JP4566447B2 - Thin fuse manufacturing method - Google Patents

Thin fuse manufacturing method Download PDF

Info

Publication number
JP4566447B2
JP4566447B2 JP2001142511A JP2001142511A JP4566447B2 JP 4566447 B2 JP4566447 B2 JP 4566447B2 JP 2001142511 A JP2001142511 A JP 2001142511A JP 2001142511 A JP2001142511 A JP 2001142511A JP 4566447 B2 JP4566447 B2 JP 4566447B2
Authority
JP
Japan
Prior art keywords
melting point
low melting
soluble alloy
flattened
point soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001142511A
Other languages
Japanese (ja)
Other versions
JP2002343212A (en
Inventor
朋晋 三井
和男 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2001142511A priority Critical patent/JP4566447B2/en
Publication of JP2002343212A publication Critical patent/JP2002343212A/en
Application granted granted Critical
Publication of JP4566447B2 publication Critical patent/JP4566447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は薄型ヒューズ、特に薄型の基板型温度ヒューズの製造方法に関するものである。
【0002】
【従来の技術】
温度ヒューズは低融点可溶合金片をヒューズエレメントとするものであり、例えば、基板型温度ヒューズにおいては、基板上に一対のヒューズ取付け用電極を設け、これらの電極間に低融点可溶合金片を接続し、該低融点可溶合金片にフラックスを塗布し、このフラックス塗布低融点可溶合金片を封止樹脂等で封止している。
この温度ヒューズにより電子・電気機器を保護するには、当該温度ヒューズを機器に取付け、機器の異常による発熱で温度ヒューズの低融点可溶合金片を溶融させ、既溶融フラックスのフラックス作用のもとで表面張力による溶融合金の球状化分断を促し、所定の絶縁距離の球状化分断によって通電を遮断し、機器の致命的破損、ひいては火災の発生を未然に防止している。
【0003】
近来、ノートパソコン、携帯電話、デジタルカメラ等の携帯型電子機器の電源として、体積エネルギー密度の大なる二次電池、特に、リチウムイオン二次電池が多用されている。
この二次電池では、短絡等の異常が生じると、その大なる内蔵エネルギーのために激しいジュール発熱により異常発熱が生じ、極端な場合は、急激な内圧発生により爆発が生じるに至る。
而して、この異常発熱を感知して電池の±極間を開放して過電流を遮断し、電池の爆発を未然に防止するようにしている。
前記の携帯型機器においては、その機種上、特に小型化が要求されている。而して、前記温度ヒューズにおいても、その携帯型機器の小型化に対応して薄型化が要請され、基板、封止層、低融点可溶合金片を薄厚化して薄型化が図られている。
この場合、低融点可溶合金片の自己シュール発熱を防止するために断面積をもとのままに維持して同一電気抵抗値のもとで低融点可溶合金片の薄厚化を行う必要があり、断面丸形の低融点可溶合金線材を扁平化している。
【0004】
【発明が解決しようとする課題】
丸線を断面同一のもとで扁平化すると、表面積が増大される。この表面積の増大自体は、塗布フラックスとの接触面積の増加によりヒューズの動作迅速性に寄与する。しかしながら、断面積に較べ表面積が大であるために、単位表面積当たりの酸化皮膜量が同一とすると、酸化物量が大となってヒューズの動作迅速性が低下される。
【0005】
すなわち、前記丸線の表面積と扁平化線の表面積Sとは、扁平化度をαとすると、
【数1】
S/s≒(2α/π)+(1/2α) (1)
で与えられ、例えば扁平化度αを0.2とすると、S/s≒2.5となり、前記酸化物量がほぼ2.5倍にもなる。
【0006】
而るに、温度ヒューズの低融点可溶合金片表面の酸化膜は固く、低融点可溶合金よりも融点が高く、低融点可溶合金片が溶融されても、この酸化膜鞘が保持されている限り球状化分断が開始されず、その酸化膜鞘がフラックスで可溶化されて初めて球状化分断が開始されるから、前記のように、低融点可溶合金片の酸化物量が扁平化により増加される以上、温度ヒューズの作動遅れが避けれらない。
【0007】
本発明の目的は、温度ヒューズの製造において、低融点可溶合金片に断面丸形の低融点可溶合金線材を扁平化したものを使用するにもかかわらず、低融点可溶合金片表面の酸化をよく抑えて優れた作動性の薄型温度ヒューズの製造を可能にすることにある。
【0008】
【課題を解決するための手段】
本発明に係る薄型ヒューズの製造方法は、連続低融点可溶合金線材を扁平化しつつ連続的に繰り出し、その扁平化繰り出し低融点可溶合金線材を基板上に所定の長さ供給し、その所定長さ部分を切断のうえ基板に固定し、この扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送って扁平化低融点可溶合金片にフラックスを塗布し、該フラックス塗布扁平化低融点可溶合金片を封止材で封止するヒューズの製造方法であり、扁平化低融点可溶合金線材を基板上に所定の長さ供給する間に扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送ることを特徴とする構成である。
【0009】
本発明に係る薄型ヒューズの他の製造方法は、連続低融点可溶合金線材を扁平化しつつ連続的に繰り出し、その扁平化繰り出し低融点可溶合金線材を基板上に所定の長さ供給し、その所定長さ部分を基板に固定のうえ切断し、この扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送って切断扁平化低融点可溶合金片にフラックスを塗布し、該フラックス塗布扁平化低融点可溶合金片を封止材で封止するヒューズの製造方法であり、扁平化低融点可溶合金線材を基板上に所定の長さ供給する間に扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送ることを特徴とする構成である。
【0010】
前記扁平化低融点可溶合金片の表面粗さは、0.05〜10μmとすることが好ましい。また、前記の扁平化の寸法は、通常、厚みが0.02〜0.3mm、巾が0.1〜3mmとされる。
【0011】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、本発明により製造される薄型温度ヒューズの一例を示し、絶縁基板、11例えばセラミックス基板のようなリジット基板、プラスチックフィルムのようなフレキシブル基板の片面に電極12,12を設け、電極間に扁平化低融点可溶合金片aを溶接等により接続し、扁平化低融点可溶合金片aにフラックスbを塗布し、各電極に帯状リード導体13,13を接続し、基板片面を樹脂フィルム、エポキシ樹脂、ケース等の封止材14で封止してある。
【0012】
図2の(イ)は本発明において使用する温度ヒューズの製造ラインを示す側面図、図2の(ロ)は同じく平面図である。
図2において、Aは断面丸形の低融点可溶合金線材、2はその供給ボビンである。3はロール圧延装置であり、圧延双ロール31、圧延前テンション調整ロール32、圧延後テンション調整ロール33、巾測定センサ34及びテンションコントロール35とから成り、圧延巾が下限値に達すると、これを巾測定センサ34で検知してテンションコントロール35により圧延前テンション調整ロール32を増速させ(または、圧延後テンション調整ロール33を減速させ)、圧延巾が上限値に達すると、これを巾測定センサ34で検知してテンションコントロール35により圧延前テンション調整ロール32を減速させて(または、圧延後テンション調整ロール33を増速させて)、圧延巾を一定範囲内におさめるようにしてある。
11は温度ヒューズの基板であり、ヒュ−ズ取り付け用電極12,12を備えている。4は早送りコンベアラインである。5は早送りコンベアライン4に設けた扁平化低融点可溶合金片載置ステーションであり、圧延ラインの下流側に配設してある。6は早送りコンベアライン4の扁平化低融点可溶合金片載置ステーション5の早送りコンベアライン下流側に配設した溶接ステーション、7は早送りコンベアライン4の溶接ステーション6の早送りコンベアライン下流側に配設したフラックス塗布ステーションである。
【0013】
上記製造ラインを用いて本発明により温度ヒューズを製造するには、低融点可溶合金線材Aの圧延ラインを連続駆動し、扁平化低融点可溶合金線材線材A’を圧延後テンション調整ロール33より所定の線速で繰り出していく。
扁平化低融点可溶合金片載置ステーション5には、温度ヒューズ用基板11を待機させておき、扁平化低融点可溶合金線材A’の先端が、基板の外側電極11aに達すると、これをセンサ51(接触センサ、光センサの何れでも可)で検知してカッター52を作動させ、扁平化低融点可溶合金線材A’を切断し、その切断片の扁平化低融点可溶合金片aて基板11上に載置する。
【0014】
このようにして基板11上に扁平化低融点可溶合金片aを載置したのち、早送りコンベアライン4の早送りにより次ぎの基板を扁平化低融点可溶合金片載置ステーション5に搬送すると共に扁平化低融点可溶合金片載置基板を溶接ステーション6に搬送し、早送りコンベアライン4を停止し、溶接ステーション6で基板11の電極12,12と扁平化低融点可溶合金片aとを溶接し、また、圧延ラインから繰り出されてくる扁平化低融点可溶合金線材の先端部を前記と同様に扁平化低融点可溶合金片載置ステーションに待機させてある基板上に供給し、カッターで切断して扁平化低融点可溶合金片を基板上に載置したうえで、早送りコンベアラインを再度早送りさせる。この早送りコンベアラインの再度の早送で、溶接ステーション6の溶接済みワークをフラックス塗布ステーション7に搬送し、前記扁平化低融点可溶合金片載置ステーションの扁平化低融点可溶合金片載置済みのワークを溶接ステーション6に搬送し、この搬送直後、フラックス塗布ステーション7でフラックスの塗布を行い、溶接ステーションで扁平化低融点可溶合金片の基板電極への溶接を行い、以後、上記を繰り返していく。
【0015】
上記において、繰り出されてくる扁平化低融点可溶合金線材の切断のサイクル時間をtとすると、早送りコンベアラインがtを停止時間として停止−高速送りを繰り返す。そして、圧延された扁平化低融点可溶合金線材の圧延後テンション調整ロールからの繰り出し速度をv、扁平化低融点可溶合金線材の切断長さをlとすると、切断のサイクル時間tは、
【数2】
=l/v (2)
で与えられ、この停止時間中に溶接ステーションでの溶接、フラックス塗布ステーションでのフラックス塗布が行われる。
上記圧延双ロールから、扁平化低融点可溶合金片載置ステーションにある基板の外側電極までの距離をWとすると、扁平化低融点可溶合金線材が扁平化されて繰り出される間に外気に曝される時間t
【数3】
(3)
=W/v
であり、溶接ステーションでの停留時間が、前記したように
【数4】
=l/v (4)
であり、フラックス塗布ステーションでのフラックス塗布に要する時間をt3とすれば、前記低融点可溶合金線材の扁平化からフラックス塗布終了までの時間tは、ほぼ
【数5】
t=W/v+l/v+t (5)
で与えられる(早送りコンベアラインの速度が高速であり、早送りコンベアラインによる送り時間は無視できる)。
【0016】
上記において、圧延双ロールによる断面丸形の線材の扁平化で線材表面積が増加され、扁平化前の丸線表面の酸化膜が扁平化後の扁平線の表面に亀裂分散されて線材の素地が現われ、この素地部分が経時的に酸化されていくが、本発明によれば、素地が現われてからフラックスで塗布されるまでの時間、すなわち、式4に示す時間tを極めて短くできるから、その素地の酸化を軽減して新たな酸化膜の生成をよく抑制できる。
【0017】
図3の(イ)は本発明において使用する温度ヒューズの製造ラインの別例を示す側面図、図3の(ロ)は同じく平面図である。
図3において、Aは断面丸形の低融点可溶合金線材、2はその供給ボビンである。3はロール圧延装置であり、前記したように、圧延双ロール31、圧延前テンション調整ロール32、圧延後テンション調整ロール33、巾測定センサ34及びテンションコントロール35とから構成してある。
11は温度ヒューズの基板であり、前記したように、ヒュ−ズ取り付け用電極12,12を備えている。4は圧延ラインの下流側に配設した早送りコンベアラインである。8は早送りコンベアライン4に設けた扁平化低融点可溶合金片搭載ステーションであり、扁平化低融点可溶合金線材先端部a’の基板11への乗載、溶接、切断が行われる。7は早送りコンベアライン4の扁平化低融点可溶合金片搭載ステーション8の早送りコンベアライン下流側に配設したフラックス塗布ステーションである。
【0018】
上記製造ラインを用いて本発明により温度ヒューズを製造するには、低融点可溶合金線材Aの圧延ラインを連続駆動し、扁平化低融点可溶合金線材線材A’を圧延後テンション調整ロール33より所定の線速で繰り出していく。
扁平化低融点可溶合金片搭載ステーション8には、温度ヒューズ用基板11を待機させておき、扁平化低融点可溶合金線材A’の先端eが、基板11の外側電極12aに達すると、これをセンサ81(接触センサ、光センサの何れでも可)で検知してレーザ溶接機82,82を作動させて扁平化低融点可溶合金線材a’と基板11の電極12,12とを溶接し、レーザカッター83で内側電極12bの外側の扁平化低融点可溶合金線材箇所を切断して扁平化低融点可溶合金片の基板11への搭載を行う。
次いで、早送りコンベアライン4を早送りして扁平化低融点可溶合金片搭載基板をフラックス塗布ステーション7に搬送すると共に次ぎの基板を扁平化低融点可溶合金片搭載ステーション8に搬入する。
この扁平化低融点可溶合金片搭載ステーションに搬入した基板の外側電極への扁平化低融点可溶合金線材先端の到達を待っての扁平化低融点可溶合金線材と基板の電極との溶接及び基板の内側電極の外側における扁平化低融点可溶合金線材箇所のレーザ切断を行い、フラックス塗布ステーション7に搬送した扁平化低融点可溶合金片a搭載基板11へのフラックスbの塗布を行う。以後、上記を繰り返していく。
【0019】
上記扁平化低融点可溶合金片搭載ステーション8でのレーザ溶接及びレーザ切断の間、扁平化低融点可溶合金片搭載ステーション8内の扁平化低融点可溶合金線材先端部a’を静止状態とするために、圧延後テンション調整ロール33と扁平化低融点可溶合金片搭載ステーション8との間にダンサーロールを設け、扁平化低融点可溶合金片搭載ステーションでのレーザ溶接及びレーザ切断の間に圧延後テンション調整ロールから繰り出されてくる扁平化低融点可溶合金線材量をダンサーロールの作動で吸収させることができる。また、このダンサーロールによる吸収に代え、圧延ラインを停止することも可能である。
【0020】
上記の別実施例において、圧延双ロール31から、扁平化低融点可溶合金片搭載ステーション8にある基板11の外側電極12aまでの距離をW、繰り出し扁平化低融点可溶合金線材のダンサーロールによる吸収量をwとすれば、扁平化低融点可溶合金線材が扁平化されて扁平化低融点可溶合金片搭載ステーション8の基板の外側電極12aに達し、溶接及び切断が行われる間に外気に曝される時間t’は
【数6】
’=(W+w)/v (6)
であり、フラックス塗布ステーション7でのフラックス塗布に要する時間をt3とすれば、前記低融点可溶合金線材の扁平化からフラックス塗布終了までの時間tは、ほぼ
【数7】
t=(W+w)/v+t (7)
で与えられる(早送りコンベアラインの速度が高速であり、早送りコンベアラインによる送り時間は無視できる)。
【0021】
上記において、圧延双ロールによる断面丸形の線材の扁平化で線材表面積が増加され、扁平化前の丸線表面の酸化膜が扁平化後の扁平線の表面に亀裂分散されて線材の素地が現われ、この素地部分が経時的に酸化されていくが、本発明によれば、素地が現われてからフラックスで塗布されるまでの時間、すなわち、式7に示す時間tを極めて短くできるから、その素地の酸化を軽減して新たな酸化膜の生成をよく抑制できる。
【0022】
上記実施例では、低融点可溶合金線材の圧延ラインと温度ヒューズ用基板への扁平化低融点可溶合金線材先端部の乗載−切断−溶接−フラックス塗布のコンベアライン、または低融点可溶合金線材の圧延ラインと温度ヒューズ用基板への扁平化低融点可溶合金片の搭載(扁平化低融点可溶合金線材先端部の乗載−溶接−切断)−フラックス塗布のコンベアラインとを同調させているが、扁平化低融点可溶合金線材を所定の長さに切断する時間間隔で扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送れば、低融点可溶合金線材の扁平化からフラックスで塗布されるまでの時間を前記実施例と同程度に短くでき、連続低融点可溶合金線材を扁平化しつつ繰り出し、その扁平化繰り出し低融点可溶合金線材を所定の長さに切断するラインと、この切断扁平化低融点可溶合金片を基板に固定し、この切断扁平化低融点可溶合金片にフラックスを塗布するラインを相互独立とすることもできる。
【0023】
本発明に係る温度ヒューズの製造方法によれば、扁平化低融点可溶合金片の新たな酸化を防止して優れた迅速作動性の温度ヒューズを提供でき、特に、前記実施例では、扁平化時点からフラックス塗布までの時間を著しく短くして新たな酸化を僅少にできる。
この場合の単位表面積当たりの酸化物量をw、扁平化低融点可溶合金片の表面の表面積をS、扁平化低融点可溶合金片の断面積をBとすれば、単位体積当たりの酸化物量xは
【数8】
x=wS/B (8)
で与えられ、扁平化時点からフラックス塗布までの時間を著しく短くすることによるwの僅少化以外に、特に、請求項4のように、扁平化低融点可溶合金片の表面粗さを10μm以下とすれば、Sを実質的に低減でき、より一層のヒューズ作動性の迅速化が期待できる。
なお、経済的な面から、扁平化低融点可溶合金片の表面粗さを0.05μm以上とすることが望ましい。
【0024】
本発明は、前記式(1)の扁平化度αが大きいほど、従って、扁平化の巾/厚みの比が大きいほど有効度が高いが、厚みの下限は機械的強度上制約され、厚みの上限や巾の上限は温度ヒューズの薄型・小型化上制約されるから、扁平化の寸法を、厚み0.02〜0.3mm、巾0.1〜3mmとすることが好ましい。
【0025】
本発明により薄型ヒューズを製造するにあたり、リード導体の接続や封止は、通常通りに行うことができる。
【0026】
また、薄型ヒューズは、図4に示すように、樹脂フィルム11の片面両端に一対の扁平リード導体13,13を融着等により固着し、リード導体13,13間に扁平化低融点可溶合金片aを溶接し、扁平化低融点可溶合金片aにフラックスbを塗布し、基材11の片面を樹脂フィルムの封止材14の融着により封止する構成とすることもでき、この場合、本発明における基材には、片面両端に一対の扁平リード導体を融着等により固着した樹脂フィルムが使用される。
【0027】
【発明の効果】
本発明に係る薄型ヒューズの製造方法によれば、断面丸形の低融点可溶合金線材の扁平化後、この扁平化線材を所定の切断長さのもとで基板に搭載し、その搭載した扁平化低融点可溶合金片のフラックス塗布終了までの時間を、従来例に較べて極めて短くし得るから、扁平化により生じた合金素地の酸化を充分に抑え得、扁平化低融点可溶合金片表面の酸化膜量をよく軽減でき、迅速な溶断作動性を有する薄型温度ヒューズを製造できる。
また、低融点可溶合金線材の扁平化を連続的に行っているから(間歇的扁平化を行わないから)、扁平化低融点可溶合金片の断面の一様化、扁平成形の円滑化を保証できる。
【図面の簡単な説明】
【図1】本発明により製造される薄型ヒューズの一例を示す図面である。
【図2】本発明の一実施例を示す図面である。
【図3】本発明の別実施例を示す図面である。
【図4】本発明により製造される薄型ヒューズの別例を示す図面である。
【符号の説明】
A 連続低融点可溶合金線材
A’ 扁平化低融点可溶合金線材
a 扁平化低融点可溶合金片
11 基板
12 電極
3 圧延装置
b フラックス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a thin fuse, particularly a thin substrate-type thermal fuse.
[0002]
[Prior art]
A thermal fuse uses a low melting point soluble alloy piece as a fuse element. For example, in a substrate type thermal fuse, a pair of fuse mounting electrodes is provided on a substrate, and a low melting point soluble alloy piece is provided between these electrodes. Are connected, a flux is applied to the low melting point soluble alloy piece, and the flux coated low melting point soluble alloy piece is sealed with a sealing resin or the like.
In order to protect electronic and electrical equipment with this thermal fuse, the thermal fuse is attached to the equipment, the low melting point soluble alloy piece of the thermal fuse is melted by the heat generated by the equipment abnormality, The spheroidization of the molten alloy due to surface tension is promoted and the energization is cut off by the spheroidization of a predetermined insulation distance, thereby preventing the fatal damage of the equipment and the occurrence of fire.
[0003]
Recently, secondary batteries with a large volumetric energy density, particularly lithium ion secondary batteries, are frequently used as power sources for portable electronic devices such as notebook computers, mobile phones, and digital cameras.
In this secondary battery, when an abnormality such as a short circuit occurs, abnormal heat generation occurs due to intense Joule heat generation due to the large built-in energy, and in an extreme case, explosion occurs due to rapid internal pressure generation.
Thus, by detecting this abnormal heat generation, the battery is opened between ± electrodes to cut off the overcurrent, thereby preventing the battery from exploding.
The above-mentioned portable device is particularly required to be downsized due to its model. Thus, the thermal fuse is also required to be thinned in response to the miniaturization of the portable device, and the thinning is achieved by thinning the substrate, the sealing layer, and the low melting point soluble alloy piece. .
In this case, it is necessary to reduce the thickness of the low melting point soluble alloy piece under the same electric resistance value while maintaining the cross-sectional area as it is in order to prevent self-surreal heat generation of the low melting point soluble alloy piece. Yes, a low melting point soluble alloy wire with a round cross section is flattened.
[0004]
[Problems to be solved by the invention]
When the round wire is flattened under the same cross section, the surface area is increased. This increase in the surface area itself contributes to the quick operation of the fuse by increasing the contact area with the coating flux. However, since the surface area is larger than the cross-sectional area, if the amount of oxide film per unit surface area is the same, the amount of oxide becomes large and the operation speed of the fuse is lowered.
[0005]
That is, the surface area of the round wire and the surface area S of the flattened wire are expressed as follows.
[Expression 1]
S / s≈ (2α / π) + (1 / 2α) (1)
For example, when the flatness α is 0.2, S / s≈2.5, and the amount of the oxide is about 2.5 times.
[0006]
Therefore, the oxide film on the surface of the low melting point soluble alloy piece of the thermal fuse is hard and has a higher melting point than the low melting point soluble alloy, and even if the low melting point soluble alloy piece is melted, this oxide film sheath is retained. As long as the spheroidization is not started as long as the oxide sheath is solubilized with the flux, the spheroidization starts only after the oxide film sheath is solubilized with the flux. As long as it is increased, a delay in operating the thermal fuse is inevitable.
[0007]
The object of the present invention is to manufacture a low-melting-point fusible alloy piece surface in spite of using a low-melting-point fusible alloy piece flattened with a low-melting-point fusible alloy wire having a round cross-section for manufacturing a thermal fuse. It is to make it possible to manufacture a thin thermal fuse with excellent operability by suppressing oxidation.
[0008]
[Means for Solving the Problems]
The thin fuse manufacturing method according to the present invention continuously feeds a continuous low melting point soluble alloy wire while flattening, supplies the flattening delivery low melting point soluble alloy wire to a predetermined length on a substrate, The length portion is cut and fixed to the substrate, and the flattened low melting point soluble alloy piece fixed substrate is sent to the flux application stage to apply flux to the flattened low melting point soluble alloy piece. A method of manufacturing a fuse for sealing a melting point soluble alloy piece with a sealing material, and flattening a low melting point soluble alloy piece fixing substrate while supplying a flattened low melting point soluble alloy wire to a predetermined length on the substrate Is sent to the flux application stage.
[0009]
Another method of manufacturing a thin fuse according to the present invention is to continuously feed out a continuous low melting point soluble alloy wire while flattening, supplying the flattened feeding low melting point alloy wire to a predetermined length on a substrate, The predetermined length portion is fixed to the substrate and cut, and then the flattened low melting point soluble alloy piece fixed substrate is sent to the flux application stage to apply the flux to the cut flattened low melting point soluble alloy piece, and the flux is applied. A method for manufacturing a fuse in which a flattened low melting point soluble alloy piece is sealed with a sealing material, and the flattened low melting point soluble alloy wire is supplied to the substrate for a predetermined length on the flattened low melting point soluble alloy wire. The single-fixed substrate is sent to a flux application stage.
[0010]
The surface roughness of the flattened low melting point soluble alloy piece is preferably 0.05 to 10 μm. Further, the flattening dimensions are usually 0.02 to 0.3 mm in thickness and 0.1 to 3 mm in width.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a thin thermal fuse manufactured according to the present invention. Electrodes 12 and 12 are provided on one side of an insulating substrate, 11 a rigid substrate such as a ceramic substrate, or a flexible substrate such as a plastic film. The flattened low melting point soluble alloy piece a is connected by welding or the like, the flux b is applied to the flattened low melting point soluble alloy piece a, the strip-like lead conductors 13 and 13 are connected to the respective electrodes, and the one side of the substrate is made of resin. It is sealed with a sealing material 14 such as a film, an epoxy resin, or a case.
[0012]
2A is a side view showing a production line of a thermal fuse used in the present invention, and FIG. 2B is a plan view.
In FIG. 2, A is a low melting point soluble alloy wire having a round cross section, and 2 is its supply bobbin. 3 is a roll rolling device, which comprises a rolling twin roll 31, a pre-rolling tension adjusting roll 32, a post-rolling tension adjusting roll 33, a width measuring sensor 34, and a tension control 35. When the rolling width reaches the lower limit, Detected by the width measurement sensor 34, the tension adjustment roll 32 before rolling is accelerated by the tension control 35 (or the tension adjustment roll 33 after rolling is decelerated), and when the rolling width reaches the upper limit value, this is measured. 34, the tension adjusting roll 32 before rolling is decelerated by the tension control 35 (or the tension adjusting roll 33 after rolling is increased) to keep the rolling width within a certain range.
Reference numeral 11 denotes a thermal fuse substrate, which includes fuse mounting electrodes 12 and 12. Reference numeral 4 denotes a fast-feed conveyor line. Reference numeral 5 denotes a flattened low-melting-point soluble alloy piece mounting station provided in the fast-feed conveyor line 4, which is disposed on the downstream side of the rolling line. 6 is a welding station disposed on the downstream side of the flattening low melting point soluble alloy piece placement station 5 of the fast-feed conveyor line 4, and 7 is disposed on the downstream side of the fast-feed conveyor line of the welding station 6 of the fast-feed conveyor line 4. This is a flux application station.
[0013]
In order to manufacture a thermal fuse according to the present invention using the above production line, the rolling line of the low melting point soluble alloy wire A is continuously driven, and the flattened low melting point soluble alloy wire A ′ is rolled and the tension adjusting roll 33 is rolled. It is fed out at a predetermined linear speed.
The flattened low melting point soluble alloy piece mounting station 5 is made to wait for the thermal fuse substrate 11, and when the tip of the flattened low melting point soluble alloy wire A ′ reaches the outer electrode 11a of the substrate, Is detected by a sensor 51 (either a contact sensor or an optical sensor), the cutter 52 is operated, the flattened low melting point soluble alloy wire A ′ is cut, and the flattened low melting point soluble alloy piece of the cut piece is obtained. a) is placed on the substrate 11;
[0014]
After the flattened low melting point soluble alloy piece a is placed on the substrate 11 in this way, the next substrate is transported to the flattened low melting point soluble alloy piece placing station 5 by rapid feed of the fast feed conveyor line 4. The flattened low melting point soluble alloy piece mounting substrate is conveyed to the welding station 6, the rapid feed conveyor line 4 is stopped, and the electrodes 12, 12 of the substrate 11 and the flattened low melting point soluble alloy piece a are connected at the welding station 6. Welding, and supplying the tip of the flattened low melting point soluble alloy wire fed from the rolling line on the substrate that is waiting in the flattened low melting point soluble alloy piece mounting station as described above, After cutting with a cutter and placing the flattened low melting point soluble alloy piece on the substrate, the fast-feed conveyor line is fast-forwarded again. In this fast-forwarding conveyor line again, the welded workpiece of the welding station 6 is transferred to the flux application station 7 and the flattened low-melting-point soluble alloy piece placement station of the flattened low-melting-point soluble alloy piece placement station. The finished workpiece is transferred to the welding station 6, immediately after this transfer, the flux is applied at the flux application station 7, and the flattened low melting point soluble alloy piece is welded to the substrate electrode at the welding station. Repeat.
[0015]
In the above, the cycle time of the unwound come off the flattened low melting fusible gold material When t 2, fast-forward conveyor line is stopped as a stop time t 2 - repeating the fast feed. Then, the feeding speed of the rolling after tensioning roll rolled flattened low melting fusible gold material v, the cut length of the flattened low melting fusible gold material When l, cycle time t 2 of cleavage ,
[Expression 2]
t 2 = l / v (2)
During this stop time, welding at the welding station and flux application at the flux application station are performed.
When the distance from the rolled twin roll to the outer electrode of the substrate in the flattened low melting point soluble alloy piece mounting station is W, the flattened low melting point soluble alloy wire is flattened and discharged to the outside air. The exposure time t 1 is:
(3)
t 1 = W / v
As mentioned above, the stop time at the welding station is
t 2 = l / v (4)
If the time required for flux application at the flux application station is t3, the time t from the flattening of the low melting point soluble alloy wire to the end of the flux application is approximately
t = W / v + l / v + t 3 (5)
(The speed of the fast-feed conveyor line is high, and the feed time by the fast-feed conveyor line is negligible).
[0016]
In the above, the surface area of the wire is increased by flattening the wire having a round cross section by rolling twin rolls, and the oxide film on the surface of the round wire before flattening is cracked and dispersed on the surface of the flat wire after flattening, thereby The substrate portion is oxidized with time. According to the present invention, the time from when the substrate appears until it is applied with the flux, that is, the time t shown in Equation 4 can be extremely shortened. Oxidation of the substrate can be reduced and the formation of a new oxide film can be well suppressed.
[0017]
3A is a side view showing another example of the production line for the thermal fuse used in the present invention, and FIG. 3B is a plan view.
In FIG. 3, A is a low melting point soluble alloy wire having a round cross section, and 2 is its supply bobbin. Reference numeral 3 denotes a roll rolling apparatus, which includes the rolling twin roll 31, the pre-rolling tension adjusting roll 32, the post-rolling tension adjusting roll 33, the width measuring sensor 34, and the tension control 35 as described above.
Reference numeral 11 denotes a thermal fuse substrate having the fuse mounting electrodes 12 and 12 as described above. 4 is a fast-feed conveyor line disposed on the downstream side of the rolling line. Reference numeral 8 denotes a flattened low melting point soluble alloy piece mounting station provided in the fast-feed conveyor line 4, where the flattened low melting point soluble alloy wire tip a ′ is mounted on the substrate 11, welded, and cut. 7 is a flux application station disposed on the downstream side of the fast-feed conveyor line of the flattened low melting point soluble alloy piece mounting station 8 of the fast-feed conveyor line 4.
[0018]
In order to manufacture a thermal fuse according to the present invention using the above production line, the rolling line of the low melting point soluble alloy wire A is continuously driven, and the flattened low melting point soluble alloy wire A ′ is rolled and the tension adjusting roll 33 is rolled. It is fed out at a predetermined linear speed.
In the flattened low melting point soluble alloy piece mounting station 8, the thermal fuse substrate 11 is kept waiting, and when the tip e of the flattened low melting point soluble alloy wire A ′ reaches the outer electrode 12 a of the substrate 11, This is detected by a sensor 81 (which can be either a contact sensor or an optical sensor) and the laser welding machines 82 and 82 are operated to weld the flattened low melting point soluble alloy wire a ′ and the electrodes 12 and 12 of the substrate 11. Then, the flattened low melting point soluble alloy wire portion outside the inner electrode 12b is cut by the laser cutter 83, and the flattened low melting point soluble alloy piece is mounted on the substrate 11.
Next, the fast-feed conveyor line 4 is fast-forwarded to convey the flattened low melting point soluble alloy piece mounting substrate to the flux application station 7 and carry the next substrate into the flattening low melting point soluble alloy piece mounting station 8.
Welding of the flattened low melting point soluble alloy wire to the substrate electrode waiting for the tip of the flattened low melting point soluble alloy wire to reach the outer electrode of the substrate carried into the flattened low melting point soluble alloy piece mounting station And the laser cutting of the flattened low melting point soluble alloy wire portion outside the inner electrode of the substrate is performed, and the flux b is applied to the flattened low melting point soluble alloy piece a mounting substrate 11 conveyed to the flux application station 7. . Thereafter, the above is repeated.
[0019]
During laser welding and laser cutting at the flattened low melting point soluble alloy piece mounting station 8, the flattened low melting point soluble alloy wire mounting end 8 'in the flattened low melting point soluble alloy piece mounting station 8 is stationary. Therefore, a dancer roll is provided between the tension adjusting roll 33 after rolling and the flattened low melting point soluble alloy piece mounting station 8, and laser welding and laser cutting at the flattened low melting point soluble alloy piece mounting station are performed. The amount of the flattened low melting point soluble alloy wire fed from the tension adjusting roll after rolling can be absorbed by the dancer roll. In addition, the rolling line can be stopped instead of absorption by the dancer roll.
[0020]
In the other embodiment, the distance from the rolling twin roll 31 to the outer electrode 12a of the substrate 11 in the flattened low melting point soluble alloy piece mounting station 8 is W, and the dancer roll of the drawn flattened low melting point soluble alloy wire If the absorption amount by w is w, the flattened low melting point soluble alloy wire is flattened and reaches the outer electrode 12a of the substrate of the flattened low melting point soluble alloy piece mounting station 8 while welding and cutting are performed. The time t 1 ′ exposed to the outside air is:
t 1 '= (W + w) / v (6)
If the time required for flux application at the flux application station 7 is t3, the time t from flattening of the low melting point soluble alloy wire to the end of flux application is approximately
t = (W + w) / v + t 3 (7)
(The speed of the fast-feed conveyor line is high, and the feed time by the fast-feed conveyor line is negligible).
[0021]
In the above, the surface area of the wire is increased by flattening the wire having a round cross section by rolling twin rolls, and the oxide film on the surface of the round wire before flattening is cracked and dispersed on the surface of the flat wire after flattening, thereby This substrate portion is oxidized over time, but according to the present invention, the time from when the substrate appears until it is applied with the flux, that is, the time t shown in Equation 7, can be made extremely short. Oxidation of the substrate can be reduced and the formation of a new oxide film can be well suppressed.
[0022]
In the above embodiment, the rolling line of the low melting point soluble alloy wire and the flattened low melting point soluble alloy wire tip mounted on the thermal fuse substrate-cutting-welding-conveying line for flux application or low melting point soluble Aligning the rolling line of alloy wire with the flattened low melting point soluble alloy piece on the thermal fuse substrate (mounting the flattened low melting point soluble alloy wire tip-welding-cutting)-synchronizing the flux coating conveyor line However, if the flattened low melting point soluble alloy wire fixed substrate is sent to the flux application stage at a time interval for cutting the flattened low melting point soluble alloy wire into a predetermined length, the flattening of the low melting point soluble alloy wire is performed. The time from application to flux application can be shortened to the same extent as in the previous embodiment, and the continuous low melting point soluble alloy wire is fed out while flattening, and the flattened drawing out low melting point soluble alloy wire is made to a predetermined length. La to cut And down, the cut flattened low melting fusible alloy piece was fixed to a substrate, the lines of flux is applied to the cut flattened low melting fusible alloy piece can be a independently of one another.
[0023]
According to the method for manufacturing a thermal fuse according to the present invention, it is possible to provide a thermal fuse having excellent quick operation by preventing new oxidation of a flattened low melting point soluble alloy piece. The time from the point of time to the application of the flux can be significantly shortened to minimize new oxidation.
In this case, if the oxide amount per unit surface area is w, the surface area of the flattened low melting point soluble alloy piece is S, and the cross sectional area of the flattened low melting point soluble alloy piece is B, the oxide amount per unit volume x is [Equation 8]
x = wS / B (8)
The surface roughness of the flattened low-melting-point soluble alloy piece is 10 μm or less, in particular, as described in claim 4, in addition to the reduction of w by significantly shortening the time from the flattening time to the flux application. If so, it is possible to substantially reduce S, and it is expected that the fuse operability can be further accelerated.
From an economical viewpoint, it is desirable that the surface roughness of the flattened low melting point soluble alloy piece is 0.05 μm or more.
[0024]
The present invention is more effective as the flatness α of the above formula (1) is larger, and therefore, as the flattening width / thickness ratio is larger. However, the lower limit of the thickness is limited in terms of mechanical strength, and the thickness Since the upper limit and the upper limit of the width are restricted in terms of thinning and downsizing of the thermal fuse, the flattening dimensions are preferably 0.02 to 0.3 mm in thickness and 0.1 to 3 mm in width.
[0025]
In manufacturing a thin fuse according to the present invention, connection and sealing of lead conductors can be performed as usual.
[0026]
In addition, as shown in FIG. 4, the thin fuse has a pair of flat lead conductors 13 and 13 fixed to both ends of one surface of the resin film 11 by fusion or the like, and a flattened low melting point soluble alloy between the lead conductors 13 and 13. The piece a can be welded, the flux b is applied to the flattened low melting point soluble alloy piece a, and one side of the substrate 11 can be sealed by fusing the sealing material 14 of the resin film. In this case, a resin film in which a pair of flat lead conductors are fixed to both ends of one side by fusion or the like is used as the base material in the present invention.
[0027]
【The invention's effect】
According to the thin fuse manufacturing method according to the present invention, after flattening the low melting point soluble alloy wire having a round cross section, the flattened wire is mounted on the substrate under a predetermined cutting length, and the mounted The time until the flux application of the flattened low melting point soluble alloy piece can be made extremely short compared to the conventional example, so that the oxidation of the alloy base caused by flattening can be sufficiently suppressed, and the flattened low melting point soluble alloy The amount of oxide film on one surface can be reduced well, and a thin thermal fuse having quick fusing operation can be manufactured.
Also, since flattening of the low melting point soluble alloy wire is continuously performed (since intermittent flattening is not performed), the cross-section of the flattened low melting point soluble alloy piece is made uniform and the Heisei form is smoothed. Can guarantee.
[Brief description of the drawings]
FIG. 1 is a view showing an example of a thin fuse manufactured according to the present invention.
FIG. 2 is a drawing showing an embodiment of the present invention.
FIG. 3 is a drawing showing another embodiment of the present invention.
FIG. 4 is a view showing another example of a thin fuse manufactured according to the present invention.
[Explanation of symbols]
A continuous low melting point soluble alloy wire A 'flattened low melting point soluble alloy wire a flattened low melting point soluble alloy piece 11 substrate 12 electrode 3 rolling apparatus b flux

Claims (6)

連続低融点可溶合金線材を扁平化しつつ連続的に繰り出し、その扁平化繰り出し低融点可溶合金線材を基板上に所定の長さ供給し、その所定長さ部分を切断のうえ基板に固定し、この扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送って扁平化低融点可溶合金片にフラックスを塗布し、該フラックス塗布扁平化低融点可溶合金片を封止材で封止するヒューズの製造方法であり、扁平化低融点可溶合金線材を基板上に所定の長さ供給する間に扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送ることを特徴とする薄型ヒューズの製造方法。The continuous low melting point soluble alloy wire is continuously fed out while being flattened, the flattened feeding low melting point soluble alloy wire is supplied to the substrate for a predetermined length, and the predetermined length portion is cut and fixed to the substrate. Then, this flattened low melting point soluble alloy piece fixed substrate is sent to the flux application stage to apply the flux to the flattened low melting point soluble alloy piece, and the flux coated flattened low melting point soluble alloy piece is sealed with a sealing material. A method of manufacturing a fuse for stopping, wherein the flattened low melting point soluble alloy wire is fed to the flux coating stage while the flattened low melting point soluble alloy wire is supplied to the substrate for a predetermined length. Thin fuse manufacturing method. 連続低融点可溶合金線材を扁平化しつつ連続的に繰り出し、その扁平化繰り出し低融点可溶合金線材を基板上に所定の長さ供給し、その所定長さ部分を基板に固定のうえ切断し、この扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送って切断扁平化低融点可溶合金片にフラックスを塗布し、該フラックス塗布扁平化低融点可溶合金片を封止材で封止するヒューズの製造方法であり、扁平化低融点可溶合金線材を基板上に所定の長さ供給する間に扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送ることを特徴とする薄型ヒューズの製造方法。A continuous low melting point soluble alloy wire is continuously fed out while being flattened, the flattened feeding low melting point soluble alloy wire is supplied to the substrate for a predetermined length, and the predetermined length portion is fixed to the substrate and cut. The flattened low melting point soluble alloy piece fixed substrate is sent to the flux application stage to apply the flux to the cut flattened low melting point soluble alloy piece, and the flux coated flattened low melting point soluble alloy piece is sealed with a sealing material. A method of manufacturing a fuse for sealing, characterized in that a flattened low melting point soluble alloy wire fixed plate is sent to a flux application stage while a flattened low melting point soluble alloy wire is supplied to the substrate for a predetermined length. Manufacturing method for thin fuse. 連続低融点可溶合金線材を扁平化しつつ連続的に繰り出し、その扁平化繰り出し低融点可溶合金線材を所定の長さに切断し、この切断扁平化低融点可溶合金片を基板に固定し、この扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送って切断扁平化低融点可溶合金片にフラックスを塗布し、該フラックス塗布扁平化低融点可溶合金片を封止材で封止するヒューズの製造方法であり、扁平化低融点可溶合金線材を所定の長さに切断する時間間隔で扁平化低融点可溶合金片固定基板をフラックス塗布ステージに送ることを特徴とする薄型ヒューズの製造方法。The continuous low melting point soluble alloy wire is continuously drawn out while being flattened, the flattened drawn low melting point soluble alloy wire is cut into a predetermined length, and the cut flattened low melting point soluble alloy piece is fixed to the substrate. The flattened low melting point soluble alloy piece fixed substrate is sent to the flux application stage to apply the flux to the cut flattened low melting point soluble alloy piece, and the flux coated flattened low melting point soluble alloy piece is sealed with a sealing material. A method for manufacturing a fuse to be sealed, wherein the flattened low melting point soluble alloy wire is cut to a predetermined length and the flattened low melting point soluble alloy piece fixed substrate is sent to the flux application stage. Thin fuse manufacturing method. 扁平化低融点可溶合金片の表面粗さを10μm以下とする請求項1〜3何れか記載の薄型ヒューズの製造方法。The method for producing a thin fuse according to any one of claims 1 to 3, wherein the flattened low melting point soluble alloy piece has a surface roughness of 10 µm or less. 扁平化の寸法を、厚み0.02〜0.3mmとし、巾を0.1〜3mmとする請求項1〜4何れか記載の薄型ヒューズの製造方法。The method for manufacturing a thin fuse according to any one of claims 1 to 4, wherein the flattening dimensions are 0.02 to 0.3 mm in thickness and 0.1 to 3 mm in width. 連続低融点可溶合金線材を扁平化を双圧延ロールで行う請求項1〜5何れか記載の薄型ヒューズの製造方法。The method for producing a thin fuse according to any one of claims 1 to 5, wherein the continuous low melting point soluble alloy wire is flattened by a twin-rolling roll.
JP2001142511A 2001-05-14 2001-05-14 Thin fuse manufacturing method Expired - Fee Related JP4566447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142511A JP4566447B2 (en) 2001-05-14 2001-05-14 Thin fuse manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142511A JP4566447B2 (en) 2001-05-14 2001-05-14 Thin fuse manufacturing method

Publications (2)

Publication Number Publication Date
JP2002343212A JP2002343212A (en) 2002-11-29
JP4566447B2 true JP4566447B2 (en) 2010-10-20

Family

ID=18988796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142511A Expired - Fee Related JP4566447B2 (en) 2001-05-14 2001-05-14 Thin fuse manufacturing method

Country Status (1)

Country Link
JP (1) JP4566447B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545164B1 (en) 2013-12-23 2015-08-20 주식회사 피플웍스 TCO parts insertion test device
KR101584270B1 (en) * 2014-05-30 2016-01-11 전태화 The manufacturring machine for a copperplate type fuse that applied to element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205587A (en) * 1992-01-23 1993-08-13 Kazuo Tokuda Thermal fuse and manufacture thereof
JPH05225873A (en) * 1992-02-14 1993-09-03 Uchihashi Estec Co Ltd Manufacture of board-type temperature fuse
JPH11162313A (en) * 1997-11-25 1999-06-18 Nec Kansai Ltd Thermal fuse and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205587A (en) * 1992-01-23 1993-08-13 Kazuo Tokuda Thermal fuse and manufacture thereof
JPH05225873A (en) * 1992-02-14 1993-09-03 Uchihashi Estec Co Ltd Manufacture of board-type temperature fuse
JPH11162313A (en) * 1997-11-25 1999-06-18 Nec Kansai Ltd Thermal fuse and manufacture thereof

Also Published As

Publication number Publication date
JP2002343212A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
US7690326B2 (en) System and method for controlling coating width of electrode plate
US20020185735A1 (en) Bump connection and method and apparatus for forming said connection
EP2110861A2 (en) Solar cell lead wire and production method therefor and solar cell using same
JP5549996B2 (en) Hoop-like member for aluminum tab lead
US7163565B2 (en) Electrode plate for secondary battery, method of manufacturing the same, and secondary battery using the same
JP4566447B2 (en) Thin fuse manufacturing method
US11135673B2 (en) Welding device and processing apparatus for secondary battery current collector
JP2010080540A (en) Formation method of electrode connection part
JP2004179551A (en) Coil apparatus and method of manufacturing the same
JP2008241566A (en) Thin-film temperature sensor, and outgoing line connection method thereof
KR100377920B1 (en) The method of electrode tab with sealing tape and the device thereof
JP2008130759A (en) Sheet feeder, and sheet feeding method
JP2004022524A (en) Battery and battery pack
JPH02146742A (en) Method and device for wire bonding
JP3152985B2 (en) Manufacturing method of substrate type temperature fuse
JP4623622B2 (en) Manufacturing method of clad material for semiconductor package and manufacturing method of semiconductor package
KR20140121628A (en) Adhesive method of film
JPH02153502A (en) Flat coil mounting method
US20230238155A1 (en) Method for manufacturing fusing busbar
WO2023089931A1 (en) Welding device and method for manufacturing resin welding workpiece
US11460353B2 (en) Temperature sensor and device equipped with temperature sensor
JP2012164835A (en) Manufacturing method of lead wire for solar cell and the lead wire for the solar cell
JP2012004182A (en) Connection method and apparatus for solar battery connecting member
JP2006182543A (en) Pulling guide device
JP2007260713A (en) Device for preheating base material in clad material manufacturing facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees