JP5159328B2 - Paving material, method for producing the same and paving body - Google Patents

Paving material, method for producing the same and paving body Download PDF

Info

Publication number
JP5159328B2
JP5159328B2 JP2008005707A JP2008005707A JP5159328B2 JP 5159328 B2 JP5159328 B2 JP 5159328B2 JP 2008005707 A JP2008005707 A JP 2008005707A JP 2008005707 A JP2008005707 A JP 2008005707A JP 5159328 B2 JP5159328 B2 JP 5159328B2
Authority
JP
Japan
Prior art keywords
pavement
water
resin
particles
infrared shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008005707A
Other languages
Japanese (ja)
Other versions
JP2009167661A (en
Inventor
伸彦 若野
浩志 津田
Original Assignee
中外商工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外商工株式会社 filed Critical 中外商工株式会社
Priority to JP2008005707A priority Critical patent/JP5159328B2/en
Publication of JP2009167661A publication Critical patent/JP2009167661A/en
Application granted granted Critical
Publication of JP5159328B2 publication Critical patent/JP5159328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Description

本発明は、道路等の舗装に用いる舗装材、とりわけ太陽光等の光線の照射による温度上昇を抑制可能な舗装材に関する。   The present invention relates to a pavement material used for pavement such as roads, and more particularly to a pavement material capable of suppressing a temperature rise due to irradiation of light rays such as sunlight.

近年、地球温暖化による気温の上昇が問題となっている。このような気温上昇の1つとして、夏場に夜間になっても気温が下がらないヒートアイランド現象が、大都市を中心に発生することが広く知られている。ヒートアイランド現象発生の原因の1つは、地表を覆う舗装材が、日中に太陽光線により照射され、温度が上昇し、この蓄熱を夜間に放出するためであると考えられている。   In recent years, the rise in temperature due to global warming has become a problem. As one of such temperature rises, it is widely known that a heat island phenomenon occurs mainly in large cities, in which the temperature does not decrease even at night in the summer. One of the causes of the heat island phenomenon is considered to be that the pavement material covering the ground surface is irradiated with sunlight during the day, the temperature rises, and this heat storage is released at night.

このように、主に、ヒートアイランド現象のような地球環境問題の観点から、太陽光等の光線の照射による舗装材の温度上昇を抑制し、蓄熱量を低減することができる舗装材への需要が確実に増大している。   In this way, mainly from the viewpoint of global environmental problems such as the heat island phenomenon, there is a demand for pavement materials that can suppress the temperature rise of the pavement materials due to the irradiation of light such as sunlight and reduce the amount of stored heat. It is definitely increasing.

舗装材の温度上昇を抑制した舗装材として、例えば特許文献1に示されるように、心材の周りに樹脂等の接着剤を介し中空体を配置するとともに、必要に応じ遮熱効果を有する白色顔料を用いた舗装材が知られている。この舗装材では、中空体の断熱効果により熱が舗装体の内部に伝わるのを抑制し、また、白色顔料は、光線を反射する遮熱効果により舗装材の温度が上昇するのを抑制している。   As a pavement material in which the temperature rise of the pavement material is suppressed, for example, as shown in Patent Document 1, a white pigment having a heat shielding effect as required is disposed around a core material through an adhesive such as a resin. A pavement material using is known. In this pavement material, heat is prevented from being transferred to the inside of the pavement due to the heat insulating effect of the hollow body, and the white pigment is suppressed from increasing the temperature of the pavement due to the heat shielding effect of reflecting light rays. Yes.

また、心材(骨材)の間に吸水ポリマーのような保水材を配置し、さらに舗装体上部の舗装面を形成する部分の心材の間に樹脂モルタルを配置した保水性舗装が知られている(特許文献2)。加えて弾性骨材と弾性骨材を取り囲むバインダーおよび十分に水を吸収排出できるようにバインダー表面から少なくとも一部分が露出した吸水ポリマーからなる保水層とその上に配置される弾性層との2層からなる舗装体も知られている(特許文献3)。   In addition, a water-retaining pavement is known in which a water-retaining material such as a water-absorbing polymer is disposed between core materials (aggregates) and a resin mortar is disposed between the core materials of the pavement surface forming the pavement surface. (Patent Document 2). In addition, the elastic aggregate, the binder that surrounds the elastic aggregate, and the water-retaining layer composed of a water-absorbing polymer that is at least partially exposed from the binder surface so that sufficient water can be absorbed and discharged, and the elastic layer disposed thereon The paving body which becomes is also known (patent document 3).

このような保水性を有する舗装体では、散水等により保水材に水を含ませ、この水が保水材から排出され蒸発する際の気化熱により温度上昇を抑制している。
特開2004−218340号公報 特開2004−3158号公報 特開2003−138510号公報
In the pavement having such water retention, water is contained in the water retention material by watering or the like, and the temperature rise is suppressed by the heat of vaporization when the water is discharged from the water retention material and evaporated.
JP 2004-218340 A Japanese Patent Laid-Open No. 2004-3158 JP 2003-138510 A

しかしながら、心材の周りに樹脂等の接着剤を介し中空体を配置したのみの舗装材では、温度上昇抑制の効果が限定的であり、また、白色顔料を用いると舗装材全体が白色となってしまう。通常の道路、駐車場等は、センターラインや横断歩道等を示すために道路上に塗布する白色ペイントの識別性を確保するため白色の舗装を行うことができない。また、白色ペイントとの識別性が要求されない場合でも白色舗装は直射日光を強く反射することから路面が眩しくなり敬遠される傾向にある。従って使用できる用途が特殊なものに限定されるという問題があった。   However, in a pavement material in which a hollow body is only disposed through an adhesive such as a resin around the core material, the effect of suppressing temperature rise is limited, and when a white pigment is used, the entire pavement material becomes white. End up. Ordinary roads, parking lots, and the like cannot be white-paved to ensure the distinguishability of the white paint applied on the roads to show center lines, pedestrian crossings, and the like. Even when the distinction from the white paint is not required, the white pavement strongly reflects the direct sunlight, so that the road surface becomes dazzling and tends to be avoided. Therefore, there is a problem that the use that can be used is limited to a special one.

一方、心材の間に保水材(吸水ポリマー)を配置した舗装では、吸水ポリマーが水を吸水した際にポリマーの体積が例えば吸水前の100倍以上と著しく膨張し、この膨張したポリマーの一部が舗装面までにはみ出てしまうことから、これを防止するために上部に舗装面を形成する樹脂モルタルまたは弾性層を設ける必要がある。この結果、余計な工程が増えるとともに、水はこれら余分に設けた層を通った後に、保水材に到達することから、吸収および排出性が低下すると言う問題があった。   On the other hand, in a pavement in which a water retaining material (water absorbing polymer) is disposed between core materials, when the water absorbing polymer absorbs water, the volume of the polymer significantly expands, for example, 100 times or more before water absorption, and a part of the expanded polymer Therefore, it is necessary to provide a resin mortar or an elastic layer that forms the paved surface on the upper part in order to prevent this. As a result, the number of unnecessary steps increases, and water passes through these extra layers and then reaches the water retaining material, resulting in a problem that absorption and discharge are reduced.

また、心材間に配置されている吸水ポリマーが、吸水時に例えば100倍以上と大きく膨張できるように、通常は心材と心材の間に相当量の隙間を設ける必要があることから、舗装体の強度が低いという問題を有していた。   In addition, it is usually necessary to provide a considerable gap between the core material and the core material so that the water-absorbing polymer disposed between the core materials can expand, for example, 100 times or more when water is absorbed. Had the problem of low.

そこで本発明は、温度上昇を十分に抑制できる舗装材であって、任意の色に着色可能であり、舗装体表面に舗装面を形成するための付加的な層を要せず、また十分な強度を有する舗装材およびその製造方法を提供することを目的とする。   Therefore, the present invention is a pavement that can sufficiently suppress the temperature rise, can be colored in any color, does not require an additional layer for forming a pavement surface on the pavement surface, and is sufficient. An object of the present invention is to provide a paving material having strength and a method for producing the same.

本発明は、複数の粒子(舗装材構成粒子)の集合体であって、前記粒子がそれぞれ心材と、該心材の外周に樹脂を介して配置される直径0.4〜3.0μmの赤外線遮蔽粒子とを含むことを特徴とする舗装材である。   The present invention is an aggregate of a plurality of particles (paving material constituting particles), each of which is a core material, and an infrared shielding member having a diameter of 0.4 to 3.0 μm, which is disposed on the outer periphery of the core material via a resin. It is a paving material characterized by including particles.

本発明はまた、それぞれの粒子が心材を有する複数の粒子の集合体である舗装材の製造方法であって、心材の周りを樹脂で取り囲む工程と、該樹脂を介して外心材の外周に赤外線遮蔽粒子を固定する工程を含むことを特徴とする舗装材の製造方法である。   The present invention is also a method for producing a pavement material in which each particle is an aggregate of a plurality of particles having a core material, the step of surrounding the core material with a resin, and infrared rays on the outer periphery of the outer core material via the resin It is a manufacturing method of the paving material characterized by including the process of fixing shielding particles.

本発明により、温度上昇を抑制できる舗装材であって、白色以外の任意の色にも着色することをでき、また吸水ポリマーが舗装面にはみ出すのを防止するためにあらたな舗装面を形成する付加的な層を必要せず、十分な強度を有する舗装材およびその製造方法の提供が可能となる。   According to the present invention, a pavement material capable of suppressing temperature rise, which can be colored in any color other than white, and forms a new pavement surface to prevent the water-absorbing polymer from protruding on the pavement surface. It is possible to provide a pavement material having a sufficient strength and a manufacturing method thereof without requiring an additional layer.

以下に本発明にかかる実施形態を添付の図を用いて説明する。なお、これら添付の図は、発明の特徴部分の理解を容易にするために、特徴部分等を実際より大きく描く等により強調している。従って、添付の図の各要素間の相対的な大きさは、実際のそれと異なる場合があることに留意すべきある。   Embodiments according to the present invention will be described below with reference to the accompanying drawings. In the accompanying drawings, in order to facilitate understanding of the characteristic portions of the invention, the characteristic portions and the like are emphasized by drawing larger than the actual size. Therefore, it should be noted that the relative sizes between the elements in the attached figures may differ from those in practice.

また、本明細書で用いる用語「舗装材」とは、舗装材構成粒子の集合体を意味し、実際に道路等の舗装する際には、この舗装材をバインダー等と混合した後、被舗装体に敷設する。一方、舗装体とは、舗装材をバインダー等用いて、実際に被舗装体に敷設するために例えば板状、円柱状等の目的とする形状にしたものを示す。   Further, the term “paving material” used in this specification means an aggregate of paving material constituting particles. When actually paving a road or the like, the paving material is mixed with a binder and then paved. Lay on the body. On the other hand, the pavement refers to a pavement material having a desired shape such as a plate shape or a column shape in order to actually lay the pavement material on a pavement using a binder or the like.

本発明の実施形態は、任意の着色可能な赤外線遮蔽粒子による遮熱効果を主とする実施形態1と吸水ポリマーによる冷却効果を主とする実施形態2との2つに大別される。この2つの実施形態について、以下に順に説明する。   Embodiments of the present invention can be broadly classified into two, Embodiment 1 mainly based on the heat shielding effect by any colorable infrared shielding particles and Embodiment 2 mainly based on the cooling effect by the water-absorbing polymer. These two embodiments will be described in order below.

