JP4569017B2 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP4569017B2
JP4569017B2 JP2001065137A JP2001065137A JP4569017B2 JP 4569017 B2 JP4569017 B2 JP 4569017B2 JP 2001065137 A JP2001065137 A JP 2001065137A JP 2001065137 A JP2001065137 A JP 2001065137A JP 4569017 B2 JP4569017 B2 JP 4569017B2
Authority
JP
Japan
Prior art keywords
birefringent material
optical device
birefringent
transmission characteristics
temperature change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001065137A
Other languages
Japanese (ja)
Other versions
JP2002267950A (en
Inventor
知己 佐野
寛 菅沼
享 井上
学 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001065137A priority Critical patent/JP4569017B2/en
Publication of JP2002267950A publication Critical patent/JP2002267950A/en
Application granted granted Critical
Publication of JP4569017B2 publication Critical patent/JP4569017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複屈折材料の透過特性を利用する光デバイスに関するものである。
【0002】
【従来の技術】
複屈折材料の透過特性を利用する光デバイスとして、例えば図7に示される構成のものが挙げられる。この図に示された光デバイス1は、偏光ビームスプリッタ11,12、ミラー21,22および複屈折材料30を備えている。なお、この図に示されたxyz直交座標系において、複屈折材料30を光がz軸方向に通過する。また、複屈折材料30のC軸は、xy平面に平行であって、x軸に対して45度だけ傾斜している。
【0003】
入力ポート1aより入力した光は、偏光ビームスプリッタ11により、第1方位(x軸方向)および第2方位(y軸方向)それぞれの偏光成分に分離されて、第1方位の偏光成分が第1経路P1へ出力され、第2方位の偏光成分が第2経路P2へ出力される。なお、第1経路P1は、偏光ビームスプリッタ11よりミラー22を経て偏光ビームスプリッタ12へ到るまでの経路である。一方、第2経路P2は、偏光ビームスプリッタ11よりミラー21を経て偏光ビームスプリッタ12へ到るまでの経路である。
【0004】
偏光ビームスプリッタ11より第1経路P1へ出力された第1方位の偏光成分の光は、複屈折材料30を通過することで、波長λに応じた割合で第2方位の偏光成分に変換され、ミラー22により反射されて偏光ビームスプリッタ12へ入射する。一方、偏光ビームスプリッタ11より第2経路P2へ出力された第2方位の偏光成分の光は、ミラー21により反射された後に複屈折材料30を通過することで、波長λに応じた割合で第1方位の偏光成分に変換され、偏光ビームスプリッタ12へ入射する。
【0005】
そして、偏光ビームスプリッタ12により、第1経路P1より到達した第1方位の偏光成分と、第2経路P2より到達した第2方位の偏光成分とが偏波合成され、この合成された光が第1出力ポート1bより出力される。また、偏光ビームスプリッタ12により、第1経路P1より到達した第2方位の偏光成分と、第2経路P2より到達した第1方位の偏光成分とが偏波合成され、この合成された光が第2出力ポート1cより出力される。
【0006】
図8は、光デバイス1の透過特性を示す図である。この図に示すように、光デバイス1の入力ポート1aから第1出力ポート1bへの光の透過率の波長依存性T1(λ)(図中で実線で示したもの)は周期的である。同様に、光デバイス1の入力ポート1aから第2出力ポート1cへの光の透過率の波長依存性T2(λ)(図中で破線で示したもの)も周期的である。また、透過率T1(λ)が極大となる波長と、透過率T2(λ)が極大となる波長とは、交互に存在する。すなわち、この光デバイス1は、多波長信号光を分波するインターリーバとして動作する。なお、透過率T1(λ)(または透過率T2(λ))が極大となる波長のうち隣合う2つの波長の周波数間隔はFSR(Free Spectral Range)と呼ばれる。
【0007】
【発明が解決しようとする課題】
上記のような複屈折材料30を含む光デバイス1の透過特性T(λ)(T1(λ)またはT2(λ))は、
【数1】

Figure 0004569017
なる式で表される。ここで、Lは複屈折材料30のz軸方向の厚みであり、neは複屈折材料30の異常光線に対する屈折率であり、noは複屈折材料30の常光線に対する屈折率である。jは虚数である。
【0008】
また、これらのパラメータL、neおよびnoそれぞれは温度に依存している。
基準温度に対して温度がΔTだけ変化したときの各パラメータは、
【数2】
Figure 0004569017
なる式で表される。ここで、Liは基準温度における複屈折材料30のz軸方向の厚みであり、kLは複屈折材料30の線膨張係数である。neiは基準温度における複屈折材料30の異常光線に対する屈折率であり、keは複屈折材料30の異常光線に対する屈折率の温度係数である。また、noiは基準温度における複屈折材料30の常光線に対する屈折率であり、koは複屈折材料30の常光線に対する屈折率の温度係数である。
【0009】
したがって、複屈折材料30の温度が変動すると、複屈折材料30の屈折率neおよびnoならびに厚みLそれぞれが変動するので、透過特性T(λ)も変動する。もし、この光デバイス1がインターリーバとして用いられるのであれば、温度変動に因り多波長信号光が正しく分波されず、この光デバイス1を含む光通信システムにおいては信号光の受信ができなくなる事態が生じる場合がある。
【0010】
本発明は、上記問題点を解消する為になされたものであり、温度変動が生じても安定した透過特性を有する光デバイスを提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明に係る光デバイスは、複屈折材料を含み、この複屈折材料の透過特性を利用する光デバイスであって、温度変化に因り透過特性が変化する複屈折材料と、複屈折材料の温度変化に応じて複屈折材料の光路長を調整することで、複屈折材料の透過特性の変化を補償する光路長調整手段を備え、複屈折材料は、光軸に直交する所定方向に沿って光軸方向の厚みが変化している楔型部材を含み、光路長調整手段は複屈折材料とは別体の部材として設けられ、温度変化に応じて膨張・収縮することで所定方向に複屈折材料の楔型部材を移動させる伸縮部材を含むことを特徴とする。この光デバイスでは、温度変化に因り、複屈折材料の膨張・収縮や屈折率変化が生じる一方で、複屈折材料の光路長が調整される。この光路長の調整により補償されることで、温度変化に因る透過特性の変化は小さくなる。
【0014】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0015】
初めに、本願発明の基本的な事項について説明する。基準温度に対して温度がΔTだけ変化したときの位相変化δ(ΔT)は、上記(2a)〜(2c)式を上記(1b)式に代入することで得られ、
【数3】
Figure 0004569017
なる式で表される。この(3)式の最右辺の第1項は温度変化ΔTに依存せず一定であるのに対して、第2項は温度変化ΔTの寄与分を表している。しかし、温度変化ΔTに応じて第1項の値を調整することで第2項の値の変化を相殺することができれば、温度変動が生じても光デバイスは安定した透過特性を有することができる。或いは、第1の複屈折材料と第2の複屈折材料とを組み合わせて、温度変化に因る第1および第2の複屈折材料それぞれの透過特性の変化が互いに相殺するようにすることができれば、温度変動が生じても光デバイスは安定した透過特性を有することができる。以下では、光デバイスに含まれる複屈折材料の周辺について説明するが、光デバイスは例えば図7に示した構成を有している。
【0016】
(第1実施形態)
次に、本発明に係る光デバイスの第1実施形態について説明する。図1は、第1実施形態に係る光デバイスに含まれる複屈折材料の周辺を示す図である。なお、この図に示されたxyz直交座標系において光はz軸方向に通過する。この図に示すように、本実施形態に係る光デバイスは、3つの複屈折材料131〜133(図7中の複屈折材料30に相当)、伸縮部材141,142および固定部材151,152を含んでいる。
【0017】
複屈折材料131〜133それぞれは、光軸上に順に配置されている。複屈折材料131〜133それぞれのC軸は、xy平面に平行であって、x軸に対して45度だけ傾斜している。これらは、例えば、方解石(CaCO3)、ルチル(TiO2)、YVO4、LiNbO3等からなる。
【0018】
複屈折材料131の光入射面131a、複屈折材料132の光出射面132b、ならびに、複屈折材料133の光入射面133aおよび光出射面133bそれぞれは、xy平面に平行である。しかし、複屈折材料131の光出射面131bおよび複屈折材料132の光入射面132aそれぞれは、互いに平行であって、x軸方向に対して平行ではあるが、xy平面に対しては平行ではない。すなわち、複屈折材料131は、y座標値が大きいほどz軸方向の厚みが小さくなっていて、y軸方向に沿ってz軸方向の厚みが変化している楔型部材となっている。一方、複屈折材料132は、y座標値が大きいほどz軸方向の厚みが大きくなっていて、y軸方向に沿ってz軸方向の厚みが変化している楔型部材となっている。
【0019】
伸縮部材141,142それぞれは、線膨張係数が比較的大きい材料からなり、例えばアルミニウム(線膨張係数2.31×10-5/℃)等からなる。固定部材151,152それぞれは、伸縮部材141,142より小さい線膨張係数を有する材料からなり、例えばインバール(線膨張係数1.20×10-6/℃)等からなる。固定部材151,152それぞれは光軸を挟んで対向して配置されており、固定部材151の配置位置のy座標値は、固定部材152の配置位置のy座標値より大きい。固定部材151,152それぞれは複屈折材料133を直接に挟んでいる。伸縮部材141は、y軸方向に関して固定部材151と複屈折材料131との間に設けられ、固定部材151および複屈折材料131それぞれと固定されている。また、伸縮部材142は、y軸方向に関して固定部材152と複屈折材料132との間に設けられ、固定部材152および複屈折材料132それぞれと固定されている。
【0020】
このような構成の複屈折材料131〜133等を含む光デバイスでは、温度変化ΔTに因り、複屈折材料131〜133それぞれが膨張・収縮し(上記(2a)式)、また、複屈折材料131〜133それぞれの屈折率neおよびnoの値が変動する(上記(2b)式,(2c)式)。さらに、温度変化ΔTに因り、伸縮部材141,142それぞれが膨張・収縮し、複屈折材料131,132それぞれがy軸方向に移動して、光路長が変化する。例えば、温度変化ΔTが正(温度上昇)であれば、伸縮部材141,142それぞれが膨張して、複屈折材料131が−y方向に移動し、複屈折材料132が+y方向に移動するので、このことに因り、複屈折材料131,132それぞれの光軸上の厚みが小さくなり、光路長が短くなる。したがって、この光デバイスでは、温度変化に因り、上記(3)式の最右辺の第2項の値が変化するだけでなく、第1項の値も変化する。そして、上記(3)式の最右辺の第1項の値の変化が第2項の値の変化を相殺することにより、位相変化δ(ΔT)の絶対値が小さくなり、光デバイスは安定した透過特性を有することができる。
【0021】
図2は、第1実施形態に係る光デバイスにおける複屈折材料131の光出射面131bの傾斜角度θと伸縮部材141,142それぞれの長さとの関係を示すグラフである。複屈折材料131の光出射面131bの傾斜角度θは、xy平面との間の角度であり、複屈折材料132の光入射面132aの傾斜角度と等しい。伸縮部材141,142それぞれの材料はアルミニウムであるとし、伸縮部材141,142それぞれの長さ(y軸方向の長さ)は互いに等しいとした。固定部材151,152それぞれの材料はインバールであるとした。この図は、複屈折材料131〜133の材料がTiO2およびYVO4それぞれである場合について、位相変化δ(ΔT)が0となるときの傾斜角度θと伸縮部材141,142それぞれの長さとの関係を示している。この図から判るように、傾斜角度θの値に応じて伸縮部材141,142それぞれの長さを適切に設定することで、位相変化δ(ΔT)の絶対値を小さくすることができ、安定した透過特性を有する光デバイスを実現することができる。
【0022】
(第2実施形態)
次に、本発明に係る光デバイスの第2実施形態について説明する。図3は、第2実施形態に係る光デバイスに含まれる複屈折材料の周辺を示す図である。なお、この図に示されたxyz直交座標系において光はz軸方向に通過する。この図に示すように、本実施形態に係る光デバイスは、3つの複屈折材料231〜233(図7中の複屈折材料30に相当)、伸縮部材240および固定部材250を含んでいる。
【0023】
複屈折材料231〜233それぞれは、光軸上に順に配置されている。複屈折材料231〜233それぞれのC軸は、xy平面に平行であって、x軸に対して45度だけ傾斜している。これらは、例えば、方解石(CaCO3)、ルチル(TiO2)、YVO4、LiNbO3等からなる。
【0024】
複屈折材料231の光入射面231aおよび複屈折材料233の光出射面233bそれぞれは、xy平面に平行である。しかし、複屈折材料231の光出射面231bおよび複屈折材料232の光入射面232aそれぞれは、互いに平行であって、x軸方向に対して平行ではあるが、xy平面に対しては平行ではない。
複屈折材料232の光出射面232bおよび複屈折材料233の光入射面233aそれぞれは、互いに平行であって、x軸方向に対して平行ではあるが、xy平面に対しては平行ではない。すなわち、複屈折材料231および233それぞれは、y座標値が大きいほどz軸方向の厚みが小さくなっていて、y軸方向に沿ってz軸方向の厚みが変化している楔型部材となっている。一方、複屈折材料232は、y座標値が大きいほどz軸方向の厚みが大きくなっていて、y軸方向に沿ってz軸方向の厚みが変化している楔型部材となっている。
【0025】
伸縮部材240は、線膨張係数が比較的大きい材料からなり、例えばアルミニウム等からなる。固定部材250は、伸縮部材240より小さい線膨張係数を有する材料からなり、例えばインバール等からなる。複屈折材料231および233それぞれは固定部材250に直接に固定されている。伸縮部材240は、y軸方向に関して固定部材250と複屈折材料232との間に設けられ、固定部材250および複屈折材料232それぞれと固定されている。
【0026】
このような構成の複屈折材料231〜233等を含む光デバイスでは、温度変化ΔTに因り、複屈折材料231〜233それぞれが膨張・収縮し(上記(2a)式)、また、複屈折材料231〜233それぞれの屈折率neおよびnoの値が変動する(上記(2b)式,(2c)式)。さらに、温度変化ΔTに因り、伸縮部材240が膨張・収縮し、複屈折材料232がy軸方向に移動して、光路長が変化する。例えば、温度変化ΔTが正(温度上昇)であれば、伸縮部材240が膨張して、複屈折材料232が+y方向に移動するので、このことに因り、複屈折材料232の光軸上の厚みが小さくなり、光路長が短くなる。したがって、この光デバイスでは、温度変化に因り、上記(3)式の最右辺の第2項の値が変化するだけでなく、第1項の値も変化する。そして、上記(3)式の最右辺の第1項の値の変化が第2項の値の変化を相殺することにより、位相変化δ(ΔT)の絶対値が小さくなり、光デバイスは安定した透過特性を有することができる。
【0027】
(第3実施形態)
次に、本発明に係る光デバイスの第3実施形態について説明する。図4は、第3実施形態に係る光デバイスに含まれる複屈折材料の周辺を示す斜視図である。
図5は、第3実施形態に係る光デバイスに含まれる複屈折材料の周辺を示す断面図である。図5の断面図は、光軸を含む面で切断したときのものである。なお、これらの図において光はz軸方向に通過する。この図に示すように、本実施形態に係る光デバイスは、複屈折材料330(図7中の複屈折材料30に相当)、伸縮部材341,342および固定部材350を含んでいる。
【0028】
伸縮部材341,342それぞれは、線膨張係数が比較的大きい材料からなり、例えばアルミニウム等からなる。固定部材350は、伸縮部材341,342より小さい線膨張係数を有する材料からなり、例えばインバール等からなる。伸縮部材341および342は、z軸に対して垂直な方向に複屈折材料330を挟んでいる。固定部材350は、z軸方向に貫通する孔を有しており、その貫通孔の中に複屈折材料330および伸縮部材341,342が挿入されている。
【0029】
このような構成の複屈折材料330等を含む光デバイスでは、温度変化ΔTに因り、複屈折材料330が膨張・収縮し(上記(2a)式)、また、複屈折材料330の屈折率neおよびnoの値が変動する(上記(2b)式,(2c)式)。さらに、温度変化ΔTに因り、伸縮部材341,342それぞれが膨張・収縮し、複屈折材料330に対して加えられる応力が変化して、複屈折材料330の屈折率ne,noそれぞれの値が変化する。したがって、この光デバイスでは、温度変化に因り、上記(3)式の最右辺の第2項の値が変化するだけでなく、第1項の値も変化する。そして、上記(3)式の最右辺の第1項の値の変化が第2項の値の変化を相殺することにより、位相変化δ(ΔT)の絶対値が小さくなり、光デバイスは安定した透過特性を有することができる。
【0030】
(第4実施形態)
次に、本発明に係る光デバイスの第4実施形態について説明する。図6は、第4実施形態に係る光デバイスに含まれる複屈折材料の周辺を示す図である。なお、この図に示されたxyz直交座標系において光はz軸方向に通過する。この図に示すように、本実施形態に係る光デバイスは、2つの複屈折材料431,432(図7中の複屈折材料30に相当)を含んでいる。
【0031】
第1の複屈折材料431および第2の複屈折材料432それぞれは、互いに異なる材料からなり、光軸上に順に配置されている。複屈折材料431,432それぞれのC軸は、xy平面に平行であって、x軸に対して45度だけ傾斜しており、また、互いに直交している。これらは、例えば、方解石(CaCO3)、ルチル(TiO2)、YVO4、LiNbO3等からなる。
【0032】
このような構成の複屈折材料431,432を含む光デバイスでは、温度変化ΔTに因り、複屈折材料431,432それぞれは、膨張・収縮し(上記(2a)式)、また、屈折率neおよびnoの値が変動して、(上記(2b)式,(2c)式)、位相変化δ(ΔT)が変動する(上記(3)式)。しかし、本実施形態では、温度変化ΔTに因る第1の複屈折材料431の位相変化δ1(ΔT)と、温度変化ΔTに因る第2の複屈折材料432の位相変化δ2(ΔT)とが、互いに相殺するように構成されている。したがって、全体の位相変化(δ1(ΔT)+δ2(ΔT))の絶対値が小さくなり、光デバイスは安定した透過特性を有することができる。
【0033】
次に、第4実施形態の光デバイスの具体的な実施例について説明する。この実施例では、第1の複屈折材料431として方解石を用い、第2の複屈折材料432としてルチルを用いる。方解石は、noi=1.63457、nei=1.47744、ko=2.10×10-6、ke=1.18×10-5、kL=5.54×10-6 である。一方、ルチルは、noi=2.45318、nei=2.70930、ko=−5.95×10-5、ke=−8.38×10-5、kL=7.14×10-6 である。これらの値に基づいて、上記(3)式の最右辺の第2項の中に現れる因子[(ke−ko)+kL・(nei−noi)]の値を求めると、方解石の場合には+8.829×10-6であり、ルチルの場合には−2.247×10-5であって、両者の符号が異なる。
【0034】
方解石の光軸方向の厚みをL1とし、ルチルの光軸方向の厚みをL2とすると、
【数4】
Figure 0004569017
なる関係式が成り立てば、全体の位相変化が0となり、光デバイスは安定した透過特性を有することができる。この(4)式より、方解石の厚みL1とルチルの厚みL2との比は、
【数5】
Figure 0004569017
なる式で表される。すなわち、ルチルの厚みL2を方解石の厚みL1の0.3929倍に設定すれば、全体の位相変化が0となり、光デバイスは安定した透過特性を有することができる。このとき、常光線および異常光線それぞれの光路長の差は、上記の各パラメータの値を用いると、0.05650・L1 である。また、FSR=100GHzとすると、方解石の厚みL1は53.1mmとなり、ルチルの厚みL2は20.9mmとなる。
【0035】
【発明の効果】
以上、詳細に説明したとおり、本発明に係る光デバイスは、複屈折材料の温度変化に応じて複屈折材料の光路長を調整することで、その温度変化に因る透過特性の変化を補償する光路長調整手段を備えている。したがって、この光デバイスでは、温度変化に因り、複屈折材料の膨張・収縮や屈折率変化が生じる一方で、複屈折材料の光路長が調整される。この光路長の調整により補償されることで、温度変化に因る透過特性の変化は小さくなる。
【0036】
また、他の本発明に係る光デバイスは、複屈折材料の温度変化に応じて複屈折材料の応力を調整することで、その温度変化に因る透過特性の変化を補償する応力調整手段を備えている。したがって、この光デバイスでは、温度変化に因り、複屈折材料の膨張・収縮や屈折率変化が生じる一方で、複屈折材料の応力が調整される。この応力の調整により補償されることで、温度変化に因る透過特性の変化は小さくなる。
【0037】
さらに他の本発明に係る光デバイスは、第1の複屈折材料および第2の複屈折材料を含み、これらの複屈折材料の透過特性を利用する光デバイスであって、温度変化に因る第1の複屈折材料の透過特性の変化と、その温度変化に因る第2の複屈折材料の透過特性の変化とが、互いに相殺するものである。したがって、この光デバイスでは、第1および第2の複屈折材料それぞれの透過特性の変化が互いに相殺するので、温度変化に因る全体の透過特性の変化は小さくなる。
【図面の簡単な説明】
【図1】第1実施形態に係る光デバイスに含まれる複屈折材料の周辺を示す図である。
【図2】第1実施形態に係る光デバイスにおける複屈折材料131の光出射面131bの傾斜角度θと伸縮部材141,142それぞれの長さとの関係を示すグラフである。
【図3】第2実施形態に係る光デバイスに含まれる複屈折材料の周辺を示す図である。
【図4】第3実施形態に係る光デバイスに含まれる複屈折材料の周辺を示す斜視図である。
【図5】第3実施形態に係る光デバイスに含まれる複屈折材料の周辺を示す断面図である。
【図6】第6実施形態に係る光デバイスに含まれる複屈折材料の周辺を示す断面図である。
【図7】複屈折材料の透過特性を利用する光デバイス1の構成図である。
【図8】光デバイス1の透過特性を示す図である。
【符号の説明】
1…光デバイス、11,12…偏光ビームスプリッタ、21,22…ミラー、30…複屈折材料、131〜133…複屈折材料、141,142…伸縮部材、151,152…固定部材、231〜233…複屈折材料、240…伸縮部材、250…固定部材、330…複屈折材料、341,342…伸縮部材、350…固定部材、431…第1の複屈折材料、432…第2の複屈折材料。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical device that utilizes the transmission characteristics of a birefringent material.
[0002]
[Prior art]
An example of an optical device that utilizes the transmission characteristics of a birefringent material is the one shown in FIG. The optical device 1 shown in this figure includes polarization beam splitters 11 and 12, mirrors 21 and 22, and a birefringent material 30. In the xyz orthogonal coordinate system shown in this figure, light passes through the birefringent material 30 in the z-axis direction. The C axis of the birefringent material 30 is parallel to the xy plane and is inclined by 45 degrees with respect to the x axis.
[0003]
The light input from the input port 1a is separated into polarization components in the first azimuth (x-axis direction) and the second azimuth (y-axis direction) by the polarization beam splitter 11, and the polarization component in the first azimuth is the first. Output to the path P 1, and the polarization component in the second direction is output to the second path P 2 . The first path P 1 is a path from the polarizing beam splitter 11 to the polarizing beam splitter 12 via the mirror 22. On the other hand, the second path P 2 is a path from the polarization beam splitter 11 to the polarization beam splitter 12 via the mirror 21.
[0004]
The light having the first azimuth polarization component output from the polarization beam splitter 11 to the first path P 1 is converted into the second azimuth polarization component at a rate corresponding to the wavelength λ by passing through the birefringent material 30. The light is reflected by the mirror 22 and enters the polarization beam splitter 12. On the other hand, the light of the polarization component of the second azimuth output from the polarization beam splitter 11 to the second path P 2 is reflected by the mirror 21 and then passes through the birefringent material 30, so that the ratio of the light depends on the wavelength λ. It is converted into a polarized light component in the first direction and enters the polarizing beam splitter 12.
[0005]
Then, the polarization beam splitter 12 synthesizes the polarization of the polarization component in the first azimuth that has arrived from the first path P 1 and the polarization component in the second azimuth that has arrived from the second path P 2 , and the synthesized light. Is output from the first output port 1b. Further, the polarization beam splitter 12 performs polarization synthesis of the polarization component in the second direction that has arrived from the first path P 1 and the polarization component in the first direction that has arrived from the second path P 2 , and the synthesized light. Is output from the second output port 1c.
[0006]
FIG. 8 is a diagram showing the transmission characteristics of the optical device 1. As shown in this figure, the wavelength dependency T 1 (λ) of light transmittance from the input port 1a to the first output port 1b of the optical device 1 (shown by a solid line in the figure) is periodic. . Similarly, the wavelength dependence T 2 (λ) of the light transmittance from the input port 1a to the second output port 1c of the optical device 1 (shown by a broken line in the figure) is also periodic. Further, the wavelength at which the transmittance T 1 (λ) is maximized and the wavelength at which the transmittance T 2 (λ) is maximized alternately exist. That is, the optical device 1 operates as an interleaver that demultiplexes multi-wavelength signal light. Note that the frequency interval between two adjacent wavelengths among the wavelengths where the transmittance T 1 (λ) (or the transmittance T 2 (λ)) is maximized is called FSR (Free Spectral Range).
[0007]
[Problems to be solved by the invention]
The transmission characteristic T (λ) (T 1 (λ) or T 2 (λ)) of the optical device 1 including the birefringent material 30 as described above is
[Expression 1]
Figure 0004569017
It is expressed by the formula Here, L is the z-axis direction of the thickness of the birefringent material 30, n e is the refractive index for extraordinary ray of the birefringence material 30, n o is the refractive index for ordinary ray of the birefringent material 30. j is an imaginary number.
[0008]
These parameters L, respectively n e and n o is dependent on the temperature.
Each parameter when the temperature changes by ΔT with respect to the reference temperature is
[Expression 2]
Figure 0004569017
It is expressed by the formula Here, L i is the thickness of the birefringent material 30 in the z-axis direction at the reference temperature, and k L is the linear expansion coefficient of the birefringent material 30. n ei is the refractive index of the birefringent material 30 for extraordinary rays at the reference temperature, and k e is the temperature coefficient of the refractive index of the birefringent material 30 for extraordinary rays. N oi is the refractive index of the birefringent material 30 with respect to ordinary light at the reference temperature, and k o is the temperature coefficient of the refractive index of the birefringent material 30 with respect to ordinary light.
[0009]
Therefore, when varying the temperature of the birefringent material 30, since each index n e and n o and the thickness L of the birefringent material 30 is varied, the transmission characteristic T (lambda) also varies. If this optical device 1 is used as an interleaver, multi-wavelength signal light is not correctly demultiplexed due to temperature fluctuations, and signal light cannot be received in an optical communication system including this optical device 1. May occur.
[0010]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical device having stable transmission characteristics even when temperature fluctuation occurs.
[0011]
[Means for Solving the Problems]
An optical device according to the present invention is an optical device that includes a birefringent material and uses the transmission characteristics of the birefringent material, the birefringent material changing the transmission characteristics due to a temperature change, and the temperature change of the birefringent material By adjusting the optical path length of the birefringent material in accordance with the optical path length adjusting means for compensating for the change in the transmission characteristics of the birefringent material , the birefringent material has an optical axis along a predetermined direction orthogonal to the optical axis. includes a wedge-shaped member in which the direction of thickness is changing the optical path length adjusting means, the birefringent material is provided as a separate member, the birefringent material in a predetermined direction by expansion and contraction in response to temperature change An elastic member for moving the wedge-shaped member is included . In this optical device, expansion and contraction of the birefringent material and a change in refractive index occur due to temperature change, while the optical path length of the birefringent material is adjusted. Compensation by adjustment of the optical path length reduces the change in transmission characteristics due to temperature change.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0015]
First, basic matters of the present invention will be described. The phase change δ (ΔT) when the temperature changes by ΔT with respect to the reference temperature is obtained by substituting the above equations (2a) to (2c) into the above equation (1b),
[Equation 3]
Figure 0004569017
It is expressed by the formula The first term on the rightmost side of the equation (3) is constant without depending on the temperature change ΔT, whereas the second term represents the contribution of the temperature change ΔT. However, if the change in the value of the second term can be offset by adjusting the value of the first term in accordance with the temperature change ΔT, the optical device can have stable transmission characteristics even if the temperature fluctuates. . Alternatively, if the first birefringent material and the second birefringent material can be combined so that changes in the transmission characteristics of the first and second birefringent materials due to temperature changes cancel each other. Even if the temperature fluctuates, the optical device can have stable transmission characteristics. Hereinafter, the periphery of the birefringent material included in the optical device will be described. The optical device has, for example, the configuration shown in FIG.
[0016]
(First embodiment)
Next, a first embodiment of the optical device according to the present invention will be described. FIG. 1 is a view showing the periphery of a birefringent material included in the optical device according to the first embodiment. In the xyz orthogonal coordinate system shown in this figure, light passes in the z-axis direction. As shown in this figure, the optical device according to this embodiment includes three birefringent materials 131 to 133 (corresponding to the birefringent material 30 in FIG. 7), elastic members 141 and 142, and fixing members 151 and 152. It is out.
[0017]
Each of the birefringent materials 131 to 133 is sequentially arranged on the optical axis. The C-axis of each of the birefringent materials 131 to 133 is parallel to the xy plane and is inclined by 45 degrees with respect to the x-axis. These include, for example, calcite (CaCO 3 ), rutile (TiO 2 ), YVO 4 , LiNbO 3 and the like.
[0018]
The light incident surface 131a of the birefringent material 131, the light emitting surface 132b of the birefringent material 132, and the light incident surface 133a and the light emitting surface 133b of the birefringent material 133 are parallel to the xy plane. However, the light exit surface 131b of the birefringent material 131 and the light incident surface 132a of the birefringent material 132 are parallel to each other and parallel to the x-axis direction, but not parallel to the xy plane. . That is, the birefringent material 131 is a wedge-shaped member in which the thickness in the z-axis direction is smaller as the y coordinate value is larger, and the thickness in the z-axis direction is changing along the y-axis direction. On the other hand, the birefringent material 132 is a wedge-shaped member in which the thickness in the z-axis direction increases as the y-coordinate value increases, and the thickness in the z-axis direction varies along the y-axis direction.
[0019]
Each of the elastic members 141 and 142 is made of a material having a relatively large linear expansion coefficient, for example, aluminum (linear expansion coefficient 2.31 × 10 −5 / ° C.) or the like. Each of the fixing members 151 and 152 is made of a material having a smaller linear expansion coefficient than the elastic members 141 and 142, and is made of, for example, invar (linear expansion coefficient 1.20 × 10 −6 / ° C.). The fixing members 151 and 152 are arranged to face each other across the optical axis, and the y coordinate value of the arrangement position of the fixing member 151 is larger than the y coordinate value of the arrangement position of the fixing member 152. Each of the fixing members 151 and 152 directly sandwiches the birefringent material 133. The elastic member 141 is provided between the fixing member 151 and the birefringent material 131 in the y-axis direction, and is fixed to the fixing member 151 and the birefringent material 131, respectively. The elastic member 142 is provided between the fixed member 152 and the birefringent material 132 in the y-axis direction, and is fixed to the fixed member 152 and the birefringent material 132, respectively.
[0020]
In the optical device including the birefringent materials 131 to 133 having such a configuration, each of the birefringent materials 131 to 133 expands and contracts due to the temperature change ΔT (the above formula (2a)). to 133 values of the respective refractive indices n e and n o varies (above (2b) formula, (2c) expression). Furthermore, due to the temperature change ΔT, the elastic members 141 and 142 expand and contract, the birefringent materials 131 and 132 move in the y-axis direction, and the optical path length changes. For example, if the temperature change ΔT is positive (temperature rise), each of the elastic members 141 and 142 expands, the birefringent material 131 moves in the −y direction, and the birefringent material 132 moves in the + y direction. Due to this, the thickness on the optical axis of each of the birefringent materials 131 and 132 is reduced, and the optical path length is shortened. Therefore, in this optical device, not only the value of the second term on the rightmost side of the above equation (3) changes but also the value of the first term changes due to the temperature change. Then, the change in the value of the first term on the rightmost side of the above equation (3) cancels the change in the value of the second term, so that the absolute value of the phase change δ (ΔT) is reduced and the optical device is stabilized. It can have transmission characteristics.
[0021]
FIG. 2 is a graph showing the relationship between the inclination angle θ of the light exit surface 131b of the birefringent material 131 and the lengths of the elastic members 141 and 142 in the optical device according to the first embodiment. The inclination angle θ of the light exit surface 131b of the birefringent material 131 is an angle with respect to the xy plane, and is equal to the inclination angle of the light incident surface 132a of the birefringent material 132. The materials of the elastic members 141 and 142 are aluminum, and the lengths (lengths in the y-axis direction) of the elastic members 141 and 142 are equal to each other. The material of each of the fixing members 151 and 152 is invar. This figure shows that when the materials of the birefringent materials 131 to 133 are TiO 2 and YVO 4 , the inclination angle θ when the phase change δ (ΔT) is 0 and the lengths of the elastic members 141 and 142, respectively. Showing the relationship. As can be seen from this figure, the absolute value of the phase change δ (ΔT) can be reduced by appropriately setting the length of each of the elastic members 141 and 142 in accordance with the value of the inclination angle θ, and stable. An optical device having transmission characteristics can be realized.
[0022]
(Second Embodiment)
Next, a second embodiment of the optical device according to the present invention will be described. FIG. 3 is a view showing the periphery of a birefringent material included in the optical device according to the second embodiment. In the xyz orthogonal coordinate system shown in this figure, light passes in the z-axis direction. As shown in this figure, the optical device according to the present embodiment includes three birefringent materials 231 to 233 (corresponding to the birefringent material 30 in FIG. 7), an elastic member 240 and a fixing member 250.
[0023]
Each of the birefringent materials 231 to 233 is sequentially arranged on the optical axis. The C axis of each of the birefringent materials 231 to 233 is parallel to the xy plane and is inclined by 45 degrees with respect to the x axis. These include, for example, calcite (CaCO 3 ), rutile (TiO 2 ), YVO 4 , LiNbO 3 and the like.
[0024]
Each of the light incident surface 231a of the birefringent material 231 and the light emitting surface 233b of the birefringent material 233 is parallel to the xy plane. However, the light exit surface 231b of the birefringent material 231 and the light incident surface 232a of the birefringent material 232 are parallel to each other and parallel to the x-axis direction, but not parallel to the xy plane. .
The light exit surface 232b of the birefringent material 232 and the light incident surface 233a of the birefringent material 233 are parallel to each other and parallel to the x-axis direction, but not parallel to the xy plane. That is, each of the birefringent materials 231 and 233 is a wedge-shaped member in which the thickness in the z-axis direction is reduced as the y-coordinate value is increased, and the thickness in the z-axis direction is changed along the y-axis direction. Yes. On the other hand, the birefringent material 232 is a wedge-shaped member in which the thickness in the z-axis direction increases as the y-coordinate value increases, and the thickness in the z-axis direction varies along the y-axis direction.
[0025]
The expansion / contraction member 240 is made of a material having a relatively large linear expansion coefficient, for example, aluminum. The fixing member 250 is made of a material having a smaller linear expansion coefficient than the elastic member 240, and is made of, for example, Invar. Each of the birefringent materials 231 and 233 is directly fixed to the fixing member 250. The elastic member 240 is provided between the fixing member 250 and the birefringent material 232 in the y-axis direction, and is fixed to the fixing member 250 and the birefringent material 232, respectively.
[0026]
In an optical device including the birefringent materials 231 to 233 having such a configuration, each of the birefringent materials 231 to 233 expands and contracts due to the temperature change ΔT (the above formula (2a)). ~233 value of respective refractive index n e and n o varies (above (2b) formula, (2c) expression). Furthermore, due to the temperature change ΔT, the elastic member 240 expands and contracts, the birefringent material 232 moves in the y-axis direction, and the optical path length changes. For example, if the temperature change ΔT is positive (temperature rise), the elastic member 240 expands and the birefringent material 232 moves in the + y direction, which causes the thickness of the birefringent material 232 on the optical axis. Becomes smaller and the optical path length becomes shorter. Therefore, in this optical device, not only the value of the second term on the rightmost side of the above equation (3) changes but also the value of the first term changes due to the temperature change. Then, the change in the value of the first term on the rightmost side of the above equation (3) cancels the change in the value of the second term, so that the absolute value of the phase change δ (ΔT) is reduced and the optical device is stabilized. It can have transmission characteristics.
[0027]
(Third embodiment)
Next, a third embodiment of the optical device according to the present invention will be described. FIG. 4 is a perspective view showing the periphery of the birefringent material included in the optical device according to the third embodiment.
FIG. 5 is a cross-sectional view showing the periphery of the birefringent material included in the optical device according to the third embodiment. The cross-sectional view of FIG. 5 is taken along a plane including the optical axis. In these figures, light passes in the z-axis direction. As shown in this figure, the optical device according to this embodiment includes a birefringent material 330 (corresponding to the birefringent material 30 in FIG. 7), elastic members 341 and 342, and a fixing member 350.
[0028]
Each of the elastic members 341 and 342 is made of a material having a relatively large linear expansion coefficient, for example, aluminum. The fixing member 350 is made of a material having a smaller linear expansion coefficient than the elastic members 341 and 342, and is made of, for example, Invar. The elastic members 341 and 342 sandwich the birefringent material 330 in a direction perpendicular to the z-axis. The fixing member 350 has a hole penetrating in the z-axis direction, and the birefringent material 330 and the elastic members 341 and 342 are inserted into the through hole.
[0029]
In this configuration an optical device comprising a birefringent material 330 or the like, due to the temperature change [Delta] T, the birefringent material 330 expands or contracts (the expression (2a)), The refractive index n e of the birefringent material 330 And the value of n o fluctuates (the above formulas (2b) and (2c)). Furthermore, due to the temperature change [Delta] T, and elastic members 341 and 342 respectively expands and contracts, and change the stresses exerted on the birefringent material 330, the refractive index n e, n o each value of the birefringent material 330 Changes. Therefore, in this optical device, due to the temperature change, not only the value of the second term on the rightmost side of the above equation (3) changes but also the value of the first term changes. Then, the change in the value of the first term on the rightmost side of the above equation (3) cancels the change in the value of the second term, so that the absolute value of the phase change δ (ΔT) is reduced and the optical device is stabilized. It can have transmission characteristics.
[0030]
(Fourth embodiment)
Next, a fourth embodiment of the optical device according to the invention will be described. FIG. 6 is a view showing the periphery of the birefringent material included in the optical device according to the fourth embodiment. In the xyz orthogonal coordinate system shown in this figure, light passes in the z-axis direction. As shown in this figure, the optical device according to this embodiment includes two birefringent materials 431 and 432 (corresponding to the birefringent material 30 in FIG. 7).
[0031]
Each of the first birefringent material 431 and the second birefringent material 432 is made of a material different from each other, and is sequentially arranged on the optical axis. The C-axis of each of the birefringent materials 431 and 432 is parallel to the xy plane, is inclined by 45 degrees with respect to the x-axis, and is orthogonal to each other. These include, for example, calcite (CaCO 3 ), rutile (TiO 2 ), YVO 4 , LiNbO 3 and the like.
[0032]
In the optical device including the birefringent material 431 and 432 having such a configuration, each of the birefringent materials 431 and 432 expands and contracts due to the temperature change ΔT (the above formula (2a)), and the refractive index ne. and the value of n o varies, (the (2b) formula, (2c) expression), a phase change [delta] ([Delta] T) is varied (equation (3) above). However, in the present embodiment, the phase change δ 1 (ΔT) of the first birefringent material 431 due to the temperature change ΔT and the phase change δ 2 (ΔT of the second birefringent material 432 due to the temperature change ΔT. ) Are configured to cancel each other. Therefore, the absolute value of the overall phase change (δ 1 (ΔT) + δ 2 (ΔT)) is reduced, and the optical device can have stable transmission characteristics.
[0033]
Next, specific examples of the optical device according to the fourth embodiment will be described. In this embodiment, calcite is used as the first birefringent material 431 and rutile is used as the second birefringent material 432. The calcite is n oi = 1.63457, n ei = 1.47744, k o = 2.10 × 10 -6 , k e = 1.18 × 10 -5 , k L = 5.54 × 10 -6 is there. On the other hand, rutile has n oi = 2.445318, n ei = 2.70930, k o = −5.95 × 10 −5 , k e = −8.38 × 10 −5 , k L = 7.14 ×. 10 −6 . Based on these values, the determined value of the (3) factors appearing in the second term of the rightmost side of equation [(k e -k o) + k L · (n ei -n oi)], calcite In this case, it is + 8.829 × 10 −6 , and in the case of rutile, it is −2.247 × 10 −5 .
[0034]
When the thickness of the calcite in the optical axis direction is L 1 and the thickness of the rutile in the optical axis direction is L 2 ,
[Expression 4]
Figure 0004569017
If the following relational expression holds, the entire phase change becomes 0, and the optical device can have stable transmission characteristics. From this equation (4), the ratio of the calcite thickness L 1 to the rutile thickness L 2 is
[Equation 5]
Figure 0004569017
It is expressed by the formula That is, if the rutile thickness L 2 is set to 0.3929 times the calcite thickness L 1 , the overall phase change becomes 0, and the optical device can have stable transmission characteristics. At this time, the difference in optical path length between the ordinary ray and the extraordinary ray is 0.05650 · L 1 when the values of the above parameters are used. When FSR = 100 GHz, the calcite thickness L 1 is 53.1 mm, and the rutile thickness L 2 is 20.9 mm.
[0035]
【The invention's effect】
As described above in detail, the optical device according to the present invention compensates for the change in the transmission characteristics due to the temperature change by adjusting the optical path length of the birefringent material according to the temperature change of the birefringent material. Optical path length adjusting means is provided. Therefore, in this optical device, the optical path length of the birefringent material is adjusted while the expansion / contraction of the birefringent material and the refractive index change occur due to the temperature change. Compensation by adjustment of the optical path length reduces the change in transmission characteristics due to temperature change.
[0036]
In addition, another optical device according to the present invention includes a stress adjusting unit that adjusts the stress of the birefringent material according to the temperature change of the birefringent material, thereby compensating for the change in transmission characteristics due to the temperature change. ing. Therefore, in this optical device, the stress of the birefringent material is adjusted while expansion and contraction of the birefringent material and a change in refractive index occur due to the temperature change. By compensating for this stress adjustment, the change in the transmission characteristics due to the temperature change is reduced.
[0037]
Still another optical device according to the present invention is an optical device that includes a first birefringent material and a second birefringent material, and that utilizes the transmission characteristics of these birefringent materials, and is based on a temperature change. The change in the transmission characteristics of the first birefringent material and the change in the transmission characteristics of the second birefringent material due to the temperature change cancel each other. Therefore, in this optical device, the changes in the transmission characteristics of the first and second birefringent materials cancel each other, so that the change in the overall transmission characteristics due to the temperature change becomes small.
[Brief description of the drawings]
FIG. 1 is a view showing the periphery of a birefringent material included in an optical device according to a first embodiment.
FIG. 2 is a graph showing the relationship between the inclination angle θ of the light exit surface 131b of the birefringent material 131 and the lengths of the elastic members 141 and 142 in the optical device according to the first embodiment.
FIG. 3 is a view showing the periphery of a birefringent material included in an optical device according to a second embodiment.
FIG. 4 is a perspective view showing the periphery of a birefringent material included in an optical device according to a third embodiment.
FIG. 5 is a cross-sectional view showing the periphery of a birefringent material included in an optical device according to a third embodiment.
FIG. 6 is a cross-sectional view showing the periphery of a birefringent material included in an optical device according to a sixth embodiment.
FIG. 7 is a configuration diagram of an optical device 1 that utilizes the transmission characteristics of a birefringent material.
FIG. 8 is a diagram showing the transmission characteristics of the optical device 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Optical device, 11, 12 ... Polarizing beam splitter, 21, 22 ... Mirror, 30 ... Birefringent material, 131-133 ... Birefringent material, 141, 142 ... Elastic member, 151, 152 ... Fixed member, 231-233 ... birefringent material, 240 ... elastic member, 250 ... fixed member, 330 ... birefringent material, 341, 342 ... elastic member, 350 ... fixed member, 431 ... first birefringent material, 432 ... second birefringent material .

Claims (1)

複屈折材料を含み、この複屈折材料の透過特性を利用する光デバイスであって、
温度変化に因り前記透過特性が変化する前記複屈折材料と、
前記複屈折材料の温度変化に応じて前記複屈折材料の光路長を調整することで、前記複屈折材料の前記透過特性の変化を補償する光路長調整手段を備え、
前記複屈折材料は、光軸に直交する所定方向に沿って光軸方向の厚みが変化している楔型部材を含み、
前記光路長調整手段は前記複屈折材料とは別体の部材として設けられ、温度変化に応じて膨張・収縮することで前記所定方向に前記複屈折材料の前記楔型部材を移動させる伸縮部材を含む、
ことを特徴とする光デバイス。
An optical device comprising a birefringent material and utilizing the transmission characteristics of the birefringent material,
Said birefringent material the transmission characteristics due to the temperature change varies,
By adjusting the optical path length of the birefringent material according to the temperature change of the birefringent material, the optical path length adjusting means for compensating for the change in the transmission characteristics of the birefringent material,
The birefringent material includes a wedge-shaped member whose thickness in the optical axis direction changes along a predetermined direction orthogonal to the optical axis,
The optical path length adjusting means, wherein the birefringent material is provided as a separate member, elastic member for moving the wedge member of the birefringent material in the predetermined direction by expansion and contraction in response to temperature change including,
An optical device characterized by that.
JP2001065137A 2001-03-08 2001-03-08 Optical device Expired - Fee Related JP4569017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001065137A JP4569017B2 (en) 2001-03-08 2001-03-08 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001065137A JP4569017B2 (en) 2001-03-08 2001-03-08 Optical device

Publications (2)

Publication Number Publication Date
JP2002267950A JP2002267950A (en) 2002-09-18
JP4569017B2 true JP4569017B2 (en) 2010-10-27

Family

ID=18923844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001065137A Expired - Fee Related JP4569017B2 (en) 2001-03-08 2001-03-08 Optical device

Country Status (1)

Country Link
JP (1) JP4569017B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561443B2 (en) * 2005-03-31 2010-10-13 富士通株式会社 Optical receiver compatible with M-phase differential phase shift keying
CN106154699B (en) * 2015-05-16 2020-12-11 深圳唯创技术发展有限公司 Refractive index-adjustable laser beam deflection device and laser projector manufactured by same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105116A (en) * 1985-10-28 1987-05-15 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレイテツド Double refraction optical multiplexer having flattened band
JPS63182574A (en) * 1987-01-23 1988-07-27 Mitsubishi Electric Corp Optical voltage and electric field sensor
JPH02228625A (en) * 1989-03-01 1990-09-11 Toshiba Corp Semiconductor laser device
JPH08160324A (en) * 1994-12-02 1996-06-21 Fujitsu Ltd Polarization state varying device and instrument for measuring dependency on polarization using the same
JP2000310718A (en) * 1999-02-26 2000-11-07 Asahi Glass Co Ltd Phase shift element and optical element
JP2001244557A (en) * 2000-02-29 2001-09-07 Mitsubishi Electric Corp Wavelength monitoring device, adjusting method of it and wavelength stabilizing light source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105116A (en) * 1985-10-28 1987-05-15 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレイテツド Double refraction optical multiplexer having flattened band
JPS63182574A (en) * 1987-01-23 1988-07-27 Mitsubishi Electric Corp Optical voltage and electric field sensor
JPH02228625A (en) * 1989-03-01 1990-09-11 Toshiba Corp Semiconductor laser device
JPH08160324A (en) * 1994-12-02 1996-06-21 Fujitsu Ltd Polarization state varying device and instrument for measuring dependency on polarization using the same
JP2000310718A (en) * 1999-02-26 2000-11-07 Asahi Glass Co Ltd Phase shift element and optical element
JP2001244557A (en) * 2000-02-29 2001-09-07 Mitsubishi Electric Corp Wavelength monitoring device, adjusting method of it and wavelength stabilizing light source

Also Published As

Publication number Publication date
JP2002267950A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
US20040001258A1 (en) Solid state etalons with low thermally-induced optical path length change
JPH0194312A (en) Variable interference device
US20030012250A1 (en) Tunable filter for laser wavelength selection
WO2012039921A2 (en) Tunable optical filters using cascaded etalons
US7173763B2 (en) Optical interleaver and filter cell design with enhanced clear aperture
US8503058B2 (en) Etalon with temperature-compensation and fine-tuning adjustment
US6804063B2 (en) Optical interference filter having parallel phase control elements
JP4369256B2 (en) Spectroscopic optical element
US6600604B2 (en) Athermal thin film filter
WO2016082226A1 (en) Phase retarder and optical comb filter thereof
JP4124942B2 (en) Wavelength monitoring device, adjustment method thereof, and wavelength stabilized light source
JP2003507892A (en) In-fiber frequency locker
US20020154314A1 (en) Athermal interferometer
JP4569017B2 (en) Optical device
US6684002B2 (en) Method and apparatus for an optical filter
US20040075845A1 (en) Fabry-perot device compensating for an error of full width at half maximum and method of making the same
US20110317170A1 (en) Wedge pair for phase shifting
US6606182B2 (en) Tuning and temperature compensation of the air-gap etalon for dense wavelength-division multiplexing application
US8498538B2 (en) Compact monolithic dispersion compensator
US7268944B2 (en) Optical interleaver, filter cell, and component design with reduced chromatic dispersion
WO2002091534A1 (en) Wavelength monitoring apparatus
JP2004198601A (en) Optical dispersion filter and optical module
US6687055B2 (en) Method of temperature compensation for interleaver
Shirasaki Temperature insensitive design of Fabry-Perot etalon
US6864987B2 (en) Interferometer having improved modulation depth and free-spectral range and method of manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees