JP4565462B2 - Raw material for iron making, reaction accelerator for iron making, method for producing the raw material for iron making or reaction accelerator for iron making, and iron making method using the raw material for iron making or reaction promoter for iron making - Google Patents

Raw material for iron making, reaction accelerator for iron making, method for producing the raw material for iron making or reaction accelerator for iron making, and iron making method using the raw material for iron making or reaction promoter for iron making Download PDF

Info

Publication number
JP4565462B2
JP4565462B2 JP2003158736A JP2003158736A JP4565462B2 JP 4565462 B2 JP4565462 B2 JP 4565462B2 JP 2003158736 A JP2003158736 A JP 2003158736A JP 2003158736 A JP2003158736 A JP 2003158736A JP 4565462 B2 JP4565462 B2 JP 4565462B2
Authority
JP
Japan
Prior art keywords
iron
iron making
fine particles
raw material
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003158736A
Other languages
Japanese (ja)
Other versions
JP2004359997A (en
Inventor
悦章 柏谷
邦宣 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2003158736A priority Critical patent/JP4565462B2/en
Publication of JP2004359997A publication Critical patent/JP2004359997A/en
Application granted granted Critical
Publication of JP4565462B2 publication Critical patent/JP4565462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製鉄用原料、製鉄用反応促進材、該製鉄用原料又は該製鉄用反応促進材の製造方法、及び、該製鉄用原料又は該製鉄用反応促進材を利用した製鉄方法に関する。
【0002】
【従来の技術】
現在、鉄鋼の生産の約70%が、高炉、転炉法によって行われている。高炉に使用されている原料装入物の主なものは、鉄鉱石(焼結鉱、ペレット)とコークスであるが、これらの原料装入物の反応性には、各々限界がある。いま、反応開始温度を反応速度が顕著になる温度と定義すると、コークスの反応開始温度は、約1000°Cであり、その温度は、リザーブゾーンの形状を左右する重要な因子となっている。
【0003】
鉄鉱石は、周知のように、通常、ヘマタイト(Hematite、以下「H」と略す)、マグネタイト(Magnetite 、以下「M」と略す)、ウスタイト(Wustite 、以下「W」と略す)の各段階を経て金属に還元される。したがって、還元反応は、通常、
H→M :3Fe23 + CO = 2Fe34 + CO2
M→W : Fe34 + CO = 3FeO + CO2
W→Fe: FeO + CO = Fe + CO2
の3種類の反応が主なものになっている。また、ブドワー(Boudouard )反応
C + CO2 = 2CO
は、還元ガスの再生を司るため重要であり、上述のように、リザーブゾーンの形成に大きな影響を及ぼしている。
【0004】
一般的な高炉では、約1000°Cまでのリザーブゾーンまでに、ヘマタイトからマグネタイト、マグネタイトからウスタイトへの還元反応が生起するが、この段階での還元率は、30%〜33%程度であり、温度が約1000°C以上になって初めてウスタイトから鉄への還元反応(残りの還元率が67%〜70%であり、大きな割合を占める)が生起する。すなわち、現在の高炉は、約1000°C以上の温度域において殆どの反応が進行している。
【0005】
一方、特許文献1には、竪型炉用装入原料となる炭材内装塊成化物の製造方法が記載されており、この文献における炭材内装塊成化物は、粉状鉄鉱石の粒子間の空隙に溶融した炭材を浸入させることによって形成されるものである。
【0006】
【特許文献1】
特開2001−294944号公報
【0007】
【発明が解決しようとする課題】
現在の高炉法は、大型化することによって熱交換及び反応効率を限界まで高めることに成功した代表的な例であり、他の化学反応容器と比較して最も効率の良い反応容器といえるが、上述のように、原料装入物自体が有する反応性の限界のため、これ以上の省エネルギー、省資源を遂行するのは困難である。
【0008】
したがって、本発明は、さらなる省エネルギー、省資源を実現可能とする製鉄用原料、製鉄用反応促進材、該製鉄用原料又は該製鉄用反応促進材の製造方法、及び、該製鉄用原料又は該製鉄用反応促進材を利用した製鉄方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本願請求項1に記載の製鉄用原料は、粒径が500μm〜100nmの炭材と、前記炭材の内部に食い込んだ、粒径が100μm〜10nmの複数の酸化鉄微粒子とを含むことを特徴とするものである。
【0010】
本願請求項2に記載の製鉄用原料は、前記請求項1の製鉄用原料において、前記酸化鉄微粒子が、ヘマタイト微粒子、マグネタイト微粒子、又はウスタイト微粒子、又はこれらの混合物であることを特徴とするものである。
【0011】
本願請求項3に記載の製鉄用反応促進材は、粒径が500μm〜100nmの炭材と、前記炭材の内部に食い込んだ、粒径が100μm〜10nmの複数の酸化鉄微粒子とを含むことを特徴とするものである。
【0012】
本願請求項4に記載の製鉄用反応促進材は、前記請求項3の製鉄用反応促進材において、前記酸化鉄微粒子が、ヘマタイト微粒子、マグネタイト微粒子、又はウスタイト微粒子、又はこれらの混合物であることを特徴とするものである。
【0013】
本願請求項5に記載の製鉄用原料又は製鉄用反応促進材の製造方法は、200rpmで100時間以上、メカニカルミリングすることにより、酸化鉄微粒子を炭材に食い込ませることを特徴とするものである。
【0014】
本願請求項6に記載の製鉄方法は、前記請求項1又は2に記載の製鉄用原料、又は前記請求項3又は4に記載の製鉄用反応促進材を利用することにより、反応速度を高めるとともに、反応開始温度を低下させることを特徴とするものである。
【0015】
本願請求項7に記載の製鉄方法は、前記請求項1又は2に記載の製鉄用原料、又は前記請求項3又は4に記載の製鉄用反応促進材を利用することにより、生成した金属鉄を、Fe−C系状態図における最低液相温度(共晶温度)付近で溶解させることを特徴とするものである。
【0016】
【発明の実施の形態】
次に図面を参照して、本発明の好ましい実施の形態に係る製鉄用原料について詳細に説明する。図1(a)及び図1(b)は、本発明の好ましい実施の形態に係る製鉄用原料を模式的に示した図である。
【0017】
図1(a)及び図1(b)において、参照符号10は炭材、参照符号12、14は酸化鉄微粒子をそれぞれ示している。ここで、炭材10は、コークス、グラファイト、アモルファス等の全ての炭素材料を含むものである。また、酸化鉄微粒子12、14には、ヘマタイト微粒子、マグネタイト微粒子、ウスタイト微粒子、又はこれらの混合物が含まれる。
【0018】
本発明の製鉄用原料は、粒径が約500μm〜約100nmの炭材10と、炭材10の内部に完全に食い込んだ、粒径が約100μm〜約10nmの複数の酸化鉄微粒子12、14とを含んでいる(図1(a)参照)。炭材10と酸化鉄微粒子12、14の好ましい割合は、炭材10が約10重量%〜約50重量%、酸化鉄微粒子12、14が約50重量%〜約90重量%である。酸化鉄微粒子12、14の表面は、反応体となるマイクロ・ナノリアクターを構成する。なお、粒径が約100μm〜約1μmのものをマイクロリアクターを構成する酸化鉄微粒子とし、粒径が約1μm〜約10nmのものをナノリアクターを構成する酸化鉄微粒子とする(図1(a)及び図1(b)では、参照符号12がマイクロリアクターを構成する酸化鉄微粒子を、参照符号14がナノリアクターを構成する酸化鉄微粒子を、それぞれ模式的に示している)。
【0019】
本発明の製鉄用原料は、炭材10と、炭材10の内部に食い込んだ複数の酸化鉄微粒子12、14の他に、図1(b)に示されるように、炭材10の表面に付着し或いは部分的に食い込んだ複数の酸化鉄微粒子12、14を含んでもよい。
【0020】
炭材10の内部に酸化鉄微粒子12、14を食い込ませる方法として、例えば、メカニカルミリングを利用する方法があげられる。メカニカルミリングを利用する場合には、図2(a)に示されるようなミリング・ポットを準備し、所定量のアルミナ・ボールと炭材と酸化鉄微粒子とを投入した後、ミリング・ポットを回転させる。すると、硬度の大小がアルミナ・ボール>酸化鉄微粒子>炭材であるため、炭材と酸化鉄微粒子は粉砕されてより微細になるとともに、微細になった炭材の内部に微細になった酸化鉄微粒子が徐々に食い込んでいき、図1(a)又は図1(b)に示されるような製鉄用原料が形成される。
【0021】
なお、炭材10の内部に酸化鉄微粒子12、14を食い込ませる方法としては、上述のメカニカルミリングを利用する方法以外の他の方法を利用してもよい。
例えば、2種の金属を常温で合金化するメカニカルアローイングによって製造することが考えられる。
【0022】
次に、以上のように構成された製鉄用原料の効果を実証するために行われた2つの試験について説明する。
【0023】
(第1試験)
第1試験では、本発明の製鉄用原料の性質を、熱重量・示差熱(TG−DTA)分析装置で測定した。第1試験においては、試料を、アルゴン雰囲気中で10°C/分で加熱し、1100°Cで30分間保持した。試料は、アルミナ・ボールを用いたミルによって、炭素−酸化鉄を6時間〜200時間、200rpmでミリングしたものを使用した。
【0024】
第1試験の結果は、図3(a)のグラフに示した通りである。図3(a)のグラフにおいて、左側の縦軸は反応速度(%/秒)、右側の縦軸は温度(°C)、横軸は経過時間(秒)を示しており、G6、G24、G48、G72、G100、G200は、ミリング時間がそれぞれ6時間、24時間、48時間、72時間、100時間、200時間の試料(ミリング時間が長い方が、酸化鉄微粒子の粒径が小さく且つ食い込む酸化鉄微粒子の量が多くなることを意味する)を示している。
【0025】
図3(a)のグラフから、試料のミリング時間が長くなるに従って、反応温度が低下していることが分かる。図3(b)は、図3(a)のグラフにおけるG200の曲線を拡大した図である。図3(b)に示されるように、G200の試料では、反応開始温度T1 が約500°C、反応ピーク温度TP が約660°C、反応終了温度T2 が約700°C、反応ピーク温度TP における温度幅が約100°Cとなった。以上のことから、本発明の製鉄用原料の使用は、反応開始温度を低温にし、さらに、約100°Cの狭い温度範囲で還元反応を終了させることを可能にし、これにより反応速度が著しく高められることが分かる。従来の製鉄用原料と比較して、反応温度を長時間に亘って維持できるのは、図1(a)、図1(b)に示されるように、炭材10内部に、酸化鉄微粒子12、14を孔10Aを形成しつつ食い込ませているので、反応中に酸化鉄微粒子12、14の炭材10からの早期の脱落が防止され、酸化鉄微粒子12、14と炭材10との接触界面を反応中長時間に亘り維持できるためである。
【0026】
(第2試験)
第2試験では、還元反応が終了した後、引き続いて昇温した場合における試料(G100)の性質を、TG−DTA分析装置で測定した。
【0027】
第2試験の結果は、図4(a)、(b)のグラフに示した通りである。図4(a)のグラフにおいて、左側の縦軸は反応速度(μg/分)、右側の縦軸は温度(°C)、横軸は経過時間(分)を示しており、図4(b)のグラフにおいて、左側の縦軸は重量減少量(mg)、右側の縦軸は示差熱(μV)、横軸は経過時間(分)を示している。
【0028】
図4(a)のグラフから、試料G100の反応ピーク温度が約700°C、反応終了温度が約750°Cであることが分かる。また、さらに昇温し続けると、約1157°C(反応開始温度約1147°C)で浸炭による鉄の溶解反応が生起していることが、図4(b)のグラフから分かる。この溶解温度は、Fe−C系状態図における最低液相温度(共晶点)とほぼ一致している。現在の高炉においては、鉄の溶解温度は(浸炭条件に応じて多少変動するが)1400°C前後であると考えられているが、試料G100は、非常に低温で溶解するため、大きな省エネルギー効果を発揮できるものと推測される。
【0029】
本発明は、以上の発明の実施の形態に限定されることなく、特許請求の範囲に記載された発明の範囲内で、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
【0030】
たとえば、前記実施の形態では、炭材と、前記炭材の内部に食い込んだ酸化鉄微粒子とを含む物質を製鉄用原料として説明してきたが、製鉄用原料としてではなく、製鉄用反応促進材として使用してもよい。
【0031】
また、反応を一層促進させるため、炭材と、前記炭材の内部に食い込んだ酸化鉄微粒子とを含む製鉄用原料又は製鉄用反応促進材に、種々の触媒を混合してもよい。
【0032】
【発明の効果】
本発明の製鉄用原料又は製鉄用反応促進材によれば、酸化鉄微粒子が炭材の内部に食い込んでいるので、酸化鉄微粒子が炭材の表面に付着しているにすぎない従来の製鉄用原料(図5参照)と比較して、高反応性を長時間維持することができ、ひいては省エネルギー、省資源を達成することができる。また、本発明の製鉄用原料又は製鉄用反応促進材を利用した製鉄方法によれば、効率的な反応を達成することができる。
【図面の簡単な説明】
【図1】 本発明の好ましい実施の形態に係る製鉄用原料を模式的に示した図である。
【図2】 メカニカルミリングを利用して図1の製鉄用原料を形成する手順を示した図である。
【図3】 本発明の好ましい実施の形態に係る製鉄用原料を効果を実証するために行った第1試験の結果を示したグラフである。
【図4】 本発明の好ましい実施の形態に係る製鉄用原料を効果を実証するために行った第2試験の結果を示したグラフである。
【図5】 酸化鉄微粒子が炭材の表面に付着している従来の製鉄用原料の一例を模式的に示した図である。
【符号の説明】
10 炭材
12 マイクロリアクターを構成する酸化鉄微粒子
14 ナノリアクターを構成する酸化鉄微粒子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an iron-making raw material, an iron-making reaction accelerator, a method for producing the iron-making raw material or the iron-making reaction accelerator, and an iron-making method using the iron-making raw material or the iron-making reaction accelerator.
[0002]
[Prior art]
Currently, about 70% of steel production is carried out by the blast furnace and converter methods. The main raw material charges used in the blast furnace are iron ore (sintered ore, pellets) and coke, but there is a limit to the reactivity of these raw material charges. If the reaction start temperature is defined as the temperature at which the reaction rate becomes remarkable, the coke reaction start temperature is about 1000 ° C., and this temperature is an important factor that affects the shape of the reserve zone.
[0003]
As is well known, iron ore usually has the following steps: hematite (hereinafter abbreviated as “H”), magnetite (hereinafter abbreviated as “M”), and wustite (hereinafter abbreviated as “W”). After that, it is reduced to metal. Therefore, the reduction reaction is usually
H → M: 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2
M → W: Fe 3 O 4 + CO = 3FeO + CO 2
W → Fe: FeO + CO = Fe + CO 2
The three types of reactions are the main ones. Also, Boudouard reaction C + CO 2 = 2CO
Is important because it governs regeneration of the reducing gas, and has a great influence on the formation of the reserve zone as described above.
[0004]
In a general blast furnace, reduction reactions from hematite to magnetite and from magnetite to wustite occur by the reserve zone up to about 1000 ° C., but the reduction rate at this stage is about 30% to 33%, The reduction reaction from wustite to iron (the remaining reduction rate is 67% to 70%, which occupies a large proportion) occurs only when the temperature is about 1000 ° C. or higher. That is, in the current blast furnace, most reactions proceed in a temperature range of about 1000 ° C. or higher.
[0005]
On the other hand, Patent Document 1 describes a method for producing an agglomerated carbonaceous material agglomerated as a raw material for a vertical furnace. It is formed by allowing molten carbon material to enter into the gaps.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-294944
[Problems to be solved by the invention]
The current blast furnace method is a representative example that succeeded in increasing the heat exchange and reaction efficiency to the limit by increasing the size, and can be said to be the most efficient reaction vessel compared to other chemical reaction vessels, As described above, it is difficult to perform further energy saving and resource saving due to the limit of reactivity of the raw material charge itself.
[0008]
Therefore, the present invention provides an iron-making raw material, an iron-making reaction accelerator, a method for producing the iron-making raw material or the iron-making reaction-promoting material, and the iron-making raw material or the iron making. It aims at providing the iron-making method using the reaction-promoting material.
[0009]
[Means for Solving the Problems]
The raw material for iron making according to claim 1 of the present invention includes a carbonaceous material having a particle size of 500 μm to 100 nm and a plurality of iron oxide fine particles having a particle size of 100 μm to 10 nm that have digged into the carbonaceous material. It is what.
[0010]
The raw material for iron making according to claim 2 of the present invention is the raw material for iron making according to claim 1, wherein the iron oxide fine particles are hematite fine particles, magnetite fine particles, or wustite fine particles, or a mixture thereof. It is.
[0011]
The reaction accelerator for iron making according to claim 3 of the present invention includes a carbon material having a particle size of 500 μm to 100 nm and a plurality of iron oxide fine particles having a particle size of 100 μm to 10 nm that have digged into the carbon material. It is characterized by.
[0012]
The reaction promoter for iron making according to claim 4 of the present application is the iron accelerator reaction promoter according to claim 3, wherein the iron oxide fine particles are hematite fine particles, magnetite fine particles, wustite fine particles, or a mixture thereof. It is a feature.
[0013]
The method for producing a raw material for iron making or a reaction promoting material for iron making according to claim 5 of the present invention is characterized in that iron oxide fine particles are bitten into the carbonaceous material by mechanical milling at 200 rpm for 100 hours or more. .
[0014]
The iron making method according to claim 6 of the present application increases the reaction rate by using the iron making raw material according to claim 1 or 2, or the iron making reaction accelerator according to claim 3 or 4. The reaction start temperature is lowered.
[0015]
The iron making method according to claim 7 of the present invention uses the iron making raw material according to claim 1 or 2 or the iron making reaction promoter according to claim 3 or 4 to produce metallic iron produced. In the Fe—C phase diagram, melting is performed near the lowest liquidus temperature (eutectic temperature).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, with reference to drawings, the raw material for iron manufacture which concerns on preferable embodiment of this invention is demonstrated in detail. Fig.1 (a) and FIG.1 (b) are the figures which showed typically the raw material for iron manufacture based on preferable embodiment of this invention.
[0017]
1 (a) and 1 (b), reference numeral 10 indicates a carbonaceous material, and reference numerals 12 and 14 indicate iron oxide fine particles, respectively. Here, the carbon material 10 includes all carbon materials such as coke, graphite, and amorphous. The iron oxide fine particles 12 and 14 include hematite fine particles, magnetite fine particles, wustite fine particles, or a mixture thereof.
[0018]
The raw material for iron making of the present invention includes a carbon material 10 having a particle size of about 500 μm to about 100 nm, and a plurality of iron oxide fine particles 12, 14 having a particle size of about 100 μm to about 10 nm that have completely penetrated into the carbon material 10. (See FIG. 1A). A preferred ratio of the carbon material 10 and the iron oxide fine particles 12 and 14 is about 10 wt% to about 50 wt% for the carbon material 10 and about 50 wt% to about 90 wt% for the iron oxide fine particles 12 and 14. The surfaces of the iron oxide fine particles 12 and 14 constitute a micro / nano reactor as a reactant. In addition, the thing with a particle size of about 100 micrometers-about 1 micrometer is used as the iron oxide fine particle which comprises a microreactor, and the thing with a particle size of about 1 micrometer-about 10 nm is used as the iron oxide fine particle which comprises a nanoreactor (FIG. 1 (a)). In FIG. 1B, the reference numeral 12 schematically shows the iron oxide fine particles constituting the microreactor, and the reference numeral 14 schematically shows the iron oxide fine particles constituting the nanoreactor).
[0019]
In addition to the carbonaceous material 10 and the plurality of iron oxide fine particles 12 and 14 that have penetrated into the carbonaceous material 10, the raw material for iron making of the present invention is formed on the surface of the carbonaceous material 10 as shown in FIG. A plurality of iron oxide fine particles 12 and 14 adhered or partially biting in may be included.
[0020]
As a method for causing the iron oxide fine particles 12 and 14 to enter the carbonaceous material 10, for example, a method using mechanical milling can be cited. When using mechanical milling, prepare a milling pot as shown in Fig. 2 (a), put a predetermined amount of alumina balls, carbonaceous material and iron oxide fine particles, and then rotate the milling pot. Let Then, since the hardness is alumina balls> iron oxide fine particles> carbonaceous material, the carbonaceous material and iron oxide fine particles are pulverized to become finer and the finer oxidation inside the refined carbonaceous material. The iron fine particles bite in gradually, and a raw material for iron making as shown in FIG. 1 (a) or FIG. 1 (b) is formed.
[0021]
In addition, as a method for causing the iron oxide fine particles 12 and 14 to penetrate into the carbonaceous material 10, other methods than the method using the mechanical milling described above may be used.
For example, it is conceivable to manufacture by mechanical alloying in which two kinds of metals are alloyed at room temperature.
[0022]
Next, two tests performed to demonstrate the effect of the ironmaking raw material configured as described above will be described.
[0023]
(First test)
In the first test, the properties of the raw material for iron making of the present invention were measured with a thermogravimetric / differential heat (TG-DTA) analyzer. In the first test, the sample was heated at 10 ° C./min in an argon atmosphere and held at 1100 ° C. for 30 minutes. The sample used was a mill obtained by milling carbon-iron oxide at 200 rpm for 6 hours to 200 hours by a mill using alumina balls.
[0024]
The result of the first test is as shown in the graph of FIG. In the graph of FIG. 3 (a), the vertical axis on the left indicates the reaction rate (% / second), the vertical axis on the right indicates the temperature (° C), and the horizontal axis indicates the elapsed time (seconds). G48, G72, G100, and G200 are samples having milling times of 6 hours, 24 hours, 48 hours, 72 hours, 100 hours, and 200 hours, respectively (the longer the milling time, the smaller the particle size of the iron oxide fine particles and the more the bite) This means that the amount of iron oxide fine particles is increased).
[0025]
From the graph of FIG. 3A, it can be seen that the reaction temperature decreases as the milling time of the sample increases. FIG. 3B is an enlarged view of the curve of G200 in the graph of FIG. As shown in FIG. 3B, in the G200 sample, the reaction start temperature T 1 is about 500 ° C., the reaction peak temperature T P is about 660 ° C., the reaction end temperature T 2 is about 700 ° C. The temperature width at the peak temperature T P was about 100 ° C. From the above, the use of the raw material for iron making of the present invention makes it possible to lower the reaction start temperature and to complete the reduction reaction in a narrow temperature range of about 100 ° C., thereby significantly increasing the reaction rate. You can see that The reaction temperature can be maintained for a long time as compared with the conventional raw material for iron making, as shown in FIGS. 1 (a) and 1 (b). 14 are formed while forming the hole 10A, so that the iron oxide fine particles 12 and 14 are prevented from falling off from the carbonaceous material 10 during the reaction, and the contact between the iron oxide fine particles 12 and 14 and the carbonaceous material 10 is prevented. This is because the interface can be maintained for a long time during the reaction.
[0026]
(Second test)
In the second test, the properties of the sample (G100) when the temperature was subsequently raised after the reduction reaction was completed were measured with a TG-DTA analyzer.
[0027]
The results of the second test are as shown in the graphs of FIGS. 4 (a) and 4 (b). In the graph of FIG. 4A, the vertical axis on the left indicates the reaction rate (μg / min), the vertical axis on the right indicates the temperature (° C.), and the horizontal axis indicates the elapsed time (minutes). ), The left vertical axis represents weight loss (mg), the right vertical axis represents differential heat (μV), and the horizontal axis represents elapsed time (minutes).
[0028]
From the graph of FIG. 4A, it can be seen that the reaction peak temperature of the sample G100 is about 700 ° C. and the reaction end temperature is about 750 ° C. Further, it can be seen from the graph of FIG. 4B that when the temperature is further raised, the dissolution reaction of iron by carburization occurs at about 1157 ° C. (reaction start temperature of about 1147 ° C.). This melting temperature almost coincides with the lowest liquidus temperature (eutectic point) in the Fe-C phase diagram. In the current blast furnace, the melting temperature of iron is considered to be around 1400 ° C (although it varies somewhat depending on the carburizing conditions), but since the sample G100 melts at a very low temperature, it has a great energy saving effect. It is estimated that can be demonstrated.
[0029]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the invention described in the claims, and these are also included in the scope of the present invention. Needless to say, it is something.
[0030]
For example, in the above-described embodiment, the material including the carbonaceous material and the iron oxide fine particles that have entrapped inside the carbonaceous material has been described as the raw material for iron making, but not as the raw material for iron making, but as the reaction promoter for iron making. May be used.
[0031]
In order to further promote the reaction, various catalysts may be mixed in an iron-making raw material or an iron-making reaction accelerator containing carbonaceous material and iron oxide fine particles that have entrapped inside the carbonaceous material.
[0032]
【The invention's effect】
According to the ironmaking raw material or the ironmaking reaction accelerator of the present invention, since the iron oxide fine particles are biting into the carbonaceous material, the iron oxide fine particles are only attached to the surface of the carbonaceous material. Compared with a raw material (refer FIG. 5), high reactivity can be maintained for a long time, and an energy saving and resource saving can be achieved by extension. Moreover, according to the iron-making method using the iron-making raw material or the iron-making reaction accelerator of the present invention, an efficient reaction can be achieved.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a raw material for iron making according to a preferred embodiment of the present invention.
FIG. 2 is a diagram showing a procedure for forming the ironmaking raw material of FIG. 1 using mechanical milling.
FIG. 3 is a graph showing the results of a first test conducted for verifying the effect of a raw material for iron making according to a preferred embodiment of the present invention.
FIG. 4 is a graph showing the results of a second test conducted to verify the effect of the raw material for iron making according to the preferred embodiment of the present invention.
FIG. 5 is a diagram schematically showing an example of a conventional raw material for iron making in which iron oxide fine particles adhere to the surface of a carbonaceous material.
[Explanation of symbols]
10 Carbon material 12 Iron oxide fine particles constituting a microreactor 14 Iron oxide fine particles constituting a nanoreactor

Claims (7)

粒径が500μm〜100nmの炭材と、前記炭材の内部に食い込んだ、粒径が100μm〜10nmの複数の酸化鉄微粒子とを含むことを特徴とする製鉄用原料。A raw material for iron making, comprising: a carbonaceous material having a particle size of 500 μm to 100 nm; and a plurality of iron oxide fine particles having a particle size of 100 μm to 10 nm that have digged into the carbonaceous material. 前記酸化鉄微粒子が、ヘマタイト微粒子、マグネタイト微粒子、又はウスタイト微粒子、又はこれらの混合物であることを特徴とする請求項1に記載の製鉄用原料。2. The ironmaking raw material according to claim 1, wherein the iron oxide fine particles are hematite fine particles, magnetite fine particles, wustite fine particles, or a mixture thereof. 粒径が500μm〜100nmの炭材と、前記炭材の内部に食い込んだ、粒径が100μm〜10nmの複数の酸化鉄微粒子とを含むことを特徴とする製鉄用反応促進材。A reaction promoter for iron making, comprising: a carbon material having a particle size of 500 μm to 100 nm; and a plurality of iron oxide fine particles having a particle size of 100 μm to 10 nm that have digged into the carbon material. 前記酸化鉄微粒子が、ヘマタイト微粒子、マグネタイト微粒子、又はウスタイト微粒子、又はこれらの混合物であることを特徴とする請求項3に記載の製鉄用反応促進材。The iron oxide reaction accelerator according to claim 3, wherein the iron oxide fine particles are hematite fine particles, magnetite fine particles, wustite fine particles, or a mixture thereof. 前記請求項1又は2に記載の製鉄用原料、又は前記請求項3又は4に記載の製鉄用反応促進材の製造方法であって、
200rpmで100時間以上、メカニカルミリングすることにより、酸化鉄微粒子を炭材に食い込ませることを特徴とする製造方法。
A method for producing a raw material for iron making according to claim 1 or 2, or a reaction accelerator for iron making according to claim 3 or 4,
A manufacturing method characterized by causing iron oxide fine particles to bite into a carbonaceous material by mechanical milling at 200 rpm for 100 hours or more .
前記請求項1又は2に記載の製鉄用原料、又は前記請求項3又は4に記載の製鉄用反応促進材を利用することにより、反応速度を高め、反応開始温度を低下させることを特徴とする製鉄方法。By using the raw material for iron making according to claim 1 or 2 or the reaction accelerator for iron making according to claim 3 or 4, the reaction rate is increased and the reaction start temperature is lowered. Steel making method. 前記請求項1又は2に記載の製鉄用原料、又は前記請求項3又は4に記載の製鉄用反応促進材を利用することにより、生成した金属鉄を、Fe−C系状態図における最低液相温度(共晶温度)付近で溶解させることを特徴とする製鉄方法。By using the raw material for iron making according to claim 1 or 2 or the reaction accelerator for iron making according to claim 3 or 4, the produced metallic iron is converted into a lowest liquid phase in an Fe-C phase diagram. A method of iron making, characterized by melting near a temperature (eutectic temperature).
JP2003158736A 2003-06-04 2003-06-04 Raw material for iron making, reaction accelerator for iron making, method for producing the raw material for iron making or reaction accelerator for iron making, and iron making method using the raw material for iron making or reaction promoter for iron making Expired - Fee Related JP4565462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158736A JP4565462B2 (en) 2003-06-04 2003-06-04 Raw material for iron making, reaction accelerator for iron making, method for producing the raw material for iron making or reaction accelerator for iron making, and iron making method using the raw material for iron making or reaction promoter for iron making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158736A JP4565462B2 (en) 2003-06-04 2003-06-04 Raw material for iron making, reaction accelerator for iron making, method for producing the raw material for iron making or reaction accelerator for iron making, and iron making method using the raw material for iron making or reaction promoter for iron making

Publications (2)

Publication Number Publication Date
JP2004359997A JP2004359997A (en) 2004-12-24
JP4565462B2 true JP4565462B2 (en) 2010-10-20

Family

ID=34051992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158736A Expired - Fee Related JP4565462B2 (en) 2003-06-04 2003-06-04 Raw material for iron making, reaction accelerator for iron making, method for producing the raw material for iron making or reaction accelerator for iron making, and iron making method using the raw material for iron making or reaction promoter for iron making

Country Status (1)

Country Link
JP (1) JP4565462B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274309A (en) * 2005-08-17 2008-11-13 Hokkaido Univ Method for producing iron

Also Published As

Publication number Publication date
JP2004359997A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4330257B2 (en) Metal iron manufacturing method
RU2435868C1 (en) Procedure for production of pelleted reduced iron and procedure for production of cast iron
JP2015518922A (en) Method for improving the reducibility of iron ore pellets
US8071015B2 (en) Process for producing porous metal body
JP4565462B2 (en) Raw material for iron making, reaction accelerator for iron making, method for producing the raw material for iron making or reaction accelerator for iron making, and iron making method using the raw material for iron making or reaction promoter for iron making
WO2010072999A2 (en) Sinter process
JP2011042869A (en) Carbon composite briquette for producing reduced iron and method for producing reduced iron employing the same
JPH06172916A (en) Manufacturing of stainless steel
WO2007083450A1 (en) Process for producing metallic iron
CN101638730A (en) Method for preparing sponge chromium from metallurgical-grade chromite concentrate fine powder
JP2009079257A (en) Method for producing molten steel
JPS63500873A (en) Vanadium slag and its manufacturing method
Bhonde et al. Various techniques to produce low carbon ferrochrome
JP4010526B2 (en) Manufacturing method of iron alloy briquette
CA2100442C (en) Process for the production of vanadium containing steel alloys
JP2005325373A (en) Method for casting iron powder for magnetic material
JP5820344B2 (en) Method for producing reduced product
KR101586741B1 (en) Extraction method for metallic oxide
Chen et al. Reduction and subsequent carburization of pre-oxidation magnetite pellets
JP5103915B2 (en) Method for producing reduced metal
WO2015137348A1 (en) Method and facility for producing reduced iron
Akdogan et al. Solid state carbothermic reduction of manganese ores
JP4767611B2 (en) Reduction method of iron oxide
Ghasemi et al. Chemical and mineralogical characterization of Kahnuj ilmenite concentrate and investigation of its reduction behavior in pure hydrogen gas
JP2007247033A (en) Method for manufacturing foamed metal using oxide reducing reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees