JP4568445B2 - Dry etching - Google Patents

Dry etching Download PDF

Info

Publication number
JP4568445B2
JP4568445B2 JP2001090852A JP2001090852A JP4568445B2 JP 4568445 B2 JP4568445 B2 JP 4568445B2 JP 2001090852 A JP2001090852 A JP 2001090852A JP 2001090852 A JP2001090852 A JP 2001090852A JP 4568445 B2 JP4568445 B2 JP 4568445B2
Authority
JP
Japan
Prior art keywords
substrate
bias voltage
etching
etching method
plasma etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001090852A
Other languages
Japanese (ja)
Other versions
JP2002284545A (en
Inventor
孝之 深澤
靖浩 堀池
俊雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001090852A priority Critical patent/JP4568445B2/en
Publication of JP2002284545A publication Critical patent/JP2002284545A/en
Application granted granted Critical
Publication of JP4568445B2 publication Critical patent/JP4568445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光導波路やバイオMEMS等に使用されるガラス基板の微細加工に用いられ得るドライエッチング法に関するものである。
【0002】
【従来の技術】
近年、半導体微細加工技術を光導波路やバイオMEMS(Micro Electro Mechanical System)等の製作への応用が注目されている。
光導波路は、通常、石英系ガラス基板に深さ5μm〜50μm、幅5μm〜15μm程度に形成され、光ファイバ通信の構成要素として例えば光合成・分波器に応用されている。
バイオMEMSは、石英系ガラス基板に深さ10μm〜20μm、幅数μm〜10μm程度のマイクロキャピラリーを形成し、患者の微量血液からその患者の健康状態を評価するのに用いられる測定・分析機器の構成要素として応用されている。
【0003】
【発明が解決しようとする課題】
ところで、半導体プロセスでは、エッチングする深さは深くても1μm程度であるが、光導波路やバイオMEMSでは、深さ20μm以上のエッチングが行われる。1μm程度の深さのエッチングでは観察されなかった異常穴形状がガラス基板の表面に生じることがわかった。
【0004】
添付図面の図1には、石英基板1にCrマスク2を被せて深さ2〜3μmエッチングした場合と深さ10〜20μmエッチングした場合とを模式図で示す。この図からわかるように深くエッチングすると表面に穴3が形成される。実際には、2〜5μmの深さまでのエッチングではさほど困難ではないが、それ以上の深さになると凹凸がでてくる。
【0005】
このような基板の被エッチング部位の表面における異常形状の穴は、光導波路では壁面の平滑性が阻害され、光の散乱を生じさせることになり、一方、バイオMEMSでは、例えば試料液中のリンパ球を電気泳動で分離する際に流路に乱れを生じさせことになり、いずれも問題となっている。
【0006】
このような異常形状の穴の形成について考察すると、図2に示すように、石英基板1上にμm台のマスク2をもうけて深堀エッチングをする場合に、エッチングの初期段階は図2のA、B、Cに示すように進み、次第にμm台のマスク2は後退して行き、すなわちマスクパターンの肩部デーパーをもつファセットが生じる。そしてエッチング中にパターン側面で反射されたイオンや電子による負電荷が溜まることなどにより図2のDで示すようにパターン周辺に溝(トレンチ)4が形成される。そして図2のEに示すようにファセット角度を保ちながらエッチングは横方向に進み、逆マイクロローディングによる切れ込み5が発生し、そしてついには図2のFに示すように穴6が形成されることがわかった。
【0007】
本発明者等はこのような穴の形成されるメカニズムを解明するため磁気中性線放電(NLD)プラズマを利用したエッチング法を用いて石英基板のエッチングプロセスにおける種々のファクタに関して実験研究を重ねてきた。
【0008】
図3には、磁気中性線放電(NLD)プラズマを利用したエッチング装置を使用し、磁気中性線放電出力を800Wとし、ガスはC/CFを使用し、基板電極に印加するバイアス電圧(Vdc)を−500Vとし、ガスの流量をC/CF=30/90sccmとして、エッチングチャンバー内の圧力を1.5mTorr、2.0mTorr、3.0mTorrと変えた場合の穴の形成の圧力依存性について示す。この図から圧力を変えても穴の形成には直接関係ないことが分かる。
【0009】
図4には、磁気中性線放電(NLD)プラズマを利用したエッチング装置を使用し、磁気中性線放電出力を800Wとし、ガスはC/CFを使用し、基板電極に印加するバイアス電圧(Vdc)を−310Vとし、ガスの流量をC/CF=30/90sccmとし、エッチングチャンバー内の圧力を3.0mTorrとして、エッチング深さを変えた場合の穴の形成状態を示す。エッチング深さが8.4μmから9.1μmと深くなると、穴径が拡大していることが認められる。穴の生成とエッチング深さとの関係の測定結果を図5のグラフに示す。
【0010】
図6には、磁気中性線放電(NLD)プラズマを利用したエッチング装置を使用し、磁気中性線放電出力を800Wとし、ガスはC/CFを使用し、基板電極に印加するバイアス電圧(Vdc)を−500Vとし、ガスの流量をC/CF=30/90sccmとし、エッチングを30分連続して行った場合と3分エッチングしたら30秒休止を繰り返して総時間30分間欠エッチングした場合の穴の生成状態を示す。
【0011】
図7には、磁気中性線放電(NLD)プラズマを利用したエッチング装置を使用し、磁気中性線放電出力を800Wとし、ガスはC/CFを使用し、ガスの流量をC/CF=30/90sccmとし、エッチングチャンバー内の圧力を3.0mTorrとして、基板電極に印加するバイアス電圧(Vdc)を変えた場合の穴の形成状態を示す。バイアス電圧(Vdc)が−310Vの場合に比べて−500V、−940Vと高くなるにつれて穴の生成が少なくなっていることが分かる。
【0012】
図8には、ガスの総流量を一定にし、CFの濃度を0%から100%まで変化させて穴の発生個数を測定した結果を平均値で示している。また、図9にはエッチング形状のCFガス濃度依存性を示す。
【0013】
図10及び図11には、石英基板に対するエッチング時間を変えて種々の段差をもつ試料を用意し、それら試料に対して厚さ0.2μmのCrマスクの大きさ(幅)を変えて40分間エッチングした時のエッチング結果を示す。段差部の高さが55nmではCrマスクの大きさ(幅)0.11μm〜4.00μmの全てについて平坦にエッチングされているが、段差部の高さが167nm、333nmになると、平坦にエッチングされずに、底が平坦な凹みになり、しかもCrマスクの大きさ(幅)が大きくなると、凹形状の底に三角錐が残り、さらに段差部の高さが1000nm以上になると、中心に針状に残ったり穴の形状になることが分かった。
【0014】
これらの実験結果から、エッチング特性の高周波自己バイアス電圧(Vdc)が異常穴の形成に大きく関係しており、初期エッチングを工夫することにより異常穴が形成されないことを見出した。また化学的に活性なガスの総流量に対するフッ化炭素系ガスの濃度を設定することによりエッチングの選択比を制御でき垂直形状を改善できることを見出した。
【0015】
そこで、本発明は、初期エッチングにおける高周波自己バイアス電圧(Vdc)を制御することにより異常形状の穴の形成を防止できるプラズマエッチング法を提供することを目的としている。
【0016】
【課題を解決するための手段】
上記の目的を達成するために、本発明によれば、フッ化炭素ガスを減圧下での放電によりプラズマ状態にし、発生したイオンや中性ラジカル等の活性種とガラス基板材料との反応により基板をエッチングする方法において、
エッチング初期に−500Vから−940Vの範囲の第1のバイアス電圧を基板に印加し、その後に前記第1のバイアス電圧より低いバイアス電圧を、基板への第1のバイアス電圧の印加時間より長い時間印加することを特徴としている。
【0017】
本発明によるプラズマエッチング法においては、好ましくは、フッ化炭素ガス1(例えば、C3F8)に別のフッ化炭素系ガス2(例えば、CF4)が添加され得る。この場合、エッチング特性の選択比を最大にして垂直形状を改善するために、フッ化炭素ガス1に添加するフッ化炭素系ガス2の濃度は69%以上され得る。
【0018】
また、好ましくはフッ化炭素ガスの流量は逆マイクロローディングを抑えるように制御され得る。
【0019】
本発明によるプラズマエッチング法の別の特徴においては、エッチングに先立って、基板を希ガスでスパッタリングすることにより、 基板表面の異物や変質層が除去される。
【0020】
【発明の実施の形態】
以下、添付図面の図12及び図13を参照して本発明の実施の形態について説明する。
【0021】
図12には本発明の一つの実施の形態に従って石英基板をエッチングした場合の基板の表面状態を示す。この実施の形態においては、磁気中性線放電(NLD)プラズマを利用したエッチング装置を使用し、磁気中性線放電出力を800Wとし、ガスはC/CFを使用し、ガスの流量はC/CF=30/90sccmとし、エッチングチャンバー内の圧力を2.0mTorrとした。基板電極に印加するバイアス電圧(Vdc)はエッチング初期の2分間−850Vに設定し、その後28分間−500Vに設定した。その結果、エッチングは穴の発生を伴うことなく行うことができ、被エッチング部位の表面は平滑であった。
【0022】
図13には本発明の別の実施の形態に従って石英基板をエッチングした場合の基板の表面状態を示す。この実施の形態においては、図11に示す実施の形態の場合と同様に磁気中性線放電(NLD)プラズマを利用したエッチング装置を使用し、磁気中性線放電出力を800Wとし、ガスはC/CFを使用し、ガスの流量はC/CF=30/90sccmとした。エッチングチャンバー内の圧力は20.0mTorrとし、基板電極に印加するバイアス電圧(Vdc)はエッチング初期の2分間−900Vに設定し、その後30分間−500Vに設定した。その結果、この場合もエッチングは穴の発生を伴うことなく行うことができ、被エッチング部位の表面は平滑であった。
【0023】
また、基板表面における穴の生成は、実験の結果基板表面に付着している異物や変質層の存在も関係していると認められたので、エッチング前に、基板をAr、Heなどの基板を希ガスでスパッタリングするという前処理を施すのが有効である。
【0024】
また、パターン幅とエッチング速度との関係において逆ローディングが大きいと、基板表面における穴の生成につながると認められるので、逆ローディングを抑えるために、ガスの流量を絞り、圧力を上げるなどのエッチング条件を制御するのも有効である。
【0025】
ところで、図示実施例では石英基板をエッチングする場合について説明してきたが、当然他のガラス系基板にも適用できる。また、本発明の方法を実施するのに磁気中性線放電プラズマを利用した例を説明してきたが、本発明は他のドライエッチング技術を用いても実施可能である。
【0026】
【発明の効果】
以上説明してきたように、本発明によれば、フッ化炭素ガスを低圧下での放電によりプラズマ状態にし、発生したイオンや中性ラジカル等の活性種とガラス基板材料との反応により基板をエッチングする方法において、 エッチング初期に−500V〜−900Vの高バイアス電圧を基板に印加することにより、深さ20μm以上のエッチングを行う場合でも、基板表面に穴を生成することなく、平滑にエッチングを行うことができる。その結果、壁面の平滑性が要求される光導波路やバイオMEMS等に使用されるガラス基板の微細加工に十分対応できる有用な方法を提供することができる。
【0027】
また、2種類のフッ化炭素ガス1とフッ化炭素ガス2(例えば、C3F8とCF4)を混合することによりエッチングの高い選択比か得られ、特にフッ化炭素系ガス2の濃度を69%以上にした場合には垂直形状のエッチングが得られる。
【0028】
さらに、本発明の別の特徴に従って、基板のエッチングに先立って基板を希ガスでスパッタリングして、基板表面の異物や変質層を除去することにより、基板表面における穴の生成要因の一つを削除できるので、より確実に穴の生成なしに深さ20μm以上のエッチングを行うことができるようになる。
【図面の簡単な説明】
【図1】石英基板に対するエッチング深さによる穴の生成の有無を示す模式図。
【図2】石英基板の深堀エッチングにおける異常形態の穴の生成メカニズムを説明する図。
【図3】石英基板の深堀エッチングにおける異常形態の穴の生成の圧力依存性を示す図。
【図4】石英基板のエッチングにおける異常形態の穴の生成状態を示すの圧力依存性を示す図。
【図5】穴の生成とエッチング深さとの関係の測定結果を示すグラフ。
【図6】石英基板のを連続エッチングした場合と間欠エッチングした場合の穴の生成状態を示す図。
【図7】石英基板の深堀エッチングにおける異常形態の穴の生成数とバイアス電圧依存性を示すグラフ。
【図8】石英基板の深堀エッチングにおける異常形態の穴の生成数のCFの濃度依存性を示すグラフ。
【図9】エッチング形状のCFガス濃度依存性を示すグラフ。
【図10】石英基板に対する段差とエッチング形状との関係を示す表。
【図11】図10の種々の測定結果を示す図。
【図12】本発明の一つの実施の形態に従って石英基板をエッチングした場合の基板の表面状態を示す図。
【図13】本発明の別の実施の形態に従って石英基板をエッチングした場合の基板の表面状態を示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dry etching method that can be used for microfabrication of a glass substrate used for optical waveguides, bio-MEMS, and the like.
[0002]
[Prior art]
In recent years, application of semiconductor microfabrication technology to the production of optical waveguides, bio MEMS (Micro Electro Mechanical System), etc. has attracted attention.
The optical waveguide is usually formed in a quartz glass substrate to a depth of 5 μm to 50 μm and a width of 5 μm to 15 μm, and is applied to, for example, a photosynthesis / demultiplexer as a component of optical fiber communication.
Bio MEMS is a measuring / analyzing instrument used to form a microcapillary with a depth of 10 μm to 20 μm and a width of several μm to 10 μm on a quartz glass substrate, and to evaluate the health status of the patient from a minute amount of blood of the patient. It is applied as a component.
[0003]
[Problems to be solved by the invention]
By the way, in the semiconductor process, the etching depth is about 1 μm at most, but in the optical waveguide and bio MEMS, the etching is performed to a depth of 20 μm or more. It was found that an abnormal hole shape that was not observed by etching with a depth of about 1 μm occurred on the surface of the glass substrate.
[0004]
FIG. 1 of the accompanying drawings schematically shows a case where the quartz substrate 1 is covered with a Cr mask 2 and etched to a depth of 2 to 3 μm and a case where the quartz substrate 1 is etched to a depth of 10 to 20 μm. As can be seen from this figure, when deep etching is performed, holes 3 are formed on the surface. Actually, it is not so difficult to etch to a depth of 2 to 5 μm, but irregularities appear when the depth is deeper than that.
[0005]
Such an abnormally shaped hole in the surface of the etched portion of the substrate causes the smoothness of the wall surface to be disturbed in the optical waveguide and causes light scattering. On the other hand, in bioMEMS, for example, lymph in the sample solution When separating the spheres by electrophoresis, the flow path is disturbed, both of which are problematic.
[0006]
Considering the formation of such an abnormally shaped hole, as shown in FIG. 2, when deep etching is performed with a mask 2 of μm on the quartz substrate 1, the initial stage of etching is shown in FIG. Proceeding as shown in B, C, the μm mask 2 gradually recedes, that is, a facet with a mask pattern shoulder dipper is produced. Then, as shown in FIG. 2D, grooves (trench) 4 are formed around the pattern due to accumulation of negative charges due to ions and electrons reflected on the side surfaces of the pattern during etching. Then, as shown in FIG. 2E, the etching proceeds in the lateral direction while maintaining the facet angle, a cut 5 due to reverse microloading occurs, and finally a hole 6 is formed as shown in FIG. 2F. all right.
[0007]
In order to elucidate the mechanism by which such holes are formed, the present inventors have conducted experimental research on various factors in the etching process of a quartz substrate using an etching method using a magnetic neutral line discharge (NLD) plasma. It was.
[0008]
In FIG. 3, an etching apparatus using magnetic neutral line discharge (NLD) plasma is used, the magnetic neutral line discharge output is 800 W, the gas is C 3 F 8 / CF 4, and it is applied to the substrate electrode. When the bias voltage (Vdc) is −500 V, the gas flow rate is C 3 F 8 / CF 4 = 30/90 sccm, and the pressure in the etching chamber is changed to 1.5 mTorr, 2.0 mTorr, and 3.0 mTorr It shows about the pressure dependence of formation of a hole. From this figure, it can be seen that changing the pressure does not directly affect the formation of the hole.
[0009]
In FIG. 4, an etching apparatus using magnetic neutral line discharge (NLD) plasma is used, the magnetic neutral line discharge output is 800 W, the gas is C 3 F 8 / CF 4, and it is applied to the substrate electrode. Hole formation when the etching depth is changed by setting the bias voltage (Vdc) to be −310 V, the gas flow rate to C 3 F 8 / CF 4 = 30/90 sccm, and the pressure in the etching chamber to 3.0 mTorr. Indicates the state. As the etching depth increases from 8.4 μm to 9.1 μm, it is recognized that the hole diameter is enlarged. The measurement result of the relationship between the generation of holes and the etching depth is shown in the graph of FIG.
[0010]
In FIG. 6, an etching apparatus using magnetic neutral line discharge (NLD) plasma is used, the magnetic neutral line discharge output is 800 W, the gas is C 3 F 8 / CF 4, and it is applied to the substrate electrode. The bias voltage (Vdc) to be set is −500 V, the gas flow rate is C 3 F 8 / CF 4 = 30/90 sccm, the etching is performed continuously for 30 minutes, and the etching is repeated for 30 minutes after repeating the etching for 3 minutes. The state of hole formation in the case of intermittent etching for 30 minutes is shown.
[0011]
In FIG. 7, an etching apparatus using magnetic neutral line discharge (NLD) plasma is used, the magnetic neutral line discharge output is 800 W, the gas is C 3 F 8 / CF 4 , and the gas flow rate is The hole formation state is shown when C 3 F 8 / CF 4 = 30/90 sccm, the pressure in the etching chamber is 3.0 mTorr, and the bias voltage (Vdc) applied to the substrate electrode is changed. It can be seen that the generation of holes decreases as the bias voltage (Vdc) increases to −500 V and −940 V compared to −310 V.
[0012]
FIG. 8 shows, as an average value, the result of measuring the number of generated holes by changing the CF 4 concentration from 0% to 100% while keeping the total gas flow rate constant. FIG. 9 shows the dependency of the etching shape on the CF 4 gas concentration.
[0013]
In FIGS. 10 and 11, samples having various steps are prepared by changing the etching time for the quartz substrate, and the size (width) of the 0.2 μm thick Cr mask is changed for 40 minutes. The etching result when it etches is shown. When the height of the step portion is 55 nm, all of the Cr mask sizes (widths) 0.11 μm to 4.00 μm are etched flat, but when the height of the step portion is 167 nm and 333 nm, the etching is flat. If the bottom becomes a flat dent and the size (width) of the Cr mask increases, a triangular pyramid remains on the bottom of the concave shape. It has been found that it remains in the shape of a hole.
[0014]
From these experimental results, it was found that the high-frequency self-bias voltage (Vdc) of the etching characteristics is greatly related to the formation of abnormal holes, and no abnormal holes are formed by devising the initial etching. In addition, the inventors have found that the etching selectivity can be controlled and the vertical shape can be improved by setting the concentration of the fluorocarbon gas relative to the total flow rate of the chemically active gas.
[0015]
Accordingly, an object of the present invention is to provide a plasma etching method that can prevent formation of an abnormally shaped hole by controlling a high-frequency self-bias voltage (Vdc) in initial etching.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a fluorocarbon gas is brought into a plasma state by discharge under reduced pressure, and a substrate is formed by a reaction between generated species such as ions and neutral radicals and a glass substrate material. In the method of etching
A first bias voltage in the range of −500 V to −940 V is applied to the substrate at the beginning of etching, and then a bias voltage lower than the first bias voltage is applied for a time longer than the application time of the first bias voltage to the substrate. It is characterized by applying.
[0017]
In the plasma etching method according to the present invention, another fluorocarbon gas 2 (for example, CF 4 ) can be preferably added to the fluorocarbon gas 1 (for example, C 3 F 8 ). In this case, the concentration of the fluorocarbon gas 2 added to the fluorocarbon gas 1 can be 69% or more in order to maximize the etching characteristic selection ratio and improve the vertical shape.
[0018]
Also preferably, the flow rate of the fluorocarbon gas can be controlled to suppress reverse microloading.
[0019]
In another feature of the plasma etching method according to the present invention, the foreign material and the altered layer on the surface of the substrate are removed by sputtering the substrate with a rare gas prior to the etching.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS. 12 and 13 of the accompanying drawings.
[0021]
FIG. 12 shows the surface state of the substrate when the quartz substrate is etched according to one embodiment of the present invention. In this embodiment, an etching apparatus using magnetic neutral line discharge (NLD) plasma is used, the magnetic neutral line discharge output is 800 W, the gas is C 3 F 8 / CF 4 , The flow rate was C 3 F 8 / CF 4 = 30/90 sccm, and the pressure in the etching chamber was 2.0 mTorr. The bias voltage (Vdc) applied to the substrate electrode was set to −850 V for 2 minutes at the beginning of etching, and then set to −500 V for 28 minutes. As a result, the etching can be performed without generating holes, and the surface of the etched portion is smooth.
[0022]
FIG. 13 shows the surface state of the substrate when the quartz substrate is etched according to another embodiment of the present invention. In this embodiment, an etching apparatus using magnetic neutral line discharge (NLD) plasma is used as in the embodiment shown in FIG. 11, the magnetic neutral line discharge output is 800 W, and the gas is C 3 F 8 / CF 4 was used, and the gas flow rate was C 3 F 8 / CF 4 = 30/90 sccm. The pressure in the etching chamber was 20.0 mTorr, and the bias voltage (Vdc) applied to the substrate electrode was set to −900 V for 2 minutes at the beginning of etching, and then set to −500 V for 30 minutes. As a result, also in this case, the etching can be performed without generating holes, and the surface of the etched portion is smooth.
[0023]
In addition, the generation of holes on the surface of the substrate was found to be related to the presence of foreign substances and altered layers adhering to the surface of the substrate as a result of experiments. Therefore, before etching, the substrate such as Ar or He was removed. It is effective to perform a pretreatment of sputtering with a rare gas.
[0024]
In addition, it is recognized that if the reverse loading is large in relation to the pattern width and the etching rate, it will lead to the generation of holes on the substrate surface. It is also effective to control.
[0025]
By the way, in the illustrated embodiment, the case where the quartz substrate is etched has been described, but it is naturally applicable to other glass substrates. Moreover, although the example using the magnetic neutral line discharge plasma has been described for carrying out the method of the present invention, the present invention can be implemented using other dry etching techniques.
[0026]
【The invention's effect】
As described above, according to the present invention, a fluorocarbon gas is brought into a plasma state by discharge under a low pressure, and the substrate is etched by a reaction between the generated active species such as ions and neutral radicals and the glass substrate material. In this method, by applying a high bias voltage of −500 V to −900 V to the substrate in the initial stage of etching, even when etching with a depth of 20 μm or more is performed, etching is performed smoothly without generating holes in the substrate surface. be able to. As a result, it is possible to provide a useful method that can sufficiently cope with fine processing of a glass substrate used for an optical waveguide, bio-MEMS, or the like that requires smoothness of a wall surface.
[0027]
Also, by mixing two kinds of fluorocarbon gas 1 and fluorocarbon gas 2 (for example, C 3 F 8 and CF 4 ), a high etching selectivity can be obtained. In particular, the concentration of fluorocarbon gas 2 When the thickness is 69% or more, vertical etching is obtained.
[0028]
Further, according to another feature of the present invention, one of the factors for generating holes on the substrate surface is eliminated by sputtering the substrate with a rare gas prior to etching the substrate to remove foreign substances and altered layers on the substrate surface. Therefore, etching with a depth of 20 μm or more can be performed more reliably without generating holes.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing whether or not holes are generated depending on the etching depth of a quartz substrate.
FIG. 2 is a diagram for explaining a generation mechanism of abnormally shaped holes in deep etching of a quartz substrate.
FIG. 3 is a diagram showing the pressure dependence of generation of abnormally shaped holes in deep etching of a quartz substrate.
FIG. 4 is a diagram showing the pressure dependence of the generation state of abnormally shaped holes in etching a quartz substrate.
FIG. 5 is a graph showing a measurement result of a relationship between hole generation and etching depth.
FIGS. 6A and 6B are diagrams showing a state where holes are generated when a quartz substrate is continuously etched and intermittently etched. FIGS.
FIG. 7 is a graph showing the number of abnormally formed holes and bias voltage dependence in deep etching of a quartz substrate.
FIG. 8 is a graph showing the concentration dependence of CF 4 on the number of abnormally formed holes in deep etching of a quartz substrate.
FIG. 9 is a graph showing the dependency of etching shape on CF 4 gas concentration.
FIG. 10 is a table showing a relationship between a step and an etching shape with respect to a quartz substrate.
11 is a diagram showing various measurement results of FIG.
FIG. 12 is a diagram showing a surface state of a substrate when the quartz substrate is etched according to one embodiment of the present invention.
FIG. 13 is a view showing a surface state of a substrate when a quartz substrate is etched according to another embodiment of the present invention.

Claims (8)

フッ化炭素ガスを減圧下での放電によりプラズマ状態にし、発生したイオンや中性ラジカル等の活性種とガラス基板材料との反応により基板をエッチングする方法において、
エッチング初期に−500Vから−940Vの範囲の第1のバイアス電圧を基板に印加し、その後に前記第1のバイアス電圧より低いバイアス電圧を、基板への第1のバイアス電圧の印加時間より長い時間印加することを特徴とするプラズマエッチング法。
In a method of etching a substrate by a reaction between a glass substrate material and activated species such as generated ions and neutral radicals in a plasma state by discharge of fluorocarbon gas under reduced pressure,
A first bias voltage in the range of −500 V to −940 V is applied to the substrate at the beginning of etching, and then a bias voltage lower than the first bias voltage is applied for a time longer than the application time of the first bias voltage to the substrate. A plasma etching method characterized by applying.
前記第1のバイアス電圧が−850Vから−900Vであることを特徴とする請求項1に記載のプラズマエッチング法。  The plasma etching method according to claim 1, wherein the first bias voltage is -850V to -900V. 前記第1のバイアス電圧より低い前記バイアス電圧が−500Vであることを特徴とする請求項1に記載のプラズマエッチング法。  The plasma etching method according to claim 1, wherein the bias voltage lower than the first bias voltage is -500V. 上記フッ化炭素ガスが2種類以上のフッ化炭素ガスを混合して用いることを特徴とする請求項1〜3のいずれか一項に記載のプラズマエッチング法。The plasma etching method according to any one of claims 1 to 3, wherein the fluorocarbon gas is a mixture of two or more fluorocarbon gases. フッ化炭素ガス1に添加するフッ化炭素系ガス2の濃度を69%以上にすることを特徴とする請求項4に記載のプラズマエッチング法。  The plasma etching method according to claim 4, wherein the concentration of the fluorocarbon gas 2 added to the fluorocarbon gas 1 is 69% or more. 逆マイクロローディングを抑えるようにフッ化炭素ガスの流量を制御することを特徴とする請求項1に記載のプラズマエッチング法。  The plasma etching method according to claim 1, wherein the flow rate of the fluorocarbon gas is controlled so as to suppress reverse microloading. フッ化炭素ガスを低圧下での放電によりプラズマ状態にし、発生したイオンや中性ラジカル等の活性種とガラス基板材料との反応により基板をエッチングする方法において、
基板を希ガスでスパッタリングして、基板表面の異物や変質層を除去し、
エッチング初期に−500Vから−940Vの範囲の第1のバイアス電圧を基板に印加し、その後に前記第1のバイアス電圧より低いバイアス電圧を、基板への第1のバイアス電圧の印加時間より長い時間印加することを特徴とするプラズマエッチング法。
In a method of etching a substrate by making a fluorocarbon gas into a plasma state by discharge under a low pressure and reacting generated species such as ions and neutral radicals with a glass substrate material,
Sputtering the substrate with a rare gas to remove foreign matter and altered layers on the substrate surface,
A first bias voltage in the range of −500 V to −940 V is applied to the substrate at the beginning of etching, and then a bias voltage lower than the first bias voltage is applied for a time longer than the application time of the first bias voltage to the substrate. A plasma etching method characterized by applying.
上記フッ化炭素ガスが2種類以上のフッ化炭素ガスを混合することを特徴とする請求項7に記載のプラズマエッチング法。  The plasma etching method according to claim 7, wherein the fluorocarbon gas is a mixture of two or more types of fluorocarbon gases.
JP2001090852A 2001-03-27 2001-03-27 Dry etching Expired - Lifetime JP4568445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090852A JP4568445B2 (en) 2001-03-27 2001-03-27 Dry etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090852A JP4568445B2 (en) 2001-03-27 2001-03-27 Dry etching

Publications (2)

Publication Number Publication Date
JP2002284545A JP2002284545A (en) 2002-10-03
JP4568445B2 true JP4568445B2 (en) 2010-10-27

Family

ID=18945581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090852A Expired - Lifetime JP4568445B2 (en) 2001-03-27 2001-03-27 Dry etching

Country Status (1)

Country Link
JP (1) JP4568445B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4399310B2 (en) * 2004-04-13 2010-01-13 株式会社アルバック Dry etching method, microlens array and manufacturing method thereof
JP2008527375A (en) * 2005-01-18 2008-07-24 ソルス バイオシステムズ インコーポレイテッド Infrared transmitting substrate, semiconductor substrate, silicon substrate, fluid sample analysis device, fluid sample analysis method, and computer-readable recording medium
DE102006051550B4 (en) * 2006-10-30 2012-02-02 Fhr Anlagenbau Gmbh Method and device for structuring components using a material based on silicon oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212458A (en) * 1993-01-14 1994-08-02 Nikon Corp Production of patterned product by reactive ion etching
JPH07161080A (en) * 1993-12-08 1995-06-23 Nikon Corp Production of stamper
JPH11134725A (en) * 1997-10-27 1999-05-21 Seiko Epson Corp Apparatus for production of casting mold for resin plate production and production of casting mold for resin plate production
JP2000155406A (en) * 1998-09-04 2000-06-06 Cselt Spa (Cent Stud E Lab Telecomun) Method for etching surface of quartz glass to manufacture phase mask or the like
JP2000231007A (en) * 1999-02-09 2000-08-22 Ricoh Opt Ind Co Ltd Formation of array pattern with fine recesses and planar lens array, liquid crystal display device and planar oil trap produced by the forming method
JP2000285521A (en) * 1998-08-04 2000-10-13 Victor Co Of Japan Ltd Information recording medium, base for information recording medium and its stamper, manufacture of information recording medium, and method and device for manufacturing base for information recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212458A (en) * 1993-01-14 1994-08-02 Nikon Corp Production of patterned product by reactive ion etching
JPH07161080A (en) * 1993-12-08 1995-06-23 Nikon Corp Production of stamper
JPH11134725A (en) * 1997-10-27 1999-05-21 Seiko Epson Corp Apparatus for production of casting mold for resin plate production and production of casting mold for resin plate production
JP2000285521A (en) * 1998-08-04 2000-10-13 Victor Co Of Japan Ltd Information recording medium, base for information recording medium and its stamper, manufacture of information recording medium, and method and device for manufacturing base for information recording medium
JP2000155406A (en) * 1998-09-04 2000-06-06 Cselt Spa (Cent Stud E Lab Telecomun) Method for etching surface of quartz glass to manufacture phase mask or the like
JP2000231007A (en) * 1999-02-09 2000-08-22 Ricoh Opt Ind Co Ltd Formation of array pattern with fine recesses and planar lens array, liquid crystal display device and planar oil trap produced by the forming method

Also Published As

Publication number Publication date
JP2002284545A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP4674368B2 (en) Method for anisotropic etching of silicon
EP1758168B1 (en) Soi substrate and method for producing same
EP1676302B1 (en) Notch-free etching of high aspect soi structures using a time division multiplex process and rf bias modulation
US20040178171A1 (en) Sloped trench etching process
KR101941312B1 (en) Method for achieving smooth side walls after bosch etch process
US6531068B2 (en) Method of anisotropic etching of silicon
US6905626B2 (en) Notch-free etching of high aspect SOI structures using alternating deposition and etching and pulsed plasma
WO1999065065B1 (en) Etching process for producing substantially undercut free silicon on insulator structures
KR20000048865A (en) Reactive ion etching of silica structures
JP5214596B2 (en) Method for minimizing mask undercuts and notches in plasma processing systems
JP2000133638A (en) Method and equipment for plasma etching
Kolari Deep plasma etching of glass with a silicon shadow mask
JP4568445B2 (en) Dry etching
JP2009239054A (en) Manufacturing method, manufacturing device and manufacturing program of silicon structure
JP4399310B2 (en) Dry etching method, microlens array and manufacturing method thereof
CN112921403A (en) Etching method of silicon carbide wafer
Lai et al. Scalloping minimization in deep Si etching on Unaxis DSE tools
KR100372690B1 (en) Dry etching method of micro senson structures
JPH0393224A (en) Dry etching
JPH0353521A (en) Manufacture of semiconductor device
Keil et al. PROFILE CONTROL OF SUB-0.3 µm CONTACT ETCH FEATURES IN A MEDIUM-DENSITY OXIDE ETCH REACTOR
EP1241703A1 (en) Method for masking silicon during anisotropic wet etching
JPS6265329A (en) Etching process
JPS6265328A (en) Etching process
JPS6353928A (en) Dry etching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

R150 Certificate of patent or registration of utility model

Ref document number: 4568445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term