JP2007009287A - Method for producing titanium alloy material - Google Patents

Method for producing titanium alloy material Download PDF

Info

Publication number
JP2007009287A
JP2007009287A JP2005193211A JP2005193211A JP2007009287A JP 2007009287 A JP2007009287 A JP 2007009287A JP 2005193211 A JP2005193211 A JP 2005193211A JP 2005193211 A JP2005193211 A JP 2005193211A JP 2007009287 A JP2007009287 A JP 2007009287A
Authority
JP
Japan
Prior art keywords
titanium alloy
alloy material
powder
case
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005193211A
Other languages
Japanese (ja)
Inventor
Takao Okochi
敬雄 大河内
Koichi Morii
浩一 森井
Naoyuki Makino
直幸 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005193211A priority Critical patent/JP2007009287A/en
Publication of JP2007009287A publication Critical patent/JP2007009287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a titanium alloy material, in which the titanium alloy material is obtained by a powder metallurgy method. <P>SOLUTION: A binder is added to titanium alloy powder so as to be mixed. The mixture is subjected to extrusion molding, and thereafter, the binder is removed therefrom. Subsequently, sintering is performed, so as to produce a titanium alloy material. If required, B and C, and, further, one or more selected from Ni, Fe and Co are incorporated into the titanium alloy powder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明はチタン合金素材の製造方法、詳しくは粉末冶金手法によってチタン合金素材を製造する方法に関する。   The present invention relates to a method for producing a titanium alloy material, and more particularly to a method for producing a titanium alloy material by a powder metallurgy technique.

従来より、鉄系材料にあっては粉末冶金の手法によって素材製造することが広く行われている。
この粉末冶金の手法を用いた素材製造では、粉末をプレス金型に充填してプレス成形(圧粉成形)し、そしてプレス成形品をその後焼結処理する。
このような粉末冶金の手法を用いた製造では、溶製材から素材を得る場合に比べてニアネットシェイプ、即ち最終形状に近い形状に成形することができ、従ってその後の機械加工の加工量が少なくて済み、加工費が安価となる利点がある。
Conventionally, iron-based materials have been widely manufactured by powder metallurgy.
In material production using this powder metallurgy technique, powder is filled into a press die and press-molded (compact molding), and the press-molded product is then sintered.
In manufacturing using such a powder metallurgy technique, it is possible to form a near net shape, that is, a shape close to the final shape, compared to the case of obtaining a raw material from a melted material, and therefore the subsequent machining amount is small. This has the advantage that the processing cost is low.

また溶製材にて得た素材の場合には組織が粗大化した部分と微細な部分とが生成して組織的に不均一となり易い問題が内在しているが、粉末冶金の手法にて得た素材の場合には均一な組織が得られるといった利点もある。
チタン合金素材を製造するに際し、鉄系材料と同様に粉末冶金の手法を用いることができれば、上記のような利点が得られて望ましい。
In addition, in the case of the material obtained from the melted material, there is an inherent problem that the structure is coarsened and the fine part is generated, and the structure is likely to be uneven. In the case of a material, there is also an advantage that a uniform structure can be obtained.
In producing a titanium alloy material, it is desirable to obtain the advantages as described above if a powder metallurgy technique can be used as in the case of iron-based materials.

しかしながらチタン合金の場合、鉄系材料と異なって以下のような特有の問題点を有しており、鉄系材料において用いられていた通常の粉末冶金の手法をそのまま用いることには困難がある。
通常、鉄系材料の場合には粉末製造の手法として金属溶湯をノズルから流出させて、これに水流ジェットを噴射し粉末化する水噴霧法が用いられる。
However, in the case of a titanium alloy, unlike the iron-based material, it has the following specific problems, and it is difficult to use the usual powder metallurgy technique used in the iron-based material as it is.
In general, in the case of iron-based materials, a water spray method is used as a powder manufacturing method in which a molten metal is discharged from a nozzle, and a water jet is jetted into the powder to form powder.

この水噴霧法にて得られた粉末は1つ1つの粒子の表面が凹凸状をなしており、従って粉末をプレス金型に充填してプレス成形(圧粉成形)したとき、各粒子が表面の凹凸により互いに絡まり合った状態となって成形品に所要の強度が付与される。   In the powder obtained by this water spraying method, the surface of each particle is uneven, and therefore when the powder is filled in a press mold and pressed (compacted), each particle is on the surface. Due to the unevenness, the molded product is intertwined with each other, and the required strength is imparted to the molded product.

これに対してチタン合金の場合には非常に酸化され易いため、上記のような水噴霧法にて粉末製造すること自体が困難である。
従ってチタン合金の場合、粉末製造の手法としてノズルからの金属溶湯流に対し高圧ガスを噴射させて粉末化するガス噴霧法を用いざるを得ない。
On the other hand, in the case of a titanium alloy, since it is very easy to oxidize, it is difficult to produce powder by the water spray method as described above.
Therefore, in the case of a titanium alloy, a gas spraying method in which a high pressure gas is injected into a molten metal flow from a nozzle to be powdered must be used as a powder manufacturing method.

しかしながらこのようなガス噴霧法によって得られる粉末は、粒子の1つ1つが表面に凹凸の少ない球に近い丸い粒子となってしまい、従ってこのようなガス噴霧法にて得られた粉末を従来と同様にプレス成形した場合、粒子同士が互いに絡まり合わないために成形品の強度が弱く、ハンドリングが困難であって、ハンドリング中に成形品を構成する粉末が成形品から「ボロボロ」と欠けて取れて来てしまう。
即ちチタン合金粉末の場合、通常のプレス成形によって所定形状に成形するといったことができない問題がある。
However, the powder obtained by such a gas spraying method has round particles that are close to a sphere with little unevenness on the surface, and therefore the powder obtained by such a gas spraying method is different from the conventional powder. Similarly, when press molding, the particles are not entangled with each other, so the strength of the molded product is weak and handling is difficult, and the powder constituting the molded product is missing from the molded product as “battered” during handling. Will come.
That is, in the case of titanium alloy powder, there is a problem that it cannot be formed into a predetermined shape by ordinary press forming.

尚、本願発明に対する先行技術として下記特許文献1に開示されたものがある。
但しこの特許文献1に開示された水素化脱水素法により製造したチタン粉末は異形状を呈するため、成形性に優れる反面、比表面積が大きいため、表面酸化に起因して、酸素が多く含有され、焼結体の靭性を低下させるという欠点を有している。
In addition, there exists what was disclosed by the following patent document 1 as a prior art with respect to this invention.
However, since the titanium powder produced by the hydrodehydrogenation method disclosed in Patent Document 1 exhibits an irregular shape, it is excellent in moldability, but has a large specific surface area, so it contains a large amount of oxygen due to surface oxidation. , Has the disadvantage of reducing the toughness of the sintered body.

特開平7−278609号公報JP 7-278609 A

本発明は以上のような事情を背景とし、チタン合金素材を粉末冶金の手法にて得ることのできるチタン合金素材の製造方法を提供することを目的としてなされたものである。   The present invention has been made for the purpose of providing a method for producing a titanium alloy material, which can obtain a titanium alloy material by a powder metallurgy technique.

而して請求項1のものは、ガス噴霧法で製造した球状のチタン合金粉末にバインダを加えて混合し、混合物を押出し成形した後に脱バインダし、しかる後焼結を行ってチタン合金素材を製造することを特徴とする。   Thus, according to the first aspect of the present invention, a binder is added to a spherical titanium alloy powder produced by a gas spraying method, and the mixture is extruded and then debindered, followed by sintering to obtain a titanium alloy material. It is characterized by manufacturing.

請求項2のものは、請求項1において、前記チタン合金粉末がB及びCを含有していることを特徴とする。   A second aspect of the present invention is characterized in that, in the first aspect, the titanium alloy powder contains B and C.

請求項3のものは、請求項1,2の何れかにおいて、前記チタン合金粉末がNi,Fe,Coの何れか1種又は2種以上を含有していることを特徴とする。   A third aspect of the present invention is characterized in that, in any one of the first and second aspects, the titanium alloy powder contains one or more of Ni, Fe, and Co.

発明の作用・効果Effects and effects of the invention

以上のように本発明は、ガス噴霧法で製造した球状のチタン合金粉末にバインダを加えて混合し、その混合物を押出し成形により所定形状に成形し、しかる後焼結を行ってチタン合金素材を得るもので、本発明によれば、チタン合金粉末がガス噴霧にて得た粉末であっても、即ち1つ1つの粒子が表面に凹凸のない丸い球状のものであっても、支障なく成形処理及びその後のハンドリングを行うことができ、更にまた成形後に焼結を行って所定形状の焼結体即ちチタン合金素材を得ることができる。   As described above, the present invention adds a binder to a spherical titanium alloy powder produced by a gas spraying method, mixes the mixture, forms the mixture into a predetermined shape by extrusion molding, and then performs sintering to form a titanium alloy material. According to the present invention, even if the titanium alloy powder is a powder obtained by gas spraying, that is, even if each particle has a round spherical shape with no irregularities on the surface, it is formed without any trouble. Processing and subsequent handling can be performed, and further, sintering can be performed after forming to obtain a sintered body having a predetermined shape, that is, a titanium alloy material.

本発明では、成形方法として押出し成形を用いることから、特に板状,棒状或いは管状の素材を得るための方法として好適である。
或いはまたそれらから適当な機械加工を加えることで様々な形状のものを得ることができる。
In the present invention, since extrusion molding is used as the molding method, it is particularly suitable as a method for obtaining a plate-like, rod-like or tubular material.
Alternatively, various shapes can be obtained by applying appropriate machining.

本発明は、合金成分としてB,Cを含有したチタン合金素材の製造方法として特に好適なものである(請求項2)。
これらB,Cを含有したチタン合金素材を通常の溶製によって製造する場合、合金成分としてのB,Cの析出物が凝固の際に粗大に成長してしまったり或いは偏析を生じて均一に析出せず、このため組織が不均一化してしまって、合金成分としてのB,Cによる効果を十分に発揮させることが難しい。
The present invention is particularly suitable as a method for producing a titanium alloy material containing B and C as alloy components (claim 2).
When titanium alloy materials containing these B and C are produced by ordinary melting, precipitates of B and C as alloy components grow coarsely during solidification, or segregate and precipitate uniformly. Therefore, the structure becomes non-uniform, and it is difficult to fully exhibit the effects of B and C as alloy components.

しかるに予めB,Cを含有したチタン合金粉末を製造しておいて、その粉末を用いてその後の成形及び焼結によりチタン合金素材を製造する場合には上記のような問題を生じず、ホウ化物,炭化物が微細且つ均一に素材中に分散した状態となって組織が均一化し、また合金成分としてのB,Cによる効果を十分に発揮させ得て、チタン合金素材を効果的に高強度化,高硬度化することができる。   However, when a titanium alloy powder containing B and C is manufactured in advance and a titanium alloy material is manufactured by subsequent molding and sintering using the powder, the above-described problems do not occur, and boride , Carbide is finely and uniformly dispersed in the material, the structure becomes uniform, and the effects of B and C as alloy components can be fully exerted to effectively increase the strength of the titanium alloy material. High hardness can be achieved.

チタン合金素材を機械部品等に用いる場合、高強度化,高硬度化による耐磨耗性が求められ、従って本発明はこのような高強度,高硬度の求められるチタン合金素材の製造に適用して好適なものである。
この場合において、B,Cはそれぞれ質量%でB:0.5〜3.0%,C:0.5〜1.5%の範囲で含有させておくことが望ましい。
When titanium alloy materials are used for machine parts, etc., wear resistance due to increased strength and hardness is required. Therefore, the present invention is applied to the manufacture of titanium alloy materials that require such high strength and hardness. And suitable.
In this case, it is desirable that B and C are contained in the ranges of B: 0.5 to 3.0% and C: 0.5 to 1.5%, respectively.

本発明はまた、合金成分としてNi,Fe,Coの1種又は2種以上を含有したチタン合金素材の製造に適用して特に好適である(請求項3)。
チタン合金素材を粉末冶金手法により製造した場合、即ち粉末の成形体を焼結して製造する場合、溶製材にてこれを製造した場合に比べて密度が低くなる。
The present invention is also particularly suitable when applied to the production of a titanium alloy material containing one or more of Ni, Fe, and Co as alloy components (claim 3).
When a titanium alloy material is manufactured by a powder metallurgy technique, that is, when a powder compact is manufactured by sintering, the density is lower than that when manufactured using a molten material.

しかるにチタン合金素材に合金成分としてNi,Fe,Coを含有させておいた場合、即ち粉末成分としてこれらを含有させておいた場合、これらの成分を含有していない場合の相対密度90%強程度に対して、高密度化することができる。
これら成分を含有させておいた場合焼結時に液相が生じ易く、このために焼結性が上がって焼結体の密度を効果的に高めることができる。
而して焼結体の密度が高まればこれに伴って機械的強度を高強度化することができる。
However, when Ni, Fe, Co is included as an alloy component in the titanium alloy material, that is, when these are included as a powder component, a relative density of about 90% or more when these components are not included. In contrast, the density can be increased.
When these components are contained, a liquid phase is liable to be generated during sintering, and for this reason, the sinterability is improved and the density of the sintered body can be effectively increased.
Thus, if the density of the sintered body increases, the mechanical strength can be increased accordingly.

即ち、これら成分を含有することによって焼結体から成るチタン合金素材の欠点であるところの密度の低さ,強度的な弱さを効果的に改善することができる。
ここでNi,Fe,Coは単一添加の場合は何れも質量%でNi:2%以上,Fe:7%以上,Co:5%以上、2種以上同時添加の場合はNi(%)/2+Fe(%)/7+Co(%)/5≧1としておくことが望ましく、より望ましくは3%以上含有させておく。
尚、その上限値は単一添加の場合はNi:10%,Fe:20%,Co:10%、2種以上同時添加の場合はNi(%)/10+Fe(%)/20+Co(%)/10=1(%)としておくことが望ましい。
That is, by containing these components, it is possible to effectively improve the low density and weakness that are the disadvantages of the titanium alloy material made of a sintered body.
Here, Ni, Fe, and Co are all mass% in the case of single addition, Ni: 2% or more, Fe: 7% or more, Co: 5% or more, Ni (%) / in the case of simultaneous addition of two or more. It is desirable that 2 + Fe (%) / 7 + Co (%) / 5 ≧ 1, more desirably 3% or more.
In addition, the upper limit value is Ni: 10%, Fe: 20%, Co: 10% in the case of single addition, Ni (%) / 10 + Fe (%) / 20 + Co (%) / in the case of simultaneous addition of two or more. It is desirable to set 10 = 1 (%).

上記のようにチタン合金素材を機械部品用等として用いる場合には強度が高いことが望ましく、そのためにはチタン合金素材の焼結密度が高い方が望ましい。
この意味においてチタン合金素材の密度を85%以上となしておくことが望ましい。
As described above, when the titanium alloy material is used for a machine part or the like, it is desirable that the strength is high. For that purpose, it is desirable that the titanium alloy material has a high sintered density.
In this sense, it is desirable that the density of the titanium alloy material is 85% or more.

一方、チタン合金素材は耐食性に優れ、また人体に対して無害であるといった特長も有している。
従って例えばチタン合金素材を海水用のろ過フィルター或いは食品用のろ過フィルター等としての用途に好適に供することができる。
このようなろ過フィルター等として用いる場合には焼結体の密度を80%以下となしておくことが望ましい。
On the other hand, titanium alloy materials are excellent in corrosion resistance and are not harmful to the human body.
Therefore, for example, the titanium alloy material can be suitably used for applications such as a filtration filter for seawater or a filtration filter for food.
When used as such a filtration filter, the density of the sintered body is desirably 80% or less.

尚本発明におけるB,C,Ni,Fe,Coの働き及びその添加量範囲の限定理由は以下の通りである。
B及びC:B,CはTiと化合物を造り、合金素材の強度,硬さ,剛性を向上させるためにはより多く含有することが望しいが、上限値を超えると靭性が低下するばかりでなく、粉末製造にける溶解時にホウ化物,炭化物が晶出して操業性が著しく低下する。
Ni,Fe,Co:下限値未満であると合金の固相線温度が十分に下がらないために焼結時に液相が生じ難く、結果として密度が上がらない。
上限値を超えると液相が多く形成され過ぎるため、焼結体の形状が変形してしまう。
In the present invention, the functions of B, C, Ni, Fe, and Co and the reason for limiting the range of the amount added are as follows.
B and C: B and C are made of Ti and compound, and it is desirable to contain more to improve the strength, hardness and rigidity of the alloy material. However, borides and carbides crystallize during melting in powder production, and the operability is significantly reduced.
Ni, Fe, Co: If it is less than the lower limit, the solidus temperature of the alloy is not sufficiently lowered, so that a liquid phase is hardly generated during sintering, and as a result, the density does not increase.
If the upper limit is exceeded, too much liquid phase is formed, and the shape of the sintered body is deformed.

次に本発明の実施形態を以下に具体的に説明する。
表1に示す化学組成の−250μm(250μmアンダー)のチタン合金粉末と市販の水溶性セルロース系バインダを質量比100:7で混合した後、更に混合物に対して10%(質量%)の水を加えて混練した。
混練物を室温にて厚さ5mm、幅50mmで押出成形機でシート状に成形した後、長さ200mmに切断した。
これを真空炉において500℃×1hr保持によって脱脂し、更に継続して1250℃まで昇温して1hr保持し焼結体を得た。
その焼結体からJIS Z 2201 6号試験片を加工し引張試験を行った。
Next, embodiments of the present invention will be specifically described below.
After mixing -250 μm (250 μm under) titanium alloy powder having a chemical composition shown in Table 1 and a commercially available water-soluble cellulose binder at a mass ratio of 100: 7, 10% (mass%) of water was further added to the mixture. In addition, kneading.
The kneaded material was formed into a sheet shape with an extruder at 5 mm thickness and 50 mm width at room temperature, and then cut into a length of 200 mm.
This was degreased by holding at 500 ° C. for 1 hour in a vacuum furnace, and further heated up to 1250 ° C. and held for 1 hour to obtain a sintered body.
A JIS Z 2201 No. 6 test piece was processed from the sintered body and subjected to a tensile test.

その結果が参考例及び比較例とともに表1に併せて示してある。
ここで参考例及び比較例は何れも溶製材についてのものである。
The results are shown in Table 1 together with Reference Examples and Comparative Examples.
Here, both the reference examples and the comparative examples are for melted materials.

Figure 2007009287
Figure 2007009287

表1の結果に見られるように、合金成分としてB,Cをそれぞれ1%含有させた実施例2のものは、これら成分を含有させていない参考例のもの(溶製材)に比べて、相対密度が92%と低いにも拘らず引張強さ,ヤング率ともに高い値を示している。
尚、参考例と同じ溶製材でB,Cを含有させた比較例2のものは、相対密度は参考例と同様であるが引張強さの値は却って低くなっている(ただしヤング率は高くなっている)。
As can be seen from the results in Table 1, the sample of Example 2 containing 1% each of B and C as the alloy components is relatively in comparison with the sample of the reference example (melted material) not containing these components. Despite the low density of 92%, both tensile strength and Young's modulus are high.
In Comparative Example 2 containing B and C in the same melted material as in the reference example, the relative density is the same as in the reference example, but the tensile strength value is rather low (however, the Young's modulus is high). )

つまり溶製材にてチタン合金素材を製造する場合、B,Cを含有させることによって引張強さは低下するが、粉末冶金手法を用いてチタン合金素材を製造した実施例2のものの場合、引張強さも、ヤング率もともに高まっている。
また、合金成分として更にNiを5%含有させた実施例1のものは、実施例2のものに比べて相対密度が効果的に高められており、これに伴なって引張強さも高まっている。
In other words, when a titanium alloy material is produced from melted material, the tensile strength is reduced by containing B and C, but in the case of Example 2 where the titanium alloy material is produced using a powder metallurgy technique, the tensile strength is reduced. Moreover, both Young's modulus is increasing.
Moreover, the relative density of Example 1 containing 5% Ni as an alloy component is effectively increased compared to that of Example 2, and the tensile strength is also increased accordingly. .

以上のように本発明は、従来にない新規なチタン合金素材の製造方法を提供するもので、しかも本発明の製造方法によれば、チタン合金素材の強度や硬さを溶製材にて製造した場合に比べて効果的に高めることが可能である。   As described above, the present invention provides an unprecedented method for producing a new titanium alloy material, and according to the production method of the present invention, the strength and hardness of the titanium alloy material is produced from a molten material. It is possible to increase effectively compared to the case.

Claims (3)

ガス噴霧法で製造した球状のチタン合金粉末にバインダを加えて混合し、混合物を押出し成形した後に脱バインダし、しかる後焼結を行ってチタン合金素材を製造することを特徴とするチタン合金素材の製造方法。   Titanium alloy material characterized by adding a binder to spherical titanium alloy powder produced by gas spraying method, mixing, extruding the mixture, debinding, and then sintering to produce a titanium alloy material Manufacturing method. 請求項1において、前記チタン合金粉末がB及びCを含有していることを特徴とするチタン合金素材の製造方法。   The method for producing a titanium alloy material according to claim 1, wherein the titanium alloy powder contains B and C. 請求項1,2の何れかにおいて、前記チタン合金粉末がNi,Fe,Coの何れか1種又は2種以上を含有していることを特徴とするチタン合金素材の製造方法。   The method for producing a titanium alloy material according to any one of claims 1 and 2, wherein the titanium alloy powder contains one or more of Ni, Fe, and Co.
JP2005193211A 2005-06-30 2005-06-30 Method for producing titanium alloy material Pending JP2007009287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193211A JP2007009287A (en) 2005-06-30 2005-06-30 Method for producing titanium alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193211A JP2007009287A (en) 2005-06-30 2005-06-30 Method for producing titanium alloy material

Publications (1)

Publication Number Publication Date
JP2007009287A true JP2007009287A (en) 2007-01-18

Family

ID=37748166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193211A Pending JP2007009287A (en) 2005-06-30 2005-06-30 Method for producing titanium alloy material

Country Status (1)

Country Link
JP (1) JP2007009287A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042828A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Method for producing titanium thin sheet
CN107541614A (en) * 2017-08-07 2018-01-05 华南理工大学 A kind of deformation induces laves phase dispersion consolidatedization titanium alloys and preparation method thereof
CN110079753A (en) * 2019-04-24 2019-08-02 江苏理工学院 A kind of forging method for eliminating TiAl alloy remnants lamella
CN110079700A (en) * 2019-04-24 2019-08-02 江苏理工学院 A kind of TiAl alloy and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042828A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Method for producing titanium thin sheet
CN107541614A (en) * 2017-08-07 2018-01-05 华南理工大学 A kind of deformation induces laves phase dispersion consolidatedization titanium alloys and preparation method thereof
CN110079753A (en) * 2019-04-24 2019-08-02 江苏理工学院 A kind of forging method for eliminating TiAl alloy remnants lamella
CN110079700A (en) * 2019-04-24 2019-08-02 江苏理工学院 A kind of TiAl alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5311941B2 (en) Metal powder for powder metallurgy, sintered body and method for producing sintered body
JP5585237B2 (en) Metal powder for powder metallurgy and sintered body
KR100394156B1 (en) Method for manufacturing the screw
JP5302965B2 (en) Hard powder, method for producing hard powder, and sintered hard alloy
JP5630430B2 (en) Metal powder for powder metallurgy and sintered body
TWI570245B (en) A method for preparing a porous spherical iron-based alloy powder by a reduction reaction, the powder and the powder are prepared Sintered body
EP2043801A1 (en) Fabrication method of alloy parts by metal injection molding and the alloy parts
JP2007009287A (en) Method for producing titanium alloy material
JP2012509408A (en) Method of manufacturing cemented carbide or cermet products
JP4337755B2 (en) Method for producing degreased body and method for producing sintered body
JP2010500477A (en) Mixed powder containing solid solution powder and sintered body using the same, mixed cermet powder containing solid solution powder, cermet using the same, and method for producing them
TW533105B (en) Method of producing watchband parts
JP4360339B2 (en) Molded body forming composition
JP5470955B2 (en) Metal powder and sintered body
JP4206476B2 (en) Method for producing aluminum sintered material
JP4337753B2 (en) Method for producing degreased body and method for producing sintered body
JP4337754B2 (en) Method for producing degreased body and method for producing sintered body
JP2001294905A (en) Method for producing micromodule gear
JP5585572B2 (en) Metal powder for powder metallurgy and sintered body
JP3626378B2 (en) TiB2-Ti (CN) -based composite and production method thereof
JP2016084534A (en) High density iron-based sintered body and manufacturing method therefor
JPH0339402A (en) Manufacture of metal powder sintered body
JP5211445B2 (en) Fine cermet
JPH02145704A (en) Composition for compacting and manufacture of sintered body using it
JPH05148590A (en) Low thermal expansion alloy powder and composition thereof