer 1.
[0020]
FIG. 3 shows a book in which a surface layer 1 having a thickness of 50 mm is formed by drainage asphalt on a base layer 2 having a thickness of 50 mm made of radio wave absorbing asphalt, and irregularities are provided on the surface of the surface layer 1 by crushed stones 4 having a particle diameter of 20 mm. The test body of the radio wave absorption road structure of the invention is shown. Aggregates having a particle size of 10 to 15 mm were used for the drainage asphalt of the surface layer 1. In addition, as the radio wave absorbing asphalt of the base layer 2, an aggregate having a particle size of 10 mm or less and iron oxide dust having a weight ratio of 10% with respect to the total amount of the asphalt pavement was mixed as a high dielectric constant material.
[0021]
Using the specimen shown in Fig. 3, the return loss for the radio wave with a frequency of 5.8GHz used in the automatic charge storage system ETC was measured. In general, the reflection attenuation amount is expressed by how much the reflectance is attenuated compared to the complete reflection of the aluminum plate, which uses an aluminum plate that almost completely reflects radio waves as a reference. In this measurement, a transmission / reception double rigid guide antenna is placed at a position where the incident angle and the reflection angle are both 5 degrees with respect to the surface of the measurement object, and the electric field strength of the incident wave and the reflected wave is measured by a network analyzer. The reflectance was determined. The reflection loss was calculated by comparing the reflectance when the measurement object was a reference aluminum plate with a thickness of 3 mm and the reflectance when the measurement object was the test specimen. An example of the measurement result is shown in FIG. In the figure, the return loss of the aluminum plate is 0 dB (reference value).
[0022]
As shown in the figure, the return loss of this test specimen with respect to radio waves having a frequency of 5.8 GHz was about 20 dB. The conventional general asphalt paved road has a return loss of 3 to 4 dB at a frequency of 5.8 GHz. The general target value of the return loss of the TV wave absorbing wall is 14 dB. Compared to these conventional radio wave return loss for structures such as asphalt, the return loss of about 20 dB at a frequency of 5.8 GHz of the road structure test specimen of the present invention in FIG. It can be expected to contribute to the suppression of obstacles. In addition, when the surface of the road is filled with water, the above-mentioned radio wave reflection attenuation amount becomes 0 dB. Therefore, in order to maintain the radio wave reflection attenuation and suppress the reflection radio wave disturbance even during rain, the surface layer 1 is drained. It is necessary to.
[0023]
【The invention's effect】
As described above, the radio wave absorption road of the present invention is a granular material having a low dielectric constant on the surface of the surface layer of the road structure, such as a pavement made of a material having a low dielectric constant and a high load resistance and wear resistance. Concavities and convexities are formed by compaction and the like, and the reflected radio waves are scattered by the irregularities to suppress the influence of the reflected radio waves.
[0024]
(A) The influence of reflection can be effectively suppressed by a combination of reducing radio wave reflection on the road surface and scattering the reflected wave due to unevenness on the road surface.
(B) By making the road surface layer drainable, it is possible to drain the road surface during raining or watering, prevent water from accumulating, and prevent radio wave reflection from the surface of the water pool.
(C) By combining antireflection on the road surface layer and radio wave absorption performance on the underlying layer, the influence of radio wave reflection from the road surface can be comprehensively suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of one embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing another embodiment of the present invention.
FIG. 3 is an explanatory view of a test body of a radio wave absorption road structure according to the present invention.
FIG. 4 is a graph showing the measurement results of the return loss of the test specimen shown in FIG. 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Surface layer 2 ... Base layer 3 ... Roadbed 4 ... Granular material 5 ... High dielectric constant material

Claims (6)

路盤、基層及び表層を有する道路において、基層に比し誘電率が小さく且つ耐荷重・耐磨耗性が高い素材で基層上に排水性の表層を設けることにより表層からの電波反射を抑制し、該表層の表面に代表長さが被反射電波の波長の1/10以上であり且つ誘電率が小さい粒状材料により凹凸を形成してなる電波吸収道路。In roads with roadbed, base layer, and surface layer, by providing a drainage surface layer on the base layer with a material having a low dielectric constant and high load resistance and wear resistance compared to the base layer, radio wave reflection from the surface layer is suppressed, A radio wave absorbing road having irregularities formed by a granular material having a representative length of 1/10 or more of the wavelength of the reflected radio wave and a low dielectric constant on the surface of the surface layer. 請求項の道路において、前記基層が電波吸収性能を有するアスファルト又はコンクリートからなる電波吸収道路。The radio wave absorption road according to claim 1 , wherein the base layer is made of asphalt or concrete having radio wave absorption performance. 請求項1又は2の道路において、前記凹凸形成用の粒状材料を、骨材、樹脂、及びゴムからなる群から選んだ一以上のものとしてなる電波吸収道路。The radio wave absorbing road according to claim 1 or 2 , wherein the granular material for forming irregularities is one or more selected from the group consisting of aggregate, resin, and rubber. 請求項の道路において、基層のアスファルト又はコンクリートに無機物及び/又はカーボン含有物からなる粉末又は粒子を混入してなる電波吸収道路。The radio wave absorbing road according to claim 2 , wherein powder or particles made of an inorganic substance and / or a carbon-containing substance are mixed into asphalt or concrete as a base layer. 請求項2又は4の道路において、カーボンを含むゴムのチップ又は粉末を基層のアスファルト又はコンクリートに混入してなる電波吸収道路。5. The radio wave absorbing road according to claim 2, wherein rubber chips or powder containing carbon are mixed in asphalt or concrete as a base layer. 請求項1から5の何れかの道路において、前記路盤と基層との間に電波の反射体を設けてなる電波吸収道路。6. The radio wave absorbing road according to claim 1 , wherein a radio wave reflector is provided between the roadbed and the base layer.
JP2001068089A 2001-03-12 2001-03-12 Radio wave absorption road Expired - Lifetime JP4570064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001068089A JP4570064B2 (en) 2001-03-12 2001-03-12 Radio wave absorption road

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001068089A JP4570064B2 (en) 2001-03-12 2001-03-12 Radio wave absorption road

Publications (2)

Publication Number Publication Date
JP2002266308A JP2002266308A (en) 2002-09-18
JP4570064B2 true JP4570064B2 (en) 2010-10-27

Family

ID=18926325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001068089A Expired - Lifetime JP4570064B2 (en) 2001-03-12 2001-03-12 Radio wave absorption road

Country Status (1)

Country Link
JP (1) JP4570064B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578379B2 (en) * 2005-10-04 2010-11-10 札幌エレクトロプレイティング工業株式会社 Electromagnetic shielding material using waste tire as raw material and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363423A (en) * 1976-11-19 1978-06-06 Mitsubishi Oil Co Asphalt compound and its placement
JPS62268200A (en) * 1986-05-16 1987-11-20 株式会社 アクテイア−ツ Electromagnetic wave absorbing asphalt
JPH071647A (en) * 1993-06-16 1995-01-06 Keiji Shimizu Laminated polymer cement concrete equipped with rubber base material layer and production thereof
JPH11204985A (en) * 1998-01-12 1999-07-30 Moichi Shibuya Radio wave/sound wave absorber utilizing used tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363423A (en) * 1976-11-19 1978-06-06 Mitsubishi Oil Co Asphalt compound and its placement
JPS62268200A (en) * 1986-05-16 1987-11-20 株式会社 アクテイア−ツ Electromagnetic wave absorbing asphalt
JPH071647A (en) * 1993-06-16 1995-01-06 Keiji Shimizu Laminated polymer cement concrete equipped with rubber base material layer and production thereof
JPH11204985A (en) * 1998-01-12 1999-07-30 Moichi Shibuya Radio wave/sound wave absorber utilizing used tire

Also Published As

Publication number Publication date
JP2002266308A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
MXPA06009497A (en) Water-permeable paving and method for producing a paving.
US7160049B2 (en) Paving material for absorbing electromagnetic wave and pavement structure using it
US7384469B2 (en) Porous elastic pavement material
KR101104054B1 (en) Low noise paving mixture to improve the aggregate gradation
JP4570064B2 (en) Radio wave absorption road
CN111705583B (en) Method for judging applicability of cement concrete composite pavement structure
Wilson et al. Design and construction recommendations for thin overlays in Texas.
JP2002021013A (en) Paving structure
JP2002081011A (en) Electronic wave absorber for road surface, method of manufacturing it, and method of executing it
JP4590126B2 (en) Pavement version to prevent electromagnetic interference
JP4502834B2 (en) Construction method of asphalt pavement with improved noise reduction
JP2001311108A (en) Pavement structure
KR100411911B1 (en) Paving method of permeable concrete having high endurance
JP2001311105A (en) Granulated material having character to absorb electromagnetic wave, electromagnetic wave absorbing material, and its manufacturing method
JP5159328B2 (en) Paving material, method for producing the same and paving body
CN111705582B (en) Method for judging applicability and constructing airport composite pavement structure
Ejsmont et al. Poroelastic material for urban roads wearing courses
JP4466938B2 (en) Granular material having electromagnetic wave absorption characteristics and method for producing the same
CN221218359U (en) Thin layer pavement structure for road section with high anti-skid requirement
JP2001313489A (en) Granular material having electromagnetic wave absorbing characteristic and method for manufacturing the same and method for manufacturing structure using the same
JP2003213609A (en) Pavement body
Wright Thin layers-less noise.
KR19980068367A (en) Permeable Color Concrete Packaging Method
JP3789768B2 (en) road
Ranieri The Development in the use of Porous Asphalts in Europe

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4570064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term