なお、図面に用いる記号が同一の場合は、特段の説明がない限りは、実施形態1および実施形態2にかかわらず同一または同種の物品であることを示す。   In addition, when the symbol used for drawing is the same, it shows that it is the same or the same kind of goods irrespective of Embodiment 1 and Embodiment 2 unless there is particular description.

(1)実施形態1
図1は、本発明の実施形態1にかかる舗装材を構成する舗装材構成粒子100を示す断面図である。舗装材構成粒子100は、心材1を取り囲む樹脂2と、樹脂2を介して心材の外周に配置された赤外線遮蔽粒子5とを含むことを特徴とする舗装材である。そして、赤外線遮蔽粒子5は0.4〜3μmの直径を有する。
(1) Embodiment 1
FIG. 1 is a cross-sectional view showing pavement material constituting particles 100 constituting the pavement material according to the first embodiment of the present invention. The pavement material constituting particle 100 is a pavement material including resin 2 surrounding the core material 1 and infrared shielding particles 5 arranged on the outer periphery of the core material via the resin 2. The infrared shielding particles 5 have a diameter of 0.4 to 3 μm.

従来から、白色顔料等よりなる塗料を舗装体表面に塗布し、入射する太陽光線を反射することで舗装体の温度上昇を抑制することは行われていた。   Conventionally, it has been practiced to apply a paint made of a white pigment or the like to the surface of a pavement and to suppress the temperature rise of the pavement by reflecting incident sunlight.

しかし、表面を塗装する方法では、剥離または摩耗等により使用中に塗料がなくなり比較的短時間で効果が消失してしまうという問題があった。そこで、例えば特許文献1に記載のように心材を白色にする、あるいは遮熱効果のある白色顔料を舗装材に混入することで、舗装材およびこれを用いた舗装体の色を白色として温度上昇抑制効果を得るとともに、剥離や摩耗による低耐久性の問題を解消した舗装体が知られている。しかし、上述したように舗装体の色が白色以外の色とすることができず用途が限定されてしまう問題が生じていた。   However, the method of coating the surface has a problem that the effect disappears in a relatively short time because the paint disappears during use due to peeling or abrasion. Therefore, for example, as described in Patent Document 1, the core material is whitened, or a white pigment having a heat-shielding effect is mixed into the pavement material, so that the color of the pavement material and the pavement body using the white color increases. A pavement that obtains a suppressing effect and solves the problem of low durability due to peeling and wear is known. However, as described above, the color of the pavement cannot be a color other than white, and there is a problem that the use is limited.

本発明者は、鋭意研究を行い、以下のように各種波長の光を含む太陽光線のなかでも選択的に赤外線を散乱する赤外線遮蔽粒子5を用いることで舗装体の温度上昇を抑制できることを見出した。   The present inventor has conducted earnest research and found that the temperature increase of the pavement can be suppressed by using the infrared shielding particles 5 that selectively scatter infrared rays among the sun rays including light of various wavelengths as follows. It was.

太陽光線中に含まれる赤外線の殆どは0.7〜3.0μmの波長を有している。そこで、入射した赤外線を効果的に散乱することを目的に、赤外線遮蔽粒子5の粒子径を赤外線波長の概ね半分程度として温度上昇を効果的に抑制している。即ち、赤外線遮蔽粒子5の直径は、0.4〜3.0μmであり、好ましくは0.5〜2.0μmである。   Most of infrared rays contained in the sun rays have a wavelength of 0.7 to 3.0 μm. Therefore, for the purpose of effectively scattering the incident infrared rays, the particle diameter of the infrared shielding particles 5 is set to about half of the infrared wavelength to effectively suppress the temperature rise. That is, the diameter of the infrared shielding particles 5 is 0.4 to 3.0 μm, preferably 0.5 to 2.0 μm.

赤外線遮蔽粒子5の直径は例えば、赤外線遮蔽粒子5または、赤外線遮蔽粒子5を含む舗装材構成粒子100を透過電子顕微鏡により観察し、その透過電顕像より求めることができる。   The diameter of the infrared shielding particle 5 can be obtained from, for example, a transmission electron microscope image obtained by observing the infrared shielding particle 5 or the pavement material constituting particle 100 including the infrared shielding particle 5 with a transmission electron microscope.

赤外線遮蔽粒子5は、概ね心材1の外面を覆うように配置するのが好ましく、このため、100重量部の心材1に対し、赤外線遮蔽粒子5が5重量部以上含まれるのが好ましく、20重量部以上含まれるのがより好ましい。また、赤外線遮蔽粒子5が多すぎると舗装材構成粒子100を用いた舗装体が十分な弾性を確保できないおそれがあることから100重量部の心材1に対し、赤外線遮蔽粒子5が100重量部以下であることが好ましい。   The infrared shielding particles 5 are preferably arranged so as to substantially cover the outer surface of the core material 1, and therefore, the infrared shielding particles 5 are preferably contained in an amount of 5 parts by weight or more with respect to 100 parts by weight of the core material 1. More preferably, it is contained in a part or more. Moreover, since there is a possibility that the pavement using the pavement material constituting particles 100 may not have sufficient elasticity if there are too many infrared shielding particles 5, the infrared shielding particles 5 are 100 parts by weight or less with respect to 100 parts by weight of the core material 1. It is preferable that

図1に示す実施形態では、樹脂2は主に、心材1と赤外線遮蔽粒子5の間に配置され、赤外線遮蔽粒子5は、舗装材構成粒子100の最表面に配置されているが、例えば樹脂2と赤外線遮蔽粒子5を予め混合し、この混合材を心材1とさらに混合する等により、赤外線遮蔽粒子5を樹脂2の内部に配置してもよい。   In the embodiment shown in FIG. 1, the resin 2 is mainly disposed between the core material 1 and the infrared shielding particles 5, and the infrared shielding particles 5 are disposed on the outermost surface of the paving material constituting particles 100. 2 and the infrared shielding particles 5 may be mixed in advance and the mixed material may be further mixed with the core material 1 to arrange the infrared shielding particles 5 inside the resin 2.

なお、赤外線遮蔽粒子5の形状は、好ましくは概ね球状であるが、これに限定されるものではなく例えば鱗片状、ラグビーボール状、棒状および円盤状を含むいかなる形状であってもよい。球状以外の形状の場合は、その赤外線遮蔽粒子の直径は、同じ体積を有する球の直径の値を用いて表すことができる。   The shape of the infrared shielding particles 5 is preferably approximately spherical, but is not limited thereto, and may be any shape including, for example, a scale shape, a rugby ball shape, a rod shape, and a disk shape. In the case of a shape other than a sphere, the diameter of the infrared shielding particle can be expressed using the value of the diameter of a sphere having the same volume.

赤外線遮蔽粒子5として好ましい材料は酸化チタンであり、必要に応じ、例えば酸化アルミニウム、炭酸カリウム、亜鉛化合物等の添加物を含んでもよい。また、必要に応じて分散性等の特性を向上させる表面処理、例えば酸化物や水酸化物のコーティングを行ってもよい。これ以外に、酸化鉄のような酸化物も赤外線遮蔽粒子5として使用可能である。   A preferable material for the infrared shielding particles 5 is titanium oxide, and may contain additives such as aluminum oxide, potassium carbonate, and zinc compound as necessary. Moreover, you may perform the surface treatment which improves characteristics, such as a dispersibility, for example, coating of an oxide or a hydroxide as needed. In addition to this, an oxide such as iron oxide can also be used as the infrared shielding particles 5.

また、酸化チタンの本来の色は、白色であるが、本願の目的の1つである白以外の舗装材を得るために、所望の顔料を用いて着色してもよい。また、所望の色の舗装材を得るように、例えば、白色を含む第1の色の赤外線遮蔽粒子と、第1の色と異なる色の(異なる色に着色した)第2の色の赤外線遮蔽粒子とを用いる等、複数の色の赤外線遮蔽粒子を用いてもよい。   Moreover, although the original color of titanium oxide is white, in order to obtain paving materials other than white which is one of the purposes of the present application, it may be colored using a desired pigment. Further, in order to obtain a desired color paving material, for example, the first color infrared shielding particles including white and the second color infrared shielding different from the first color (colored in a different color). A plurality of colors of infrared shielding particles such as particles may be used.

このように、白以外の色に着色をしても赤外線遮蔽粒子5による赤外線の散乱効果により、従来の白色遮熱顔料を用いた舗装材(舗装体)と概ね同等の遮熱効果を得ることが可能である。   In this way, even if the color other than white is colored, the heat shielding effect substantially equivalent to that of a pavement material (paving body) using a conventional white heat shielding pigment is obtained by the infrared scattering effect of the infrared shielding particles 5. Is possible.

また、白色遮熱顔料を用いた従来の舗装材と同様に、舗装体の色が白色であってもよい用途に用いる場合には、白色の赤外線遮蔽粒子5を用いることが可能である。白色の赤外線遮蔽粒子5を用いて、舗装材構成粒子100の表面色を白色とした場合、従来の舗装材と同様に色が白いことによる全波長域での反射効果と、赤外線遮蔽粒子5の赤外線散乱光効果との両方により従来の舗装材と比べ、より優れた温度上昇抑制効果(遮熱効果)を示す。   In addition, as in the case of a conventional pavement material using a white heat-shielding pigment, white infrared shielding particles 5 can be used when used in applications where the color of the pavement may be white. When the surface color of the pavement material constituting particles 100 is white using the white infrared shielding particles 5, the reflection effect in the entire wavelength region due to the white color as in the conventional pavement material, and the infrared shielding particles 5 Compared with the conventional pavement material both by the infrared scattered light effect, the temperature rise suppression effect (heat-shielding effect) more excellent is shown.

以下に心材1と樹脂2の詳細を示す。
心材1は、従来から舗装材に心材(または骨材)として用いられている、セメント、プラスチック、ゴム、および碍子、タイル、レンガのような焼成物等を用いることができる。この中でもゴム材は舗装材の弾性を確保できることから好ましい材であり、とりわけ廃ゴム材(例えば廃タイヤ粉砕材)は、使用済みのゴムをリサイクルできエコロジーの観点からも、好ましい材料である。心材1は、好ましくは略球形で0.5〜10mm、より好ましくは、1〜5mmの直径を有する。
Details of the core material 1 and the resin 2 are shown below.
The core material 1 can be cement, plastic, rubber, and fired products such as insulators, tiles, bricks, and the like that have been conventionally used as a core material (or aggregate) for pavement materials. Among these, rubber materials are preferable because they can ensure the elasticity of paving materials, and waste rubber materials (for example, waste tire pulverized materials) are particularly preferable materials from the viewpoint of ecology because used rubber can be recycled. The core material 1 is preferably substantially spherical and has a diameter of 0.5 to 10 mm, more preferably 1 to 5 mm.

心材1は、その表面の殆どが樹脂2および赤外線遮蔽粒子5により覆われることから、色については白色、透明、黒を含む何色でもよい。   Since most of the surface of the core material 1 is covered with the resin 2 and the infrared shielding particles 5, the color may be any color including white, transparent, and black.

樹脂2は、流動性を有し、固化可能な樹脂であれば、どのような樹脂でもよく、透明、不透明は何れでもよく、また色についても何色であってもよいが赤外線透過能が高い樹脂が好ましい。特に、上述したように赤外線遮蔽粒子5が樹脂2の内部に配置されている場合には、樹脂2は、赤外線を透過できることが必要である。樹脂2として好ましい樹脂として、例えばウレタン樹脂、アクリル樹脂、エポキシ樹脂がある。   The resin 2 may be any resin as long as it has fluidity and can be solidified. The resin 2 may be transparent or opaque, and may have any color, but has high infrared transmission ability. Resins are preferred. In particular, when the infrared shielding particles 5 are arranged inside the resin 2 as described above, the resin 2 needs to be able to transmit infrared rays. Examples of a preferable resin as the resin 2 include a urethane resin, an acrylic resin, and an epoxy resin.

樹脂2は、心材1の外周全面を覆うのに十分な量が確保されていることが好ましいことから、舗装材構成粒子100は、心材1が100重量部に対し、5重量部以上の樹脂を含むことが好ましい。一方、樹脂2が多すぎると発泡あるいは心材1の粒子同士の分散性の低下および心材1同士の凝集が発生することから、樹脂2は、心材1が100重量部に対し、40重量部以下であることが好ましい。   Since the resin 2 preferably has a sufficient amount to cover the entire outer periphery of the core material 1, the pavement material constituting particle 100 contains 5 parts by weight or more of resin with respect to 100 parts by weight of the core material 1. It is preferable to include. On the other hand, if the resin 2 is too much, foaming or a decrease in dispersibility between the particles of the core material 1 and aggregation of the core material 1 occur. Therefore, the resin 2 is 40 parts by weight or less with respect to 100 parts by weight of the core material 1. Preferably there is.

次に舗装材構成粒子100により構成される舗装材の製造方法を以下に示す。
所定量の心材1と、固化していない液体状の樹脂2とを例えばモルタルミキサーを用いて混合し、樹脂2により心材1を覆う。
Next, the manufacturing method of the paving material comprised by the paving material constituent particles 100 will be described below.
A predetermined amount of the core material 1 and the liquid resin 2 that is not solidified are mixed using, for example, a mortar mixer, and the core material 1 is covered with the resin 2.

そして、赤外線遮蔽粒子5を舗装材構成粒子100の外側表面に配置するために、赤外線遮蔽粒子5は、心材1と樹脂2を混合した後に加える。赤外線遮蔽粒子5を加える前または同時に、必要に応じ、炭酸カルシウムのような増量材を加えてもよい。   And in order to arrange the infrared shielding particles 5 on the outer surface of the paving material constituting particles 100, the infrared shielding particles 5 are added after the core material 1 and the resin 2 are mixed. Before or simultaneously with the addition of the infrared shielding particles 5, an extender such as calcium carbonate may be added as necessary.

加えられた赤外線遮蔽粒子5は、樹脂2により心材1の表面に接着され固定される。また、接着力のある樹脂2は、心材1と赤外線遮蔽粒子5との間に存在し、舗装材構成粒子100の外側表面に赤外線遮蔽粒子5が位置することで、舗装材構成粒子100同士の間に接着力が作用しないことから、舗装材構成粒子100の一粒一粒が分離した状態、即ち粒状となる。   The added infrared shielding particles 5 are bonded and fixed to the surface of the core material 1 by the resin 2. Further, the resin 2 having adhesive force exists between the core material 1 and the infrared shielding particles 5, and the infrared shielding particles 5 are located on the outer surface of the paving material constituting particles 100, so that the paving material constituting particles 100 Since no adhesive force acts between them, the pavement material constituting particles 100 are separated from each other, that is, granular.

そして、樹脂2を硬化させることで舗装材構成粒子100よりなる舗装材を得ることができる。樹脂2の硬化は、予め触媒等を加えておき、赤外線遮熱粒子を混合後養生し硬化させる。これ以外にも、熱硬化性樹脂を用い加熱し硬化させる。あるいは、紫外線等を照射し硬化させると多様な方法があり、樹脂2の種類に応じ適宜選択可能である。   And the paving material which consists of paving material constituent particles 100 can be obtained by hardening resin 2. The resin 2 is cured by adding a catalyst or the like in advance and curing the cured infrared heat shielding particles after mixing them. In addition to this, a thermosetting resin is used for heating and curing. Alternatively, there are various methods when cured by irradiating ultraviolet rays or the like, and can be appropriately selected according to the type of the resin 2.

樹脂2の中に赤外線遮蔽粒子5が分布した舗装材構成粒子100よりなる舗装材を得る場合には、例えば樹脂2と赤外線遮蔽粒子5を予め混合した後、心材1を加えることで製造可能である。この場合、接着力を有する硬化前の樹脂2が舗装材構成粒子100の外側表面に位置している。このため、舗装材構成粒子100同士が結合せずに一粒一粒分離した粒状の舗装材を得るために、樹脂2と赤外線遮蔽粒子5を予め混合し、心材1をさらに混合した混合物を、例えば、ロータリーキルンを用いて粒子化する工程を用いてもよい。   In the case of obtaining a pavement material composed of pavement material constituting particles 100 in which the infrared shielding particles 5 are distributed in the resin 2, for example, the resin 2 and the infrared shielding particles 5 are mixed in advance, and then the core material 1 is added. is there. In this case, the uncured resin 2 having adhesive force is located on the outer surface of the pavement material constituting particle 100. For this reason, in order to obtain a granular paving material in which the paving material constituting particles 100 are not bonded to each other, the resin 2 and the infrared shielding particles 5 are preliminarily mixed, and the core material 1 is further mixed, For example, a step of forming particles using a rotary kiln may be used.

このようにして得た舗装材構成粒子100よりなる舗装材を骨材とし、バインダーとしてウレタンのような樹脂を加えた後、道路等の目的の被舗装体の上に敷設し、バインダーを硬化させることで舗装体を得ることができる。なお、使用するバインダーの量は好ましくは、舗装材構成粒子100より成る舗装材100重量部に対して5〜40重量部である。   The paving material comprising the paving material constituting particles 100 thus obtained is used as an aggregate, and after adding a resin such as urethane as a binder, it is laid on a target paving body such as a road and the binder is cured. A pavement can be obtained. The amount of the binder used is preferably 5 to 40 parts by weight with respect to 100 parts by weight of the paving material composed of the paving material constituting particles 100.

このようにして、製造される舗装体は、舗装材構成粒子100が舗装体に入射する太陽光線の中の特に赤外線領域の波長を散乱するため、遮熱効果が高く舗装体の温度上昇を抑制することが可能となる。   In this way, the manufactured pavement has a high heat shielding effect and suppresses the temperature increase of the pavement because the pavement material constituting particle 100 scatters the wavelength of the infrared ray in the solar ray incident on the pavement. It becomes possible to do.

図2は、実施形態1に含まれる変形例である舗装材を構成する舗装材構成粒子200の断面を示す図である。樹脂2は、中空体3を有している。これ以外の部分については舗装材構成粒子100と同じである。中空体3は、例えば、内部が常圧もしくは減圧された空気等の気体を有する、または真空で、外部が、ガラス、セラミックス、樹脂、もしくは金属またはこれらの複合材よりなり、内部が中空であることから断熱材として機能する。   FIG. 2 is a view showing a cross section of the pavement material constituting particles 200 constituting the pavement material which is a modification example included in the first embodiment. The resin 2 has a hollow body 3. The other parts are the same as the paving material constituting particles 100. The hollow body 3 has, for example, a gas such as air whose inside is normal pressure or reduced pressure, or a vacuum, and the outside is made of glass, ceramics, resin, metal, or a composite material thereof, and the inside is hollow. It functions as a heat insulating material.

中空体3は、その外形が略球形である場合は、外径が1〜100μmであることが好ましい。なお、外形は略球形に限定されず、例えば卵形等の任意の形状でよい。好ましい中空体は、例えばガラスバルーン、シラスバルーンである。   When the outer shape of the hollow body 3 is substantially spherical, the outer diameter is preferably 1 to 100 μm. The outer shape is not limited to a substantially spherical shape, and may be any shape such as an oval shape. Preferred hollow bodies are, for example, glass balloons and shirasu balloons.

好ましくは赤外線遮蔽粒子5と樹脂2とを混合する前に、中空体3を樹脂2と混合する。赤外線遮蔽粒子5を舗装材構成粒子200の表面に分布させるためである。中空体3は、好ましくは、100重量部の心材1に対し、1〜10重量部加える。   Preferably, the hollow body 3 is mixed with the resin 2 before the infrared shielding particles 5 and the resin 2 are mixed. This is because the infrared shielding particles 5 are distributed on the surface of the pavement material constituting particles 200. The hollow body 3 is preferably added in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the core material 1.

このように、断熱効果を有する中空体3を含む舗装材構成粒子200を用いて作成した舗装材は、さらに遮熱効果が向上し、これを用いた舗装体は、いっそうの温度上昇抑制効果を得ることが可能である。   Thus, the pavement material created using the pavement material constituting particles 200 including the hollow body 3 having a heat insulating effect further improves the heat shielding effect, and the pavement using the pavement material has a further temperature rise suppressing effect. It is possible to obtain.

(2)実施形態2
図3および図4は、本発明の実施形態2にかかる舗装材を構成する舗装材構成粒子300の断面を示す図である。心材1と、その心材1を覆う樹脂2が配置されており、樹脂2の内部に粒子状の吸水ポリマー4(図4では吸水ポリマー4’)が分散配置されている。図3に示した吸水ポリマー4は、水を吸収し膨張した状態を示している。吸水ポリマー4の表面は、樹脂2と接触しており、樹脂2に拘束されることから、これ以上は水を吸収し膨張することができない状態を示している。
(2) Embodiment 2
3 and 4 are views showing a cross section of the pavement material constituting particles 300 constituting the pavement material according to the second embodiment of the present invention. A core material 1 and a resin 2 covering the core material 1 are arranged, and particulate water-absorbing polymer 4 (water-absorbing polymer 4 ′ in FIG. 4) is dispersedly arranged inside the resin 2. The water-absorbing polymer 4 shown in FIG. 3 has absorbed water and expanded. Since the surface of the water-absorbing polymer 4 is in contact with the resin 2 and is restrained by the resin 2, the surface of the water-absorbing polymer 4 cannot absorb water and cannot expand.

一方、図4の吸水ポリマー4’は、水を排出し収縮した状態を示しており、吸水ポリマー4’の周りには空隙が認められる。   On the other hand, the water-absorbing polymer 4 ′ in FIG. 4 shows a state in which water is discharged and contracted, and voids are recognized around the water-absorbing polymer 4 ′.

舗装材構成粒子300の集合体である舗装材を用いた舗装体では、舗装体表面に例えば散水車等により、水を供給し、吸水ポリマー4に水を吸水させる。その後、吸水ポリマー4がゆっくりと時間をかけて水を排出し、図4に示す排出し終わった状態(吸水ポリマー4’)に至る間、排出された水が蒸発する際の気化熱により、舗装体の熱を奪い、温度上昇を抑制する。   In the pavement using the pavement material which is an aggregate of the pavement material constituting particles 300, water is supplied to the pavement surface by, for example, a water truck, and the water-absorbing polymer 4 absorbs water. Thereafter, the water-absorbing polymer 4 slowly discharges water over time, and while the water is completely discharged (water-absorbing polymer 4 ′) shown in FIG. Takes away heat from the body and suppresses temperature rise.

また、吸水ポリマー4は、樹脂2に取り囲まれているため、本実施形態にかかる舗装材では、吸水時に膨張して舗装体の表面に吸水ポリマー4がはみ出すことがない。従って、舗装材構成粒子300よりなる舗装材を用いた舗装体の上にさらに吸水ポリマーのはみ出しを抑制するための弾性層等の付加的な層を設ける必要がない。また、吸水ポリマー4が、膨張および収縮により体積が変化しても舗装材構成粒子300の外形に変化が生じないことから、舗装体形成時にバインダー樹脂により舗装材構成粒子300同士の結合を確実に行うことで、容易に舗装体の強度を確保することができる。   Further, since the water-absorbing polymer 4 is surrounded by the resin 2, the water-absorbing polymer 4 does not protrude from the surface of the pavement due to expansion during water absorption in the pavement according to the present embodiment. Therefore, it is not necessary to provide an additional layer such as an elastic layer for suppressing the protrusion of the water-absorbing polymer on the pavement using the pavement made of the pavement constituting particles 300. In addition, even if the volume of the water-absorbing polymer 4 changes due to expansion and contraction, the outer shape of the pavement material constituting particle 300 does not change, so that the bonding between the pavement material constituting particles 300 is ensured by the binder resin when forming the pavement. By doing, the strength of the paving body can be easily secured.

吸水ポリマー4としては、市販されている吸水ポリマーが使用可能であるが、好ましくはポリアクリル酸ソーダ、ポリビニルアルコール、セルロース系化合物である。また、吸水ポリマー4は、好ましくは50倍以上、より好ましくは100倍以上の吸水能力(吸水ポリマーの質量に対する吸水可能な水の質量の割合)を有する。   As the water-absorbing polymer 4, commercially available water-absorbing polymers can be used, but polyacrylic acid soda, polyvinyl alcohol, and cellulose compounds are preferable. The water-absorbing polymer 4 preferably has a water absorption capacity (a ratio of the mass of water that can be absorbed with respect to the mass of the water-absorbing polymer) of 50 times or more, more preferably 100 times or more.

吸水ポリマー4に予め水を吸収させてから、樹脂2と混ぜて、吸水ポリマー4が吸水した状態のままで、樹脂2を硬化させることにより、樹脂2の内部に、吸水ポリマー4が膨張できる空間(図4の吸水ポリマー4’の周囲の空間)を確保できる。なお、具体的な製造方法については後述する。   A space in which the water-absorbing polymer 4 can be expanded inside the resin 2 by allowing the water-absorbing polymer 4 to absorb water in advance and then mixing with the resin 2 to cure the resin 2 while the water-absorbing polymer 4 has absorbed water. (A space around the water-absorbing polymer 4 ′ in FIG. 4) can be secured. A specific manufacturing method will be described later.

なお、吸水ポリマー4に予め吸収させる水の量が少なすぎると、その少ない水を吸収した状態で樹脂2により周りを取り囲まれるため、樹脂2の内部に吸水ポリマー4が膨張するのに十分な空間を確保できなくなる。一方、吸収する水の量が多過ぎると、樹脂2にできる空隙が大きくなり、舗装材構成粒子300を用いた舗装体に割れ等が生じやすくなり、舗装体の強度が低下するおそれがある。従って、吸水ポリマー4に予め吸収させる水の量は、好ましくは吸水ポリマー4の重量の5倍〜50倍、より好ましくは5倍〜30倍である。   If the amount of water absorbed in the water-absorbing polymer 4 is too small, the water 2 is surrounded by the resin 2 in a state in which the small amount of water is absorbed, so that there is sufficient space for the water-absorbing polymer 4 to expand inside the resin 2. Cannot be secured. On the other hand, if the amount of water to be absorbed is too large, the voids that can be formed in the resin 2 are increased, and the pavement using the pavement material constituting particles 300 is likely to be cracked and the strength of the pavement may be reduced. Therefore, the amount of water to be preliminarily absorbed by the water-absorbing polymer 4 is preferably 5 to 50 times, more preferably 5 to 30 times the weight of the water-absorbing polymer 4.

なお、吸水ポリマー4の吸水能力は上記の予め吸収させる水の量の2倍以上であることが好ましい。同じ量の水を吸収する場合でも、吸収能力が実際に吸収する水の量を大きく上回っている場合の方が、吸収能力と実際に吸収する水の量が接近している場合に比べ、水の吸収に要する時間が短いからである。この特性は、特に、炎天下で舗装体中の吸水ポリマーに水を吸収させるために散水した際に、散水した水が蒸発により失われることを防止するのに有用である。   In addition, it is preferable that the water absorption capability of the water absorbing polymer 4 is at least twice the amount of water to be absorbed in advance. Even if the same amount of water is absorbed, the water absorption capacity is much greater than the water absorption capacity compared to the case where the water absorption capacity is close to the actual water absorption capacity. This is because the time required for absorption of is short. This characteristic is particularly useful for preventing the water sprayed from being lost by evaporation when water is absorbed by the water-absorbing polymer in the pavement under hot weather.

また、吸水ポリマーの量は、多すぎると舗装体に加工した際に十分な強度を確保できず、また、少なすぎると十分な温度上昇抑制効果を得ることができない。好ましくは、100重量部の心材1に対して、吸水ポリマー4は乾燥した状態で、0.5〜10重量部の範囲である。   On the other hand, if the amount of the water-absorbing polymer is too large, sufficient strength cannot be secured when processed into a pavement, and if it is too small, a sufficient temperature rise suppressing effect cannot be obtained. Preferably, the water-absorbing polymer 4 is in a range of 0.5 to 10 parts by weight in a dry state with respect to 100 parts by weight of the core material 1.

吸水ポリマー4の大きさは、水を吸収した状態で、直径100〜1000μmの範囲であることが好ましい。なお、図3では、吸水ポリマーの断面は略円形であるが、これに限定されるものではなく、例えば楕円、棒状等の任意の断面形状を有することが可能である。この場合、吸水ポリマー4の直径は、同じ体積を有する球の直径とする。   The size of the water-absorbing polymer 4 is preferably in the range of 100 to 1000 μm in diameter while absorbing water. In FIG. 3, the cross section of the water-absorbing polymer is substantially circular, but is not limited to this, and can have any cross-sectional shape such as an ellipse or a rod. In this case, the diameter of the water-absorbing polymer 4 is the diameter of a sphere having the same volume.

次に、実施形態2で用いる樹脂2について詳細を示す。本実施形態にかかる樹脂2は、実施形態1の樹脂2と同様に硬化性の樹脂である。
さらに、上述したように本実施形態では樹脂2が吸水ポリマー4の周りを取り囲むことから、吸水ポリマー4は、樹脂2を介して、水を吸収および排出する必要がある。従って樹脂2は、使用時(硬化後)に水を透過できなければならない。
Next, the resin 2 used in Embodiment 2 will be described in detail. The resin 2 according to the present embodiment is a curable resin similarly to the resin 2 of the first embodiment.
Furthermore, as described above, in the present embodiment, since the resin 2 surrounds the water-absorbing polymer 4, the water-absorbing polymer 4 needs to absorb and discharge water through the resin 2. Therefore, the resin 2 must be able to permeate water during use (after curing).

また、非浸透性(非透過性)の樹脂に化学的または物理的方法により、穴を開けて水が透過できるようにしてもよい。
このような樹脂として、ウレタン樹脂が使用できることを発明者らは見出した。
Further, a hole may be formed in a non-permeable (non-permeable) resin by a chemical or physical method so that water can permeate.
The inventors have found that a urethane resin can be used as such a resin.

従来、ウレタン樹脂は、硬化する前に水と接触するとそのイソシアネート基が水と反応して激しく発泡し体積が急速に膨張するため、吸水ポリマーのように水分を含有する物質を覆うのに用いるのは不向きであると考えられていた。しかし、発明者らが鋭意検討を行った結果、予め水分を吸収させた吸水ポリマー4は、吸収した水をゆっくりと排出するため、ウレタン樹脂と接触する水の量は微量であり、発泡による急激な体積膨張を伴わず、しかも硬化後のウレタン樹脂が適度な透水性を有することを見出した。   Conventionally, urethane resin is used to cover water-containing substances such as water-absorbing polymers because when it comes into contact with water before curing, its isocyanate group reacts with water and foams violently to expand its volume rapidly. Was considered unsuitable. However, as a result of intensive studies by the inventors, the water-absorbing polymer 4 that has previously absorbed moisture slowly discharges the absorbed water, so that the amount of water in contact with the urethane resin is very small and abrupt due to foaming. It was found that the urethane resin after curing did not have a significant volume expansion and had an appropriate water permeability.

図5は、図3に示すA部の拡大図であり、ウレタン樹脂に発現する透水性について、推定されるメカニズムを模式的に示す。図5に示す実施形態では、樹脂2は、ウレタン樹脂である。予め吸水している吸水ポリマーの表面に存在する微量の水と樹脂(ウレタン樹脂)2とが反応し発泡し、吸水ポリマー4の表面近傍を中心に気泡10を生じる。そして、気泡10を通り微量な水分が樹脂2の内部に供給されるため、新たな気泡10が吸水ポリマー4から離れた位置(図5の場合には上方向)に生じる。そして、これらの気泡10の一部は、連続的に繋がり、図5に示すように樹脂2を貫き、吸水ポリマー4と樹脂2の外側表面とを結ぶ貫通路を形成する。この貫通路はウレタン樹脂が硬化後もそのまま存在し、水が通れることから、ウレタン樹脂よりなる樹脂2は透水性を有すると推定される。   FIG. 5 is an enlarged view of a portion A shown in FIG. 3, and schematically shows a mechanism that is estimated for water permeability expressed in the urethane resin. In the embodiment shown in FIG. 5, the resin 2 is a urethane resin. A small amount of water present on the surface of the water-absorbing polymer that has absorbed water in advance reacts with the resin (urethane resin) 2 to foam, and bubbles 10 are generated around the surface of the water-absorbing polymer 4. Since a very small amount of moisture is supplied into the resin 2 through the bubbles 10, new bubbles 10 are generated at positions away from the water-absorbing polymer 4 (in the upward direction in the case of FIG. 5). A part of these bubbles 10 are continuously connected, penetrate the resin 2 as shown in FIG. 5, and form a through passage connecting the water-absorbing polymer 4 and the outer surface of the resin 2. This through passage exists as it is after the urethane resin is cured, and water can pass therethrough. Therefore, it is estimated that the resin 2 made of the urethane resin has water permeability.

一方、前述のように吸水ポリマー4の表面に存在する水分が微量であるため、発泡は、局所的であり、従って、樹脂2に、顕著な体積膨張は生じない。   On the other hand, since the moisture present on the surface of the water-absorbing polymer 4 is very small as described above, the foaming is local, and therefore, no significant volume expansion occurs in the resin 2.

また、本実施形態で用いる心材1は、実施形態1で説明した心材1と同じでよく、白色、黒色、透明を含む任意の色であってよい。なお、実施形態2においては、吸水ポリマー4から排出される水の気化熱により舗装材構成粒子300よりなる舗装材の温度上昇を抑制していることから、心材1および/または樹脂2が白色でなくても、従来の白色の遮熱顔料を用いた舗装材と同等以上の温度上昇抑制効果を得ることができる。また、塗装体が白色でも使用可能な用途において、本実施形態の心材1および/または樹脂2を白色にすることにより、従来の舗装材と比べ、さらに顕著な遮熱効果を奏する。   The core material 1 used in the present embodiment may be the same as the core material 1 described in the first embodiment, and may be any color including white, black, and transparent. In Embodiment 2, since the temperature rise of the pavement material composed of the pavement material constituting particles 300 is suppressed by the vaporization heat of the water discharged from the water-absorbing polymer 4, the core material 1 and / or the resin 2 is white. Even if it does not exist, the temperature rise inhibitory effect equivalent to or more than the paving material using the conventional white heat-shielding pigment can be acquired. Moreover, in the use which can be used even if the coating body is white, by making the core material 1 and / or the resin 2 of the present embodiment white, a more significant heat shielding effect can be obtained as compared with the conventional pavement material.

次に、舗装材構成粒子300よりなる舗装材の製造方法について以下に示す。
心材1と樹脂2を例えばモルタルミキサーを用いて混合し、心材1の周囲を樹脂2で覆う。次に前述のように所定の量の水を予め吸収させた粒子状の吸水ポリマー4を混合する。これにより樹脂2の内部に吸水ポリマー4が分散されるとともに、予め水を吸収した吸水ポリマー4が心材1の周りに配置される。この時点では、樹脂2は、硬化しておらず、液状の樹脂2の中に複数の心材1とそれを取り囲む複数の吸水ポリマー4が存在する状態である。
Next, a method for producing a pavement made of the pavement constituent particles 300 will be described below.
The core material 1 and the resin 2 are mixed using, for example, a mortar mixer, and the periphery of the core material 1 is covered with the resin 2. Next, the particulate water-absorbing polymer 4 in which a predetermined amount of water has been absorbed in advance as described above is mixed. As a result, the water-absorbing polymer 4 is dispersed inside the resin 2 and the water-absorbing polymer 4 that has previously absorbed water is disposed around the core material 1. At this point in time, the resin 2 is not cured, and there are a plurality of core materials 1 and a plurality of water-absorbing polymers 4 surrounding them in the liquid resin 2.

ここで、樹脂2としてウレタン樹脂を用いた場合、吸水ポリマー4から排出される少量の水により、吸水ポリマー4の表面部を主に、ウレタン樹脂の局所的な発泡を開始する。そして、上述のように吸水ポリマー4と樹脂2の外側表面とを繋ぐ貫通路を形成する。   Here, when a urethane resin is used as the resin 2, local foaming of the urethane resin is started mainly on the surface portion of the water absorbent polymer 4 by a small amount of water discharged from the water absorbent polymer 4. And the penetration path which connects the water absorption polymer 4 and the outer surface of resin 2 as mentioned above is formed.

次に舗装材構成粒子300が一粒一粒分離した、粒子状の舗装材を得るために、実施形態1と同様にロータリーキルンを用いて粒子化する。樹脂2の種類によっては、この際にロータリーキルンの熱により硬化する。または、例えば、樹脂2の種類に応じ添加した硬化剤により硬化させるまたは紫外線等の照射等により硬化させる。   Next, in order to obtain a particulate paving material in which the paving material constituting particles 300 are separated one by one, the particles are granulated using a rotary kiln as in the first embodiment. Depending on the type of the resin 2, the resin is cured by the heat of the rotary kiln. Or it hardens | cures with the hardening | curing agent added according to the kind of resin 2, or it hardens | cures by irradiation of an ultraviolet-ray etc., for example.

ロータリーキルンを用いる代わりに、上述の吸水ポリマー4混合後に炭酸カルシウム、タルクのような増量材を混合することにより、実施形態1で赤外線遮蔽粒子を混入し、舗装材構成粒子が一粒一粒分離した、粒状の舗装材を得たのと同様のメカニズムで粒状の舗装材を得てもよい。   Instead of using a rotary kiln, after mixing the water-absorbing polymer 4 described above, an infrared shielding particle is mixed in the first embodiment by mixing a filler such as calcium carbonate and talc, and the pavement constituent particles are separated one by one. A granular pavement material may be obtained by the same mechanism as the granular pavement material.

なお、舗装材構成粒子300よりなる舗装材の製造については、心材1、樹脂2および予め吸水させた吸水ポリマー4の混合の順序は、重要ではなく、例えば心材1と吸水ポリマー4を混合した後に、樹脂2を混合してもよい。   In addition, about the manufacture of the paving material which consists of the paving material constituent particle 300, the order of mixing the core material 1, the resin 2 and the water-absorbing polymer 4 previously absorbed is not important, for example, after the core material 1 and the water-absorbing polymer 4 are mixed. The resin 2 may be mixed.

このようにして得た舗装材構成粒子300よりなる舗装材を骨材とし、バインダーとしてウレタン、エポキシ、MMAのような常温硬化樹脂を加えて道路等の目的の被舗装体の上に敷設し、その後バインダーを硬化させることで所定の形状を有する舗装体を得ることができる。この際、舗装材構成粒子300の吸水ポリマー4が、水の吸収と排出を確実に行えるようにバインダーとして用いる樹脂も透水性を有する樹脂が好ましい。使用するバインダーの量は、好ましくは、舗装材構成粒子300よりなる舗装材100重量部に対して5〜40重量部である。   The pavement material comprising the pavement material constituting particles 300 thus obtained is used as an aggregate, and a room temperature curable resin such as urethane, epoxy, or MMA is added as a binder and laid on a target pavement such as a road, Thereafter, the pavement having a predetermined shape can be obtained by curing the binder. At this time, the resin used as a binder is also preferably a water-permeable resin so that the water-absorbing polymer 4 of the pavement material constituting particles 300 can reliably absorb and discharge water. The amount of the binder to be used is preferably 5 to 40 parts by weight with respect to 100 parts by weight of the paving material composed of the paving material constituting particles 300.

このようにして、製造される舗装体は、舗装体に散水等を行い舗装材構成粒子300の吸水ポリマー4に水を吸収させることで、この吸水ポリマー4が水を排出し、これが舗装体表面より蒸発する際の気化熱により舗装体の温度上昇を抑制することが可能となる。   In this way, the manufactured pavement sprinkles water on the pavement and causes the water absorption polymer 4 of the pavement material constituting particles 300 to absorb water, so that the water absorption polymer 4 discharges water, which is the surface of the pavement. It becomes possible to suppress the temperature rise of the pavement due to the heat of vaporization at the time of evaporation.

図6は、実施形態2に含まれる、舗装材構成粒子300の変形例である舗装材構成粒子400の断面を示す図である。
樹脂2は、中空体3を有している。これ以外の部分については舗装材構成粒子300と同じである。中空体3は、実施形態1に示すものと同じであり、断熱材として寄与することから舗装体の温度上昇をより効果的に抑制できる。
FIG. 6 is a diagram illustrating a cross section of a pavement material constituting particle 400 that is a modified example of the pavement material constituting particle 300 included in the second embodiment.
The resin 2 has a hollow body 3. The other parts are the same as the pavement material constituting particles 300. Since the hollow body 3 is the same as that shown in Embodiment 1 and contributes as a heat insulating material, the temperature rise of the pavement can be more effectively suppressed.

舗装材構成粒子400よりなる舗装材の製造工程において、好ましくは、中空体3は、吸水ポリマー4を混合した後に混合する。中空体3は、好ましくは、心材1が100重量部に対して1〜10重量部加える。   In the manufacturing process of the paving material comprising the paving material constituting particles 400, the hollow body 3 is preferably mixed after the water-absorbing polymer 4 is mixed. The hollow body 3 is preferably added with 1 to 10 parts by weight of the core material 1 with respect to 100 parts by weight.

図7は、実施形態2に含まれる、舗装材構成粒子300の別の変形例である舗装材構成粒子500の断面を示す図である。
舗装材構成粒子500は、樹脂2を介して心材1を取り囲む赤外線遮蔽粒子5を含む。赤外線遮蔽粒子5は、実施形態1で示したものと同じである。混合する赤外線遮蔽粒子5の量は、100重量部の心材1に対して、5〜100重量部であることが好ましく、20〜100重量部であることがより好ましい。
FIG. 7 is a diagram showing a cross section of a pavement material constituting particle 500 that is another modified example of the pavement material constituting particle 300 included in the second embodiment.
The paving material constituting particles 500 include infrared shielding particles 5 surrounding the core material 1 with the resin 2 interposed therebetween. The infrared shielding particles 5 are the same as those shown in the first embodiment. The amount of the infrared shielding particles 5 to be mixed is preferably 5 to 100 parts by weight and more preferably 20 to 100 parts by weight with respect to 100 parts by weight of the core material 1.

舗装材構成粒子500よりなる舗装材を製造する場合に舗装材構成粒子400よりなる舗装材と同じ製造工程を経た後、赤外線遮蔽粒子5を混合することで、舗装材構成粒子500の外側表面に赤外線遮蔽粒子5が位置し、舗装材構成粒子500同士の間に樹脂2による接着力が作用しないことから、ロータリーキルン等を用いずに舗装材構成粒子500の一粒一粒が分離した、即ち粒状の舗装材を得ることができる。   When the pavement material made of the pavement material constituting particle 500 is produced, after the same manufacturing process as the pavement material made of the pavement material constituting particle 400, the infrared shielding particles 5 are mixed to the outer surface of the pavement material constituting particle 500. Since the infrared shielding particles 5 are located and the adhesive force by the resin 2 does not act between the paving material constituting particles 500, each grain of the paving material constituting particles 500 is separated without using a rotary kiln, that is, granular. Can be obtained.

また、舗装材構成粒子500よりなる舗装材の更なる変形例として、その舗装材構成粒子が、舗装材構成粒子500と同じであるがしかし中空体3を有しない舗装材を得てもよい。
上述した、舗装材構成粒子400よりなる舗装材および舗装材構成粒子500よりなる舗装材のいずれを用いて作製した舗装体も、舗装材構成粒子300よりなる舗装材を用いた舗装体を同じく、吸水ポリマー4より排出された水の気化熱により舗装体の温度上昇を抑制する。
As a further modification of the pavement material composed of the pavement material constituting particles 500, a pavement material having the same pavement material constituting particles as the pavement material constituting particles 500 but not having the hollow body 3 may be obtained.
As described above, the pavement produced using either the pavement material made of the pavement material constituting particles 400 and the pavement material made of the pavement material constituting particles 500 is the same as the pavement using the pavement material made of the pavement material constituting particles 300, The vaporization heat of the water discharged from the water-absorbing polymer 4 suppresses the temperature rise of the pavement.

さらに、舗装材構成粒子400は、断熱効果を有する中空体3を有することから、舗装材構成粒子400を用いた舗装体は、より優れた温度上昇抑制効果を示す。舗装材構成粒子500を用いた舗装体は、さらに赤外線遮蔽粒子5を含むことから、更により優れた温度上昇抑制効果を示す。   Furthermore, since the pavement material constituting particle 400 has the hollow body 3 having a heat insulating effect, the pavement using the pavement material constituting particle 400 exhibits a more excellent temperature rise suppressing effect. Since the pavement using the pavement material constituting particles 500 further includes the infrared shielding particles 5, the pavement constituting particles 500 exhibit a further excellent temperature rise suppressing effect.

また、舗装材構成粒子300、400または500よりなる舗装材は、いずれも心材1および樹脂2の色を変えることにより、黒はもとより、白以外の色にできることはもちろんである。   Of course, any pavement material composed of the pavement material constituting particles 300, 400 or 500 can be changed from black to a color other than white by changing the colors of the core material 1 and the resin 2.

さらに、舗装材構成粒子300、400、500の何れか1つ以上よりなる舗装材を用いて作製した舗装体は、上述したように硬化した樹脂2が吸水ポリマー4の周囲を取り囲んでいることから、吸水ポリマー4が吸水しても樹脂2による拘束のために、舗装体に新たな層を付加しなくても吸水ポリマー4が舗装体の表面にはみ出すことはない。   Furthermore, in the pavement produced using the pavement material comprising any one or more of the pavement material constituting particles 300, 400, 500, the cured resin 2 surrounds the water-absorbing polymer 4 as described above. Even if the water-absorbing polymer 4 absorbs water, the water-absorbing polymer 4 does not protrude from the surface of the pavement even if a new layer is not added to the pavement because of the restraint by the resin 2.

加えて舗装材構成粒子300、400、500の何れか1つ以上よりなる舗装材を用いて作製した舗装体は、舗装材の外表面が樹脂2であり、吸水ポリマー4が舗装材の外表面に存在しないことから、バインダーによる舗装材構成粒子間の接合に際し、高い接合強度を確保することが可能である。従って、この舗装体は実用上問題のない強度を有する。   In addition, the pavement produced using the pavement material comprising any one or more of the pavement material constituting particles 300, 400, 500 has the resin 2 as the outer surface of the pavement and the water absorbing polymer 4 as the outer surface of the pavement. Therefore, it is possible to ensure high bonding strength when bonding the paving material constituting particles with the binder. Therefore, this pavement has a strength with no practical problem.

1.実施形態1に係る実施例
(1)赤外線遮蔽粒子の温度上昇抑制効果
粒径が1〜5mmの廃ゴム材(タイヤ粉砕材)100重量部を心材(または骨材)として、これに表1に示すように樹脂(ゴムモルタル成型用のウレタン樹脂)15重量部を加え、モルタルミキサーを用いて攪拌した。さらに表1に示す中空体(中空材料)として東海工業株式会社製の真空バルーン、セルスターZ−25(ガラスバルーン、平均粒径65μm、嵩密度0.16g/cm、以下本実施例および実施例2で用いる中空体は全て同じ)を3重量部加えて、更に攪拌した。
1. Example (1) Effect of Inhibiting Temperature Rise of Infrared Shielding Particles According to Embodiment 1 100 parts by weight of waste rubber material (tire ground material) having a particle diameter of 1 to 5 mm is used as a core material (or aggregate). As shown, 15 parts by weight of resin (urethane resin for molding rubber mortar) was added and stirred using a mortar mixer. Furthermore, as a hollow body (hollow material) shown in Table 1, a vacuum balloon manufactured by Tokai Kogyo Co., Ltd., Cellstar Z-25 (glass balloon, average particle size 65 μm, bulk density 0.16 g / cm 3 , hereinafter this example and examples) 3 parts by weight of the same hollow body used in 2) was added and further stirred.

Figure 0005159328
Figure 0005159328

そして、実施例1−1では、平均直径1.0μmの白色TiOよりなる白色赤外線遮蔽粒子と、平均粒径1.0μmの酸化鉄よりなる黒色赤外線遮蔽粒子とを63:7で混合して得た全体として外観が灰色に見える灰色赤外線遮蔽粒子を70重量部混合し攪拌した。実施例1−2では、上述した白色赤外線遮蔽粒子を70重量部混合し攪拌した。 In Example 1-1, white infrared shielding particles made of white TiO 2 having an average diameter of 1.0 μm and black infrared shielding particles made of iron oxide having an average particle diameter of 1.0 μm were mixed at 63: 7. As a whole, 70 parts by weight of gray infrared shielding particles whose appearance was gray as a whole were mixed and stirred. In Example 1-2, 70 parts by weight of the above-described white infrared shielding particles were mixed and stirred.

一方、比較例1−1では、従来より遮熱効果を有することが知られている石原産業株式会社製の白色顔料を70重量部混合し攪拌し、比較例1−2では、上述した灰色赤外線遮蔽粒子と略同じ色調を有する石原産業株式会社製の灰色顔料を70重量部混合した。何れのサンプルも赤外線遮蔽粒子または顔料を混合することで舗装材構成粒子の一粒一粒が分離した粒状とした。この粒状の混合剤を24時間気中養生し樹脂を硬化させて舗装材を得た。実施例1−1および比較例1−2の舗装材の外観は添加した灰色赤外線遮蔽粒子または灰色顔料と略同じ灰色であり、実施例1−2および比較例1−1の舗装材は、添加した白色赤外線遮蔽粒子または白色顔料と略同じ白色であった、   On the other hand, in Comparative Example 1-1, 70 parts by weight of a white pigment manufactured by Ishihara Sangyo Co., Ltd., which has been conventionally known to have a heat shielding effect, is mixed and stirred. 70 parts by weight of a gray pigment manufactured by Ishihara Sangyo Co., Ltd. having substantially the same color tone as the shielding particles was mixed. Each sample was made into a granular form in which each particle of the paving material constituting particles was separated by mixing infrared shielding particles or pigments. This granular mixture was cured in the air for 24 hours to cure the resin and obtain a paving material. The appearance of the pavement material of Example 1-1 and Comparative Example 1-2 is substantially the same gray as the added gray infrared shielding particles or gray pigment, and the pavement material of Example 1-2 and Comparative Example 1-1 is added. The white infrared shielding particles or white pigments were almost the same white color,

さらに表1に示すように、それぞれの舗装材100重量部に対して、バインダーとしてウレタン樹脂を22重量部添加し、モルタルミキサーを用いて攪拌した後、厚さ30mmのポリエチレン製断熱体上に厚さ10mm、縦100mm、横100mmの直方体を成形し、これを1週間養生し、バインダーを硬化させることでそれぞれのサンプルの舗装体を得た。なお何れのサンプルも舗装体に加工しても舗装材とほぼ同じ色調であった。   Furthermore, as shown in Table 1, after adding 22 parts by weight of urethane resin as a binder to 100 parts by weight of each pavement material and stirring using a mortar mixer, the thickness is thickened on a 30 mm thick polyethylene insulator. A rectangular parallelepiped having a length of 10 mm, a length of 100 mm, and a width of 100 mm was molded, cured for one week, and the binder was cured to obtain a paved body of each sample. In addition, even if any sample was processed into the paving body, it was almost the same color as the paving material.

次に舗装体の温度上昇抑制効果を評価した。温度上昇抑制効果は、舗装体の表面から垂直方向30cmの位置に赤外線ランプ(100V−270Wを)設置し、舗装体表面に赤外線を3時間(180分)照射し、その間の舗装体の表面温度を測定することで評価した。なお、表面温度の測定には、環境温度の影響が大きいことから、温度を27±1℃に維持した恒温室内で評価を行った。   Next, the temperature rise inhibitory effect of the pavement was evaluated. The effect of suppressing the temperature rise is that an infrared lamp (100V-270W) is installed at a position 30 cm vertically from the surface of the pavement, and the surface of the pavement is irradiated with infrared rays for 3 hours (180 minutes). It was evaluated by measuring. In addition, since the influence of environmental temperature is large in the measurement of surface temperature, it evaluated in the temperature-controlled room which maintained temperature at 27 +/- 1 degreeC.

図8は、表面温度の評価結果である。外観が灰色の実施例1−1の舗装体の温度は、照射開始後1時間以降は47〜49℃の範囲内で安定しており、同様の色調を有する比較例1−2と比べ表面温度は明らかに低くなっている。また、実施例1−1は、表面色が白色の比較例1−1と比較しても表面温度が、同等か低くなっており、灰色でありながら、従来の白色舗装体と同等以上の温度上昇抑制効果を示している。   FIG. 8 shows the evaluation result of the surface temperature. The temperature of the paving body of Example 1-1 whose appearance is gray is stable within a range of 47 to 49 ° C. after 1 hour from the start of irradiation, and is a surface temperature as compared with Comparative Example 1-2 having the same color tone. Is clearly lower. Further, in Example 1-1, the surface temperature is equal to or lower than that of Comparative Example 1-1 in which the surface color is white, and although it is gray, the temperature is equal to or higher than that of the conventional white pavement. It shows the rise suppression effect.

一方、実施例1−2では、赤外線遮熱粒子による効果と色が白いことによる遮熱効果とにより舗装体表面の温度は、赤外線照射開始1時間以降40〜42℃で安定しており極めて優れた遮熱効果を示した。   On the other hand, in Example 1-2, the temperature of the pavement surface is stable at 40 to 42 ° C. after 1 hour from the start of infrared irradiation due to the effect of the infrared heat shielding particles and the heat shielding effect due to the white color. It showed a heat shielding effect.

(2)赤外線遮蔽粒子の添加量の影響
赤外線遮蔽粒子の添加量の影響を調査するために、表2に示すように灰色赤外線遮蔽粒子の添加量を変えて舗装材を作製した。表2に示すサンプルは何れも中空体を含んでいない。また、赤外線粒子の量の変動を補償し、ロータリーキルン等を用いなくても舗装材構成粒子が一粒一粒分離した粒状の舗装材なるように、赤外線遮蔽粒子と炭酸カルシウムとの和が廃ゴム100重量部に対して70重量部となるよう炭酸カルシウム粒子を添加した。また、舗装体を製造する際のバインダーの添加量は、舗装材100重量部に対して16重量部とした。
(2) Influence of the addition amount of the infrared shielding particles In order to investigate the influence of the addition amount of the infrared shielding particles, as shown in Table 2, the addition amount of the gray infrared shielding particles was changed to prepare a paving material. None of the samples shown in Table 2 contains a hollow body. In addition, the sum of infrared shielding particles and calcium carbonate is used to compensate for fluctuations in the amount of infrared particles and to form a granular pavement in which the particles constituting the pavement are separated without using a rotary kiln. Calcium carbonate particles were added so as to be 70 parts by weight with respect to 100 parts by weight. Moreover, the addition amount of the binder at the time of manufacturing a pavement was 16 parts by weight with respect to 100 parts by weight of the pavement material.

Figure 0005159328
Figure 0005159328

舗装材構成粒子よりなる舗装材および舗装体の製造は、別途記載した場合を除き「(1)赤外線遮蔽粒子の遮熱効果」に記載したのと同じ材料および同じ製造方法を用いた。なお、炭酸カルシウムの混合および攪拌は、赤外線粒子と同時に行った。   The same material and the same manufacturing method as those described in “(1) Heat shielding effect of infrared shielding particles” were used for the production of paving materials and paving bodies composed of paving material constituting particles, unless otherwise described. In addition, mixing and stirring of calcium carbonate were performed simultaneously with the infrared particles.

得られた舗装体サンプルの遮熱特性を「(1)赤外線遮蔽粒子の温度上昇抑制効果」に記載したのと同じく舗装体の表面温度を測定することにより評価した。なお、赤外線の遮熱時間は120分とした。表面温度の測定結果を図9に示す。赤外線遮蔽粒子を含まない比較例1−3と比べ、赤外線遮蔽粒子を含む実施例1−3〜1−7の舗装体の照射開始後120分の表面温度は、より低い温度となっている。特に70重量部と最も多く灰色赤外線遮蔽粒子を含む実施例1−7は、比較例1−3と比べ、約10℃以上低い57℃近辺の温度で安定し、優れた温度上昇抑制効果を示した。   The heat shielding properties of the obtained pavement samples were evaluated by measuring the surface temperature of the pavement as described in “(1) Effect of suppressing temperature rise of infrared shielding particles”. The infrared heat shielding time was 120 minutes. The measurement result of the surface temperature is shown in FIG. Compared with Comparative Example 1-3 which does not contain infrared shielding particles, the surface temperature of 120 minutes after the start of irradiation of the pavement of Examples 1-3 to 1-7 containing infrared shielding particles is lower. In particular, Example 1-7 containing 70 parts by weight of the most gray infrared shielding particles is stable at a temperature in the vicinity of 57 ° C., which is lower by about 10 ° C. or more than Comparative Example 1-3, and exhibits an excellent temperature rise suppressing effect. It was.

(3)中空体の添加量の影響
中空体の添加量の影響を調査するために、表3に示すように中空体の添加量を変えて舗装材を作製した。また、より確実に樹脂が中空体を取り囲むように、中空体の添加量が多いサンプルほど樹脂の量も増やした。さらに舗装体を製造する際のバインダーの添加量も中空体の添加量が多いサンプルほど多くした。
(3) Influence of the addition amount of the hollow body In order to investigate the influence of the addition amount of the hollow body, the addition amount of the hollow body was changed as shown in Table 3 to prepare a pavement material. In addition, the amount of resin was increased as the amount of the hollow body added increased so that the resin surrounded the hollow body more reliably. Furthermore, the amount of binder added during the production of pavement was also increased for samples with a higher amount of hollow body added.

Figure 0005159328
Figure 0005159328

舗装材および舗装体の製造は、特記した場合を除き「(1)赤外線遮蔽粒子の温度上昇抑制効果」に記載したのと同じ材料および同じ製造方法を用いた。なお、表3に示すサンプルでは炭酸カルシウムは添加していない。   Except where otherwise specified, the same materials and the same manufacturing method as described in “(1) Inhibition of temperature increase of infrared shielding particles” were used for the manufacture of the paving material and the paving body. In the sample shown in Table 3, calcium carbonate is not added.

得られた舗装体サンプルの遮熱特性を「(1)赤外線遮蔽粒子の遮熱効果」で記載したのと同じく舗装体の表面温度を測定することにより評価した(赤外線照射時間120分)。表面温度の測定結果を図10に示す。赤外線を120分照射後の表面温度は、50〜55℃となっており、温度上昇が抑制されている。また、実施例1−10、1−9、1−8の順、すなわち中空体の添加量の多い順に表面温度が低く、温度上昇抑制効果が大きくなっている。   The heat shielding properties of the obtained pavement samples were evaluated by measuring the surface temperature of the pavement as described in “(1) Heat shielding effect of infrared shielding particles” (infrared irradiation time 120 minutes). The measurement result of the surface temperature is shown in FIG. The surface temperature after irradiation with infrared rays for 120 minutes is 50 to 55 ° C., and the temperature rise is suppressed. Moreover, the surface temperature is low in the order of Examples 1-10, 1-9, and 1-8, that is, in the order of increasing addition amount of the hollow body, and the temperature rise suppressing effect is increased.

2.実施形態2に係る実施例
以下に、吸水ポリマーを含有する実施形態2にかかる実施例を示す。
(1)吸水ポリマー添加による遮熱効果
実施形態1と同じ、粒径が1〜5mmの廃ゴム材(タイヤ粉砕材)100重量部を心材として、これに表4に示すように樹脂(実施形態1と同じゴムモルタル成型用のウレタン樹脂)18重量部を加え、モルタルミキサーを用いて攪拌した。
2. Example according to Embodiment 2 Hereinafter, an example according to Embodiment 2 containing a water-absorbing polymer will be described.
(1) Heat shielding effect by addition of water-absorbing polymer As in Embodiment 1, 100 parts by weight of waste rubber material (tire pulverized material) having a particle diameter of 1 to 5 mm is used as a core material. 18 parts by weight of the same rubber mortar molding urethane resin as 1) was added and stirred using a mortar mixer.

Figure 0005159328
Figure 0005159328

次に吸水ポリマーとしてポリマー重量の400倍の水を吸収可能な住友精化株式会社製「アクアキープSA−60N」(吸水前の状態で平均直径100μm)2重量部にその重量の20倍(40重量部)の水を吸水させた。そして実施例2−1では、この吸水させた吸水ポリマーを上記の心材と樹脂の混合物に更に混合し攪拌した。一方、比較例2−1には、吸水ポリマーは混合しなかった。   Next, “Aquakeep SA-60N” manufactured by Sumitomo Seika Co., Ltd., which can absorb 400 times the weight of the polymer as the water-absorbing polymer (average diameter 100 μm before water absorption) is 20 times the weight (40 Part by weight of water was absorbed. In Example 2-1, the absorbed water-absorbing polymer was further mixed with the above-mentioned mixture of the core material and the resin and stirred. On the other hand, the water-absorbing polymer was not mixed in Comparative Example 2-1.

舗装材を舗装材構成粒子が一粒一粒が分離した粒状にするために、両方のサンプルにそれぞれ70重量部の炭酸カルシウムを添加し、混合、攪拌後、24時間気中養生し樹脂を硬化させて舗装材を得た。実施例2−1および比較例2−1の舗装材の外観は灰色であった。   In order to make the pavement into a granular form in which the particles constituting the pavement are separated from each other, 70 parts by weight of calcium carbonate is added to each sample, mixed and stirred, and then cured in air for 24 hours to cure the resin. The pavement material was obtained. The appearance of the pavement material of Example 2-1 and Comparative Example 2-1 was gray.

さらに表4に示すように、それぞれの舗装材100重量部に対して、バインダーとしてウレタン樹脂を18重量部添加し、モルタルミキサー内で攪拌した後、厚さ30mmのポリエチレン製断熱体上に厚さ10mm、縦100mm、横100mmの直方体を成形し、これを1週間養生し、バインダーを硬化させることでそれぞれのサンプルの舗装体を得た。なお何れのサンプルも舗装体に加工しても舗装材とほぼ同じ灰色であった。   Furthermore, as shown in Table 4, after adding 18 parts by weight of a urethane resin as a binder to 100 parts by weight of each paving material and stirring in a mortar mixer, the thickness was increased on a 30 mm thick polyethylene insulator. A rectangular parallelepiped having a size of 10 mm, a length of 100 mm, and a width of 100 mm was molded, cured for one week, and the binder was cured to obtain a paved body of each sample. In addition, even if any sample was processed into the paving body, it was almost the same gray as the paving material.

次に舗装体の温度上昇抑制効果を評価した。実施形態1に示したのと同じ評価方法を用いた。図11に評価結果を示す。赤外線を120分照射後の表面温度は、実施例2−1では、50℃であり、比較例2−1の69℃と比べ約20℃と顕著な温度上昇抑制効果を示した。   Next, the temperature rise inhibitory effect of the pavement was evaluated. The same evaluation method as shown in Embodiment 1 was used. FIG. 11 shows the evaluation results. The surface temperature after 120 minutes of irradiation with infrared rays was 50 ° C. in Example 2-1, which was about 20 ° C. compared to 69 ° C. in Comparative Example 2-1, and showed a remarkable temperature rise suppressing effect.

(2)吸水ポリマーと赤外線遮蔽粒子および中空体による遮熱効果
表5は、実施例2−2〜2−4にかかる舗装材および舗装体の組成を示す。以下の手順で製造した。特に記載のない場合は「(1)吸水ポリマー添加による温度上昇抑制効果」に記載したのと同じ材料を用い、同じ製造方法で製造した。
(2) Heat shielding effect by water-absorbing polymer, infrared shielding particles and hollow body Table 5 shows the composition of the pavement and the pavement according to Examples 2-2 to 2-4. It was manufactured by the following procedure. Unless otherwise specified, the same material as described in “(1) Effect of suppressing temperature increase by addition of water-absorbing polymer” was used, and the same manufacturing method was used.

心材100重量部に、樹脂27重量部を混合し、攪拌した。次に、表5に示すように吸水ポリマー2重量部に対し、吸収させる水の量を20重量部〜80重量部と変えて水を吸収させた吸水ポリマーを混合し攪拌した。   27 parts by weight of resin was mixed with 100 parts by weight of the core material and stirred. Next, as shown in Table 5, with respect to 2 parts by weight of the water-absorbing polymer, the amount of water to be absorbed was changed from 20 parts by weight to 80 parts by weight, and the water-absorbing polymer that absorbed water was mixed and stirred.

さらに、実施例1と同じ中空体を12重量部混合、攪拌した後、実施例1と同じ灰色赤外線遮蔽粒子を70重量部混合、攪拌した。そして、舗装材構成粒子が一粒一粒分離した粒状にした後、24時間気中養生し樹脂を硬化させて舗装材を得た。実施例2−1〜2−3かかる舗装材は、いずれも外観は、添加した灰色赤外線遮蔽粒子と略同じ灰色であった。   Further, 12 parts by weight of the same hollow body as in Example 1 was mixed and stirred, and then 70 parts by weight of the same gray infrared shielding particles as in Example 1 were mixed and stirred. And after making the particle | grains which the particle | grains of the pavement material separated into grains one by one, they were cured in the air for 24 hours to cure the resin and obtain a pavement material. Examples 2-1 to 2-3 Each of the pavement materials had the same gray appearance as the added gray infrared shielding particles.

さらに表5に示すように、それぞれの舗装材100重量部に対して、バインダーとしてウレタン樹脂を18重量部添加し、モルタルミキサー内で攪拌した後、厚さ30mmのポリエチレン製断熱体上に厚さ10mm、縦100mm、横100mmの直方体を成形し、これを1週間養生し、バインダーを硬化させることでそれぞれのサンプルの舗装体を得た。なお何れのサンプルも舗装体に加工しても舗装材とほぼ灰色であった。   Furthermore, as shown in Table 5, 18 parts by weight of urethane resin as a binder is added to 100 parts by weight of each paving material, and the mixture is stirred in a mortar mixer. A rectangular parallelepiped having a size of 10 mm, a length of 100 mm, and a width of 100 mm was molded, cured for one week, and the binder was cured to obtain a paved body of each sample. In addition, even if any sample was processed into the pavement, it was almost gray with the pavement material.

図12は、それぞれのサンプルについて実施形態1と同じ方法により舗装体の温度上昇抑制効果を評価した結果を示す。赤外線を120分照射後の表面温度は、実施例2−2〜2−4の全てで43〜47℃と50℃より低く顕著な遮熱効果を示した。なお、僅かな差であるが、吸水ポリマーに予め吸収させた水の量が多いほど、赤外線を120分照射後の表面温度が低くなっている。   FIG. 12 shows the results of evaluating the temperature rise suppression effect of the pavement for each sample by the same method as in the first embodiment. The surface temperature after irradiation with infrared rays for 120 minutes was 43 to 47 ° C. and lower than 50 ° C. in all of Examples 2-2 to 2-4, and showed a remarkable heat shielding effect. In addition, although it is a slight difference, the surface temperature after 120 minutes of infrared rays irradiation is so low that the amount of the water previously absorbed by the water absorption polymer is large.

(3)圧縮強度
上記の実施例2−2〜2−4と同じ製造方法で舗装体を作製した。但し、舗装体の形状は、圧縮強度を評価するために直径50mm、高さ100mmの円柱状とした。さらに、吸水ポリマーの影響を明確にするために、実施例2−2〜2−4と同じ重量部の心材、樹脂、灰色赤外線遮蔽粒子、中空体を含有し、吸水ポリマーを含有しない舗装材を実施形態1にかかる実施例1−11として作製し、さらにこの舗装材に18重量部のバインダーを混合後攪拌し、これを上述の実施例2−2〜2−4にかかる円柱状の舗装体と同じ方法で、同じ形状の円柱状の舗装体を得た。
(3) Compressive strength A pavement was produced by the same production method as in Examples 2-2 to 2-4. However, the shape of the pavement was a cylindrical shape having a diameter of 50 mm and a height of 100 mm in order to evaluate the compressive strength. Furthermore, in order to clarify the influence of the water-absorbing polymer, a pavement material containing the same weight part of the core material, the resin, the gray infrared shielding particles and the hollow body as in Examples 2-2 to 2-4 and not containing the water-absorbing polymer. It is produced as Example 1-11 according to Embodiment 1, and further 18 parts by weight of binder is mixed with this pavement material, followed by stirring, and this is a cylindrical pavement according to Examples 2-2 to 2-4 described above. In the same way, a cylindrical pavement having the same shape was obtained.

得られた舗装体を、JIS A 1108に準拠し圧縮試験を行った。表5は、圧縮強度を示す。何れのサンプルも0.6N/mm以上と通常の使用であれば実用上問題のない強度を示した。特に実施例2−3と2−4は、吸水ポリマーを含有しているにもかかわらず1.2N/mm以上、すなわち吸水ポリマーを含有していない実施例1−11の85%以上という優れた強度を示した。 The obtained pavement was subjected to a compression test in accordance with JIS A 1108. Table 5 shows the compressive strength. Any sample showed a strength of practically no problem if it was a normal use of 0.6 N / mm 2 or more. In particular, Examples 2-3 and 2-4 are 1.2 N / mm 2 or more despite containing a water-absorbing polymer, that is, 85% or more of Example 1-11, which does not contain a water-absorbing polymer. Showed high strength.

Figure 0005159328
Figure 0005159328

本発明の実施形態1にかかる舗装材を構成する舗装材構成粒子100の断面図である。It is sectional drawing of the pavement material structure particle 100 which comprises the pavement material concerning Embodiment 1 of this invention. 本発明の実施形態1にかかる別の舗装材を構成する舗装材構成粒子200の断面図である。It is sectional drawing of the pavement material structure particle 200 which comprises another pavement material concerning Embodiment 1 of this invention. 本発明の実施形態2にかかる舗装材を構成する舗装材構成粒子300の断面図である。It is sectional drawing of the pavement material structure particle 300 which comprises the pavement material concerning Embodiment 2 of this invention. 吸水ポリマーが水を排出した状態の舗装材構成粒子300の断面図である。It is sectional drawing of the paving material constituent particle 300 in a state where the water-absorbing polymer has discharged water. 図3のA部の拡大図である。It is an enlarged view of the A section of FIG. 本発明の実施形態2にかかる別の舗装材を構成する舗装材構成粒子400の断面図である。It is sectional drawing of the pavement material structure particle 400 which comprises another pavement material concerning Embodiment 2 of this invention. 本発明の実施形態2にかかる別の舗装材を構成する舗装材構成粒子500の断面図である。It is sectional drawing of the pavement material structure particle 500 which comprises another pavement material concerning Embodiment 2 of this invention. 実施例1−1、1−2および比較例1−1、1−2にかかる舗装体の表面温度測定結果を示すグラフである。It is a graph which shows the surface temperature measurement result of the paving body concerning Examples 1-1 and 1-2 and Comparative Examples 1-1 and 1-2. 実施例1−3〜1−7および比較例1−3にかかる舗装体の表面温度測定結果を示すグラフである。It is a graph which shows the surface temperature measurement result of the pavement concerning Examples 1-3 to 1-7 and Comparative Example 1-3. 実施例1−8〜1−10にかかる舗装体の表面温度測定結果を示すグラフである。It is a graph which shows the surface temperature measurement result of the pavement concerning Examples 1-8 to 1-10. 実施例2−1、および比較例2−1にかかる舗装体の表面温度測定結果を示すグラフである。It is a graph which shows the surface temperature measurement result of the pavement concerning Example 2-1, and Comparative Example 2-1. 実施例2−2〜2−4にかかる舗装体の表面温度測定結果を示すグラフである。It is a graph which shows the surface temperature measurement result of the pavement concerning Examples 2-2 to 2-4.

符号の説明Explanation of symbols

1 心材、2 樹脂、3 中空体、4 吸水ポリマー、5 赤外線遮蔽粒子、10 気泡、100,200,300,400,500 舗装材構成粒子 1 core material, 2 resin, 3 hollow body, 4 water-absorbing polymer, 5 infrared shielding particle, 10 cell, 100, 200, 300, 400, 500 pavement material constituting particle

Claims (11)

複数の粒子の集合体であって、前記粒子がそれぞれ心材と、該心材の外周に樹脂を介して配置された、直径0.4〜3.0μmの白色の第1の赤外線遮蔽粒子および直径0.4〜3.0μmの白色以外の色の第2の赤外線遮蔽粒子とを含むことを特徴とする舗装材。 An aggregate of a plurality of particles, each of which is a core material, a white first infrared shielding particle having a diameter of 0.4 to 3.0 μm, and a diameter of 0 , disposed on the outer periphery of the core material via a resin. And a second infrared shielding particle having a color other than white of 4 to 3.0 μm . 前記第1の赤外線遮蔽粒子が、酸化チタンを含むことを特徴とする請求項1に記載の舗装材。 The pavement material according to claim 1, wherein the first infrared shielding particles include titanium oxide. 前記第2の赤外線遮蔽粒子が、酸化鉄を含むことを特徴とする請求項1または2に記載の舗装材。 The pavement material according to claim 1, wherein the second infrared shielding particles contain iron oxide . 前記心材がゴム材料であることを特徴とする請求項1〜3の何れかに記載の舗装材。   The pavement material according to any one of claims 1 to 3, wherein the core material is a rubber material. 前記ゴム材料が、廃タイヤ粉砕材であることを特徴とする請求項4に記載の舗装材。   The pavement material according to claim 4, wherein the rubber material is waste tire pulverized material. 前記樹脂が中空体を含むことを特徴とする請求項1〜5の何れかに記載の舗装材。   The pavement material according to claim 1, wherein the resin includes a hollow body. 請求項1〜6のいずれかに記載の舗装材を含むことを特徴とする舗装体。   A pavement comprising the pavement according to any one of claims 1 to 6. それぞれの粒子が心材を有する複数の粒子の集合体である舗装材の製造方法であって、
心材の周りを樹脂で取り囲む工程と、
該樹脂を介して外心材の外周に、直径が0.4〜3.0μmでかつ白色の第1の赤外線遮蔽粒子と、直径が0.4〜3.0μmでかつ白色以外の色の第2の赤外線遮蔽粒子とを固定する工程を含むことを特徴とする舗装材の製造方法。
A method for producing a pavement material in which each particle is an aggregate of a plurality of particles having a core material,
Surrounding the core with resin,
A first infrared shielding particle having a diameter of 0.4 to 3.0 μm and white, and a second color having a diameter of 0.4 to 3.0 μm and a color other than white are provided on the outer periphery of the outer core material through the resin . A method for producing a paving material, comprising a step of fixing the infrared shielding particles .
前記樹脂がウレタン樹脂であることを特徴とする請求項8に記載の舗装材の製造方法。   The method for producing a paving material according to claim 8, wherein the resin is a urethane resin. 前記心材がゴム材料であることを特徴とする請求項8または9に記載の舗装材の製造方法。   The method for manufacturing a pavement according to claim 8 or 9, wherein the core material is a rubber material. 前記樹脂に、中空体を含有させる工程を更に含むことを特徴とする請求項8〜10のいずれかに記載の舗装材の製造方法。   The method for producing a pavement material according to any one of claims 8 to 10, further comprising a step of causing the resin to contain a hollow body.
JP2008005707A 2008-01-15 2008-01-15 Paving material, method for producing the same and paving body Expired - Fee Related JP5159328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008005707A JP5159328B2 (en) 2008-01-15 2008-01-15 Paving material, method for producing the same and paving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008005707A JP5159328B2 (en) 2008-01-15 2008-01-15 Paving material, method for producing the same and paving body

Publications (2)

Publication Number Publication Date
JP2009167661A JP2009167661A (en) 2009-07-30
JP5159328B2 true JP5159328B2 (en) 2013-03-06

Family

ID=40969151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008005707A Expired - Fee Related JP5159328B2 (en) 2008-01-15 2008-01-15 Paving material, method for producing the same and paving body

Country Status (1)

Country Link
JP (1) JP5159328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501256B1 (en) * 2013-11-06 2015-03-19 주식회사 건화 A thermal barrier coating pavement and a pavement method thereof for a complex, a landscape, a park, a river, a road, a reclaimed land

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6585203B2 (en) * 2018-02-07 2019-10-02 有限会社伊東産業 Cool feeling paint composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012683A (en) * 2000-06-29 2002-01-15 Nippon Paint Co Ltd Thermal insulating colored sheet
JP2004218340A (en) * 2003-01-17 2004-08-05 Toray Ind Inc Aggregate for solidification material
JP2006008874A (en) * 2004-06-28 2006-01-12 Nagashima Tokushu Toryo Kk Coating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501256B1 (en) * 2013-11-06 2015-03-19 주식회사 건화 A thermal barrier coating pavement and a pavement method thereof for a complex, a landscape, a park, a river, a road, a reclaimed land

Also Published As

Publication number Publication date
JP2009167661A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4999205B2 (en) Concrete or mortar
KR102183668B1 (en) infrared and heat reflective water-soluble pigments composition for road comprising hydrophobic silica aerogel
CN104684857B (en) The glass pellets of structure with subregion
KR100823352B1 (en) Thin layer paving composition, permeable concrete and manufacturing method water permeable warm mix asphalt concrete
KR101238947B1 (en) Water holding molding and method for producing the same
JP4546328B2 (en) Pavement and manufacturing method thereof
TWI814733B (en) Elastic particulate and producing method thereof, artificial turf using same, pavement body, pavement road using same, and producing method thereof
RU2637701C1 (en) Radar absorbent asphalt-concrete mixture and roadway covering made from this mixture
JP5159328B2 (en) Paving material, method for producing the same and paving body
JP2004251108A (en) Paving body for road
KR102022237B1 (en) Urethane waterproof material composition with excellent thermo-shield function and construction method of waterproofing and thermo-shield using thereof
JP4954906B2 (en) Paving material, method for producing the same and paving body
KR100896429B1 (en) Coating composition for thermal insulation pavement and thermal insulation pavement body for slip prevention using the same
KR102119742B1 (en) Double Layer Asphalt Concrete Compositions Having Low Noise and Permeable Using Styrene Isoprene Styrene, Styrene Ethylene Butylene Styrene and Aggregate-powder of Improved Grain Size and Constructing Methods Using Thereof
JP2006283381A (en) Heat-insulating and water-retentive pavement
JP2005061042A (en) Solar heat intercepting pavement body
KR102132607B1 (en) Modified-Resin Stone Mastic Asphalt Concrete Compositions Using Stylene Isoprene Stylene and Constructing Methods Using Thereof
KR102132606B1 (en) Modified-Resin Stone Mastic Asphalt Concrete Compositions Using Stylene Isoprene Stylene and Constructing Methods Using Thereof
KR102119771B1 (en) Middle Temperature Asphalt Compositions Having Low Noise and Permeable Using Styrene Isoprene Styrene, Styrene Ethylene Butylene Styrene and Aggregate-powder of Improved Grain Size and Constructing Methods Using Thereof
KR101627843B1 (en) Eco-friendly elastic pavement using waste medium density fiberboard and polyurethane resin and constructing method thereof
KR101188707B1 (en) Elastic compositions, pavements therewith and paving method
JP2004218340A (en) Aggregate for solidification material
KR102143697B1 (en) Method forming for cork material floor, cork material floor structure formed by the same
JP5990471B2 (en) Ceramic thick skin hollow particles and method for producing the same
KR102335734B1 (en) Composition of heat shielding paint for floor pavement having high infrared and solar heat reflection effect and method for forming a film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees