JP4566114B2 - Method for producing foam molded article - Google Patents

Method for producing foam molded article Download PDF

Info

Publication number
JP4566114B2
JP4566114B2 JP2005314646A JP2005314646A JP4566114B2 JP 4566114 B2 JP4566114 B2 JP 4566114B2 JP 2005314646 A JP2005314646 A JP 2005314646A JP 2005314646 A JP2005314646 A JP 2005314646A JP 4566114 B2 JP4566114 B2 JP 4566114B2
Authority
JP
Japan
Prior art keywords
pressure
mold
temperature
foamed
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005314646A
Other languages
Japanese (ja)
Other versions
JP2007106973A (en
Inventor
泰貴 楯
岩男 野原
Original Assignee
株式会社ダイセン工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセン工業 filed Critical 株式会社ダイセン工業
Priority to JP2005314646A priority Critical patent/JP4566114B2/en
Publication of JP2007106973A publication Critical patent/JP2007106973A/en
Application granted granted Critical
Publication of JP4566114B2 publication Critical patent/JP4566114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発泡性樹脂粒子を型内に充填して蒸気加熱などの手段で加熱発泡して得られる発泡成形体の製造方法の改良に関する。 The present invention relates to an improvement in production how of the foamed molded product obtained by the expandable resin beads filled in a mold and heating and foaming with means such as steam heating.

従来から発泡ポリスチレン樹脂などの発泡性樹脂粒子を型内に充填して蒸気加熱などの手段で加熱発泡して得られる発泡樹脂成形体はよく知られているが、従来のこの種の発泡樹脂成形体は、用途が「魚箱」のような生鮮食品保管・搬送BOXに代表されるように断熱保冷性、緩衝性が重視された結果、内部に空隙を持たない、実質的に無通気性の材料に仕上げられていて、例えば、吸音材料に適した細孔構造を持っていなかった。   Conventionally, foamed resin moldings obtained by filling foamed resin particles such as expanded polystyrene resin into a mold and heating and foaming by means such as steam heating are well known. As for the body, as a result of emphasizing heat insulation and cold insulation and buffering properties as represented by BOX for fresh food storage and transportation such as “fish box”, there is no void inside, and it is substantially non-breathable The material was finished and, for example, did not have a pore structure suitable for a sound absorbing material.

そこで、発泡樹脂成形体の適当な細孔構造を付与する研究が行なわれたが、好ましい細孔気孔率を実現するには、加熱温度条件を下げる必要があり、その結果、発泡セルの結合強度が低下し、成形体として実用的な構造強度が得られず、実用化に成功していなかった。このような点を改善するものとして、特許文献1の発泡樹脂成形体が提案されている。   Therefore, research has been conducted to give an appropriate pore structure of the foamed resin molded body. However, in order to achieve a favorable pore porosity, it is necessary to lower the heating temperature condition, and as a result, the bond strength of the foamed cell As a result, the structural strength practical for the molded body could not be obtained, and the practical application was not successful. In order to improve such a point, the foamed resin molded article of Patent Document 1 has been proposed.

この特許文献1から知られる発泡樹脂成形体では、原料となる発泡性樹脂粒子の表面に、低温度で熱接着性の接着用樹脂を付着しておき、成形時に、発泡量を調節して細孔構造を残しながら、この接着用樹脂でもって発泡セル同士を接着接合するものであって、接着用樹脂を用いる等の理由から以下の不具合があった。
1)材料費や加工費がコストアップとなる。
2)発泡性樹脂粒子の流動性が低下し、充填装置が目詰まりしたり、型内の充填度が不均一になりやすいなど操作性に劣る。
3)接着用樹脂の低温軟化特性が原因となり耐熱性や長期耐久性が大幅に低下する。
In the foamed resin molded body known from Patent Document 1, a low temperature adhesive resin for heat adhesion is attached to the surface of the foamable resin particles as a raw material, and the foaming amount is adjusted during molding. The foamed cells are bonded and bonded together with the adhesive resin while leaving the pore structure, and the following inconveniences exist for the reason of using the adhesive resin.
1) Material costs and processing costs are increased.
2) The fluidity of the expandable resin particles decreases, the filling device is clogged, and the operability is inferior, such as the degree of filling in the mold is likely to be uneven.
3) Due to the low-temperature softening properties of the adhesive resin, heat resistance and long-term durability are greatly reduced.

なお、本発明出願人は、上記問題を解決するために、新規な発泡成形体とその製造方法を提案している。〔特願2005−37960(出願2005・02・15)、優先権:特願2004−266853(出願2004・09・14)〕   In order to solve the above problems, the applicant of the present invention has proposed a novel foam molded article and a method for producing the same. [Japanese Patent Application No. 2005-37960 (Application 2005 / 02.15), Priority: Japanese Patent Application No. 2004-266853 (Application 2004.09.14)]

この適度な構造強度を持った発泡成形体の空隙構造は、発泡性樹脂粒子の融着、冷却に際して型内圧力を制御しながら低下させることにより発泡量を制御して得られるのであるが、このような方法においては、旧来のポリオレフィン系の発泡性樹脂粒子を原料とする場合には好適であっても、発泡性ポリスチレン粒子や、溶融張力を高めることにより発泡性ポリスチレン粒子と同様の加熱手段で成形を行なうことのできるように改良したポリオレフィン系の発泡性樹脂粒子などを原料として成形する場合は、容積気孔率や引裂き強度など品質が変動するので一定の発泡成形体が得られにくいという問題があった。
特許第3268094号公報(特開平7−168577号公報):特許請求の範囲、段落〔0017〕〔0018〕など。
The void structure of the foamed molded article having an appropriate structural strength can be obtained by controlling the amount of foaming by decreasing the pressure inside the mold while controlling the fusion resin foaming and cooling. In such a method, even if it is suitable when the conventional polyolefin-based expandable resin particles are used as a raw material, the same heating means as the expandable polystyrene particles or expandable polystyrene particles by increasing the melt tension When molding polyolefin-based expandable resin particles, etc., that can be molded as raw materials, there is a problem that it is difficult to obtain a certain foamed molded product because the quality such as volume porosity and tear strength varies. there were.
Japanese Patent No. 3268094 (Japanese Patent Laid-Open No. 7-168577): claims, paragraphs [0017] [0018] and the like.

本発明は、上記の問題点を解決するためになされたものであり、接着用樹脂を使用することなく、また、発泡性ポリスチレン粒子やこれと同様の加熱手段で成形を行なうことのできる発泡性樹脂粒子を原料とした発泡樹脂成形体においても好ましい細孔構造と構造強度の両立を図ることができる安定した品質の発泡成形体の製造方法を提供する。 The present invention has been made in order to solve the above-described problems, and can be molded without using an adhesive resin, and can be molded with expandable polystyrene particles or heating means similar thereto. Provided is a method for producing a foamed molded product of stable quality, which can achieve both a preferable pore structure and structural strength even in a foamed resin molded product using resin particles as a raw material.

本発明は、型内に充填した発泡性樹脂粒子を加熱発泡して得られる多数の発泡セルで構成される発泡成形体の発泡成形においても、発泡性樹脂粒子を融着温度条件下で発泡量を高圧空気を導入して制御することによって、粒子間に空隙を設けながら粒子相互が融着して強固に結合するという本件発明者が見出した知見に基づくものである。   The present invention is also applicable to foam molding of a foamed molded article composed of a large number of foamed cells obtained by heating and foaming foamable resin particles filled in a mold. This is based on the knowledge found by the present inventor that particles are fused and bonded firmly while providing voids between the particles by introducing high-pressure air.

上記の問題は、型内に充填した発泡性樹脂粒子を加熱発泡して得られる多数の発泡セルで構成される発泡成形体であって、隣り合う発泡セルそれ自体が溶融した融着部によって結合されるとともに、前記多数の発泡セルの間に形成される三次元連通気孔が形成され、かつ少なくとも10Nの曲げ限界強度を有する発泡成形体の製造方法であって、加熱水蒸気の存在下、その発泡性樹脂粒子を融着温度に加熱したときに、加熱水蒸気の供給を止め、型内圧力より高圧の制御用空気を型内に導入し、型内をより高圧状態に加圧し、融着温度に加熱された発泡セルを圧縮して、隣り合う発泡セルそれ自体が溶融した融着部によって結合するとともに、前記多数の発泡セルの間に三次元連通気孔を形成することを特徴とする発泡成形体の製造方法によって解決することができる。The above problem is a foamed molded body composed of a large number of foamed cells obtained by heating and foaming the foamable resin particles filled in the mold, and the adjacent foamed cells themselves are joined by a fused portion. And a method for producing a foamed molded article having a three-dimensional continuous air hole formed between the plurality of foamed cells and having a bending limit strength of at least 10 N, the foaming in the presence of heated steam. When the heat-resistant resin particles are heated to the fusing temperature, the supply of heated steam is stopped, control air having a pressure higher than the pressure inside the mold is introduced into the mold, the inside of the mold is pressurized to a higher pressure, and the fusing temperature is reached. A foamed molded article characterized by compressing heated foamed cells so that adjacent foamed cells themselves are joined by a fused portion and three-dimensional continuous air holes are formed between the plurality of foamed cells. According to the manufacturing method It can be solved Te.

また、本発明は、前記制御用空気により、型内圧力を融着温度に加熱したときの型内圧力の1.5倍以上の値に加圧することを特徴とする形態に具体化でき、また、前記制御用空気の温度が、導入時の型内温度〜常温の範囲の温度であるのが好ましい。さらに、前記高圧加熱に続いて圧力を制御して発泡性樹脂粒子の発泡量を制御しながら発泡セルを融着させるようにするのが好ましい。   Further, the present invention can be embodied in a form characterized in that the pressure in the mold is pressurized to a value not less than 1.5 times the pressure in the mold when the mold pressure is heated to the fusion temperature by the control air. The temperature of the control air is preferably in the range of the in-mold temperature at the time of introduction to normal temperature. Furthermore, it is preferable to fuse the foamed cells while controlling the pressure by controlling the pressure following the high-pressure heating to control the foaming amount of the foamable resin particles.

本発明により製造される発泡成形体によれば、接着用樹脂を使用することなく、取扱い、搬送に耐え、かつ構造体として実用的構造強度として、10N以上の曲げ限界強度を有するポリスチレン系発泡成形体から構成されるので、接着用樹脂に起因するコストアップは抑制され、また発泡性樹脂粒子の有する本来の特性が活かすことができ、操作性あるいは耐熱性や長期耐久性の問題も解消できる利点が得られる。
さらに、10〜40%の容積気孔率を有する細孔構造を持つものは、自動車用内装部材、車体フロア面の凹凸をフラットにする車両用フロアフラット材、建築用吸音部材、道路・鉄道騒音防止部材、住宅用吸音部材または産業機器用吸音部材として有用となる。
According to the foam molded article produced by the present invention , a polystyrene-based foam molded article that can withstand handling and conveyance without using an adhesive resin and has a bending limit strength of 10 N or more as a practical structural strength as a structure. Because it is composed of a body, the cost increase caused by the adhesive resin is suppressed, the original properties of the foamable resin particles can be utilized, and the problems of operability, heat resistance, and long-term durability can be solved Is obtained.
Further, those having a pore structure having a volume porosity of 10 to 40% are automobile interior members, vehicle floor flat materials that flatten the unevenness of the vehicle body floor surface, building sound absorbing members, road / railway noise prevention It is useful as a member, a sound absorbing member for housing, or a sound absorbing member for industrial equipment.

また、本発明の発泡成形体の製造方法によれば、型内の融着温度に達した発泡性ポリスチレン樹脂粒子を高圧の制御用空気により加圧した後、融着、結合させることができるから、三次元連通気孔の構造を安定して形成することができ、より品質の安定したポリスチレン発泡成形体やポリプロビレン発泡成形体を製造することができる。   Further, according to the method for producing a foam molded article of the present invention, the expandable polystyrene resin particles that have reached the fusion temperature in the mold can be fused and bonded after being pressurized with high-pressure control air. In addition, the structure of the three-dimensional continuous air hole can be stably formed, and a polystyrene foam molded article and a polypropylene foam molded article with more stable quality can be produced.

かくして、本発明の発泡成形体の製造方法は、このように、接着用樹脂を使用することなく、吸音体に好ましい細孔構造と構造強度を得るという従来困難であった問題を解決して、接着用樹脂に起因するコストアップ、操作性あるいは耐熱性や長期耐久性の低下を防止できるという優れた効果がある。よって本発明は、従来の問題点を解消した発泡成形体およびその製造方法として、工業的価値はきわめて大なるものがある。 Thus, the method for producing a foamed molded article of the present invention solves the conventionally difficult problem of obtaining a preferable pore structure and structural strength for a sound absorber without using an adhesive resin. There are excellent effects that the cost increase, operability, heat resistance and long-term durability caused by the adhesive resin can be prevented. Therefore, the present invention has an extremely large industrial value as a foamed molded product and a method for producing the same, which have solved the conventional problems.

次に、本発明の発泡成形体の製造方法を、発泡性ポリスチレン樹脂粒子を原料として行った実施形態について、図1〜6を参照しながら説明する。
(発泡成形体)
本発明により製造される発泡成形体を模式的な概念図1によって概説すると、先ず、型内に充填した発泡性樹脂粒子を加熱発泡して得られる多数の発泡セル11、11、・・で構成される発泡成形体1からなるもので、その特徴とするところは、先ず、その発泡成形体1が、発泡性ポリスチレン樹脂その他これと同様の手段で発泡成形可能な発泡性樹脂粒子を型内に充填して蒸気加熱などで加熱発泡して得られる発泡樹脂成形体である点にある。なお、以下の説明で発泡成形体は特に注釈しない場合はポリスチレン系樹脂からなるものを意味することとする。
Next, an embodiment in which the method for producing a foamed molded product of the present invention is performed using expandable polystyrene resin particles as a raw material will be described with reference to FIGS.
(Foamed molded product)
A foamed molded product produced according to the present invention will be outlined with reference to a schematic conceptual diagram 1. First, the foamed molded body is composed of a large number of foamed cells 11, 11,... Obtained by heating and foaming foamable resin particles filled in a mold. The foam-molded body 1 is characterized in that the foam-molded body 1 first contains foamable resin particles that can be foam-molded by a foamable polystyrene resin or other similar means in the mold. It is a foamed resin molded product obtained by filling and heating and foaming by steam heating or the like. In the following description, the foamed molded product means one made of polystyrene resin unless otherwise noted.

第2に、この発泡成形体では、隣り合う発泡セル11、11、・・の接触面11a、11a、・・がそれ自体が溶融した融着部(後記の図2(B)参照)となって、発泡セル相互を結合されている点、そして、前記多数の発泡セル11、11、・・の間にある空隙12、12、・・は、発泡成形体内部を縦横に連通する三次元連通気孔を形成している点にある。すなわち、その結合部分である融着部は、発泡性樹脂素材が融合しているのであるから、発泡樹脂素材と全く同一の物性を持ち、強固な結合が得られるのである。その結合状態については、追ってさらに詳述する。   Secondly, in this foamed molded product, the contact surfaces 11a, 11a,... Of the adjacent foam cells 11, 11,... Become fused portions (see FIG. 2B, which will be described later). Are connected to each other and the voids 12, 12,... Between the plurality of foam cells 11, 11,... This is in the formation of pores. That is, since the foamed resin material is fused in the fusion part, which is the joint part, it has exactly the same physical properties as the foamed resin material, and a strong bond can be obtained. The combined state will be described in detail later.

次に、本発明の発泡体の強度としては、ハンドリングに耐える形状保持強度が最低、必要であり、好ましくは構造体としての機械的強度を持つことが好ましい。この点から、機械的強度を代表する尺度として、曲げ限界強度を採用して、少なくとも10Nの強度を備える点を特徴としており、22N以上であるのがより好ましい。   Next, the strength of the foam of the present invention is required to have a minimum shape retention strength that can withstand handling, and preferably has a mechanical strength as a structure. From this point, the bending limit strength is adopted as a measure representative of mechanical strength, and it is characterized by having a strength of at least 10N, and more preferably 22N or more.

本発明の発泡成形体における前記3次元連通気孔は、多数の枝分かれしてジグザグ、曲がりくねり、その内径は拡大・縮小の変化を不規則に繰り返すという複雑な空間経路を持っているので、進入した音波に対し、反射、干渉、共振などの減衰効果が作用するという吸音基本機能を発揮するのである。また、発泡成形体の好ましい機械的緩衝機能を発揮する基本構造であることは言うまでもないことである。なお、この3次元連通気孔は、全体の容積に対する細気孔の全容積比である容積気孔率が10〜40%であるのが好ましい。   The three-dimensional continuous air hole in the foamed molded article of the present invention has a complicated spatial path in which a large number of branches and zigzags and bends, and the inner diameter repeats the change of expansion and contraction irregularly. On the other hand, it exhibits the basic sound absorbing function of attenuating effects such as reflection, interference and resonance. Further, it goes without saying that the basic structure exhibits a preferable mechanical buffering function of the foamed molded product. In addition, it is preferable that the volume porosity which is the total volume ratio of the fine pores with respect to the whole volume is 10 to 40% in the three-dimensional continuous air holes.

この容積気孔率が10%を下回る場合は、高強度を得るには好都合であるが、吸音効果が不足するので吸音体としては好ましくない。また、40%を超える場合は、吸音効果が低下する傾向を示すうえ、機械的強度が得られ難いという構造上の理由から好ましくない。   When this volume porosity is less than 10%, it is convenient to obtain high strength, but it is not preferable as a sound absorber because the sound absorbing effect is insufficient. On the other hand, if it exceeds 40%, the sound absorption effect tends to decrease, and the mechanical strength is difficult to obtain, which is not preferable.

本発明の発泡成形体を構成する発泡セルの形状にも以下のような特徴がある。すなわち、その発泡セルのカット断面は、略円形ないし長円形断面を持つ粒体であって、その大きさは長径基準で1.5〜5.5mmのものが好ましい。この範囲外の場合は、吸音作用に好ましい細気孔容積が得られ難いからである。
また、個々の発泡セルは、その長径/短径の範囲が3.0までの略長円形断面粒体であるのが、吸音作用に必要な細気孔容積が得られ易いので好ましい。
The shape of the foam cell constituting the foam molded article of the present invention also has the following characteristics. That is, the cut cross section of the foam cell is a granule having a substantially circular or oval cross section, and the size thereof is preferably 1.5 to 5.5 mm on the basis of the major axis. If it is outside this range, it is difficult to obtain a fine pore volume that is preferable for the sound absorbing action.
In addition, it is preferable that each foam cell has a substantially oval cross-sectional particle having a major axis / minor axis range of up to 3.0, because a fine pore volume necessary for sound absorption is easily obtained.

次に、本発明の発泡セルの結合状態について、図2を参照して補足する。図2は、本発明の発泡成形体における発泡セルの代表的な結合状態A,B,Cを示す模式的図である。
先ず、図(A)は、発泡セル11、11が互いに押し圧状態に結合したもので、その境界に沿って融着部2aが形成されている。この場合は、後記の(B)(C)の場合に較べて比較的強い結合強度が得られるものの、気孔率が小となるので吸音性ではやや劣るものとなる。
Next, the combined state of the foamed cells of the present invention will be supplemented with reference to FIG. FIG. 2 is a schematic diagram showing typical bonded states A, B, and C of the foam cells in the foam molded article of the present invention.
First, the figure (A) is what the foaming cells 11 and 11 couple | bonded together in the pressing state, and the melt | fusion part 2a is formed along the boundary. In this case, although a relatively strong bond strength can be obtained as compared with the cases (B) and (C) described later, the sound absorption is somewhat inferior because the porosity is small.

図(B)は、図(A)(C)の中間的形態であって、発泡セル11、11が接触状態を保ち、その間に融着部2bが形成されている。このような状態は、発泡セルが融着時に、外部からの加圧により図(A)の状態から圧縮されることにより形成されるが、具体的には第2発明の製造法において詳述する。   The figure (B) is an intermediate form of the figure (A) and (C), Comprising: The foaming cells 11 and 11 maintain a contact state, The fusion | melting part 2b is formed in the meantime. Such a state is formed by compressing the foamed cell from the state of FIG. (A) by external pressurization at the time of fusion. Specifically, it will be described in detail in the manufacturing method of the second invention. .

図(C)は、融着部2cによって結合される発泡セル11、11が離隔した位置関係を持ち、かつその融着部2cが両者間に架け渡される架橋状態に形成されている形態を示している。このような状態は、外部からの加圧により図(B)の状態からさらに圧縮されることにより形成されるが、この結合状態では、十分な強度を保持しながら前2種の図(A)(B)の場合より大きな気孔率が得られるのでより好ましい形態といえる。   FIG. (C) shows a form in which the foamed cells 11, 11 joined by the fusion part 2 c have a separated positional relationship, and the fusion part 2 c is formed in a cross-linked state spanned between them. ing. Such a state is formed by further compression from the state of FIG. (B) by external pressurization, but in this combined state, the two previous types (A) are maintained while maintaining sufficient strength. Since a larger porosity can be obtained than in the case of (B), it can be said to be a more preferable embodiment.

次に、本発明をその用途面から補足する。
本発明により製造される発泡成形体は、吸音材としてのみならず、強度を負担する構造部材を兼ねる材料であるから、適度な吸音性と強度を要求される自動車用内装部材に好適である。例えば、ダッシュボード面部材、車室内壁材、フロア部材などに用いられ得る。これらの場合、容積気孔率が小または実質的に0である表層部を、発泡成形体全体の厚さの10〜45%になるよう片面(表面側)に一体成形して用いるのがよい。
Next, the present invention will be supplemented from the application aspect.
The foamed molded article produced according to the present invention is suitable not only as a sound absorbing material but also as a structural member that bears strength, and is therefore suitable for an automotive interior member that requires moderate sound absorbing properties and strength. For example, it can be used for dashboard surface members, vehicle interior wall materials, floor members, and the like. In these cases, the surface layer portion having a small or substantially zero volume porosity is preferably integrally molded on one side (surface side) so as to be 10 to 45% of the total thickness of the foamed molded product.

また、フロア材に用いる場合には、前記表層部を車室側に向けて配置し、車体フロアとの間に発泡成形体を介在させて、この発泡成形体によって車体フロア面の凹凸をフラットにする車両用フロアフラット材として好ましく用いられる。   Further, when used as a floor material, the surface layer portion is arranged facing the vehicle compartment side, and a foamed molded product is interposed between the surface of the vehicle body floor and the unevenness of the vehicle body floor surface is flattened by the foamed molded product. It is preferably used as a vehicle floor flat material.

さらに、本発明は、建築物の壁用、天井用など吸音内装部材の他、道路・鉄道騒音防止部材、住宅用吸音部材または産業機器用吸音部材として広く用いられ得るのはいうまでもないが、この場合、前記表層部は強度を有する化粧面を構成するのであるが、その厚さは、全体の厚さの10〜45%であって1〜40mmの範囲が適当である。   Furthermore, it goes without saying that the present invention can be widely used as a sound absorbing interior member such as a building wall or a ceiling, a road / railway noise preventing member, a residential sound absorbing member, or an industrial equipment sound absorbing member. In this case, the surface layer portion constitutes a decorative face having strength, and the thickness is 10 to 45% of the total thickness, and a range of 1 to 40 mm is appropriate.

(発泡成形体の製造方法)
本発明の発泡成形体の製造方法について、図3〜6を参照して説明する。本発明は、前記した発泡成形体の製造方法であって、加熱水蒸気の存在下、その発泡性樹脂粒子を融着温度に加熱したときに、型内圧力より高圧の制御用空気を型内に導入し、型内をより高圧状態に加圧する点を重要な要件とする。
(Method for producing foamed molded article)
The manufacturing method of the foaming molding of this invention is demonstrated with reference to FIGS. The present invention is a method for producing a foamed molded article as described above, and when the foamable resin particles are heated to a fusion temperature in the presence of heated steam, control air having a pressure higher than the pressure inside the mold is placed in the mold. An important requirement is to introduce and pressurize the mold to a higher pressure.

ここで、図3は、本発明の発泡成形方法における重要な操作条件、すなわち、発泡性樹脂粒子が充填される型内の圧力(圧力曲線4)と温度(温度曲線4a)を縦軸に、時間経過を横軸にして、その挙動を模式的にやや誇張して示したグラフであり、図4は、本発明の出願人が出願した先願の特願2005−37960において開示した同様なグラフ(圧力曲線5、温度曲線5a)である。   Here, FIG. 3 shows the important operating conditions in the foam molding method of the present invention, that is, the pressure (pressure curve 4) and temperature (temperature curve 4a) in the mold filled with expandable resin particles on the vertical axis. FIG. 4 is a graph schematically showing the behavior slightly exaggerated on the horizontal axis, and FIG. 4 is a similar graph disclosed in Japanese Patent Application No. 2005-37960 filed by the applicant of the present invention. (Pressure curve 5, temperature curve 5a).

本発明の方法も、従来の凹型、凸型の組み合わせである発泡成形用型が用いられ得る。これら所定の型内(凹凸型間の成形空間のこと、キャビティとも言われる)に充填した発泡性ポリスチレン樹脂粒子を加熱発泡して発泡成形体を製作する点を要点としていることは、従来の基本的手法と変わるところはない。すなわち、図3を参照して解説すると、以下のB1)昇温工程、B2)融着温度加熱工程、B3)発泡融着工程、B4)冷却工程、B5)大気放冷・取出し工程に大別される。   In the method of the present invention, a conventional mold for foam molding which is a combination of a concave mold and a convex mold can be used. The basic point is that a foamed molded product is produced by heating and foaming expandable polystyrene resin particles filled in these predetermined molds (the molding space between concave and convex molds, also called cavities). There is no difference from traditional methods. That is, with reference to FIG. 3, the following B1) temperature rising process, B2) fusing temperature heating process, B3) foaming fusing process, B4) cooling process, B5) air cooling / removal process are roughly divided. Is done.

B1)昇温工程:キャビティ内を加熱昇温する工程で、発泡樹脂粒子の充填に続いて、チャンバ内排気、キャビティ内の加熱蒸気による一方向排気加熱、同じく逆方向排気加熱などにより、内部を水蒸気で昇温するとともに水蒸気で充満させる。圧力曲線4、温度曲線4aは実際はジグザグしながら上昇する。   B1) Temperature raising step: In the step of heating and raising the temperature inside the cavity, the inside of the cavity is filled with foamed resin particles, followed by exhaust in the chamber, one-way exhaust heating with heated steam in the cavity, and reverse exhaust heating in the same way. Heat up with steam and fill with steam. The pressure curve 4 and the temperature curve 4a actually rise while zigzag.

B2)融着温度加熱工程:発泡樹脂粒子を発泡(膨張)させ、かつ融着させて、キャビティ形状に沿った所定の形状に成形するために、加熱水蒸気により全体を加熱してむら無く融着温度に加熱する工程。なお、この工程の後半では、発泡ポリスチレン樹脂粒子は、融着温度に相当する蒸気圧で加熱されているので、融着可能な温度に達するうえ、発泡成分の発泡圧が急激に上昇し、発泡が進行して、それまでの流動可能な状態から、隣り合う多数の粒子は接触状態になり、その接触部分では融着が始まり、進行している状態に達しているのである。   B2) Fusion temperature heating step: Foamed resin particles are foamed (expanded) and fused to form a predetermined shape along the cavity shape. Heating to temperature. In the latter half of this process, the expanded polystyrene resin particles are heated at a vapor pressure corresponding to the fusing temperature, so that the fusing temperature reaches a fusing temperature, and the foaming pressure of the foaming component rises rapidly. Then, a number of adjacent particles are brought into contact with each other from the flowable state so far, and fusion starts at the contact portion and reaches a state where the particles are in progress.

B3)発泡融着工程:本発明の特徴とする工程であり、B2工程に続いて、発泡性樹脂粒子の発泡(膨張)量を制御し空隙を形成しながら発泡セルの融着を完成させる工程であるが、重要な点は、先願(図4)の場合は、蒸気の供給と排気を調節して、圧力曲線5がa点からc点に徐々に低下させるのに対して、本発明(図3)では、型内が均一な設定融着温度になり、融着が始まったa点において制御用空気を導入して型内圧力をより高圧なA点まで加圧するところにある。
図3では、この加圧操作の後、制御終了圧力B点まで制御しながら減圧している。この制御終了圧力B点は、温度が融着完了温度であるb点に相当する圧力である。
B3) Foam fusion process: a process characterized by the present invention. Following the B2 process, the process of completing foam cell fusion while controlling the amount of foaming (expansion) of the expandable resin particles and forming voids. However, in the case of the prior application (FIG. 4), the important point is that the pressure curve 5 is gradually decreased from the point a to the point c by adjusting the supply and exhaust of the steam, while the present invention. In FIG. 3, the inside of the mold has a uniform set fusing temperature, and the control air is introduced at point a where fusing has started to increase the pressure inside the mold to a higher point A.
In FIG. 3, after this pressurizing operation, the pressure is reduced while controlling to the control end pressure B point. This control end pressure B point is a pressure corresponding to a point b whose temperature is the fusion completion temperature.

本発明の制御用空気による高圧加圧の目的は、融着温度に達したポリスチレン発泡性樹脂粒子が極めて不安定な発泡内圧のため、僅かな減圧が原因で瞬間的に膨張して粒子相互間の空隙を埋め尽くしてしまう融着状態が出現するという、いわば暴発的融着現象が引き起こされるのを防止する点にある。その後に圧力制御することで、粒子の内圧(粒子内圧)と外圧(キャビティ内圧力)とをバランスさせながら、発泡性樹脂粒子の相互間に空隙(容積気孔率)を残しつつ、接触面に融着部を形成させることができるのである。   The purpose of the high-pressure pressurization with the control air of the present invention is that the polystyrene foamable resin particles that have reached the fusion temperature are extremely unstable in the foaming internal pressure. In other words, it is possible to prevent the occurrence of a sudden fusion phenomenon, that is, a fusion state that fills the voids. Then, by controlling the pressure, the internal pressure of the particles (particle internal pressure) and the external pressure (cavity internal pressure) are balanced, while leaving a void (volume porosity) between the expandable resin particles, A landing part can be formed.

このような目的には、スチームではなく空気を用いる必要がある。それは、スチームに比較して空気は発泡粒子の内部に侵入し難いため、粒子に対する外圧制御が容易になるからである。
また、この目的の制御用空気としては、その温度と圧力とを適切に設定することが重要である。本発明において導入される前記制御用空気は、型内圧力を融着温度に加熱したときの型内圧力の1.5倍以上、好ましくは2倍以上に加圧できる圧力を有する加圧空気が最適である。また、その制御用空気の温度は、導入時の型内温度と常温との範囲の温度であるのが好ましい。
For this purpose, it is necessary to use air instead of steam. This is because, compared with steam, air is less likely to enter the inside of the foamed particles, so that it is easy to control the external pressure on the particles.
In addition, as the control air for this purpose, it is important to set the temperature and pressure appropriately. The control air introduced in the present invention is pressurized air having a pressure capable of pressurizing 1.5 times or more, preferably 2 times or more of the pressure in the mold when the mold pressure is heated to the fusion temperature. Is optimal. Moreover, it is preferable that the temperature of the control air is a temperature in the range between the in-mold temperature at the time of introduction and normal temperature.

前記制御用空気の条件が好ましい理由は、圧力が1.5倍未満では、前記した暴発的融着現象を十分に防止できず、三次元連通気孔に部分的むらが発生する。また3倍超えの高圧の場合はそれ以上には防止効果が期待できないからである。また、温度が前記した範囲外では、いずれも発泡成形体の融着状態にむらが生じ易く、均質な発泡成形体が得られ難いからである。   The reason why the condition of the control air is preferable is that when the pressure is less than 1.5 times, the above-mentioned sudden fusion phenomenon cannot be sufficiently prevented, and partial unevenness occurs in the three-dimensional continuous air hole. Further, when the pressure is more than 3 times, the prevention effect cannot be expected beyond that. In addition, when the temperature is outside the above-described range, unevenness in the fused state of the foamed molded product tends to occur, and it is difficult to obtain a homogeneous foamed molded product.

また、一般的に、減圧速度を大とすれば膨張が促進され容積気孔率は低下し、減圧速度を小とすれば膨張が抑制され容積気孔率は増大することになるが、発泡性樹脂粒子の発泡特性は、樹脂種類や予備発泡処理によって変化するので、減圧速度の程度、減圧曲線、および制御終了圧力の値は予めに使用する発泡性樹脂粒子に基づいて予備テストを行い定めるものとする。ここで、融着完了温度は前記融着現象が進行しなくなる温度をいう。   In general, if the decompression speed is increased, the expansion is promoted and the volume porosity is decreased, and if the decompression speed is decreased, the expansion is suppressed and the volume porosity is increased. Since the foaming characteristics of the resin vary depending on the type of resin and the prefoaming treatment, the degree of decompression speed, the decompression curve, and the value of the control end pressure are determined by conducting a preliminary test based on the foamable resin particles used in advance. . Here, the fusion completion temperature is a temperature at which the fusion phenomenon does not proceed.

なお、融着温度や、融着完了温度は、使用する発泡性樹脂粒子の主に樹脂種類によって定まる値であり、例えば、本発明のポリスチレン樹脂の場合は、下限融着温度は90〜100℃であり、上限は105℃までが好ましい。また、融着完了温度は110〜120℃である。したがって、a点における設定融着温度は、この下限融着温度を基準にして上限までの間に設定するものである。   The fusing temperature and fusing completion temperature are values determined mainly by the resin type of the expandable resin particles to be used. For example, in the case of the polystyrene resin of the present invention, the lower fusing temperature is 90 to 100 ° C. The upper limit is preferably up to 105 ° C. The fusion completion temperature is 110 to 120 ° C. Accordingly, the set fusion temperature at point a is set between the upper limit and the lower limit fusion temperature.

B4)冷却工程B4:前記制御用空気で加圧された圧力を保持した状態でチャンバ内に冷水を注水して冷却する。
B5)大気放冷・離型工程:その後、チャンバの排気弁を開いて、内部の気体を排気し、金型を開いて成形体を取り出す。
かくして、本発明の第1発明である発泡成形体、すなわち、隣り合う発泡セルそれ自体が軟化溶融した融着部で結合しており、好ましくは10〜40%の容積気孔率を有する3次元連通気孔と、少なくとも10Nの曲げ限界強度を有するポリスチレン発泡成形体が得られる。
B4) Cooling step B4: Cooling is performed by pouring cold water into the chamber while maintaining the pressure pressurized by the control air.
B5) Air cooling / releasing step: Thereafter, the exhaust valve of the chamber is opened, the gas inside is exhausted, the mold is opened, and the molded body is taken out.
Thus, the three-dimensional communication having a volume porosity of preferably 10 to 40%, in which the foamed molded product according to the first invention of the present invention, that is, the adjacent foamed cells themselves are joined together by a softened and melted fused portion. A polystyrene foam molded article having pores and a bending limit strength of at least 10 N is obtained.

(実施例1)次に、本発明の製造方法の実施例およびそれにより得られた発泡成形体の特性を表1によって説明する。
なお、製造条件の諸元は次の通り。また、図5に成形過程の製品内部温度6a、金型温度(平均)6c、型内圧力6の変化を示す。
a)使用発泡樹脂:種類=ポリスチレン樹脂、粒度=2.5〜3.5mm、予備発泡処理=済み。
b)金型:キャビティの両側にベントホールを備えた加熱水蒸気による通常の加熱タイプの開閉金型。
(Example 1) Next, examples of the production method of the present invention and characteristics of the foamed molded product obtained thereby will be described with reference to Table 1.
The specifications of the manufacturing conditions are as follows. FIG. 5 shows changes in product internal temperature 6a, mold temperature (average) 6c, and in-mold pressure 6 during the molding process.
a) Used foamed resin: Type = polystyrene resin, particle size = 2.5 to 3.5 mm, preliminary foaming treatment = completed.
b) Mold: A normal heating type open / close mold using heated steam provided with vent holes on both sides of the cavity.

c)融着温度加熱工程までの昇温工程B1:
発泡樹脂粒子の充填、チャンバ内排気、キャビティ内の加熱蒸気による一方向排気、同じく逆方向排気などは従来から知られている条件で行なう。
d)融着温度加熱工程B2:
両側のチャンバに0.05〜0.1MPa の加熱水蒸気を約3秒間導入し、キャビティ内の発泡樹脂粒子を設定融着温度(110℃)にまで加熱する。
c) Temperature raising step B1: up to the fusion temperature heating step
The filling of the foamed resin particles, the exhaust in the chamber, the one-way exhaust by the heating steam in the cavity, and the reverse exhaust in the same manner are performed under the conditions conventionally known.
d) Fusion temperature heating step B2:
Heated steam of 0.05 to 0.1 MPa is introduced into the chambers on both sides for about 3 seconds, and the foamed resin particles in the cavity are heated to the set fusion temperature (110 ° C.).

e)発泡・融着工程B3:
加熱終了のa点で水蒸気の供給を止め、制御用空気を約3秒間供給し、型内を加圧圧力の表1の圧力まで加圧する。このとき、融着温度にまで達している製品内部温度は、製品内部に閉じ込められた水蒸気によって更に温度が上昇し(6a1)、発泡セルは相互に融着して融着部を形成するとともに、圧縮されて融着部は架橋状態に形成される。型内圧力は、制御用空気によって短時間、好ましくは5秒間以内の短時間に所定の圧力に加圧するのが好ましい。
e) Foaming / fusion process B3:
The supply of water vapor is stopped at the point a after the end of heating, the control air is supplied for about 3 seconds, and the inside of the mold is pressurized to the pressure shown in Table 1 of the pressurizing pressure. At this time, the product internal temperature that has reached the fusion temperature is further increased by the water vapor trapped inside the product (6a1), the foamed cells are fused to each other to form a fusion part, By being compressed, the fused portion is formed in a crosslinked state. The pressure inside the mold is preferably increased to a predetermined pressure with the control air for a short time, preferably within 5 seconds.

制御用空気を導入する直前には、製品内部温度は融着温度に達していることが重要であり、この状態でそのときの飽和圧力より高圧の空気を導入して、型内圧力を前記したように高圧に加圧すると、発泡セル内およびセル間の水蒸気が瞬間的に圧縮されることが原因と思われる、製品内部温度の一時的上昇現象が見られる。この温度上昇がセル間の融着を促進するものと思われる。
また同時に、高い制御圧力(0.1〜0.2MPa )は、温度上昇で増加傾向の発泡圧(0.1〜0.12MPa )を持つ融着状態の発泡セルを押さえ込むように働くので、セル間に架け渡される架橋状態の融着部が形成することになる。
Immediately before the introduction of control air, it is important that the internal temperature of the product has reached the fusion temperature. In this state, air having a pressure higher than the saturation pressure at that time is introduced, and the pressure in the mold is set as described above. Thus, when the pressure is increased to a high pressure, there is a temporary rise in the internal temperature of the product, which is considered to be caused by instantaneous compression of water vapor in the foam cells and between the cells. This increase in temperature seems to promote fusion between cells.
At the same time, the high control pressure (0.1 to 0.2 MPa) acts to hold down the fused foam cell having an increasing foam pressure (0.1 to 0.12 MPa) with increasing temperature. A fused portion in a cross-linked state is formed between them.

f)冷却工程B4:
前記制御用空気で加圧された圧力を保持した状態でチャンバ内に冷水を注水して冷却する。
g )大気放冷・離型工程B5:
その後、チャンバの排気弁を開いて、内部の気体を排気し、金型を開いて成形体を取り出す。
f) Cooling step B4:
Cooling water is poured into the chamber while the pressure pressurized by the control air is maintained.
g) Air cooling / release process B5:
Thereafter, the exhaust valve of the chamber is opened, the gas inside is exhausted, the mold is opened, and the molded body is taken out.

かくして得られた発泡成形体は、表1に示す物性を持っていた。実施例試料では三次元連通気孔と強度をあわせて有する発泡成形体が得られたが、加圧圧力Aが低い場合は、試料1では通気量が少なく、かつ変動するが、1.5倍以上の場合には、部位によるばらつきが少なくなり、2倍以上ではばらつきは殆どなくなり、気孔率、強度、吸音性など好ましい品質が得られることが分かる。なお、比較例11は、本発明の制御用空気の加圧が行われない従来の成形法で得られた成形体であり、強度面で優れるが本発明の目的とする気孔構造が得られない。   The foamed molded product thus obtained had the physical properties shown in Table 1. In the example sample, a foamed molded article having a strength combined with the three-dimensional continuous air hole was obtained. When the pressure A was low, the amount of air flow was small and varied in sample 1, but 1.5 times or more. In the case of (2), it can be seen that the variation due to the site is small, and when it is twice or more, there is almost no variation, and preferable quality such as porosity, strength and sound absorption can be obtained. In addition, Comparative Example 11 is a molded body obtained by a conventional molding method in which pressurization of the control air of the present invention is not performed, and is excellent in strength but does not provide the pore structure intended by the present invention. .

なお、実施例試料は、ハンドリングは勿論、構造部材として利用可能な強度を持つことが確認された。また、そのカット断面の観察結果、それぞれ隣接する発泡セルが接触面においてそれ自体が軟化溶融して結合していることが認められた。特に、試料2、3、4の場合には、図2(C)に示すような、融着部2cによって結合される発泡セル11、11が離隔した位置関係を持ち、かつその融着部2cが両者間に架け渡される架橋状態に形成されている状態が明瞭に観察された。   In addition, it was confirmed that the example sample has strength that can be used as a structural member as well as handling. Further, as a result of observing the cut cross section, it was confirmed that the foam cells adjacent to each other were softened and melted and bonded at the contact surface. In particular, in the case of Samples 2, 3, and 4, as shown in FIG. 2C, the foamed cells 11 and 11 joined by the fusion part 2c have a separated positional relationship, and the fusion part 2c. Was clearly observed in a cross-linked state between the two.

Figure 0004566114
Figure 0004566114

通気量は、金型の凸面および凹面に面した試料面5箇所を対象として、毎分30l の空気を先端2.5cm2 から吐出させその1分間当たり平均通気量(l)であり、±でばらつきを示す。
平均容積気孔率は、融着前の単体のビーズ状態の隙間空間を気孔率100%とし、例えば1Lのメスシリンダーに発泡ビーズを入れた場合、その空間の体積を求める方法として隙間を埋めるように水を注入し、その水の重量W (1cc=1g)から体積換算した値V が、ビーズ1000ccの100%気孔率となる。以上から、例えばポーラスのサンプルを一定体積vにカットした時の空隙率100 %の体積(水の重量)xは、v/1000 =x/W (W=V)で求められる。
従って、実際に成形サンプルを水に浸し内部浸透させた跡、重量wを測定し、この値と100 %の体積(水の重量)xとの比較からw/xでサンプルの気孔率として求められる。従って、平均容積気孔率はこのサンプルn 個の気孔率の平均値となる。
曲げ限界強度は、JIS−K7221規定の方法で測定したものである。
吸音性は、垂直入射吸音率測定器を使用し、試料は厚さ15mm、50〜1600Hzの周波数領域の測定(JIS(A)1405)における吸音率が30%以上の場合を○、以下の場合を×と表示した。
The air flow rate is the average air flow rate (l) per minute when 30 l of air is discharged from the tip 2.5 cm 2 for 5 sample surfaces facing the convex and concave surfaces of the mold. Shows variation.
The average volume porosity is such that the gap space in a single bead state before fusion is 100% porosity. For example, when foam beads are placed in a 1 L graduated cylinder, the gap is filled as a method for obtaining the volume of the space. A value V converted by volume from the weight W (1 cc = 1 g) of the water injected is the 100% porosity of the beads 1000 cc. From the above, for example, the volume (water weight) x with a porosity of 100% when a porous sample is cut to a constant volume v is obtained by v / 1000 = x / W (W = V).
Therefore, the trace of the molded sample actually immersed in water and infiltrated into the inside, the weight w is measured, and the porosity of the sample is obtained as w / x from the comparison between this value and the 100% volume (water weight) x. . Therefore, the average volume porosity is an average value of the porosity of the n samples.
The bending limit strength is measured by a method defined in JIS-K7221.
For sound absorption, a normal incidence sound absorption rate measuring device is used, and the sample is 15 mm thick, when the sound absorption rate is 30% or more in the frequency region measurement (JIS (A) 1405) of 50 to 1600 Hz. Is indicated as x.

(実施例2)
次に、本発明の製造方法の別の実施例について説明する。
この場合の実施条件は、実施例1の場合と以下の部分を除いて同様である。また、図6に成形過程の型内温度6a、金型温度(平均)6c、型内圧力6の変化を示す。
(Example 2)
Next, another embodiment of the manufacturing method of the present invention will be described.
The implementation conditions in this case are the same as in Example 1 except for the following parts. FIG. 6 shows changes in the mold temperature 6a, mold temperature (average) 6c, and mold pressure 6 during the molding process.

この実施例2では、昇温工程B1のチャンバ内排気、キャビティ内の加熱蒸気による一方向排気、同じく逆方向排気などの終了時点で、制御用空気導入工程B31が挿入され、ついで、加熱水蒸気よりキャビティ内の発泡樹脂粒子を設定融着温度に加熱する融着温度加熱工程B2がある。そして、それに続いて制御用空気を導入して行う発泡・融着工程B32が行われ、その後、制御用空気で加圧された圧力を保持した状態でチャンバ内に冷水を注水して冷却するB4があり、チャンバの排気弁を開いて、外部に気体を排気し、大気状態で冷却離型するなどの冷却離型工程B5となるものがある。   In Example 2, the control air introduction step B31 is inserted at the end of the temperature raising step B1 in the chamber exhaust, the one-way exhaust by the heated steam in the cavity, and the reverse exhaust in the same way. There is a fusion temperature heating step B2 in which the foamed resin particles in the cavity are heated to the set fusion temperature. Subsequently, a foaming and fusing step B32 performed by introducing control air is performed, and then cold water is poured into the chamber and cooled while maintaining the pressure pressurized by the control air. In some cases, the cooling release process B5 is performed such as opening the exhaust valve of the chamber, exhausting the gas to the outside, and cooling and releasing in the atmospheric state.

この事例では、融着温度加熱工程B2の前後に制御用空気を導入する工程が設けてあるが、前者の制御用空気導入工程B31は、昇温工程B1の終点a1において、部分的に融着温度に達した発泡粒子の融着が進行して気孔構造がばらつくのを防止するために、制御用空気を導入して圧力A1まで加圧し発泡粒子を圧縮するとともにやや冷却して融着するのを抑制する操作である。   In this case, a process for introducing control air before and after the fusion temperature heating process B2 is provided. However, the former control air introduction process B31 is partially fused at the end point a1 of the temperature raising process B1. In order to prevent the foamed particles that have reached the temperature from fusing and preventing the pore structure from varying, the control air is introduced to pressurize to the pressure A1, compress the foamed particles, and cool and fuse them slightly. This is an operation to suppress this.

そして、実施例1と同様に、次に続く融着温度加熱工程B2の終点a2おいて、制御用空気を導入して圧力A2に加圧する発泡・融着工程B32に移行して、先に同じく、粒子の内圧(粒子内圧)と外圧(キャビティ内圧力)とをバランスさせながら、発泡性樹脂粒子の相互間に空隙(容積気孔率)を残しつつ、接触面に融着部を形成させるのである。
かくして、実施例1の場合と同様な物性の発泡成形体が得られるが、制御用空気としては実施例1の場合より低圧の空気が利用できるので、この点では有利となる。
And, similarly to Example 1, at the end point a2 of the subsequent fusing temperature heating step B2, the process proceeds to the foaming / fusing step B32 in which control air is introduced and the pressure A2 is increased, In addition, while maintaining the internal pressure (particle internal pressure) and the external pressure (cavity internal pressure) of the particles, a void portion (volume porosity) is left between the foamable resin particles, and a fusion part is formed on the contact surface. .
Thus, a foamed molded article having the same physical properties as in Example 1 can be obtained. However, as control air, air having a lower pressure than that in Example 1 can be used, which is advantageous in this respect.

かくして、本発明により製造される発泡成形体は、このような3次元連通気孔構造による吸音効果と、発泡樹脂が持つ本来の材料強度、耐熱性、耐久性を利用した騒音防止用吸音体、例えば、自動車用内装部材、車両用フロアフラット材、住宅壁など建築物用吸音材、産業機器用、道路の騒音防止用、工場や地下鉄などの排気消音ダクト用として広く有用なことが確認された。 Thus, the foamed molded product produced according to the present invention has a sound absorbing effect by such a three-dimensional continuous air hole structure and a sound absorbing material for noise prevention utilizing the original material strength, heat resistance and durability of the foamed resin, for example, It has been confirmed that it is widely useful for automobile interior members, vehicle floor flat materials, sound absorbing materials for buildings such as residential walls, industrial equipment, road noise prevention, and exhaust silencers for factories and subways.

なお、前記した説明はいずれも実験上最も有効であった発泡性ポリスチレン樹脂粒子を原料として行った場合であるが、型内に充填した発泡性樹脂粒子を加熱発泡して得られるものであれば全ての発泡性樹脂粒子を原料とする場合にも適用できるものであって、発泡性ポリスチレン樹脂粒子以外でも近年になって分子量分布の拡大、少量の超高分子量成分の付与、電子線照射、混練変成や触媒の改良による部分供花や長鎖分岐、グラフト成分の付与などの開発が勧められた結果、発泡性ポリスチレン樹脂粒子と同様の方法で発泡成形方法が可能となった高溶融張力の発泡性ポリプロピレン樹脂粒子(例えば、株式会社カネカが発売している商品名エペランPP、株式会社JSPが発売している商品名ピーブロック)や発泡性ポリエチレン樹脂粒子(例えば、積水化成品株式会社が発売している商品名ピオセラン)その他のポリオレフィン系の発泡性樹脂粒子などを原料としても本来の目的を達成できることはいうまでもない。   In addition, although all the above-mentioned explanation is a case where it was performed by using as a raw material the expandable polystyrene resin particle which was the most effective in the experiment, if it can be obtained by heating and foaming the expandable resin particle filled in the mold It can also be applied to the case where all expandable resin particles are used as raw materials. Recently, other than expandable polystyrene resin particles, the molecular weight distribution is expanded, a small amount of ultra-high molecular weight components are added, electron beam irradiation, and kneading. As a result of the development of partial flowering, long chain branching, and graft component addition by modification and catalyst improvement, high melt tension foaming has become possible by the same method as expandable polystyrene resin particles. Polypropylene resin particles (for example, trade name Eperan PP sold by Kaneka Corporation, trade name P-Block released by JSP Corporation) and expandable polyethylene resin Child (for example, trade name PIOCELAN Sekisui Plastics Co., Ltd. has released) it goes without saying that you can also achieve the intended purpose as other raw materials such as foam resin particles of polyolefin.

本発明により製造される発泡成形体の模式的概念断面図。The typical conceptual sectional view of the foaming fabrication object manufactured by the present invention. 発泡セルの結合状態を説明するための模式的概念断面図(A)(B)(C)。Typical conceptual sectional drawing (A) (B) (C) for demonstrating the coupling | bonding state of a foam cell. 本発明の製造法における型内圧力、同温度と時間の関係を示す模式的経過グラフ。The typical progress graph which shows the relationship between the pressure in a type | mold in the manufacturing method of this invention, the same temperature, and time. 先願の製造法における型内圧力、同温度と時間の関係を示す参考模式的経過グラフ。The reference typical progress graph which shows the relation between the pressure in a mold in the manufacturing method of a prior application, the same temperature, and time. 本発明の実施例1における型内圧力、同温度、型温度と時間の関係の1例を示す経過グラフ。The progress graph which shows one example of the relationship between mold pressure, the same temperature, mold temperature, and time in Example 1 of this invention. 本発明の実施例2における型内圧力、同温度、型温度と時間の関係の1例を示す経過グラフ。The progress graph which shows one example of the relationship between mold pressure, the same temperature, mold temperature, and time in Example 2 of this invention.

1 発泡成形体
11 発泡セル
11a 接触面
12 空隙
2a 融着部
2b 融着部
2c 融着部
1 Foam molded body 11 Foam cell
11a Contact surface
12 Gap 2a Fusion part 2b Fusion part 2c Fusion part

Claims (4)

型内に充填した発泡性樹脂粒子を加熱発泡して得られる多数の発泡セルで構成される発泡成形体であって、隣り合う発泡セルそれ自体が溶融した融着部によって結合されるとともに、前記多数の発泡セルの間に形成される三次元連通気孔が形成され、かつ少なくとも10Nの曲げ限界強度を有する発泡成形体の製造方法であって、加熱水蒸気の存在下、その発泡性樹脂粒子を融着温度に加熱したときに、加熱水蒸気の供給を止め、型内圧力より高圧の制御用空気を型内に導入し、型内をより高圧状態に加圧し、融着温度に加熱された発泡セルを圧縮して、隣り合う発泡セルそれ自体が溶融した融着部によって結合するとともに、前記多数の発泡セルの間に三次元連通気孔を形成することを特徴とする発泡成形体の製造方法。A foamed molded article composed of a large number of foamed cells obtained by heating and foaming foamable resin particles filled in a mold, wherein the adjacent foamed cells themselves are joined by a fused part, A method for producing a foamed molded article having a three-dimensional continuous pore formed between a large number of foamed cells and having a bending limit strength of at least 10 N, wherein the foamable resin particles are melted in the presence of heated steam. When heated to the deposition temperature, supply of heated steam is stopped, control air higher than the pressure inside the mold is introduced into the mold, the inside of the mold is pressurized to a higher pressure, and the foamed cell is heated to the fusion temperature In which the adjacent foam cells themselves are joined by a fused portion, and three-dimensional continuous air holes are formed between the plurality of foam cells. 前記制御用空気により、型内を融着温度に加熱したときの型内圧力の1.5倍以上の圧力に加圧することを特徴とする請求項1に記載の発泡成形体の製造方法。2. The method for producing a foam molded article according to claim 1, wherein the pressure is increased to 1.5 times or more of the pressure in the mold when the inside of the mold is heated to the fusion temperature by the control air. 導入される前記制御用空気の温度が、導入時の型内温度〜常温の範囲の温度である請求項5または2に記載の発泡成形体の製造方法。The method for producing a foamed molded article according to claim 5 or 2, wherein the temperature of the control air introduced is a temperature in the range from the in-mold temperature at the time of introduction to room temperature. 前記高圧加熱に続いて圧力を制御して発泡性樹脂粒子の発泡量を制御しながら発泡セルを融着させる請求項1または2または3に記載の発泡成形体の製造方法。The method for producing a foamed molded article according to claim 1, 2 or 3, wherein the foamed cell is fused while controlling the foaming amount of the expandable resin particles by controlling the pressure following the high-pressure heating.
JP2005314646A 2005-09-13 2005-10-28 Method for producing foam molded article Active JP4566114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314646A JP4566114B2 (en) 2005-09-13 2005-10-28 Method for producing foam molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005265685 2005-09-13
JP2005314646A JP4566114B2 (en) 2005-09-13 2005-10-28 Method for producing foam molded article

Publications (2)

Publication Number Publication Date
JP2007106973A JP2007106973A (en) 2007-04-26
JP4566114B2 true JP4566114B2 (en) 2010-10-20

Family

ID=38033086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314646A Active JP4566114B2 (en) 2005-09-13 2005-10-28 Method for producing foam molded article

Country Status (1)

Country Link
JP (1) JP4566114B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110982A (en) * 2004-09-14 2006-04-27 Daisen Kogyo:Kk Expansion-molded sound absorbing body and its manufacturing method
JP5517293B2 (en) * 2010-02-04 2014-06-11 Daisen株式会社 RC structural member
JP5534526B2 (en) * 2011-08-11 2014-07-02 Daisen株式会社 Method for producing composite molded body
JP2014079945A (en) * 2012-10-16 2014-05-08 Daisen Co Ltd Functional foam molding and method for manufacturing the same
US11235553B2 (en) 2018-04-09 2022-02-01 Asahi Kasei Kabushiki Kaisha Foam molded product and method of producing same
JP7161420B2 (en) * 2019-02-05 2022-10-26 株式会社カネカ car tire chock

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333938A (en) * 1998-05-28 1999-12-07 Asahi Chem Ind Co Ltd Polystyrenic foamed particle molded object and production thereof
JP2003127165A (en) * 2001-10-26 2003-05-08 Sekisui Plastics Co Ltd Method for manufacturing molded article of foamed polystyrene resin
JP2006110982A (en) * 2004-09-14 2006-04-27 Daisen Kogyo:Kk Expansion-molded sound absorbing body and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333938A (en) * 1998-05-28 1999-12-07 Asahi Chem Ind Co Ltd Polystyrenic foamed particle molded object and production thereof
JP2003127165A (en) * 2001-10-26 2003-05-08 Sekisui Plastics Co Ltd Method for manufacturing molded article of foamed polystyrene resin
JP2006110982A (en) * 2004-09-14 2006-04-27 Daisen Kogyo:Kk Expansion-molded sound absorbing body and its manufacturing method

Also Published As

Publication number Publication date
JP2007106973A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
KR101229429B1 (en) Foam molding and process for producing the same
JP4566114B2 (en) Method for producing foam molded article
JP2006110982A (en) Expansion-molded sound absorbing body and its manufacturing method
JP2003039565A (en) Foamed particle molded object
JP3180765U (en) Porous foam molding for automobile interior materials
JP6147330B2 (en) Method of manufacturing composite including particle foam molded member frictionally coupled to hollow body
JP2001162640A (en) Method for manufacturing thermoplastic resin foamed molding
JP2004202915A (en) Porous molded article and its expansion molding method
JP4336440B2 (en) Polyolefin resin composite molded body
JP2000000894A (en) Production of thermoplastic resin foam molding
JPS6122617B2 (en)
JP3837348B2 (en) Foamed resin mold and method for producing foamed resin molded product
JP6984843B2 (en) A method for manufacturing a foam molded product made of different types of foam molded resin members.
JP4301782B2 (en) Foamed resin molds and molded products
JP2000015351A (en) Production of bent article and bent article
KR100463566B1 (en) Method for producing foam molding having a high density surface layer
JPH09254179A (en) Foamed synthetic resin molded object and its molding method
JP4219690B2 (en) Manufacturing method of composite molded product
JPH11138575A (en) Manufacture of molding with high density skin layer
JP3229891B2 (en) Method for producing porous plastic structure
JP2024028169A (en) Foam and its manufacturing method
JPH06155605A (en) Manufacture of thermoplastic form board having internal void
JPH05177723A (en) Manufacture of polystyrene foam molded body
JPS62187018A (en) Manufacture of foaming molded product
JP2007007869A (en) Manufacturing method of thermoplastic resin molded product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Ref document number: 4566114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250