JP4565967B2 - Porous sintered body and method for producing the same - Google Patents

Porous sintered body and method for producing the same Download PDF

Info

Publication number
JP4565967B2
JP4565967B2 JP2004319217A JP2004319217A JP4565967B2 JP 4565967 B2 JP4565967 B2 JP 4565967B2 JP 2004319217 A JP2004319217 A JP 2004319217A JP 2004319217 A JP2004319217 A JP 2004319217A JP 4565967 B2 JP4565967 B2 JP 4565967B2
Authority
JP
Japan
Prior art keywords
sintered body
porous sintered
double
heat treatment
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004319217A
Other languages
Japanese (ja)
Other versions
JP2006131434A (en
Inventor
政弘 岩崎
秀文 柳田
政昭 池邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANALLOY INDUSTRY CO., LTD.
Original Assignee
SANALLOY INDUSTRY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANALLOY INDUSTRY CO., LTD. filed Critical SANALLOY INDUSTRY CO., LTD.
Priority to JP2004319217A priority Critical patent/JP4565967B2/en
Publication of JP2006131434A publication Critical patent/JP2006131434A/en
Application granted granted Critical
Publication of JP4565967B2 publication Critical patent/JP4565967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、複炭化物を含む多孔質焼結体に関するもので、従来の多孔性材料にはない極めて微細な空隙を有し、材料硬さもHV=1500 以上と極めて高く、耐摩耗性に優れることから、タイヤ成型金型や射出成型金型のエア抜き材料として、あるいは積層コンデンサ用成型吸引工具として、あるいは各種流体に関するフィルター用途に適用される。   The present invention relates to a porous sintered body containing a double carbide, has extremely fine voids that are not found in conventional porous materials, and has an extremely high material hardness of HV = 1500 or more and excellent wear resistance. Therefore, it is applied as an air bleeding material for tire molding dies and injection molding dies, as a molding capacitor molding suction tool, or as a filter for various fluids.

従来の多孔質材料はステンレス粒や超硬合金粒からなり、適当な大きさの粒子を結合させて、多孔質材料とすることが行われてきた。例えば、特開平3−138304号では、造粒した 150μの超硬粒をカーボン製成形型に充填し、これを焼結することで、多孔質焼結体が得られる。しかしながら、超硬粒そのものが完全な球ではないため、粒相互のブリッジを形成してしまい、空隙の大きさに大きなバラツキを生じていた。   Conventional porous materials are made of stainless steel particles or cemented carbide particles, and it has been practiced to combine particles of an appropriate size to make a porous material. For example, in JP-A-3-138304, a granulated 150 μ hard particle is filled into a carbon mold and sintered to obtain a porous sintered body. However, since the cemented carbide particles themselves are not perfect spheres, they formed bridges between the grains, resulting in large variations in the size of the voids.

又、この問題を解決するために、特開2003−129111号では、粒子サイズをより小さくした2層の多孔質焼結体を提案しているが、この方法においても、同様の問題が完全には解消されなかった。又、両提案品に共通する課題として、隣接粒子間の結合力の弱い粒子の脱落が発生し、脱落粒子が製品に混入すると言う問題もある。
特開平3−138304号公報 特開2003−129111公報
In order to solve this problem, Japanese Patent Application Laid-Open No. 2003-129111 proposes a two-layered porous sintered body with a smaller particle size. Was not resolved. In addition, as a problem common to both proposed products, there is a problem that particles with weak binding force between adjacent particles are dropped and the dropped particles are mixed into the product.
JP-A-3-138304 JP 2003-129111 A

そのため、ブリッジ等による空隙寸法のバラツキを抑え、空隙部の寸法を 5〜10μ の範囲に制御し、且つ粒子の脱落を生じない、全く新しい多孔質焼結体の提供が望まれる。
本件発明は、近似球形の造粒粉や焼結粒を使わずに、セラミックス粉と金属粉から成る圧粉成型体を用い、炭化物成分と金属成分から複炭化物を形成する反応を利用すれば、圧粉成型体中に冶金反応による3次元網目構造が形成可能なことを見い出し、本発明に至ったものである。
Therefore, it is desired to provide a completely new porous sintered body that suppresses the variation in void size due to bridges and the like, controls the size of the void in the range of 5 to 10 μm, and does not cause the particles to fall off.
The present invention uses a green compact formed of ceramic powder and metal powder without using approximate spherical granulated powder and sintered particles, and utilizes a reaction that forms double carbide from a carbide component and a metal component. It has been found that a three-dimensional network structure can be formed by a metallurgical reaction in a green compact, and the present invention has been achieved.

すなわち、本発明は多孔質焼結体であって、その全体若しくは所望の要部に、主成分が、式:M6W6C、M3W3C、M2W4C又はM3W9C4で示される複炭化物(式中、M は周期律表のFe 族元素を示す)のいずれか一種以上を含み、デンドライト状の3次元網目構造を有することを特徴とする多孔質焼結体を提供することにある。 That is, the present invention is a porous sintered body, the main component of which is the whole or a desired main part, the formula: M 6 W 6 C, M 3 W 3 C, M 2 W 4 C or M 3 W Porous sintering characterized by having a dendritic three-dimensional network structure containing at least one of the double carbides represented by 9 C 4 (wherein M represents an Fe group element in the periodic table) To provide a body.

本発明は、セラミックス粉として炭化タングステン粉 ( WC )と、Fe系金属粉としてコバルト粉 ( Co )を用いる場合を例にすると、Co-W-C 3元状態図中の WC-γ-η 3相共存域の組成に調整した原料から圧粉成型体を作製し、所定の温度域まで加熱し、保持することで、単独相であった Co, WC, W が相互に冶金反応して Co6W6C 〜 Co3W9C4 までの複炭化物を形成する。この反応に伴い、圧粉体中に目的とする3次元網目構造が形成されるいう現象を利用するものである。 In the present invention, when tungsten carbide powder (WC) is used as ceramic powder and cobalt powder (Co) is used as Fe-based metal powder, WC-γ-η three-phase coexistence in Co-WC ternary phase diagram A compact molded body is prepared from the raw material adjusted to the composition of the region, heated to a predetermined temperature range, and held, so that Co, WC, W, which was a single phase, metallurgically reacted with each other to produce Co 6 W 6 Forms double carbides from C to Co 3 W 9 C 4 . Along with this reaction, the phenomenon that a desired three-dimensional network structure is formed in the green compact is utilized.

本発明に係る多孔質焼結体の空隙率は 30〜50vol% であるのが適当である。
30%以下では、空隙率が小さすぎて、流体に対する抵抗が大きく、また目詰まりを生じ易くなる。50%以上では3次元網目構造の強度が低下してしまう。
The porosity of the porous sintered body according to the present invention is suitably 30 to 50 vol%.
If it is 30% or less, the porosity is too small, the resistance to the fluid is large, and clogging easily occurs. If it is 50% or more, the strength of the three-dimensional network structure is lowered.

また、上記主成分以外に、IVa, Va, VIa 族炭化物、窒化物、炭窒化物、あるいは硼化物及び/又は式:M6(WS)6X、M3(WS)3X、M2(WS)4X又はM3(WS)94(式中、M は周期律表のFe 族元素、S は周期律表の IVa, Va, VIa 族元素を、XはC,NまたはBを示す)で示される固溶体複炭化物、複窒化物又は複硼化物を含むことができる。
具体例としては、Co6(WTi)6C,Co3(WTi)3C,Co2(WV)4C,Co2(WTi)4C,Ni3(WTi)9C4,Ni3(WMo)9C4,(CoNi)3(WTi)3C を上げることができる。
In addition to the above main components, IVa, Va, VIa group carbides, nitrides, carbonitrides, borides and / or formulas: M 6 (WS) 6 X, M 3 (WS) 3 X, M 2 ( WS) 4 X or M 3 (WS) 9 X 4 (where M is the Fe group element of the periodic table, S is the IVa, Va, VIa group element of the periodic table, and X is C, N or B) The solid solution double carbide, double nitride or double boride shown in FIG.
As a specific example, Co 6 (WTi) 6 C, Co 3 (WTi) 3 C, Co 2 (WV) 4 C, Co 2 (WTi) 4 C, Ni 3 (WTi) 9 C 4 , Ni 3 (WMo ) 9 C 4 , (CoNi) 3 (WTi) 3 C can be increased.

本発明による多孔質焼結体は、極めて微細・均一な網目構造を有するため、空隙域の寸法バラツキは全く問題が無く、又、粒を使用しないために、脱落等の問題も全く生じない。   Since the porous sintered body according to the present invention has a very fine and uniform network structure, there is no problem in dimensional variation in the void area, and no problem of dropping off occurs because no grains are used.

しかも複炭化物相は極めて硬度が高いために非常に優れた耐摩耗性を有し、さらには、使用元素を選択することで、耐食性や触媒機能などを適宜付加することが可能であるため、極めて広範な産業用途に適用可能である。   Moreover, since the double carbide phase has extremely high hardness, it has very excellent wear resistance, and furthermore, by selecting the elements used, it is possible to appropriately add corrosion resistance, catalytic function, etc. Applicable to a wide range of industrial applications.

本発明では、所望する形状の圧粉成型体を作製して、拡散熱処理するという極めて簡単な工程で3次元網目構造が得られるものであるが、拡散熱処理した後で得られた多孔質焼結体の組成が、Co-W-C 3元状態図中の WC-γ-η 3相共存域内にあり、主相が複炭化物相となっている。以下、Fe系金属粉としてCoを代表例として説明するが、他のFe系金属粉Ni、Feにおいても多孔質焼結体はNi-W-C又はFe-W-C3元状態図中の WC-γ-η 3相共存域内にあり、主相が複炭化物相となるので、同等の作用効果を奏するものである。   In the present invention, a three-dimensional network structure can be obtained by an extremely simple process of producing a compact molded body having a desired shape and subjecting it to diffusion heat treatment. The composition of the body is in the WC-γ-η three-phase coexistence region in the Co-WC ternary phase diagram, and the main phase is a double carbide phase. Hereinafter, Co will be described as a representative example of the Fe-based metal powder. However, in other Fe-based metal powders Ni and Fe, the porous sintered body is WC-γ in the Ni-WC or Fe-W-C ternary phase diagram. -η It is within the three-phase coexistence region, and the main phase is a double carbide phase, so that the same effect can be achieved.

1)出発原料組成を Co-W-C 3元状態図中の WC-γ-η 3相共存域組成に調整する。
この時、複炭化物相(η相)の体積率は、50vol% 以上になるように調整することが望ましい。この体積率が小さくなると、十分な3次元網目構造が形成されないためであり、組成調整の際に出来るだけ低炭素領域とすることが必要である。
この配合調整を終えた原料をミリングして、所定量のWax を添加し、完粉原料とする。
1) Adjust the starting material composition to the WC-γ-η three-phase coexisting region composition in the Co-WC ternary phase diagram.
At this time, it is desirable to adjust the volume fraction of the double carbide phase (η phase) to be 50 vol% or more. This is because when the volume ratio is small, a sufficient three-dimensional network structure is not formed, and it is necessary to make the carbon region as low as possible when adjusting the composition.
Milling the raw material that has undergone this blending adjustment, adding a predetermined amount of Wax, to obtain a finished powder raw material.

2)圧粉成型体の作製については、最終の空隙率を勘案して、成型体寸法を決定する。
例えば、空隙率 40vol% を狙う場合は、最終焼結体寸法において空隙率 40vol% が必要であるため、必要原料重量を計算して型内に配置し、圧粉成型を行う。その後成型体の Wax を除去するために 600〜1200℃ の中間熱処理を行い、必要であれば、さらに研削加工を行い、所望の形状に仕上げる。
2) Regarding the production of the green compact, the size of the compact is determined in consideration of the final porosity.
For example, when aiming for a porosity of 40 vol%, a porosity of 40 vol% is required in the final sintered body dimensions, so the required raw material weight is calculated and placed in a mold and compacted. Thereafter, in order to remove Wax from the molded body, an intermediate heat treatment at 600 to 1200 ° C. is performed, and if necessary, further grinding is performed to complete a desired shape.

3)準備が完了した圧粉成型体は、最後の工程として、複炭化物3次元構造組織を形成するために拡散熱処理を行う。温度範囲としては 600〜1300℃ の範囲で 1〜5Hr 処理されるが、600〜800℃ の低温側では M6W6C 型の複炭化物が主体となり、より高温側の1100〜1300℃ では M3W9C4 型の複炭化物が主体となる。中間温度域での複炭化物としては M3W3C, M2W4C 型が形成される。 3) The compacted compact that has been prepared is subjected to diffusion heat treatment to form a double carbide three-dimensional structure as the last step. The temperature range is 600 to 1300 ° C for 1 to 5 hours, but M 6 W 6 C type double carbide is mainly used on the low temperature side of 600 to 800 ° C, and M is applied on the higher temperature side of 1100 to 1300 ° C. Mainly 3 W 9 C 4 type double carbide. M 3 W 3 C and M 2 W 4 C types are formed as double carbides in the intermediate temperature range.

4)熱処理前の圧粉成型体を W イオンを含む水溶液、若しくはアルコール溶液中に30〜60sec 浸漬し、乾燥させて、所定の拡散熱処理を施すようにしてもよい。
この方法によれば、圧粉成型体の表面から 5 mm 程度の深さまでの表層部で、粒子表面に高濃度のW 被覆層が形成されるため、拡散熱処理における複炭化物形成の際に、より強固な3次元網目構造組織が得られる。ここで W イオンの原料ソースとしては、次のものが上げられる。
パラタングステン酸アンモニウム( APT )、メタタングステン酸アンモニウム( AMT )、オキシ二塩化タングステン( WO2Cl2 )、タングステン酸( H2WO4 )等。
4) The green compact before the heat treatment may be dipped in an aqueous solution containing W ions or an alcohol solution for 30 to 60 seconds, dried, and subjected to a predetermined diffusion heat treatment.
According to this method, a high-concentration W coating layer is formed on the surface of the particle surface from the surface of the green compact to a depth of about 5 mm. A strong three-dimensional network structure is obtained. Here, the following can be raised as the source of W ions.
Ammonium paratungstate (APT), ammonium metatungstate (AMT), oxy ditungsten chloride (WO 2 Cl 2), tungstic acid (H 2 WO 4) or the like.

5)別法として、熱処理前の圧粉成型体を酸化水溶液中に数秒間浸漬し、直ちに乾燥させて、所定の拡散熱処理を施すようにしてもよい。ここで用いる酸化水溶液としては、硝酸、酢酸、蓚酸、過酸化水素、等の酸化剤を 10% 濃度以下に希釈したものが望ましい。この方法を用いると、圧粉成型体表層部が酸化され、拡散熱処理過程で、炭化物中の炭素による自己還元反応が優先的に生じるため、表層部が脱炭して活性な W が増大し、4)と同様に、より強固な3次元網目構造組織が得られる。 5) As an alternative method, the green compact before heat treatment may be immersed in an oxidizing aqueous solution for several seconds and dried immediately to perform a predetermined diffusion heat treatment. The oxidizing aqueous solution used here is preferably one in which an oxidizing agent such as nitric acid, acetic acid, succinic acid, hydrogen peroxide, etc. is diluted to a concentration of 10% or less. When this method is used, the surface layer of the green compact is oxidized, and the self-reduction reaction due to carbon in the carbide occurs preferentially in the diffusion heat treatment process, so the surface layer is decarburized and active W increases, Similar to 4), a stronger three-dimensional network structure can be obtained.

6)さらに別法として、出発原料組成を Co-W-C 3元状態図中の WC-γ 2相共存組成に調整し、ミリング後、Wax 添加して完粉を作製する。この原料を圧粉成型して、中間熱処理を行った後、Fe 族金属塩と W イオン原料ソースとを含む水溶液、又はアルコール溶液中に30〜60sec 浸漬し、直ちに乾燥させて、所定の拡散熱処理を施す。この方法を用いれば、2)および3)と同様の効果が得られる。 6) As another method, the starting material composition is adjusted to the WC-γ two-phase coexisting composition in the Co-W-C ternary phase diagram, and after milling, Wax is added to produce a finished powder. This raw material is compacted and subjected to an intermediate heat treatment, and then immersed in an aqueous solution or alcohol solution containing an Fe group metal salt and a W ion raw material source for 30 to 60 seconds and immediately dried, followed by a predetermined diffusion heat treatment. Apply. If this method is used, the same effect as 2) and 3) can be obtained.

7)1)、6)で調整した原料において、WC 以外に周期律表の IVa, Va, VIa 族元素の炭化物、窒化物、炭窒化物あるいは硼化物を含んでも構わない。あるいは固溶体炭化物、例えば (W/Ti)C, (W/Ta)C, (W/Ti/Ta)C や、複炭化物、例えば M6W6C, M3W3C, M2W4C, M3W9C4 [ M は Fe 族元素 ]、さらには固溶体複炭化物、例えば、
M3(W/Ti)3C, M3(W/Ta)3C 等を添加しても差し支えない。
7) In addition to WC, the raw materials prepared in 1) and 6) may contain carbides, nitrides, carbonitrides or borides of elements IVa, Va and VIa of the periodic table. Alternatively, solid solution carbides such as (W / Ti) C, (W / Ta) C, (W / Ti / Ta) C and double carbides such as M 6 W 6 C, M 3 W 3 C, M 2 W 4 C , M 3 W 9 C 4 [M is an Fe group element], and also solid solution double carbides such as
M 3 (W / Ti) 3 C, M 3 (W / Ta) 3 C, etc. may be added.

8)あるいは、4)、5)、6)において、成型体表面の要部を残してマスキングし、浸漬時間を短くして、即乾燥し、所定の拡散熱処理を施すことも出来る。あるいは、浸漬方法として要部のみを浸す方法を採用しても良い。例えば、部分浸漬やスプレー等による液散布、あるいはハケ等による塗液の部分塗り等がある。これらの方法により、成型体の所望の領域に限定して、3次元網目構造組織を作ることが出来る。 In 8), 4), 5) and 6), the main part of the surface of the molded body is left masked, the dipping time is shortened, it is immediately dried, and a predetermined diffusion heat treatment can be performed. Or you may employ | adopt the method of immersing only the principal part as an immersion method. For example, there are liquid spraying by partial immersion and spraying, or partial coating of a coating liquid by brushing or the like. By these methods, a three-dimensional network structure can be formed by limiting to a desired region of the molded body.

以上の方法により得られる3次元多孔質焼結体として、M3W9C4 型の複炭化物では3次元網目構造の基軸の太さが、M6W6C 型のそれよりも大きく、かつ、空隙域も大きく形成される。 As a three-dimensional porous sintered body obtained by the above method, the M 3 W 9 C 4 type double carbide has a three-dimensional network structure with a base thickness larger than that of the M 6 W 6 C type, and The void area is also formed large.

これらのことから、多孔質焼結体として、より微細孔が必要な場合は拡散熱処理の温度を小さくして、M6W6C 型の3次元網目構造組織とし、より粗大孔が必要な場合には、拡散熱処理の温度を高くして M3W9C4 型の3次元網目構造組織とすればよい。
但し、温度を 1300℃ 以上に高くすると、複炭化物相の緻密化が開始されるので、空隙率の確保が困難になり、適用用途が制限されるので好ましくない。
For these reasons, when more fine pores are required as a porous sintered body, the temperature of the diffusion heat treatment is reduced to form a three-dimensional network structure of M 6 W 6 C type, and coarser pores are required. For this, the temperature of the diffusion heat treatment may be increased to obtain an M 3 W 9 C 4 type three-dimensional network structure.
However, if the temperature is raised to 1300 ° C. or higher, the double carbide phase starts to be densified, so that it becomes difficult to ensure the porosity and the application is limited, which is not preferable.

出発原料として、平均粒度 1.5μm WC 粉末と、平均粒度 1.2μm W 粉末、及び平均粒度 1.4μm Co 粉末を用いて、WC-20%Co 合金組成に配合した。この時の結合炭素量は C/WC=3.5% に調整した。配合原料をエタノール中で 30Hr ボールミリングし、ミキサーにてパラフィンワックスを 1.5% 添加して、完成粉原料とした。
次に、この原料を用いて、成型体寸法 70×70×10mm の大きさにプレス成型し、脱 Wax を含む中間熱処理を 950℃×2Hr 行った。
As starting materials, an average particle size of 1.5 μm WC powder, an average particle size of 1.2 μm W powder, and an average particle size of 1.4 μm Co powder were blended into a WC-20% Co alloy composition. The amount of carbon bound at this time was adjusted to C / WC = 3.5%. The blended material was ball milled in ethanol for 30 hours, and 1.5% paraffin wax was added with a mixer to obtain a finished powder material.
Next, using this raw material, the molded body was press-molded to a size of 70 × 70 × 10 mm, and subjected to an intermediate heat treatment including dewaxing at 950 ° C. × 2 hours.

中間熱処理完了後、そのまま 1000℃×2Hr の拡散熱処理を行って、3次元網目構造を有する多孔質焼結体を得た。この組織例を図1に示す。又、この時の複炭化物相の同定をX線回折にて行ったところ、Co6W6C, Co3W3C が主体であり、微細な3次元網目構造であることが判る。
又、得られた多孔質焼結体の空隙率を算出したところ、空隙率は 45vol% で有り、十分な空隙率を有するものと確認できた。
After completion of the intermediate heat treatment, a diffusion heat treatment at 1000 ° C. × 2 Hr was directly performed to obtain a porous sintered body having a three-dimensional network structure. An example of this organization is shown in FIG. Further, when the double carbide phase at this time was identified by X-ray diffraction, it was found that Co 6 W 6 C and Co 3 W 3 C are the main components and have a fine three-dimensional network structure.
Moreover, when the porosity of the obtained porous sintered body was calculated, the porosity was 45 vol%, and it was confirmed that the porous sintered body had a sufficient porosity.

実施例1で作製した 70×70×10 mm プレス成型体を用いて、1200℃×2 Hr の中間熱処理を行った。処理後、製品の4箇所にφ7×6 L mm の穴加工を行い、浸漬処理を実施した。
浸漬処理溶液としては、パラタングステン酸アンモニウム 60% 水溶液を用いて、その中に徐々に成型体を漬けてゆき、成型体全体に溶液が染みこんでから、30 sec 液中保持した。取り出した後、直ちに 120℃ にて乾燥を行い、その後、1300℃×2 Hr の拡散熱処理を行った。得られた多孔質焼結体の組織例を図2に示す。図1と比較すると明らかに、本実施例の方が複炭化物相の基軸の大きさが大きくなっていることが判る。同時に
Using the 70 × 70 × 10 mm press-molded body produced in Example 1, an intermediate heat treatment of 1200 ° C. × 2 Hr was performed. After the treatment, φ7 × 6 L mm holes were drilled at four locations on the product, and immersion treatment was performed.
As the immersion treatment solution, a 60% aqueous solution of ammonium paratungstate was used. The molded body was gradually immersed in the solution, and the entire molded body was infiltrated, and then held in the liquid for 30 seconds. After taking out, it was immediately dried at 120 ° C. and then subjected to diffusion heat treatment at 1300 ° C. × 2 Hr. An example of the structure of the obtained porous sintered body is shown in FIG. Obviously, when compared with FIG. 1, the base axis of the double carbide phase is larger in this example. at the same time

X線回折の結果では、Co2W4C, Co3W9C4 が複炭化物相の主体であった。
得られた多孔質焼結体の空隙率は、およそ 38vol% で有り、実施例1と比較すると緻密化が進行していることが判る。積層コンデンサー用途には、空隙率範囲としては 35 vol% が下限と想定されている。
As a result of X-ray diffraction, Co 2 W 4 C and Co 3 W 9 C 4 were mainly composed of double carbide phases.
The porosity of the obtained porous sintered body is about 38 vol%, and it can be seen that densification has progressed as compared with Example 1. For multilayer capacitor applications, the lower limit of the porosity range is assumed to be 35 vol%.

以上のように、本発明に関わる多孔質焼結体は、極めて均一微細な空隙が容易に形成され、且つ、高硬度な複炭化物相が主要な構成相となっているため、耐摩耗性にも極めて優れている。
さらに、添加元素を任意に選択できることに特徴があり、例えば、水溶液に対する耐食性を高めるには、Co 金属を Ni に換え、Cr 元素を添加することで、極めて耐食性に優れた多孔質焼結体が得られる。
As described above, the porous sintered body according to the present invention is easily formed with extremely uniform and fine voids, and has a high hardness double carbide phase as a main constituent phase. Is also very good.
Furthermore, the additive element can be arbitrarily selected.For example, in order to improve the corrosion resistance against aqueous solution, the porous metal is extremely excellent in corrosion resistance by changing the Co metal to Ni and adding Cr element. can get.

又、WC の一部を TiC, TaC あるいは (W/Ti)C, (W/Ti/Ta)C 等に置き換えることで、高温環境下での耐酸化性に優れた多孔質焼結体が得られる。さらには、これら炭化物の一部、又は全部を窒化物、炭窒化物に置き換えることで、さらに優れた耐酸化性が得られる。
あるいは、多孔質焼結体の表面に、例えば、TiO2 の薄膜を形成させることで、 機能性触媒としての新たな物性が付与される。
このように、本発明多孔質焼結体は、その簡易な工程と優れた構造特性から、多孔性としての単純な用途から、各種の機能性付与の可能性を秘めた、先進材料としての新たな出発材料となる可能性が高く、産業上の各種分野に発展的に貢献できるものと考えられる。
Also, by replacing part of WC with TiC, TaC or (W / Ti) C, (W / Ti / Ta) C, etc., a porous sintered body with excellent oxidation resistance under high temperature environment can be obtained. It is done. Furthermore, even better oxidation resistance can be obtained by replacing part or all of these carbides with nitrides or carbonitrides.
Alternatively, for example, by forming a thin film of TiO 2 on the surface of the porous sintered body, new physical properties as a functional catalyst are imparted.
As described above, the porous sintered body of the present invention is a new advanced material with the possibility of imparting various functions from a simple use as a porous material due to its simple process and excellent structural characteristics. It is highly likely that it will be a starting material, and it is thought that it can contribute to various industrial fields.

図1は実施例1で得られた多孔質焼結体の顕微鏡写真である。FIG. 1 is a photomicrograph of the porous sintered body obtained in Example 1. 図2は実施例2で得られた多孔質焼結体の顕微鏡写真である。FIG. 2 is a photomicrograph of the porous sintered body obtained in Example 2.

Claims (9)

多孔質焼結体であって、その全体若しくは所望の要部に、主成分が、式:M6W6C、M3W3C、M2W4C又はM3W9C4で示される複炭化物(式中、M は周期律表のFe 族元素を示す)のいずれか一種以上を含み、デンドライト状の3次元網目構造を有することを特徴とする多孔質焼結体。 A porous sintered body, the main component of which is represented by the formula: M 6 W 6 C, M 3 W 3 C, M 2 W 4 C or M 3 W 9 C 4 A porous sintered body characterized by having a dendrite-like three-dimensional network structure containing at least one of the above-mentioned double carbides (wherein M represents an Fe group element in the periodic table). 空隙率が 30〜50vol% である請求項1記載の多孔質焼結体。   The porous sintered body according to claim 1, wherein the porosity is 30 to 50 vol%. 上記主成分以外に、IVa, Va, VIa 族炭化物、窒化物、炭窒化物、あるいは硼化物及び/又は式:M6(WS)6X、M3(WS)3X、M2(WS)4X又はM3(WS)94(式中、M は周期律表のFe 族元素、S は周期律表の IVa, Va, VIa 族元素を、XはC,NまたはBを示す)で示される固溶体複炭化物、複窒化物又は複硼化物を含むことを特徴とする請求項1または2記載の多孔質焼結体。 In addition to the above main components, IVa, Va, VIa group carbides, nitrides, carbonitrides, borides and / or formulas: M 6 (WS) 6 X, M 3 (WS) 3 X, M 2 (WS) 4 X or M 3 (WS) 9 X 4 (where M is an Fe group element of the periodic table, S is an IVa, Va, VIa group element of the periodic table, and X is C, N, or B) 3. The porous sintered body according to claim 1 , comprising a solid solution double carbide, double nitride or double boride represented by the formula: WC粉とFe族金属粉とを含む混合粉で、WCとFe系金属の状態図において、複炭化物相を含む3相共存域の組成範囲に調整した出発原料を圧粉成型し、該圧粉成型体を600〜1300℃ の温度域にて2〜5Hr の拡散熱処理を行い、複炭化物からなる3次元網目構造を形成することを特徴とする多孔質焼結体の製造方法。   A mixed powder containing WC powder and Fe group metal powder, and in the phase diagram of WC and Fe-based metal, the starting material adjusted to the composition range of the three-phase coexistence region including the double carbide phase is compacted, and the compacted powder A method for producing a porous sintered body, comprising subjecting a molded body to a diffusion heat treatment of 2 to 5 hours in a temperature range of 600 to 1300 ° C. to form a three-dimensional network structure composed of double carbides. 前記圧粉成型体を上記拡散熱処理前に Wイオンを含む水溶液若しくはアルコール溶液中に浸漬した後、乾燥させる請求項4記載の多孔質焼結体の製造方法。   The method for producing a porous sintered body according to claim 4, wherein the green compact is dipped in an aqueous solution or alcohol solution containing W ions before the diffusion heat treatment and then dried. W イオンを含む水溶液又はアルコール溶液が、パラタングステン酸アンモニウム( APT )、メタタングステン酸アンモニウム( AMT )、オキシ二塩化タングステン( WO2Cl2 )、またはタングステン酸( H2WO4 )を含む請求項5記載の多孔質焼結体の製造方法。 Claim aqueous or alcoholic solution containing W ions, ammonium paratungstate (APT), which includes an ammonium metatungstate (AMT), oxy ditungsten chloride (WO 2 Cl 2), or tungstic acid (H 2 WO 4) 5. A method for producing a porous sintered body according to 5. 前記圧粉成型体を上記拡散熱処理前に酸化水溶液中に浸漬した後、乾燥させる請求項4記載の多孔質焼結体の製造方法。   The method for producing a porous sintered body according to claim 4, wherein the green compact is dipped in an oxidizing aqueous solution before the diffusion heat treatment and then dried. 前記酸化水溶液として、硝酸、酢酸、蓚酸、過酸化水素のいずれかの酸化剤を水で希釈して水溶液として使用する請求項7記載の多孔質焼結体の製造方法。 Above with an oxidizing aqueous solution, nitric acid, acetic acid, oxalic acid, process according to claim 7 porous sintered body according to use any of the oxidizing agent hydrogen peroxide as an aqueous solution by diluting with water. WC と Fe 族金属との状態図における2相共存域の組成に調整した出発原料を圧粉成型し、Fe 族金属塩及び W イオンを含む水溶液、若しくはアルコール溶液中に浸漬した後、乾燥させ、600〜1300℃ の温度域にて 2〜5Hr の還元・拡散熱処理を行うことを特徴とする多孔質焼結体の製造方法。   The starting material adjusted to the composition of the two-phase coexistence region in the phase diagram of WC and Fe group metal is compacted, immersed in an aqueous solution containing Fe group metal salt and W ions, or an alcohol solution, and then dried. A method for producing a porous sintered body, comprising performing reduction and diffusion heat treatment at 2 to 5 hours in a temperature range of 600 to 1300 ° C.
JP2004319217A 2004-11-02 2004-11-02 Porous sintered body and method for producing the same Active JP4565967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319217A JP4565967B2 (en) 2004-11-02 2004-11-02 Porous sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319217A JP4565967B2 (en) 2004-11-02 2004-11-02 Porous sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006131434A JP2006131434A (en) 2006-05-25
JP4565967B2 true JP4565967B2 (en) 2010-10-20

Family

ID=36725313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319217A Active JP4565967B2 (en) 2004-11-02 2004-11-02 Porous sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4565967B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154949A (en) * 1992-08-26 1994-06-03 Nippon Carbide Ind Co Inc Metallic mold member for molding
JPH11302767A (en) * 1998-04-21 1999-11-02 Toshiba Tungaloy Co Ltd Cemented carbide excellent in mechanical characteristic and its production
JP2001011562A (en) * 1999-07-01 2001-01-16 Fuji Dies Kk Cermet, production of the cermet and method for using the cermet
JP2004095831A (en) * 2002-08-30 2004-03-25 Mitsubishi Materials Corp Suction pad, suction holder and manufacturing method of suction pad

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154949A (en) * 1992-08-26 1994-06-03 Nippon Carbide Ind Co Inc Metallic mold member for molding
JPH11302767A (en) * 1998-04-21 1999-11-02 Toshiba Tungaloy Co Ltd Cemented carbide excellent in mechanical characteristic and its production
JP2001011562A (en) * 1999-07-01 2001-01-16 Fuji Dies Kk Cermet, production of the cermet and method for using the cermet
JP2004095831A (en) * 2002-08-30 2004-03-25 Mitsubishi Materials Corp Suction pad, suction holder and manufacturing method of suction pad

Also Published As

Publication number Publication date
JP2006131434A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
RU2448827C2 (en) Diamond-metallic composite material
JP4662599B2 (en) Manufacturing method of submicron cemented carbide with increased toughness
JPH05209247A (en) Cermet alloy and its production
JP2013014846A (en) Cemented carbide tool for mining and construction application and method of making same
JP6806792B2 (en) Sintered carbide with a structure that increases toughness
JP6227517B2 (en) Cemented carbide
TW200925295A (en) Metallurgical powder composition and method of production
JP7272353B2 (en) Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method
JP2010516896A (en) Metal compound
TWI570245B (en) A method for preparing a porous spherical iron-based alloy powder by a reduction reaction, the powder and the powder are prepared Sintered body
SE433503B (en) HARD alloy based on tungsten molybdenum carbide
CN111842878A (en) Processing method for improving performance of 3DP printed product
EP1991380A1 (en) Method for the production of a sealing segment, and sealing segment to be used in compressor and turbine components
CN101899602B (en) Cermet body and a method of making a cermet body
JP2001123253A (en) Ferrous sintered sliding member and producing method therefor
JP4565967B2 (en) Porous sintered body and method for producing the same
KR100935037B1 (en) High toughness cermet and method of manufacturing the same
JP2010500477A (en) Mixed powder containing solid solution powder and sintered body using the same, mixed cermet powder containing solid solution powder, cermet using the same, and method for producing them
KR20080091921A (en) Wc-ni hard metal and method for producing the same
JP2008142575A (en) High performance catalyst using composite oxide and method for preparation thereof
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
CN102159743A (en) Carbide body and method for production thereof
JP6756994B1 (en) Manufacturing method of powder for additive manufacturing, manufacturing method of additive manufacturing, and manufacturing method of sintered body of additive manufacturing
JP6805454B2 (en) Cemented carbide and its manufacturing method, and cemented carbide tools
JP2007009287A (en) Method for producing titanium alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Ref document number: 4565967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250