JP4566695B2 - Magnetic pole position detector for wound field type synchronous machine - Google Patents

Magnetic pole position detector for wound field type synchronous machine Download PDF

Info

Publication number
JP4566695B2
JP4566695B2 JP2004322213A JP2004322213A JP4566695B2 JP 4566695 B2 JP4566695 B2 JP 4566695B2 JP 2004322213 A JP2004322213 A JP 2004322213A JP 2004322213 A JP2004322213 A JP 2004322213A JP 4566695 B2 JP4566695 B2 JP 4566695B2
Authority
JP
Japan
Prior art keywords
field
magnetic pole
pole position
synchronous machine
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004322213A
Other languages
Japanese (ja)
Other versions
JP2006136123A (en
Inventor
彰 佐竹
典之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004322213A priority Critical patent/JP4566695B2/en
Publication of JP2006136123A publication Critical patent/JP2006136123A/en
Application granted granted Critical
Publication of JP4566695B2 publication Critical patent/JP4566695B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、回転子の界磁巻線により界磁磁界を発生する巻線界磁式同期機の磁極位置検出装置に関するものである。   The present invention relates to a magnetic pole position detection device for a winding field type synchronous machine that generates a field magnetic field by a field winding of a rotor.

同期電動機を磁極位置センサなしで駆動するセンサレス制御方式は、センサがないことによるコスト低減、信頼性向上、装置の小型化などのメリットがある。従来、同期電動機を磁極位置センサなしで駆動するための磁極位置検出装置では、電動機の電気的突極性(電動機の回転子位置により電機子巻線端子間のインダクタンスが変化する現象)を利用して磁極位置を検出するため、電動機の電機子巻線に交番電圧を印加し、発生する交番電機子電流を利用した磁極検出が行われており(例えば特許文献1)、同装置は、回転子の界磁巻線により界磁磁界を発生する巻線界磁式同期機に対しても適用できる。   The sensorless control system that drives the synchronous motor without a magnetic pole position sensor has advantages such as cost reduction, reliability improvement, and downsizing of the apparatus due to the absence of the sensor. Conventionally, in a magnetic pole position detection device for driving a synchronous motor without a magnetic pole position sensor, the electric saliency of the motor (a phenomenon in which the inductance between armature winding terminals varies depending on the rotor position of the motor) is used. In order to detect the magnetic pole position, an alternating voltage is applied to the armature winding of the electric motor, and magnetic pole detection is performed using the generated alternating armature current (for example, Patent Document 1). The present invention can also be applied to a wound field synchronous machine that generates a field magnetic field by a field winding.

特開平7−245981号公報(2頁右46行〜3頁左5行、図1)Japanese Patent Application Laid-Open No. 7-245981 (page 2, right line 46 to page 3, left line 5, FIG. 1)

しかしながら、従来の同期電動機の磁極位置検出装置は、例えば円筒型回転子を持つ同期機など対象となる巻線界磁式同期機が電気的突極性を持たない場合には、磁極位置を検出することができないという問題点があった。   However, the conventional magnetic pole position detection device for a synchronous motor detects the magnetic pole position when the target winding field synchronous machine, such as a synchronous machine having a cylindrical rotor, does not have electrical saliency. There was a problem that it was not possible.

この発明は、上記のような問題点を解決するためになされたものであり、電気的突極性を持たない巻線界磁式同期機に対しても有効な磁極位置検出装置を得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a magnetic pole position detection device that is effective even for a winding field type synchronous machine having no electrical saliency. It is said.

この発明に係る巻線界磁式同期機の磁極位置検出装置は、電機子巻線に交番信号を注入した時に界磁巻線に発生する交番信号を検出して磁極検出を行う、あるいは、界磁巻線に交番信号を注入した時に電機子巻線に発生する交番信号を検出して磁極検出を行うものである。   The magnetic pole position detection device for a wound field type synchronous machine according to the present invention detects an alternating signal generated in a field winding when an alternating signal is injected into an armature winding, or performs magnetic pole detection. The magnetic pole detection is performed by detecting the alternating signal generated in the armature winding when the alternating signal is injected into the magnetic winding.

この発明によれば、電機子巻線と界磁巻線の相互作用を利用して磁極検出を行うので、対象となる巻線界磁式同期機が電気的突極性を持たない場合でも、磁極位置を検出することができ、電気的突極性を持たない巻線界磁式同期機を磁極位置センサなしで運転することが可能になる。特にモータ・変換器一体型の装置において、磁極位置センサのスペースが不要になって装置設計における構成の自由度が増すと共に、磁極位置センサのスペースをモータおよび変換器の放熱のために利用でき、設計上有利になる。   According to this invention, since the magnetic pole detection is performed by utilizing the interaction between the armature winding and the field winding, even if the target winding field synchronous machine does not have an electric saliency, the magnetic pole The position can be detected, and the winding field type synchronous machine having no electric saliency can be operated without the magnetic pole position sensor. Especially in a motor / converter integrated device, the space for the magnetic pole position sensor is no longer required, increasing the degree of freedom in configuration of the device design, and the space for the magnetic pole position sensor can be used for heat dissipation of the motor and the converter. It becomes advantageous in design.

まず、以下の実施の形態では、界磁巻線の交番信号を検出する検出器は、界磁電流を検出する場合は界磁電流センサとし、界磁電圧を検出する場合は界磁電圧センサとして説明する。また、電機子巻線の交番信号を検出する検出器は、電機子電流を検出する場合は電機子電流センサとし、電機子電圧を検出する場合は電機子電圧センサとして説明する。
実施の形態1.
First, in the following embodiments, a detector that detects an alternating signal of a field winding is a field current sensor when detecting a field current, and as a field voltage sensor when detecting a field voltage. explain. The detector that detects the alternating signal of the armature winding will be described as an armature current sensor when detecting an armature current, and as an armature voltage sensor when detecting an armature voltage.
Embodiment 1 FIG.

図1は本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置の基本的な構成を示す図である。巻線界磁式同期機4は電気的突極性を有する必要は無いが、電気的突極性を有していても良い。交番信号発生器1による交番電圧指令VqhはVdh=0である直交方向の電圧指令とともに座標変換器2に入力され、三相電圧指令Vu,Vv,Vwに変換されて電機子側電力変換器3により巻線界磁式同期機4の電機子巻線に印加される。巻線界磁式同期機4の界磁巻線に流れる電流Ifは界磁電流センサ5により検出され、この界磁電流Ifは磁極位置検出器6に入力されて検出磁極位置θが求められ、この検出磁極位置θに従って座標変換器2は座標変換を行う。   FIG. 1 is a diagram showing a basic configuration of a magnetic pole position detecting device for a wound field type synchronous machine according to Embodiment 1 of the present invention. The winding field type synchronous machine 4 need not have electrical saliency, but may have electrical saliency. The alternating voltage command Vqh by the alternating signal generator 1 is input to the coordinate converter 2 together with the voltage command in the orthogonal direction where Vdh = 0, and is converted into the three-phase voltage commands Vu, Vv, Vw, and the armature side power converter 3 Is applied to the armature winding of the winding field type synchronous machine 4. A current If flowing in the field winding of the winding field type synchronous machine 4 is detected by a field current sensor 5, and this field current If is input to a magnetic pole position detector 6 to obtain a detected magnetic pole position θ. The coordinate converter 2 performs coordinate conversion according to the detected magnetic pole position θ.

図2は本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置の動作を示すベクトル図である。回転子の界磁巻線方向がd0軸、その直交方向がq0軸であり、d0軸が電機子巻線U相に対して成す角度が真の磁極位置θ0である。これに対して、磁極検出座標系dq軸が電機子巻線U相に対して成す角度が検出磁極位置θである。図2に示すように真の磁極位置θ0と検出磁極位置θが一致しない状態では、q軸上に電機子巻線より交番電圧Vqhを加えると、その交番電圧は実際の界磁巻線軸であるd0軸方向にも印加される。電機子巻線と界磁巻線は電磁気的に結合しているので、d0軸方向の電機子巻線に交番電圧Vqhが印加されると界磁巻線にも交番電圧Vfhが発生して、結果として界磁巻線に交番電流が発生する。一方、真の磁極位置θ0と検出磁極位置θが一致している場合には、q軸上に電機子巻線より交番電圧Vqhを加えても、その交番電圧はd0軸方向成分を持たないので界磁巻線には交番電圧は印加されず、結果として交番電流も発生しない。図2より分かるように、界磁巻線に作用する交番電圧Vfhは(1)式で表される。
Vfh = Vqh・sin(θ−θ0) (1)
FIG. 2 is a vector diagram showing the operation of the magnetic pole position detection device of the wound field type synchronous machine according to Embodiment 1 of the present invention. The field winding direction of the rotor is the d0 axis, the orthogonal direction is the q0 axis, and the angle formed by the d0 axis with respect to the armature winding U phase is the true magnetic pole position θ0. On the other hand, the angle formed by the magnetic pole detection coordinate system dq axis with respect to the armature winding U phase is the detected magnetic pole position θ. As shown in FIG. 2, in a state where the true magnetic pole position θ0 and the detected magnetic pole position θ do not coincide, when the alternating voltage Vqh is applied from the armature winding on the q axis, the alternating voltage is the actual field winding axis. It is also applied in the d0 axis direction. Since the armature winding and the field winding are electromagnetically coupled, when the alternating voltage Vqh is applied to the armature winding in the d0 axis direction, the alternating voltage Vfh is also generated in the field winding, As a result, an alternating current is generated in the field winding. On the other hand, if the true magnetic pole position θ0 and the detected magnetic pole position θ match, even if the alternating voltage Vqh is applied from the armature winding on the q axis, the alternating voltage has no d0 axial component. No alternating voltage is applied to the field winding, and no alternating current is generated as a result. As can be seen from FIG. 2, the alternating voltage Vfh acting on the field winding is expressed by equation (1).
Vfh = Vqh · sin (θ−θ0) (1)

界磁巻線には、(1)式に示された交番電圧Vfhに応じた交番電流が発生するので、この交番電流が0になるように検出磁極位置θを操作すれば、真の磁極位置θ0と検出磁極位置θを一致させることが出来る。図3は磁極位置検出器6の内部構造を示したものである。基準信号発生器7は、界磁巻線に発生する交番電流と同じ周波数および位相を持つ、電流基準信号Ifpを発生する。界磁電流Ifと電流基準信号Ifpとを乗算器8で乗算することにより、交番電流の振幅に比例した誤差信号eθが得られる。磁極追従制御器9は誤差信号eθが0になるよう、検出磁極位置θを操作するコントローラであって、例えば積分器あるいはPI制御器である。 Since an alternating current corresponding to the alternating voltage Vfh shown in Equation (1) is generated in the field winding, if the detected magnetic pole position θ is manipulated so that this alternating current becomes zero, the true magnetic pole position It is possible to make θ0 coincide with the detected magnetic pole position θ. FIG. 3 shows the internal structure of the magnetic pole position detector 6. The reference signal generator 7 generates a current reference signal Ifp having the same frequency and phase as the alternating current generated in the field winding. By multiplying the field current If and the current reference signal Ifp by the multiplier 8, an error signal eθ proportional to the amplitude of the alternating current is obtained. The magnetic pole tracking controller 9 is a controller for operating the detected magnetic pole position θ so that the error signal eθ becomes 0, and is, for example, an integrator or a PI controller.

図4は交番電圧Vqh、電流基準信号Ifp、界磁電流If、および誤差信号eθの波形の関係を示す図である。電機子q軸に印加される交番電圧Vqhに対して、電流基準信号Ifpは周波数が同じで振幅が1、位相はインピーダンスに応じてVqhに対してシフトし、例えば交番する周波数が電機子および界磁の回路時定数より十分大きい場合、位相シフトはほぼ90°である。界磁電流信号Ifは界磁用の直流成分に交番電流が加わった波形であり、誤差信号eθはオフセットを持つ交番波形である。図4に示すように、界磁電流Ifは直流成分を含むので、磁極位置検出器6に入力する際には、ハードウェアあるいはソフトウェアによる、ハイパスあるいはバンドパスフィルタを通過した信号を使用する様にすると、磁極検出信号処理に際しての電流検出分解能や演算分解能の面で有利である。また、誤差信号eθには交番成分による脈動が含まれるので、この信号を磁極追従制御器に入力する際には、交番電圧周期の1/2、あるいはその倍数の区間での平均値(図4中に点線で図示)を用いるようにすると、検出磁極位置の不要な振動を除くことができる。 FIG. 4 is a diagram showing the relationship among the waveforms of the alternating voltage Vqh, the current reference signal Ifp, the field current If, and the error signal eθ. With respect to the alternating voltage Vqh applied to the armature q-axis, the current reference signal Ifp has the same frequency, the amplitude is 1, and the phase is shifted with respect to Vqh according to the impedance. For example, the alternating frequency is the armature and the field. If it is sufficiently larger than the magnetic circuit time constant, the phase shift is approximately 90 °. The field current signal If is a waveform obtained by adding an alternating current to a DC component for the field, and the error signal eθ is an alternating waveform having an offset. As shown in FIG. 4, since the field current If includes a direct current component, when the signal is input to the magnetic pole position detector 6, a signal passing through a high-pass or band-pass filter by hardware or software is used. Then, it is advantageous in terms of current detection resolution and calculation resolution in magnetic pole detection signal processing. Further, since the error signal eθ includes pulsation due to an alternating component, when this signal is input to the magnetic pole tracking controller, an average value in a section of 1/2 of the alternating voltage period or a multiple thereof (FIG. 4). By using (indicated by a dotted line), unnecessary vibration of the detected magnetic pole position can be eliminated.

図5に、真の磁極位置θ0と検出磁極位置θのずれと、誤差信号eθ(平均化した値)の関係を示す。図より分かるように、二つの信号は0付近ではほぼ比例関係(ただし比例係数keは負)にあり、誤差信号eθを用いて、θ−θ0を0に調節するような制御系を容易に構成することが出来ることが理解される。なお上記の比例係数keは電機子および界磁電流による磁気飽和で値が変化し、結果として磁極位置検出器の応答が変化するが、あらかじめ電機子および界磁電流(あるいは電機子鎖交磁束でも良い)と比例係数keの変化の関係を把握しておき、これを補正するような係数を誤差信号に乗ずるような仕組みを備えて、運転条件による磁極位置検出器の応答変化をなくすことが出来るようにしても良い。 FIG. 5 shows the relationship between the deviation between the true magnetic pole position θ0 and the detected magnetic pole position θ and the error signal eθ (averaged value). As can be seen from the figure, the two signals are in a substantially proportional relationship near 0 (where the proportional coefficient ke is negative), and a control system that adjusts θ−θ0 to 0 using the error signal eθ can be easily configured. It is understood that it can be done. Note that the proportional coefficient ke changes in value due to magnetic saturation caused by the armature and field current, and as a result, the response of the magnetic pole position detector changes. However, the armature and field current (or armature flux linkage) It is possible to eliminate the change in the response of the magnetic pole position detector due to the operating conditions by grasping the relationship between the change of the good) and the proportional coefficient ke and multiplying the error signal by a coefficient that corrects this. You may do it.

なお、図5に示したように、真の磁極位置θ0と検出磁極位置θのずれは、−90°〜90°の区間で1対1の対応を示す。これより、あらかじめ図5に示す関係をテーブル等の形で記憶しておけば、誤差信号eθより直ちに真の磁極位置θ0と検出磁極位置θのずれを求めることが出来、積分器等の磁極追従制御器を用いなくても上記テーブルを参照することにより真の磁極位置θ0を算出することが可能であるので、この方法により磁極位置を求めることも出来、磁極検出の応答性が向上する。 As shown in FIG. 5, the deviation between the true magnetic pole position θ0 and the detected magnetic pole position θ shows a one-to-one correspondence in the section of −90 ° to 90 °. Accordingly, if the relationship shown in FIG. 5 is stored in the form of a table or the like in advance, the deviation between the true magnetic pole position θ0 and the detected magnetic pole position θ can be obtained immediately from the error signal eθ, and the magnetic pole tracking of an integrator or the like can be obtained. Since the true magnetic pole position θ0 can be calculated by referring to the above table without using a controller, the magnetic pole position can also be obtained by this method, and the response of magnetic pole detection is improved.

以上のように、電機子側に交番電圧を注入して界磁側の交番電流を検出することにより、電気的突極性を持たない巻線界磁式同期機においても、磁極位置センサを用いることなく磁極位置を検出することが可能になる。   As described above, by injecting an alternating voltage on the armature side and detecting an alternating current on the field side, a magnetic pole position sensor can be used even in a wound field type synchronous machine having no electrical saliency. Therefore, it is possible to detect the magnetic pole position.

さらに以上の説明では、電機子側に交番電圧を注入して界磁側の交番電流を検出する方法について説明したが、電機子側に交番電圧を注入して界磁側の交番電圧を検出することによっても磁極位置を検出することができる。この場合、(1)式に示したように、界磁巻線に作用する交番電圧Vfhを直接検出すれば良い。具体的には図1に示した構成において界磁電流センサ5のかわりに界磁巻線の端子間電圧を検出する界磁電圧センサを設け、この界磁電圧センサの検出した検出界磁電圧Vfdを界磁電流Ifの代わりに磁極位置検出器6に入力すればよい。なお界磁電流Ifと検出界磁電圧Vfdに含まれる交番成分は、電機子側に注入する交番電圧Vqhに対する位相が界磁電流の場合と異なるので、電機子側に交番電圧を注入して界磁側の交番電圧を検出して磁極位置検出を行う際の基準信号発生器7は、検出界磁電圧Vfdと同じ位相を持つ電圧基準信号Vfpを発生する必要がある。図6は交番電圧Vqh、電圧基準信号Vfp、界磁検出電圧Vfd、および誤差信号eθの波形の関係を示す図である。 In the above description, the method of injecting an alternating voltage on the armature side and detecting the alternating current on the field side has been described. However, the alternating voltage on the armature side is injected and the alternating voltage on the field side is detected. Thus, the magnetic pole position can be detected. In this case, as shown in the expression (1), the alternating voltage Vfh acting on the field winding may be directly detected. Specifically, in the configuration shown in FIG. 1, a field voltage sensor for detecting the voltage between the terminals of the field winding is provided instead of the field current sensor 5, and the detected field voltage Vfd detected by this field voltage sensor is provided. May be input to the magnetic pole position detector 6 instead of the field current If. The alternating component included in the field current If and the detected field voltage Vfd is different from the case of the field current in the phase with respect to the alternating voltage Vqh injected to the armature side. The reference signal generator 7 for detecting the magnetic pole position by detecting the alternating voltage on the magnetic side needs to generate the voltage reference signal Vfp having the same phase as the detected field voltage Vfd. FIG. 6 is a diagram showing a relationship among waveforms of the alternating voltage Vqh, the voltage reference signal Vfp, the field detection voltage Vfd, and the error signal eθ.

以上のように、電機子側に交番電圧を注入して界磁側の交番電圧を検出することにより、電気的突極性を持たない巻線界磁式同期機においても、磁極位置センサを用いることなく磁極位置を検出することが可能になるとともに、同期機の界磁巻線のインピーダンス特性の影響を受けることなく交番成分を検出することができる。 As described above, by injecting an alternating voltage on the armature side and detecting the alternating voltage on the field side, the magnetic pole position sensor can be used even in a wound field type synchronous machine having no electrical saliency. Thus, the magnetic pole position can be detected without any change, and the alternating component can be detected without being affected by the impedance characteristic of the field winding of the synchronous machine.

図7に本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置を適用した、同期機制御系の構成を示す。同期機4の電機子に流れる電流Iu,Iv,Iwは電機子電流センサ10により検出され、座標変換器11によりdq軸座標上の電流Id,Iqに変換される。電機子電流制御器12は上位コントローラ(図示せず)からのdq軸電流指令値Id*,Iq*と、実際のdq軸電流Id,Iqより、dq軸電圧指令Vd,Vqを算出する。q軸電圧指令Vqには交番信号発生器1による交番電圧指令Vqhが加算器13により加えられる。交番電圧加算後のq軸電圧指令Vq'とd軸電圧指令Vdは座標変換器2に入力されて三相電圧指令Vu,Vv,Vwに変換され、電機子側電力変換器3により巻線界磁式同期機4の電機子巻線に印加される。また、巻線界磁式同期機4の界磁巻線に流れる電流Ifは界磁電流センサ5により検出され、界磁電流制御器14は上位コントローラ(図示せず)からの界磁電流指令If*と実際の界磁電流Ifより界磁電圧指令Vfを算出し、同電圧が界磁側変換器15により巻線界磁式同期機4の界磁巻線に印加される。一方、検出された界磁電流Ifは磁極位置検出器6に入力されて検出磁極位置θが求められ、この検出磁極位置θに従い座標変換器2,11は座標変換を行う。以上のように構成された同期機制御系において、磁極位置検出を行う各部の働きは図1の場合と同様であって、同期機制御系と一体となった形で磁極位置検出を行うことが出来る。なお注入する交番電圧の影響を避けるため、電機子電流制御器12に入力するdq軸電流Id,Iqから、ローパスあるいはバンドパスフィルタを用いて交番電圧周波数成分を除去しても良い。同様に、界磁電流制御器14に入力する界磁電流Ifからも、ローパスあるいはバンドパスフィルタを用いて交番電圧周波数成分を除去しても良い。 FIG. 7 shows the configuration of a synchronous machine control system to which the magnetic pole position detection device for a wound field type synchronous machine according to Embodiment 1 of the present invention is applied. The currents Iu, Iv, Iw flowing through the armature of the synchronous machine 4 are detected by the armature current sensor 10 and converted into currents Id, Iq on the dq axis coordinates by the coordinate converter 11. The armature current controller 12 calculates the dq axis voltage commands Vd and Vq from the dq axis current command values Id * and Iq * from the host controller (not shown) and the actual dq axis currents Id and Iq. An alternating voltage command Vqh from the alternating signal generator 1 is added to the q-axis voltage command Vq by the adder 13. The q-axis voltage command Vq ′ and the d-axis voltage command Vd after addition of the alternating voltage are input to the coordinate converter 2 and converted into the three-phase voltage commands Vu, Vv, and Vw. Applied to the armature winding of the magnetic synchronous machine 4. Further, the current If flowing in the field winding of the winding field type synchronous machine 4 is detected by the field current sensor 5, and the field current controller 14 receives a field current command If from a host controller (not shown). The field voltage command Vf is calculated from * and the actual field current If, and the same voltage is applied to the field winding of the winding field type synchronous machine 4 by the field side converter 15. On the other hand, the detected field current If is input to the magnetic pole position detector 6 to obtain the detected magnetic pole position θ, and the coordinate converters 2 and 11 perform coordinate conversion according to the detected magnetic pole position θ. In the synchronous machine control system configured as described above, the function of each part for detecting the magnetic pole position is the same as in the case of FIG. 1, and the magnetic pole position detection can be performed integrally with the synchronous machine control system. I can do it. In order to avoid the influence of the injected alternating voltage, the alternating voltage frequency component may be removed from the dq axis currents Id and Iq input to the armature current controller 12 using a low pass or band pass filter. Similarly, the alternating voltage frequency component may be removed from the field current If input to the field current controller 14 using a low-pass or band-pass filter.

さらに以上の説明では、電機子側に交番電圧を注入する方法について説明したが、電機子側に交番電流を注入して界磁側の交番電流を検出する方法でも磁極位置を検出することができ、交番電圧を注入する場合に比べて同期機の電機子巻線のインピーダンスの影響を受けることなく所望の振幅の交番電流を発生させることが出来、安定した検出を行うことが出来る。図8に電機子側に交番電流を注入して界磁側の交番電流を検出する方法による巻線界磁式同期機の磁極位置検出装置を適用した、同期機制御系の構成を示す。図8の構成においては、交番信号発生器1による交番電流指令Iqhは上位コントローラ(図示せず)からのq軸電流指令値Iq*に加算器13により加算され、交番電流加算後のq軸電流指令Iq*'が算出されて電機子電流制御器12に入力される。注入された交番電流により界磁電流Ifには同じ周波数の交番電流が発生し、この交番電流を図7同様に検出して磁極位置を検出することができる。なおこの場合も、磁極位置検出器6内で使用する電流基準信号Ifpは発生する界磁電流の交番成分と同じ位相を持つ信号を使用する必要がある。図9にこの場合の交番電流指令Iqh、電流基準信号Ifp、界磁電流If、および誤差信号eθの波形の関係を示す。 In the above description, the method of injecting an alternating voltage on the armature side has been described. However, the magnetic pole position can also be detected by a method of injecting an alternating current on the armature side and detecting an alternating current on the field side. Compared with the case where an alternating voltage is injected, an alternating current having a desired amplitude can be generated without being affected by the impedance of the armature winding of the synchronous machine, and stable detection can be performed. FIG. 8 shows the configuration of a synchronous machine control system to which a magnetic pole position detection device for a wound field type synchronous machine is applied by a method of detecting an alternating current on the field side by injecting an alternating current on the armature side. In the configuration of FIG. 8, the alternating current command Iqh from the alternating signal generator 1 is added to the q-axis current command value Iq * from the host controller (not shown) by the adder 13, and the q-axis current after adding the alternating current is added. Command Iq * ′ is calculated and input to armature current controller 12. An alternating current having the same frequency is generated in the field current If by the injected alternating current, and this alternating current can be detected as in FIG. 7 to detect the magnetic pole position. In this case also, the current reference signal Ifp used in the magnetic pole position detector 6 needs to use a signal having the same phase as the alternating component of the generated field current. FIG. 9 shows the relationship among the waveforms of the alternating current command Iqh, current reference signal Ifp, field current If, and error signal eθ in this case.

以上のように、電機子側に交番電流を注入して界磁側の交番電流を検出することにより、電気的突極性を持たない巻線界磁式同期機においても、磁極位置センサを用いることなく磁極位置を検出することが可能になるとともに、同期機の電機子巻線のインピーダンスの影響を受けることなく所望の振幅の交番電流を発生させることが出来、安定した検出を行うことができる。 As described above, by injecting an alternating current into the armature side and detecting the alternating current on the field side, the magnetic pole position sensor can be used even in a wound field type synchronous machine having no electrical saliency. Thus, the magnetic pole position can be detected without any change, and an alternating current having a desired amplitude can be generated without being affected by the impedance of the armature winding of the synchronous machine, and stable detection can be performed.

なお電機子側に交番電流を注入して界磁側の交番電圧を検出する方法でも、図8に示した交番電流の注入方法と、先に説明した界磁電圧センサを用いる検出法を組み合わせることにより、磁極位置を検出することが可能であって、同期機の電機子巻線のインピーダンスの影響を受けることなく所望の振幅の交番電流を発生させることが出来、安定した検出を行うことが出来るとともに、同期機の界磁巻線のインピーダンス特性の影響を受けることなく交番成分を検出することができる。
この場合においても、磁極位置検出器内で使用する電流基準信号Vfpは発生する界磁電圧Vfdの交番成分と同じ位相を持つ信号を使用する必要がある。図10にこの場合の交番電流指令Iqh、電圧基準信号Vfp、検出界磁電流Vfd、および誤差信号eθの波形の関係を示す。
The method of injecting an alternating current into the armature side to detect the alternating voltage at the field side also combines the method of injecting the alternating current shown in FIG. 8 with the detection method using the field voltage sensor described above. Therefore, the magnetic pole position can be detected, and an alternating current having a desired amplitude can be generated without being affected by the impedance of the armature winding of the synchronous machine, so that stable detection can be performed. At the same time, the alternating component can be detected without being affected by the impedance characteristics of the field winding of the synchronous machine.
Even in this case, the current reference signal Vfp used in the magnetic pole position detector needs to use a signal having the same phase as the alternating component of the generated field voltage Vfd. FIG. 10 shows the relationship among the waveforms of the alternating current command Iqh, the voltage reference signal Vfp, the detected field current Vfd, and the error signal eθ in this case.

以上のように、電機子側に交番電流を注入して界磁側の交番電圧を検出することにより、電気的突極性を持たない巻線界磁式同期機においても、磁極位置センサを用いることなく磁極位置を検出することが可能になるとともに、同期機の電機子巻線のインピーダンスの影響を受けることなく所望の振幅の交番電流を発生させることが出来、安定した検出を行うことが出来、さらに同期機の界磁巻線のインピーダンス特性の影響を受けることなく交番成分を検出することができる。
なお、実際の界磁電流あるいは検出界磁電圧には、電機子側の交番電圧あるいは交番電流により発生する交番電圧あるいは交番電流以外に、界磁側変換器(PWMアンプあるいはサイリスタ変換器など)が発生する周期的な電圧あるいは電流の脈動が存在する場合がある。磁極位置検出において、これらの界磁側変換器による脈動の影響を避けるには、電機子側から印加する交番電圧あるいは交番電流の周波数を、変換器による脈動の周波数のn分の1(nは2の倍数)にすればよい。
As described above, by injecting an alternating current into the armature side and detecting the alternating voltage on the field side, the magnetic pole position sensor can be used even in a wound field type synchronous machine having no electrical saliency. It is possible to detect the position of the magnetic pole without any change, generate an alternating current with a desired amplitude without being affected by the impedance of the armature winding of the synchronous machine, and perform stable detection. Furthermore, the alternating component can be detected without being affected by the impedance characteristic of the field winding of the synchronous machine.
In addition to the alternating voltage or alternating current generated by the armature side alternating voltage or alternating current, the actual field current or detected field voltage includes a field side converter (such as a PWM amplifier or thyristor converter). There may be periodic voltage or current pulsations that occur. In order to avoid the influence of pulsation by these field side converters in the magnetic pole position detection, the frequency of the alternating voltage or alternating current applied from the armature side is set to 1 / n of the frequency of pulsation by the converter (n is (Multiple of 2).

図11、12に、図4に示した交番電圧Vqh、電流基準信号Ifp、界磁電流If、および誤差信号eθの波形の関係において界磁電流に周期的な脈動が存在する場合の波形を示す。図11は交番電圧Vqhの周波数が前期周期的脈動の周波数のn分の1(n=2)の関係にある場合であり、図12は交番電圧Vqhの周波数が前期周期的脈動の周波数のn分の1(n=2)の関係にない場合である。それぞれの図において、界磁電流Ifは正弦波状の成分(図と同じ)とノコギリ波状の周期的変動成分の和である波形となり、誤差信号eθには周期的変動成分の影響による乱れが現れる。図11の場合、基準信号Ipfの1周期内に偶数回の界磁側変換器による周期的脈動が含まれるようになり、誤差信号処理によりこれらの偶数回の脈動は大きさが同じで符号が逆転するため、誤差信号を基準信号1周期(あるいはその整数倍)で平均化することにより同脈動の影響をなくすことができる。これに対して図12の場合、基準信号Ipfの1周期内に表れる界磁側変換器による周期的脈動は一定しないので、誤差信号を基準信号の周期で平均化しても前記周期的脈動の影響をなくすことはできない。 11 and 12 show waveforms in the case where periodic pulsations exist in the field current in the relationship among the waveforms of the alternating voltage Vqh, the current reference signal Ifp, the field current If, and the error signal eθ shown in FIG. . FIG. 11 shows a case where the frequency of the alternating voltage Vqh is 1 / n (n = 2) of the frequency of the periodic pulsation, and FIG. 12 shows that the frequency of the alternating voltage Vqh is n of the frequency of the periodic pulsation. This is a case where the relationship is not 1 / n (n = 2). In each figure, the field current If has a waveform that is the sum of a sinusoidal component (same as in the figure) and a sawtooth-like periodic fluctuation component, and the error signal eθ is disturbed by the influence of the periodic fluctuation component. In the case of FIG. 11, periodic pulsations due to even-numbered field-side converters are included in one cycle of the reference signal Ipf, and these even-numbered pulsations have the same magnitude and are labeled by error signal processing. In order to reverse, the influence of the pulsation can be eliminated by averaging the error signal in one cycle of the reference signal (or an integer multiple thereof). On the other hand, in the case of FIG. 12, the periodic pulsation caused by the field-side converter that appears in one period of the reference signal Ipf is not constant, and therefore the influence of the periodic pulsation is caused even if the error signal is averaged with the period of the reference signal. Cannot be lost.

以上のように、電機子側から印加する交番電圧あるいは交番電流の周波数を、変換器による脈動の周波数のn分の1(nは2の倍数)にすることにより、磁極位置検出に対する界磁側変換器が発生する周期的な電圧あるいは電流の脈動の影響を避けることができる。 As described above, by setting the frequency of the alternating voltage or alternating current applied from the armature side to 1 / n (n is a multiple of 2) of the pulsation frequency by the converter, the field side for the magnetic pole position detection The effects of periodic voltage or current pulsations generated by the converter can be avoided.

実施の形態2.
また以上の実施の形態では、交番信号を電機子側に注入して界磁側で検出する方法の磁極位置検出装置について説明したが、逆に交番信号を界磁側に注入して電機子側で検出する方法でも磁極位置検出を行うことができる。
図13は本発明の実施の形態2による巻線界磁式同期機の磁極位置検出装置の動作を示すベクトル図である。図のように真の磁極位置θ0と検出磁極位置θが一致しない状態では、d0軸上に界磁巻線より交番電圧Vfhを加えると、電機子巻線と界磁巻線は電磁気的に結合しているので、その交番電圧は電機子巻線の制御座標軸であるq軸方向にも印加され、結果として電機子q軸に交番電流が発生する。一方、真の磁極位置θ0と検出磁極位置θが一致している場合には、d0軸上に界磁巻線より交番電圧Vfhを加えても、その交番電圧は電機子q軸方向成分を持たないので電機子q軸に交番電流は発生しない。
以上の界磁電圧と電機子q軸電流の関係は、実施の形態1における電機子q軸電圧と界磁電流の関係と類似しているので、同様の方法により磁極位置検出装置を構成することができる。
Embodiment 2. FIG.
In the above embodiment, the magnetic pole position detecting device has been described in which an alternating signal is injected into the armature side and detected on the field side. Conversely, an alternating signal is injected into the field side to reverse the armature side. The magnetic pole position can also be detected by the method of detecting by.
FIG. 13 is a vector diagram showing the operation of the magnetic pole position detection device of the wound field type synchronous machine according to the second embodiment of the present invention. As shown in the figure, in the state where the true magnetic pole position θ0 and the detected magnetic pole position θ do not match, if the alternating voltage Vfh is applied from the field winding on the d0 axis, the armature winding and the field winding are electromagnetically coupled Therefore, the alternating voltage is also applied in the q-axis direction, which is the control coordinate axis of the armature winding, and as a result, an alternating current is generated in the armature q-axis. On the other hand, when the true magnetic pole position θ0 and the detected magnetic pole position θ match, even if the alternating voltage Vfh is applied from the field winding on the d0 axis, the alternating voltage has a component in the armature q-axis direction. As a result, no alternating current is generated in the armature q-axis.
Since the relationship between the field voltage and the armature q-axis current is similar to the relationship between the armature q-axis voltage and the field current in the first embodiment, the magnetic pole position detection device is configured by the same method. Can do.

図14に本発明の実施の形態2による巻線界磁式同期機の磁極位置検出装置を適用した、同期機制御系の構成を示す。図7では、交番電圧指令Vfhは加算器13により界磁電流制御器14から出力される界磁電圧指令Vfに加えられて、交番電圧加算後の界磁電圧指令Vf'が界磁巻線に印加される。電機子電流Iu,Iv,Iwは座標変換器11によりdq軸座標上の電流Id,Iqに変換される。上記のようにq軸電流Iqに含まれる交番成分を用いて磁極検出を行うことが出来るので、磁極位置検出器6にはq軸電流Iqが入力されて検出磁極位置θが求められ、この検出磁極位置θに従い座標変換器2,11は座標変換を行う。なお、実施の形態2における磁極位置検出器6の構成は、図3に示す構成において入力信号を界磁電流Ifから電機子q軸電流Iqに変えたものである。 FIG. 14 shows the configuration of a synchronous machine control system to which the magnetic pole position detection device for a wound field type synchronous machine according to Embodiment 2 of the present invention is applied. In FIG. 7, the alternating voltage command Vfh is added to the field voltage command Vf output from the field current controller 14 by the adder 13, and the field voltage command Vf ′ after the addition of the alternating voltage is applied to the field winding. Applied. The armature currents Iu, Iv, Iw are converted by the coordinate converter 11 into currents Id, Iq on the dq axis coordinates. As described above, since the magnetic pole detection can be performed using the alternating component included in the q-axis current Iq, the q-axis current Iq is input to the magnetic pole position detector 6 to obtain the detected magnetic pole position θ. The coordinate converters 2 and 11 perform coordinate conversion according to the magnetic pole position θ. The configuration of the magnetic pole position detector 6 in the second embodiment is obtained by changing the input signal from the field current If to the armature q-axis current Iq in the configuration shown in FIG.

以上に述べた実施の形態2の磁極位置検出装置においては、交番電圧は界磁巻線に注入されるので、電機子電圧に交番電圧注入分の余裕を確保する必要が無く、同期機の電機子側の電源利用率を向上することができる。 In the magnetic pole position detection device of the second embodiment described above, the alternating voltage is injected into the field winding, so there is no need to ensure a margin for the alternating voltage injection in the armature voltage, and the synchronous machine The power usage rate on the child side can be improved.

また実施の形態2においても、上述のように界磁側に交番電圧を注入して電機子側の交番電流を検出する方法だけでなく、界磁側に交番電圧を注入し電機子側の交番電圧を電機子電圧センサにより検出する方法でも磁極位置検出装置を構成することは可能であって、同期機の電機子巻線のインピーダンスの影響を受けることなく交番成分を検出することができる。
また、界磁側に交番電流を注入し電機子側の交番電流を検出する方法でも磁極位置検出装置を構成することは可能であって、同期機の界磁巻線のインピーダンス特性の影響を受けることなく所望の振幅の交番電流を発生させることが出来、安定した検出を行うことができる。
また、界磁側に交番電流を注入し電機子側の交番電圧を検出する方法でも磁極位置検出装置を構成することは可能であって、同期機の電機子巻線のインピーダンスの影響を受けることなく交番成分を検出することができ、また同期機の界磁巻線のインピーダンス特性の影響を受けることなく所望の振幅の交番電流を発生させることが出来、安定した検出を行うことができる。
Also in the second embodiment, not only the method of injecting the alternating voltage on the field side and detecting the alternating current on the armature side as described above, but also the method of injecting the alternating voltage on the field side and alternating the armature side The magnetic pole position detection device can also be configured by the method of detecting the voltage by the armature voltage sensor, and the alternating component can be detected without being affected by the impedance of the armature winding of the synchronous machine.
It is also possible to construct a magnetic pole position detecting device by injecting an alternating current on the field side and detecting the alternating current on the armature side, which is affected by the impedance characteristics of the field winding of the synchronous machine. Therefore, an alternating current having a desired amplitude can be generated, and stable detection can be performed.
Also, it is possible to construct a magnetic pole position detection device by injecting an alternating current into the field side and detecting the alternating voltage on the armature side, and it is affected by the impedance of the armature winding of the synchronous machine The alternating component can be detected without any change, and the alternating current having a desired amplitude can be generated without being affected by the impedance characteristic of the field winding of the synchronous machine, so that stable detection can be performed.

なお上記の場合、電機子電圧検出値のかわりに電機子電圧指令を用いても、電気子電流制御の応答が十分高い場合には磁極位置の検出ができる。
また実施の形態2の場合でも、実施の形態1同様に、界磁側から印加する交番電圧あるいは交番電流の周波数を、電機子側変換器が発生する電圧あるいは電流の脈動の周波数のn分の1(nは2の倍数)にすることにより、磁極位置検出に対する前記脈動の影響を避けることができる。
In the above case, even if the armature voltage command is used instead of the armature voltage detection value, the magnetic pole position can be detected if the response of the armature current control is sufficiently high.
Also in the case of the second embodiment, as in the first embodiment, the frequency of the alternating voltage or alternating current applied from the field side is set to n minutes of the frequency of the voltage or current pulsation generated by the armature side converter. By setting 1 (n is a multiple of 2), the influence of the pulsation on the magnetic pole position detection can be avoided.

本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置の基本的な構成を示す図である。It is a figure which shows the basic composition of the magnetic pole position detection apparatus of the winding field type synchronous machine by Embodiment 1 of this invention. 本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置の動作を示すベクトル図である。It is a vector diagram which shows operation | movement of the magnetic pole position detection apparatus of the winding field type synchronous machine by Embodiment 1 of this invention. 図1の磁極位置検出器の内部構造を示す構成図である。It is a block diagram which shows the internal structure of the magnetic pole position detector of FIG. 本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置における交番電圧、電流基準信号、界磁電流、および誤差信号の波形の関係を示す図であるIt is a figure which shows the relationship of the waveform of an alternating voltage, a current reference signal, a field current, and an error signal in the magnetic pole position detection apparatus of the winding field type synchronous machine by Embodiment 1 of this invention. 本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置における、真の磁極位置、検出磁極位置ずれ、および誤差信号の関係を示す図である。It is a figure which shows the relationship between a true magnetic pole position, a detection magnetic pole position shift | offset | difference, and an error signal in the magnetic pole position detection apparatus of the winding field type synchronous machine by Embodiment 1 of this invention. 本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置における交番電圧、電圧基準信号、界磁電流、および誤差信号の波形の関係を示す図であるIt is a figure which shows the relationship of the waveform of an alternating voltage, a voltage reference signal, a field current, and an error signal in the magnetic pole position detection apparatus of the winding field synchronous machine by Embodiment 1 of this invention. 本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置を適用した同期機制御系の構成を示す図である。It is a figure which shows the structure of the synchronous machine control system to which the magnetic pole position detection apparatus of the winding field type synchronous machine by Embodiment 1 of this invention is applied. 本発明の実施の形態1による電機子側に交番電流を注入して界磁側の交番電流を検出する方法による巻線界磁式同期機の磁極位置検出装置を適用した同期機制御系の構成を示す図である。Configuration of Synchronous Machine Control System Applying Magnetic Field Position Detection Device for Winding Field Synchronous Machine Using Method for Injecting Alternating Current on Armature Side and Detecting Field-side Alternating Current According to Embodiment 1 of the Present Invention FIG. 本発明の実施の形態1による電機子側に交番電流を注入して界磁側の交番電流を検出する方法による巻線界磁式同期機の磁極位置検出装置における交番電流指令、電流基準信号、界磁電流、および誤差信号の波形の関係を示す図である。An alternating current command, a current reference signal in a magnetic pole position detection device of a wound field type synchronous machine by a method of injecting an alternating current on the armature side according to Embodiment 1 of the present invention and detecting the alternating current on the field side, It is a figure which shows the relationship between the waveform of a field current and an error signal. 本発明の実施の形態1による電機子側に交番電流を注入して界磁側の交番電圧を検出する方法による巻線界磁式同期機の磁極位置検出装置における交番電流指令、電圧基準信号、界磁電圧、および誤差信号の波形の関係を示す図である。An alternating current command, a voltage reference signal, and a voltage reference signal in a magnetic pole position detection device of a wound field type synchronous machine by a method of injecting an alternating current into the armature side according to Embodiment 1 of the present invention to detect an alternating voltage on the field side It is a figure which shows the relationship between the field voltage and the waveform of an error signal. 本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置における交番電圧、電流基準信号、界磁電流、および誤差信号の波形の関係を示す図であって、界磁電流に界磁側変換器が発生する周期的変動が含まれ、かつ交番電圧の周波数が前記周期的脈動の周波数のn分の1(n=2)の関係にある場合を示す図である。It is a figure which shows the relationship of the waveform of an alternating voltage, the current reference signal, a field current, and an error signal in the magnetic pole position detection apparatus of the winding field type synchronous machine by Embodiment 1 of this invention, Comprising: It is a figure which shows the case where the periodic fluctuation which a field side converter generate | occur | produces is included, and the frequency of an alternating voltage has the relationship of 1 / n (n = 2) of the frequency of the said periodic pulsation. 本発明の実施の形態1による巻線界磁式同期機の磁極位置検出装置における交番電圧、電流基準信号、界磁電流、および誤差信号の波形の関係を示す図であって、界磁電流に界磁側変換器が発生する周期的変動が含まれ、かつ交番電圧の周波数が前記周期的脈動の周波数のn分の1(n=2)の関係にない場合を示す図である。It is a figure which shows the relationship of the waveform of an alternating voltage, the current reference signal, a field current, and an error signal in the magnetic pole position detection apparatus of the winding field type synchronous machine by Embodiment 1 of this invention, Comprising: It is a figure which shows the case where the periodic fluctuation which a field side converter generate | occur | produces is included, and the frequency of an alternating voltage does not have the relationship of 1 / n (n = 2) of the frequency of the said periodic pulsation. 本発明の実施の形態2による巻線界磁式同期機の磁極位置検出装置の動作を示すベクトル図である。It is a vector diagram which shows operation | movement of the magnetic pole position detection apparatus of the winding field type synchronous machine by Embodiment 2 of this invention. 本発明の実施の形態2による巻線界磁式同期機の磁極位置検出装置を適用した同期機制御系の構成を示す図である。It is a figure which shows the structure of the synchronous machine control system to which the magnetic pole position detection apparatus of the winding field type synchronous machine by Embodiment 2 of this invention is applied.

符号の説明Explanation of symbols

1 交番信号発生器、3 電機子側変換器、4 巻線界磁型同期機、5 界磁電流センサ、6 磁極位置検出器、10 電機子電流センサ、13 加算器、 15 界磁側変換器
DESCRIPTION OF SYMBOLS 1 Alternating signal generator, 3 Armature side converter, 4 Winding field type synchronous machine, 5 Field current sensor, 6 Magnetic pole position detector, 10 Armature current sensor, 13 Adder, 15 Field side converter

Claims (6)

巻線界磁式同期機と、この同期機の電機子巻線に所望の交番信号を注入する交番信号発生器と、前記交番信号により前記同期機に設けられた単相の界磁巻線に発生する交番信号を検出する交番信号検出器と、前記界磁巻線に含まれている、前記電機子巻線に注入される交番信号と同じ周波数および位相を持つ基準信号と、前記交番信号検出器で検出された交番信号とを乗算することで、前記交番信号の振幅に比例した誤差信号を生成し、前記誤差信号が0になるように制御することで同期機の回転子磁極位置を検出する磁極位置検出器を備えることを特徴とする巻線界磁式同期機の磁極位置検出装置。 A winding field type synchronous machine, an alternating signal generator for injecting a desired alternating signal into the armature winding of the synchronous machine , and a single-phase field winding provided in the synchronous machine by the alternating signal; An alternating signal detector for detecting the generated alternating signal, a reference signal included in the field winding and having the same frequency and phase as the alternating signal injected into the armature winding, and the alternating signal detection By multiplying the alternating signal detected by the generator, an error signal proportional to the amplitude of the alternating signal is generated, and the rotor magnetic pole position of the synchronous machine is detected by controlling the error signal to be zero. A magnetic pole position detector for a wound field type synchronous machine, comprising: 巻線界磁式同期機と、この同期機に設けられた単相の界磁巻線に所望の交番信号を注入する交番信号発生器と、前記交番信号により前記同期機の電機子巻線に発生する交番信号を検出する交番信号検出器と、前記電機子巻線に含まれている、前記界磁巻線に注入される交番信号と同じ周波数および位相を持つ基準信号と、前記交番信号検出器で検出された交番信号とを乗算することで、前記交番信号の振幅に比例した誤差信号を生成し、前記誤差信号が0になるように制御することで同期機の回転子磁極位置を検出する磁極位置検出器を備えることを特徴とする巻線界磁式同期機の磁極位置検出装置。 A wound field synchronous machine, an alternating signal generator for injecting a desired alternating signal into a single-phase field winding provided in the synchronous machine, and an armature winding of the synchronous machine by the alternating signal An alternating signal detector for detecting the generated alternating signal, a reference signal included in the armature winding and having the same frequency and phase as the alternating signal injected into the field winding, and the alternating signal detection By multiplying the alternating signal detected by the generator, an error signal proportional to the amplitude of the alternating signal is generated, and the rotor magnetic pole position of the synchronous machine is detected by controlling the error signal to be zero. A magnetic pole position detector for a wound field type synchronous machine, comprising: 注入する交番信号は、電流あるいは電圧であることを特徴とする請求項1又は2に記載の巻線界磁式同期機の磁極位置検出装置。 3. The magnetic pole position detecting device for a winding field type synchronous machine according to claim 1, wherein the alternating signal to be injected is a current or a voltage. 検出する交番信号は、電流あるいは電圧であることを特徴とする請求項3に記載の巻線界磁式同期機の磁極位置検出装置。 4. The magnetic pole position detection device for a winding field type synchronous machine according to claim 3, wherein the alternating signal to be detected is a current or a voltage. 電機子巻線に注入する交番信号の周波数を、界磁側変換器が発生する界磁電圧あるいは界磁電流の脈動の周波数のn分の1(nは2の倍数)にすることを特徴とする請求項1又は3に記載の巻線界磁式同期機の磁極位置検出装置。 The frequency of the alternating signal injected into the armature winding is set to 1 / n (n is a multiple of 2) of the pulsation frequency of the field voltage or field current generated by the field side converter. The magnetic pole position detection apparatus of the winding field type synchronous machine according to claim 1 or 3. 界磁巻線に注入する交番信号の周波数を、電機子側変換器が発生する電機子電圧あるいは電機子電流の脈動の周波数のn分の1(nは2の倍数)にすることを特徴とする請求項2又は3に巻線界磁式同期機の磁極位置検出装置。 The frequency of the alternating signal injected into the field winding is 1 / n (n is a multiple of 2) of the pulsation frequency of the armature voltage or armature current generated by the armature-side converter. A magnetic pole position detection device for a winding field type synchronous machine according to claim 2 or 3.
JP2004322213A 2004-11-05 2004-11-05 Magnetic pole position detector for wound field type synchronous machine Expired - Fee Related JP4566695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322213A JP4566695B2 (en) 2004-11-05 2004-11-05 Magnetic pole position detector for wound field type synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004322213A JP4566695B2 (en) 2004-11-05 2004-11-05 Magnetic pole position detector for wound field type synchronous machine

Publications (2)

Publication Number Publication Date
JP2006136123A JP2006136123A (en) 2006-05-25
JP4566695B2 true JP4566695B2 (en) 2010-10-20

Family

ID=36729136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322213A Expired - Fee Related JP4566695B2 (en) 2004-11-05 2004-11-05 Magnetic pole position detector for wound field type synchronous machine

Country Status (1)

Country Link
JP (1) JP4566695B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009015106A1 (en) * 2009-03-31 2010-10-14 Sew-Eurodrive Gmbh & Co. Kg Method and device for regulating a synchronous machine excited by means of a field winding
DE102011089341A1 (en) * 2011-12-21 2012-07-19 Continental Automotive Gmbh Method for determination of angle between stator and rotor of e.g. synchronous motor of electric vehicle, involves determining angle between stator and rotor based on electrical energy values and rotational angle between alternating fields
FR2990088B1 (en) * 2012-04-30 2014-05-09 Renault Sa METHOD FOR DETERMINING THE ANGULAR SHIFT BETWEEN THE ROTOR AND THE STATOR OF AN ELECTRIC MACHINE OF A MOTOR VEHICLE
DE102014211881A1 (en) * 2014-06-20 2015-12-24 Robert Bosch Gmbh Method for checking a position of a rotor of an electrical machine
JP6390337B2 (en) * 2014-10-21 2018-09-19 株式会社デンソー Control device for rotating electrical machine
JP2018137870A (en) * 2017-02-21 2018-08-30 いすゞ自動車株式会社 Rotor rotation angle estimation device and motor controller
JP7073915B2 (en) * 2018-05-31 2022-05-24 株式会社デンソー Rotating machine control device and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720190A (en) * 1980-07-09 1982-02-02 Toyo Electric Mfg Co Ltd Detecting method for rotor position of rotary electric machine
JPH0213556B2 (en) * 1980-11-17 1990-04-04 Toyo Electric Mfg Co Ltd

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429711A (en) * 1987-07-24 1989-01-31 Hitachi Ltd Resolver device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720190A (en) * 1980-07-09 1982-02-02 Toyo Electric Mfg Co Ltd Detecting method for rotor position of rotary electric machine
JPH0213556B2 (en) * 1980-11-17 1990-04-04 Toyo Electric Mfg Co Ltd

Also Published As

Publication number Publication date
JP2006136123A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP4988374B2 (en) Motor control device
JP4033030B2 (en) Electric power steering device
JP5156352B2 (en) AC motor control device
US6768280B2 (en) Motor control apparatus
JP5761243B2 (en) Motor control device and magnetic pole position estimation method
US9742333B2 (en) Motor control device
JP5281339B2 (en) Synchronous motor drive system and control device used therefor
KR102285041B1 (en) Inverter control unit and motor drive system
JP2012170277A (en) Power converter and controller of electrically-driven power steering
JP2010119245A (en) Controller of ac motor
JPH11299297A (en) Controller for permanent magnet synchronous motor
JP6129972B2 (en) AC motor control device, AC motor drive system, fluid pressure control system, positioning system
JP2009290980A (en) Controller for permanent magnet type synchronous motor
JP2009005557A (en) Device and method for controlling motor
JP4566695B2 (en) Magnetic pole position detector for wound field type synchronous machine
JP5277724B2 (en) Control device for permanent magnet type synchronous motor
JP4596906B2 (en) Electric motor control device
WO2020217764A1 (en) Power conversion device, and electric vehicle system provided therewith
JP6407175B2 (en) Power converter control device
WO2020213178A1 (en) Electric motor control device
KR102409792B1 (en) Control device of permanent magnet synchronization electric motor, microcomputer, electric motor system, and driving method of permanent magnet synchronization electric motor
JP2018125955A (en) Motor controller
WO2019150984A1 (en) Control device for three-phase synchronous electric motor
JP2004120854A (en) Controller for motor
JP3576509B2 (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Ref document number: 4566695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees