JP4564724B2 - Digital broadcast receiver - Google Patents

Digital broadcast receiver Download PDF

Info

Publication number
JP4564724B2
JP4564724B2 JP2003162298A JP2003162298A JP4564724B2 JP 4564724 B2 JP4564724 B2 JP 4564724B2 JP 2003162298 A JP2003162298 A JP 2003162298A JP 2003162298 A JP2003162298 A JP 2003162298A JP 4564724 B2 JP4564724 B2 JP 4564724B2
Authority
JP
Japan
Prior art keywords
digital
signal
detection means
electric field
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003162298A
Other languages
Japanese (ja)
Other versions
JP2004364124A (en
Inventor
順次 橋本
一男 高山
実 前畑
純一 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2003162298A priority Critical patent/JP4564724B2/en
Publication of JP2004364124A publication Critical patent/JP2004364124A/en
Application granted granted Critical
Publication of JP4564724B2 publication Critical patent/JP4564724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、デジタルテレビジョン放送などを受信可能な、デジタル放送受信機に関する。
【0002】
【従来の技術】
従来から、地上波デジタルテレビジョン放送の伝送方式として、直交周波数分割多重(以下、Orthogonal Frequency Division Multiplex から「OFDM」と略称する)方式の開発が進められている。OFDM方式は、マルチキャリア伝送方式の一形態であり、たとえば1kHz間隔で配置される5300本のサブキャリアに、それぞれ振幅位相変調(QAM)を施して信号の送信を行う。地上波デジタルテレビジョン放送では、90MHz〜800MHz程度の高周波の周波数帯域が使用される。
【0003】
地上波デジタルテレビジョン放送のようなデジタル方式のテレビジョン放送を受信するデジタルTV受信機は、チューナ回路で高周波の放送を選局し、周波数変換/増幅した後で取出される中間周波帯域の信号をアナログ/デジタル変換(以下、Analog/Digitalから「A/D」または「A/D変換」と略称することがある。)し、デジタル信号処理によって復調を行うシステムである。この過程で、アナログ/デジタル変換を行うA/D変換器に入力される中間周波帯域の信号は、一定レベルに保つ必要があり、AGC(Auto Gain Controller )制御が行われる。
【0004】
固定して利用するデジタルTV受信機では、受信電界の強度変化が少ないので、AGC制御の応答性は、一定で、かつ遅めに設定されている。AGC制御の応答性が速めであると、パルス性ノイズなどが混入するときに、増幅利得の変化があり、瞬間的なノイズの混入が終了した後も、増幅利得の変動で受信信号のレベルが変動しやすいからである。しかし、自動車などの移動体に搭載されるデジタル放送受信機では、受信電界が急峻に変化しやすいので、AGC制御の応答が遅く設定されている場合、急峻な受信電界の変化に追従することができず、移動しなければ安定な受信電界にも関わらず、受信不可となる場合が発生するという問題がある。
【0005】
デジタル放送に限らず、トンネル内を自動車で走行中は、放送局の電波はアンテナに到達せず、受信電界が非常に弱い状態であるので増幅利得が大きくなっている。トンネルを抜けると、同調していた放送局の電波が充分に大きい電界強度でアンテナに到達する。AGC制御の時定数が大きく、制御が遅れる状態になっていると、AGC制御のループが収束して安定な状態に復帰するまでに時間がかかり、入力が過大で復調して再生する音質が劣化する。ある先行技術では、高周波増幅回路の出力を受信処理とは別に取出して増幅し、出力が一定になるようなAGC制御を行う際に、入力レベルの急変動を検出して、時定数を変更している(たとえば、特許文献1参照。)。他の先行技術では、テレビジョン放送の受像機で、選局切替え時等の過度現象時に映像に乱れが生じるのを防ぐため、チューナ回路でのPLL(Phase Lockerd Loop)のロック状態を判定し、ロックが外れているときには選局時等のレベル急変に追従可能なようにAGC制御の時定数を短くし、ロック状態に復帰してから時定数を長くするようにしている(たとえば、特許文献2参照)。
【0006】
【特許文献1】
特開平5−199137号公報
【特許文献2】
特開2001−148819号公報
【0007】
【発明が解決しようとする課題】
図7は、AGC制御の応答性の影響を、模式的な波形で示す。図7(a)は入力信号の波形を示す。たとえば、車載のOFDM方式のデジタルTV受信機で、時刻t0から強電界の状態で放送の受信を開始し、時刻t1でパルス性ノイズの混入があり、時刻t2からt3までトンネルを通過して弱電界となり、時刻t3以降、トンネルを出て強電界に戻る場合を想定する。前述のように、デジタルテレビ放送の周波数は数100MHzであり、内部が弱電界になるトンネルは長さが数100m以上あると考えられるので、図の波形はあくまで便宜的なものである。
【0008】
図7(b)は、AGC制御の時定数が大きい場合の増幅利得の変化を示す。時刻t0からt2までは比較的小さい増幅利得であり、時刻t1でパルス性ノイズの混入があっても変化しない。時刻t2以降は増幅利得が上昇し、時刻t3でトンネルから出ると、時刻t4まで増幅利得が下降して時刻t0からt2までと同様な状態に戻る。図7(c)は、図7(b)のようなAGC制御下の増幅利得に対する出力の変化を示す。時刻t1でのパルス性ノイズは、ピークでクリップされる。時刻t2で強電界から弱電界に急変しても、増幅利得の上昇は相対的に低速であるので、出力は低下する。時刻t3からトンネルを出て強電界に復帰しても、増幅利得が高い状態が続くので、出力は過大になり、過大な部分はクリップする。出力がクリップすると、高い周波数成分が失われ、テレビジョンの画像を充分に再生することができなくなる。
【0009】
図7(d)は、AGC制御の時定数が小さい場合の増幅利得の変化を示す。時定数が小さいと、時刻t1のようなパルス性ノイズの混入にも応答し、増幅利得を低下させる。このため、図7(e)に示すように、出力の振幅が小さくなり、アナログ/デジタル変換に必要な入力レベルに達しないおそれがある。時刻t2からt3までのトンネル通過の影響は受けにくい。このように、デジタルテレビジョン放送の受信を、特に車載の受信機で走行しながら行おうとするような場合は、AGCの応答性を常に適切な状態に制御する必要がある。
【0010】
また前述の先行技術では、受信電界の変動に応じたAGCの応答性の制御のために、時定数の変更を、アナログ回路で電気的に行っている。これらの考え方をデジタル放送受信機に適用すると、放送の復調のためのデジタル信号処理と、AGC制御のためのアナログ信号処理とを併存させなければならない。
【0011】
本発明の目的は、デジタル信号処理で、移動時などの受信電界の変動に応じて、AGC制御の応答性を適応制御可能なデジタル放送受信機を提供することである。
【0012】
【課題を解決するための手段】
本発明は、予め定める形式のデジタル信号で変調された放送を高周波帯域で受信し、受信した信号を中間周波帯域に変換し、アナログ/デジタル変換して、デジタル信号処理で復調するデジタル放送受信機において、
アナログ/デジタル変換された信号を検波処理し、アナログ/デジタル変換への入力信号レベルに対応する出力値を導出するデジタル検波手段と、
デジタル検波手段からの出力値を予め設定される基準値と比較するデジタル比較手段と、
受信電界の変動を、デジタル検波手段の出力値の変化量に基づいて検出し、検出した受信電界の変動に応じて予め定める特性を選択する変動検出手段と、
デジタル比較手段の比較値が入力され、変動検出手段によって選択された特性で、低域濾波処理を施して出力するLPF手段と、
LPF手段からの出力をデジタル/アナログ変換して、変動検出手段によって受信電界の変化量が大きいと検出されるときに制御対象の時定数が短くなるように、受信信号の増幅利得を制御するための制御信号を出力するAGC制御手段とを含み、
変動検出手段は、デジタル検波手段からの出力と、デジタル検波手段からの出力を一定時間遅れさせた出力とから差の絶対値を算出することによって、デジタル検波手段の出力値の一定時間あたりの変化量を求め、求めた一定時間あたりの変化量に基づいて受信電界の変動を検出することを特徴とするデジタル放送受信機である。
【0013】
本発明に従えば、デジタル放送受信機は、予め定める形式のデジタル信号で変調された放送を高周波帯域で受信し、受信した信号を中間周波帯域に変換し、アナログ/デジタル変換して、デジタル信号処理で復調するために、デジタル検波手段と、デジタル比較手段と、変動検出手段と、LPF手段と、AGC制御手段とを含む。デジタル検波手段がアナログ/デジタル変換された信号を検波処理し、アナログ/デジタル変換への入力信号レベルに対応する出力値を導出すると、出力値はデジタル比較手段によって予め設定される基準値と比較される。LPF手段は、変動検出手段によって検出される受信電界の変動に応じた特性で、デジタル比較手段の比較結果に低域濾波処理を施す。AGC制御手段は、LPF手段での低域濾波処理結果をデジタル/アナログ変換して、受信信号の増幅利得を調整するためのAGC制御電圧などを発生するので、受信信号をアナログ/デジタル変換するまでに増幅する段階で利得の制御を行い、アナログ/デジタル変換に入力する受信信号のレベルを所定の範囲に保つことができる。デジタル/アナログ変換するデジタル比較手段の比較結果は、LPF手段によって低域濾波処理され、低域濾波処理の係数などの特性が受信電界の変動に応じて選択されるので、AGC制御の応答性を、デジタル信号処理を利用し、受信電界の変動に応じて適応制御することができる。
【0015】
また、変動検出手段は、デジタル検波手段からの出力と、デジタル検波手段からの出力を一定時間遅れさせた出力とから差の絶対値を算出することによって、デジタル検波手段の出力値の一定時間あたりの変化量を求め、求めた一定時間あたりの変化量に基づいて受信電界の変動を検出する。デジタル検波手段の出力値は、受信電界の変動に対応して変化するので、その変化量に基づいて受信電界の変動を検出し、LPF手段の係数を時定数が短い状態に相当するように選択することによって、AGC制御の応答性を適応制御することができる。
【0022】
また本発明で、前記AGC制御手段は、前記中間周波帯域に変換された信号を増幅する中間周波増幅器のみ、前記増幅利得の制御のための制御信号を出力することを特徴とする。
【0023】
本発明に従えば、AGC制御による増幅利得の制御のための制御信号の出力中間周波帯域に変換された信号を増幅する中間周波増幅器のみ行うので、高周波増幅器は増幅利得を最大にしておき、弱電界で効果的なAGC制御を、簡単な構成で実現することができる。
【0024】
また本発明で、前記AGC制御手段は、前記高周波帯域で受信された信号を増幅する高周波増幅器のみ、前記増幅利得の制御のための制御信号を出力することを特徴とする。
【0025】
本発明に従えば、AGC制御による増幅利得の制御のための制御信号の出力高周波帯域で受信された信号を増幅する高周波増幅器のみ行うので、強電界では高周波増幅器の増幅利得を低下させることができ、混変調特性の改善を図ることができる。
【0026】
また本発明で、前記AGC制御手段は、前記高周波帯域で受信された信号を増幅する高周波増幅器と、前記中間周波帯域に変換された信号を増幅する中間周波増幅器との両方について、前記増幅利得の制御のための制御信号を出力することを特徴とする。
【0027】
本発明に従えば、AGC制御による増幅利得の制御のための制御信号の出力高周波帯域に変換された信号を増幅する高周波増幅器と中間周波帯域に変換された信号を増幅する中間周波増幅器との両方について行うので、広い増幅利得の範囲を変更してアナログ/デジタル変換への入力レベルを適正化することができる。
【0030】
また本発明は、受信周波数を検出する周波数検出手段をさらに含み、
前記LPF手段が施す低域濾波処理の特性は、周波数検出手段が検出する受信周波数と、変動検出手段が検出する受信電界の変動とに応じて、変動検出手段によって選択されることを特徴とする。
【0031】
本発明に従えば、受信周波数が高い程、急峻な電界変動が発生しやすくなるので、周波数検出手段によって検出される受信周波数に応じてLPF手段が施す低域濾波処理の係数の選択を変更するなどの特性の変更で、受信周波数に応じてAGC制御の応答性を適応制御することができる。
【0032】
【発明の実施の形態】
図1は、本発明の実施の第1形態であるデジタルTV受信機1の概略的な電気的構成を示す。デジタルTV受信機は、OFDM方式のテレビジョン放送の電波をアンテナ2に入力して電気信号を発生させ、チューナ3で受信する90MHz〜800MHz程度の高周波増幅および中間周波帯域への周波数変換を行う。中間周波数は、たとえば57MHz帯であり、周波数帯域は約5.6MHz程度である。IFamp4は、中間周波に変換された受信信号の増幅を行い、A/D回路5はIFamp4の出力をA/D変換する。A/D変換された受信信号は、FFT手段6でFourier 変換され、復調手段7でMPEG(Motion Picture coding Experts Group )方式で圧縮された信号に復調し、誤り検出/訂正手段8でエラー処理を行い、MPEGデコーダ9で画像や音声の再生を行う。
【0033】
チューナ3での選局は、CPU10による制御で行われる。チューナ3には高周波増幅器が含まれ、その増幅利得はIF/RF−AGC制御手段11から与えられるAGC制御信号に応じて制御される。IF/RF−AGC制御手段11は、IFamp4にもAGC制御信号を与えて、増幅利得を制御する。IF/RF−AGC制御手段11によるAGC制御は、受信電界の変動に応じて応答性を適応制御することができる。受信電界の変動は、A/D回路5からの出力をAGC検波手段12で検波し、その出力値の時間変化の傾きなどの変化量を、変化量検出手段13で検出して求める。また、FFT手段6で受信信号を周波数領域の信号に変換した出力から、周波数特性変化手段14で周波数特性の変化を検出して、受信電界の変動を求めることもできる。さらに、誤り検出/訂正手段8からのエラー検出量に基づいて、受信電界の変動を求めることもできる。
【0034】
なお、A/D回路5でデジタル信号に変換した後の受信信号の処理は、DSP(Digital Signal Processor)などを用いてデジタル演算処理で行う。すなわち、FFT手段6、復調手段7、誤り検出/訂正手段8、IF/RF−AGC制御手段11、AGC検波手段12、変化量検出手段13および周波数特性変化検出手段14は、1または複数のDSPやCPUのプログラム処理で実現することができる。
【0035】
すなわち、デジタル放送受信機であるデジタルTV受信機1は、予め定める形式のデジタル信号で変調された放送を高周波帯域で受信し、受信した信号を中間周波帯域に変換し、アナログ/デジタル変換して、デジタル信号処理で復調するために、デジタル検波手段であるAGC検波手段12を含む。IF/RF−AGC制御手段11は、変化量検出手段13、周波数特性検出手段14または誤り検出/訂正手段8から、後述するように、受信電界の変動に応じた出力を受け、変動が大きいときは迅速な応答を可能にし、変動が少ないときは応答の変動を抑えるように、適応制御される。
【0036】
図2は、AGC制御の応答性の影響を、模式的な波形で示す。図2(a)は、図7(a)と同様な入力信号の波形を示す。図2(b)は、デジタルTV受信機1でのAGC制御による増幅利得の変化を示す。時刻t0からt2までは比較的小さい増幅利得であり、図7(b)と同様に、時刻t1でパルス性ノイズの混入があっても変化しない。時刻t2以降は、図7(d)と同様に、時刻t2からt3までのトンネル通過の影響は受けにくい。図2(c)は、出力の変化を示す。
デジタルテレビジョン放送を、特に車載の受信機で走行しながら受信する場合でも、「AGCの応答性を常に適切な状態に制御することができる。
【0037】
図3は、本発明の実施の第2形態であるデジタルTV受信機21の概略的な電気的構成を部分的に示す。本実施形態で図1の実施形態に対応する部分には同一の参照符を付し、重複する説明を省略する。また、図1の実施形態と基本的に同一の部分で、図示を省略している部分もある。デジタルTV受信機21では、IFamp4のみにAGC制御を行う。
【0038】
変化量検出手段13は、遅延手段22、比較手段23、ABS演算手段24およびメモリ25を含む。比較手段23は、AGC検波手段12からの検波出力を表す信号を、遅延手段22で一定時間遅れさせた信号と比較する。比較手段23によって算出される差は、ABS演算手段24に入力されて絶対値が算出され、メモリ25に予め格納されているデータを、差の絶対値に基づいて選択する。選択したデータは、IF−AGC制御手段30の応答性を変更するために使用される。
【0039】
すなわち、デジタルTV受信機21は、予め定める形式のデジタル信号で変調された放送を高周波帯域で受信し、受信した信号を中間周波帯域に変換し、アナログ/デジタル変換して、デジタル信号処理で復調するために、アナログ/デジタル変換された信号を検波処理し、アナログ/デジタル変換への入力信号レベルに対応する出力値を導出するデジタル検波手段としてのAGC検波手段12と、AGC検波手段12からの出力値を予め設定される基準値と比較するデジタル比較手段である比較手段31と、受信電界の変動を、該変動に対応する状態変化から検出する変動検出手段である変化量検出手段13と、比較手段31の比較値が入力され、変化量検出手段13によって検出される変動に応じて選択される係数で、低域濾波処理を施すLPF手段であるLPF演算手段32と、LPF演算手段32での低域濾波処理結果をデジタル/アナログ変換して、受信信号の増幅利得を調整するためのAGC制御電圧として発生するAGC制御手段であるD/A回路33とを含む。
【0040】
デジタル放送受信機であるデジタルTV受信機21は、AGC検波手段12がアナログ/デジタル変換された信号を検波処理し、アナログ/デジタル変換への入力信号レベルに対応する出力値を導出すると、出力値は比較手段31によって予め設定される基準値Refと比較される。LPF演算手段32は、変化量検出手段25によって検出される受信電界の変動に応じて選択される係数で、比較手段31の比較結果に低域濾波処理を施す。D/A回路33は、LPF演算手段32での低域濾波処理結果をデジタル/アナログ変換して、受信信号の増幅利得を調整するためのAGC制御電圧として発生するので、受信信号をアナログ/デジタル変換するまでに増幅する段階で利得の制御を行い、アナログ/デジタル変換に入力する受信信号のレベルを所定の範囲に保つことができる。デジタル/アナログ変換する比較手段31の比較結果は、LPF演算手段32によって低域濾波処理され、低域濾波処理の係数、すなわちLPFの特性が受信電界の変動に応じて選択されるので、AGC制御の応答性を、デジタル信号処理を利用し、受信電界の変動に応じて適応制御することができる。ここで、適応制御としては、AGC検波手段12の出力値は、受信電界の変動に対応して変化するので、その変化量に基づいて受信電界の変動を検出し、LPF演算手段32の係数を時定数が短い状態に相当するように選択することによって、AGC制御の応答性を適応制御することができる。
【0041】
IF−AGC制御手段30は、前述のように、IFamp4に対してのみAGC制御を行い、比較手段32、LPF(Low Pass Filter )の演算手段32およびD/A回路30を含む。比較手段31は、ADC検波手段12から出力される値を、予め設定される基準値Refと比較し、差を表す値を出力する。この出力は、LPF演算手段32で低域濾波処理され、LPF演算手段32で低域濾波処理に使用する係数として、変化量検出手段13からのデータを使用する。
【0042】
また本実施形態で、AGC制御手段であるID−AGC制御手段30は、中間周波帯域に変換された信号を増幅する中間周波増幅器であるIFamp4のみ、増幅利得の制御を行う。AGC制御による増幅利得の制御は中間周波帯域に変換された信号を増幅する中間周波増幅器のみで行うので、チューナ3の増幅利得は最大にしておいて、増幅利得が大きい中間周波増幅器で広い範囲の制御を、簡単な構成で実現することができる。チューナ3の増幅利得を常に最大にしておくので、特に弱電界の場合に有効な受信処理を行うことができる。
【0043】
また高周波帯域で受信された信号を増幅するチューナ3の高周波増幅器のみ、増幅利得の制御を行うようにすることもできる。AGC制御による増幅利得の制御は高周波帯域に変換された信号を増幅する高周波増幅器のみで行うので、強電界の場合などに、高周波増幅器の増幅利得を低下させて、混変調による受信信号の劣化を避けることができる。
【0044】
さらに、高周波帯域で受信された信号を増幅する高周波増幅器と、中間周波帯域に変換された信号を増幅するIFamp4との両方について、増幅利得の制御を行うこともできる。AGC制御による増幅利得の制御は高周波帯域の信号を増幅する高周波増幅器と中間周波帯域に変換された信号を増幅するIFamp4との両方について行うので、広い増幅利得の範囲を変更してアナログ/デジタル変換への入力レベルを適正化することができる。なお、このような高周波増幅器、中間周波増幅器の両方をAGC制御したり、いずれか一方のみをAGC制御したりすることの得失は、他の実施形態でも同様であり、いずれかの方式を選択することができる。
【0045】
図4は、本発明の前提となる実施の第3形態であるデジタルTV受信機41の概略的な電気的構成を部分的に示す。本実施形態で図1または図3の実施形態に対応する部分には同一の参照符を付し、重複する説明を省略する。また、図1の実施形態と基本的に同一の部分で、図示を省略している部分もある。デジタルTV受信機41では、受信電界の変動を上下クリップ検出手段50によって検出し、検出結果に応じてLPF演算手段32の係数を選択し、AGC制御の応答性を適応制御する。
【0046】
上下クリップ検出手段50は、比較手段51,52と、OR演算手段53と、メモリ54とを含む。比較手段51は、AGC検波手段12の検波出力値が全ビット”0”となっているか否かを判断する。比較手段52は、AGC検波手段12の検波出力値が全ビット”1”となっているか否かを判断する。OR演算手段53は、いずれかが成立するときと、いずれも成立しないときとで異なるデータをメモリ54から読出し、LPF演算手段32へ計数として与える。すなわち、変動検出手段である上下クリップ検出手段50は、受信電界の変動を、AGC検波手段12の出力値が全ビットが同一の論理値になることに基づいて検出する。
AGC検波手段12の出力値は、所定のビット数のデジタル値であり、その大きさは受信電界の変動に対応して変化する。AGC制御は、A/D回路5が所定ビット数のアナログ/デジタル変換を有効に行うことができるように、入力が適正な範囲に収るように行う。受信電界の変動で、アナログ/デジタル変換への入力が該ビット数のデジタル値で表されるレベルの範囲外になるときには、出力値の全ビットが1となったり、0となったりするので、受信電界の変動が大きいことが判る。受信電界の変動が大きいときは、LPF演算手段32の低域濾波処理の係数を時定数が短い状態に相当するように選択することによって、AGC制御の応答性を適応制御することができる。
【0047】
図5は、本発明の前提となる実施の第4形態であるデジタルTV受信機61の概略的な電気的構成を部分的に示す。本実施形態で図1、図3または図4の実施形態に対応する部分には同一の参照符を付し、重複する説明を省略する。また、図1の実施形態と基本的に同一の部分で、図示を省略している部分もある。デジタルTV受信機61では、受信電界の変動を周波数特性変化検出手段14によって検出し、検出結果に応じて、IF/RF−AGC制御手段11の応答性を適応制御する。IF/RF−AGC制御手段11は、比較手段62、LPF演算手段63、D/A回路64、LPF演算手段65およびD/A回路66を含む。周波数特性変化検出手段14は、遅延手段67、比較手段68およびメモリ69を含む。変動検出手段である周波数特性変化検出手段14は、受信電界の変動を、アナログ/デジタル変換された信号の周波数特性の変化に基づいて検出する。デジタル放送の受信では、FFT手段6によるFFT処理で周波数成分に分ける信号処理が行われるので、周波数特性の変化を容易に検出することができる。周波数特性の変化が大きいときは、AGC制御の応答を早めるようにLPF演算手段63,65の低域濾波処理の係数を選択し、適応制御を行うことができる。
【0048】
図6は、本発明の前提となる実施の第5形態であるデジタルTV受信機71の概略的な電気的構成を部分的に示す。本実施形態で図1、図3、図4または図5の実施形態に対応する部分には同一の参照符を付し、重複する説明を省略する。また、図1の実施形態と基本的に同一の部分で、図示を省略している部分もある。デジタルTV受信機71では、受信電界の変動を誤り検出/訂正手段8によって検出される誤り量に基づいて検出し、検出結果に応じて、IF/RF−AGC制御手段11の応答性を適応制御する。すなわち、受信電界の変動を、アナログ/デジタル変換された信号のデジタル信号処理による復調の際のエラー検出量に基づいて、検出する。エラー検出量が多い場合は弱電界域や電界変動の多い受信環境である可能性が高いので、AGC制御の応答を早めるようにLPF演算手段63,65の低域濾波処理の係数を選択し、適応制御を行うことができる。誤り検出/訂正手段8が検出する誤り量は、変動検出手段となる誤り量計数手段72が計数し、計数値に応じてメモリ73に予め格納されている係数データを選択して、LPF演算手段63,65に与える。
【0049】
各実施形態では、移動速度を検出する速度検出手段をさらに含むようにして、LPF演算手段32,63,65が施す低域濾波処理の係数の選択は、速度検出手段が検出する移動速度に応じて変更するようにしてもよい。移動速度が速いときは受信環境が変化しやすく、急峻な電界変動が生じやすいので、LPF演算手段32,63,65の低域濾波処理の係数を時定数が短い状態に相当するように選択して、車両に搭載される場合の走行速度などに対する適応制御を行うことができる。
【0050】
また図1のCPU10などを、受信周波数を検出する周波数検出手段としてさらに含み、LPF演算手段32,63,65が施す低域濾波処理の係数の選択は、検出した受信周波数に応じて変更するようにしてもよい。受信周波数が高い程、急峻な電界変動が発生しやすくなるので、検出した受信周波数に応じてLPF演算手段32,63,65が施す低域濾波処理の係数の選択を変更し、受信周波数に応じてAGC制御の応答性を適応制御することができる。
【0051】
【発明の効果】
以上のように本発明によれば、AGC制御手段がLPF手段での低域濾波処理結果をデジタル/アナログ変換して、受信信号の増幅利得を調整するためのAGC制御電圧として発生する際に、低域濾波処理の特性が受信電界の変動に応じて変更されるので、AGC制御の応答性を、デジタル信号処理を利用し、受信電界の変動に応じて適応制御することができる。
【0052】
また、受信電界の変動に対応するデジタル検波手段の出力値の変化量に基づいて、変化量が大きいときにはLPF手段の係数を時定数が短い状態に相当するように選択することによって、AGC制御の応答性を受信電界の変動に対して適応制御することができる。
【0056】
また本発明によれば、AGC制御による増幅利得の制御を中間周波増幅器のみで行い、弱電界で有効なAGC制御を、簡単な構成で実現することができる。
【0057】
また本発明によれば、AGC制御による増幅利得の制御を高周波増幅器のみで行い、強電界で有効なAGC制御を、簡単な構成で実現することができる。
【0058】
また本発明によれば、AGC制御による増幅利得の制御を高周波増幅器と中間周波増幅器との両方で行い、広い増幅利得の範囲を変更してアナログ/デジタル変換への入力レベルを適正化することができる。
【0060】
また本発明によれば、受信周波数が高い程、急峻な電界変動が発生しやすくなるので、LPF手段が施す低域濾波処理の係数の選択を変更するなどの特性の変更で、受信周波数に応じてAGC制御の応答性を適応制御することができる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態であるデジタルTV受信機1の概略的な電気的構成を示すブロック図である。
【図2】図1の実施形態でのAGC制御の応答性の影響を、模式的に示す波形図である。
【図3】本発明の実施の第2形態であるデジタルTV受信機21の概略的な電気的構成を部分的に示すブロック図である。
【図4】 本発明の前提となる実施の第3形態であるデジタルTV受信機41の概略的な電気的構成を部分的に示すブロック図である。
【図5】 本発明の前提となる実施の第4形態であるデジタルTV受信機61の概略的な電気的構成を部分的に示すブロック図である。
【図6】 本発明の前提となる実施の第5形態であるデジタルTV受信機71の概略的な電気的構成を部分的に示すブロック図である。
【図7】従来からのAGC制御の応答性の影響を、模式的に示す波形図である。
【符号の説明】
1,21,41,61,71 デジタルTV受信機
3 チューナ
4 IFamp
5 A/D回路
6 FFT演算手段
7 復調手段
8 誤り検出/訂正手段
10 CPU
11 IF/RF−AGC制御手段
12 AGC検波手段
13 変化量検出手段
14 周波数特性変化検出手段
22,67 遅延手段
23,31,51,52,62 比較手段
25,54,69,73 メモリ
30 IF−AGC制御手段
32,63,65 LPF演算手段
33,64,66 D/A回路
50 上下クリップ検出手段
72 誤り量計数手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a digital broadcast receiver capable of receiving digital television broadcasts and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, development of an orthogonal frequency division multiplexing (hereinafter, abbreviated as “OFDM” from Orthogonal Frequency Division Multiplex) scheme is underway as a transmission method for terrestrial digital television broadcasting. The OFDM scheme is a form of multi-carrier transmission scheme, and performs signal transmission by applying amplitude phase modulation (QAM) to 5300 subcarriers arranged at 1 kHz intervals, for example. In terrestrial digital television broadcasting, a high frequency band of about 90 MHz to 800 MHz is used.
[0003]
A digital TV receiver that receives a digital television broadcast such as a terrestrial digital television broadcast selects a high-frequency broadcast by a tuner circuit, and converts and amplifies the signal in an intermediate frequency band. Is a system that performs analog / digital conversion (hereinafter may be abbreviated as “A / D” or “A / D conversion” from Analog / Digital) and performs demodulation by digital signal processing. In this process, an intermediate frequency band signal input to an A / D converter that performs analog / digital conversion needs to be maintained at a constant level, and AGC (Auto Gain Controller) control is performed.
[0004]
In a digital TV receiver that is used in a fixed manner, since the change in the intensity of the received electric field is small, the responsiveness of AGC control is set constant and late. If the response of AGC control is fast, there is a change in amplification gain when pulsed noise or the like is mixed, and even after the instantaneous noise mixing is finished, the level of the received signal is changed due to fluctuation of the amplification gain. This is because it tends to fluctuate. However, in a digital broadcast receiver mounted on a mobile body such as an automobile, the received electric field is likely to change steeply. Therefore, when the response of AGC control is set to be slow, it can follow a sharp change in the received electric field. If it does not move, there is a problem that reception may not be possible despite a stable reception electric field.
[0005]
Not only digital broadcasting but also traveling in a tunnel by car, the radio wave of the broadcasting station does not reach the antenna, and the reception electric field is very weak, so the amplification gain is large. After exiting the tunnel, the radio wave of the tuned broadcasting station reaches the antenna with a sufficiently large electric field strength. If the time constant of the AGC control is large and the control is delayed, it takes time until the AGC control loop converges and returns to a stable state, and the input quality is excessive and the sound quality to be demodulated and reproduced deteriorates. To do. In a certain prior art, when the AGC control is performed so that the output of the high-frequency amplifier circuit is taken out and amplified separately from the reception process and the output becomes constant, the time constant is changed by detecting a sudden change in the input level. (For example, refer to Patent Document 1). In other prior art, in a television broadcast receiver, in order to prevent the video from being disturbed during an excessive phenomenon such as channel selection switching, the lock state of a PLL (Phase Lockerd Loop) in the tuner circuit is determined, When the lock is released, the AGC control time constant is shortened so as to be able to follow a sudden level change at the time of channel selection, and the time constant is lengthened after returning to the locked state (for example, Patent Document 2). reference).
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 5-199137
[Patent Document 2]
JP 2001-148819 A
[0007]
[Problems to be solved by the invention]
FIG. 7 shows the influence of the responsiveness of AGC control with a schematic waveform. FIG. 7A shows the waveform of the input signal. For example, with an in-vehicle OFDM digital TV receiver, broadcast reception starts at time t0 in a strong electric field, pulse noise is mixed at time t1, and weakly passes through the tunnel from time t2 to t3. It is assumed that the electric field is generated and the tunnel exits the tunnel and returns to the strong electric field after time t3. As described above, the frequency of digital television broadcasting is several hundreds of MHz, and a tunnel having a weak electric field inside is considered to have a length of several hundreds of meters or more. Therefore, the waveforms in the figure are just for convenience.
[0008]
FIG. 7B shows a change in amplification gain when the time constant of AGC control is large. From time t0 to t2, the amplification gain is relatively small and does not change even when pulsed noise is mixed at time t1. After time t2, the amplification gain increases. When the tunnel exits at time t3, the amplification gain decreases until time t4 and returns to the same state as from time t0 to t2. FIG.7 (c) shows the change of the output with respect to the amplification gain under AGC control like FIG.7 (b). The pulse noise at time t1 is clipped at the peak. Even if the electric field suddenly changes from a strong electric field to a weak electric field at time t2, the increase in amplification gain is relatively low, and the output decreases. Even after exiting the tunnel from time t3 and returning to a strong electric field, the amplification gain remains high, so the output becomes excessive and the excessive portion is clipped. When the output is clipped, the high frequency component is lost and the television image cannot be fully reproduced.
[0009]
FIG. 7D shows a change in amplification gain when the time constant of AGC control is small. When the time constant is small, the amplification gain is lowered in response to the mixing of pulse noise such as time t1. For this reason, as shown in FIG. 7E, the amplitude of the output becomes small, and there is a possibility that the input level necessary for analog / digital conversion may not be reached. It is not easily affected by the passage of the tunnel from time t2 to t3. As described above, when the digital television broadcast is to be received while traveling with an in-vehicle receiver, it is necessary to always control the responsiveness of the AGC to an appropriate state.
[0010]
In the above-described prior art, the time constant is electrically changed by an analog circuit in order to control the responsiveness of the AGC according to the variation of the received electric field. When these ideas are applied to a digital broadcast receiver, digital signal processing for broadcast demodulation and analog signal processing for AGC control must coexist.
[0011]
An object of the present invention is to provide a digital broadcast receiver capable of adaptively controlling the responsiveness of AGC control in accordance with fluctuations in a received electric field such as when moving by digital signal processing.
[0012]
[Means for Solving the Problems]
  The present invention relates to a digital broadcast receiver that receives a broadcast modulated with a digital signal of a predetermined format in a high frequency band, converts the received signal to an intermediate frequency band, performs analog / digital conversion, and demodulates the digital signal processing. In
  A digital detection means for detecting an analog / digital converted signal and deriving an output value corresponding to an input signal level to the analog / digital conversion;
  Digital comparison means for comparing the output value from the digital detection means with a preset reference value;
  Fluctuations in the received electric fieldBased on the amount of change in the output value of the digital detection meansdetectionAnd select a predetermined characteristic according to the detected fluctuation of the received electric field.Variation detection means;
  The comparison value of the digital comparison means is input and the fluctuation detection meansSelected byCharacteristics, low-pass filteringAnd outputLPF means;
  LPF meansSo that the time constant of the object to be controlled is shortened when the variation detection means detects that the amount of change in the received electric field is large.Amplification gain of received signalcontrolDoOutput a control signal forIncluding AGC control meansSee
  The fluctuation detection means calculates the absolute value of the difference from the output from the digital detection means and the output obtained by delaying the output from the digital detection means for a fixed time, thereby changing the output value of the digital detection means per fixed time. Detects fluctuations in the received electric field based on the obtained change amount per fixed timeThis is a digital broadcast receiver characterized by the above.
[0013]
According to the present invention, a digital broadcast receiver receives a broadcast modulated with a digital signal of a predetermined format in a high frequency band, converts the received signal into an intermediate frequency band, performs analog / digital conversion, and converts the digital signal. In order to demodulate by processing, digital detection means, digital comparison means, fluctuation detection means, LPF means, and AGC control means are included. When the digital detection means detects the analog / digital converted signal and derives an output value corresponding to the input signal level to the analog / digital conversion, the output value is compared with a preset reference value by the digital comparison means. The The LPF means performs a low-pass filtering process on the comparison result of the digital comparison means with a characteristic corresponding to the fluctuation of the received electric field detected by the fluctuation detection means. The AGC control means digitally / analog converts the low-pass filtering result of the LPF means to generate an AGC control voltage for adjusting the amplification gain of the received signal, and so on until the received signal is converted to analog / digital. The gain is controlled at the stage of amplification, and the level of the received signal input to the analog / digital conversion can be kept within a predetermined range. The comparison result of the digital comparison means that performs digital / analog conversion is low-pass filtered by the LPF means, and characteristics such as a low-pass filtering coefficient are selected according to the variation of the received electric field. Using digital signal processing, adaptive control can be performed in accordance with fluctuations in the received electric field.
[0015]
  Further, the fluctuation detection means calculates the absolute value of the difference from the output from the digital detection means and the output delayed from the digital detection means by a predetermined time, thereby obtaining a constant per unit time of the output value of the digital detection means. The variation in the received electric field is detected based on the obtained variation per fixed time.Since the output value of the digital detection means changes corresponding to the fluctuation of the received electric field, the fluctuation of the received electric field is detected based on the amount of change, and the coefficient of the LPF means is selected so as to correspond to a state with a short time constant. By doing so, the responsiveness of AGC control can be adaptively controlled.
[0022]
  Further, in the present invention, the AGC control means only includes an intermediate frequency amplifier that amplifies the signal converted into the intermediate frequency band.InControl of the amplification gainOutput control signal forIt is characterized by that.
[0023]
  According to the present invention, control of amplification gain by AGC controlControl signal output forIs,Only the intermediate frequency amplifier that amplifies the signal converted to the intermediate frequency bandInTherefore, the high-frequency amplifier can maximize the amplification gain, and can realize AGC control effective in a weak electric field with a simple configuration.
[0024]
  Further, in the present invention, the AGC control means can only be a high frequency amplifier that amplifies a signal received in the high frequency band.InControl of the amplification gainOutput control signal forIt is characterized by that.
[0025]
  According to the present invention, control of amplification gain by AGC controlControl signal output forIs,Only high-frequency amplifiers that amplify signals received in the high-frequency bandInAs a result, the amplification gain of the high-frequency amplifier can be reduced in a strong electric field, and the cross modulation characteristics can be improved.
[0026]
  Further, in the present invention, the AGC control means may have the amplification gain for both a high frequency amplifier that amplifies the signal received in the high frequency band and an intermediate frequency amplifier that amplifies the signal converted to the intermediate frequency band. controlOutput control signal forIt is characterized by that.
[0027]
  According to the present invention, control of amplification gain by AGC controlControl signal output forIs,Since both the high-frequency amplifier that amplifies the signal converted to the high-frequency band and the intermediate-frequency amplifier that amplifies the signal converted to the intermediate-frequency band, input to analog / digital conversion by changing the wide amplification gain range The level can be optimized.
[0030]
  The present invention further includes frequency detection means for detecting the reception frequency,
  The characteristic of the low-pass filtering process performed by the LPF means is the reception frequency detected by the frequency detecting means.And fluctuations in the received electric field detected by the fluctuation detection meansIn response to the, Selected by fluctuation detection meansIt is characterized by being.
[0031]
According to the present invention, the higher the reception frequency, the more likely the steep electric field fluctuation occurs. Therefore, the selection of the low-pass filtering coefficient performed by the LPF unit is changed according to the reception frequency detected by the frequency detection unit. By changing the characteristics such as the above, it is possible to adaptively control the responsiveness of AGC control according to the reception frequency.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic electrical configuration of a digital TV receiver 1 according to a first embodiment of the present invention. The digital TV receiver inputs an OFDM television broadcast radio wave to the antenna 2 to generate an electric signal, and performs high frequency amplification of about 90 MHz to 800 MHz received by the tuner 3 and frequency conversion to an intermediate frequency band. The intermediate frequency is, for example, the 57 MHz band, and the frequency band is about 5.6 MHz. IFamp4 amplifies the received signal converted to the intermediate frequency, and the A / D circuit 5 A / D converts the output of IFamp4. The A / D converted received signal is Fourier-transformed by the FFT means 6, demodulated into a signal compressed by the MPEG (Motion Picture coding Experts Group) system by the demodulating means 7, and subjected to error processing by the error detection / correction means 8. Then, the MPEG decoder 9 reproduces images and sounds.
[0033]
Tuning at the tuner 3 is performed under the control of the CPU 10. The tuner 3 includes a high frequency amplifier, and its amplification gain is controlled in accordance with an AGC control signal supplied from the IF / RF-AGC control means 11. The IF / RF-AGC control means 11 gives an AGC control signal to IFamp4 to control the amplification gain. The AGC control by the IF / RF-AGC control means 11 can adaptively control the responsiveness according to the variation of the received electric field. The fluctuation of the received electric field is obtained by detecting the output from the A / D circuit 5 by the AGC detection means 12 and detecting the change amount such as the slope of the time change of the output value by the change amount detection means 13. Further, the variation of the received electric field can be obtained by detecting the change of the frequency characteristic by the frequency characteristic changing means 14 from the output obtained by converting the received signal into the frequency domain signal by the FFT means 6. Further, the fluctuation of the received electric field can be obtained based on the error detection amount from the error detection / correction means 8.
[0034]
The processing of the received signal after being converted into a digital signal by the A / D circuit 5 is performed by digital arithmetic processing using a DSP (Digital Signal Processor) or the like. That is, the FFT means 6, the demodulation means 7, the error detection / correction means 8, the IF / RF-AGC control means 11, the AGC detection means 12, the change amount detection means 13, and the frequency characteristic change detection means 14 include one or more DSPs. It can be realized by program processing of the CPU.
[0035]
That is, the digital TV receiver 1 which is a digital broadcast receiver receives a broadcast modulated with a digital signal in a predetermined format in a high frequency band, converts the received signal into an intermediate frequency band, and performs analog / digital conversion. In order to demodulate by digital signal processing, AGC detection means 12 which is digital detection means is included. The IF / RF-AGC control means 11 receives an output corresponding to the fluctuation of the received electric field from the change amount detection means 13, the frequency characteristic detection means 14 or the error detection / correction means 8, and when the fluctuation is large, as will be described later. Is adaptively controlled to enable quick response and to suppress response fluctuations when fluctuations are small.
[0036]
FIG. 2 shows the influence of the responsiveness of AGC control with a schematic waveform. FIG. 2A shows the waveform of an input signal similar to that in FIG. FIG. 2B shows a change in amplification gain by AGC control in the digital TV receiver 1. From time t0 to t2, the amplification gain is relatively small, and, as in FIG. 7B, there is no change even if pulsed noise is mixed at time t1. After time t2, as in FIG. 7 (d), it is not easily affected by the passage of the tunnel from time t2 to t3. FIG. 2C shows a change in output.
Even when a digital television broadcast is received while traveling with an in-vehicle receiver, “AGC responsiveness can always be controlled to an appropriate state.
[0037]
FIG. 3 partially shows a schematic electrical configuration of a digital TV receiver 21 according to the second embodiment of the present invention. In this embodiment, parts corresponding to those of the embodiment of FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. In addition, there is a portion that is basically the same as the embodiment of FIG. In the digital TV receiver 21, AGC control is performed only on IFamp4.
[0038]
The change amount detection unit 13 includes a delay unit 22, a comparison unit 23, an ABS calculation unit 24, and a memory 25. The comparison unit 23 compares the signal representing the detection output from the AGC detection unit 12 with the signal delayed by a predetermined time by the delay unit 22. The difference calculated by the comparison means 23 is input to the ABS calculation means 24 to calculate an absolute value, and data stored in advance in the memory 25 is selected based on the absolute value of the difference. The selected data is used to change the responsiveness of the IF-AGC control means 30.
[0039]
That is, the digital TV receiver 21 receives a broadcast modulated with a digital signal in a predetermined format in a high frequency band, converts the received signal to an intermediate frequency band, performs analog / digital conversion, and demodulates the digital signal processing. Therefore, the AGC detection means 12 as a digital detection means for detecting the analog / digital converted signal and deriving an output value corresponding to the input signal level to the analog / digital conversion, and the AGC detection means 12 A comparison unit 31 that is a digital comparison unit that compares the output value with a preset reference value; a change amount detection unit 13 that is a variation detection unit that detects a variation in the received electric field from a state change corresponding to the variation; The comparison value of the comparison means 31 is input, and low-pass filtering is performed with a coefficient selected according to the fluctuation detected by the change amount detection means 13. LPF calculating means 32, which is LPF means, and AGC control means for generating an AGC control voltage for adjusting the amplification gain of the received signal by digital / analog conversion of the low-pass filtering processing result in the LPF calculating means 32 And a D / A circuit 33.
[0040]
The digital TV receiver 21 which is a digital broadcast receiver detects the output value corresponding to the input signal level to the analog / digital conversion when the AGC detection means 12 detects the analog / digital converted signal and derives the output value. Is compared with a preset reference value Ref by the comparison means 31. The LPF calculation means 32 performs a low-pass filtering process on the comparison result of the comparison means 31 with a coefficient selected according to the variation of the received electric field detected by the change amount detection means 25. The D / A circuit 33 performs digital / analog conversion on the low-pass filtering processing result in the LPF calculation means 32 and generates it as an AGC control voltage for adjusting the amplification gain of the reception signal. The gain is controlled at the stage of amplification before conversion, and the level of the received signal input to the analog / digital conversion can be kept within a predetermined range. The comparison result of the comparison means 31 for digital / analog conversion is low-pass filtered by the LPF calculating means 32, and the coefficient of the low-pass filtering, that is, the characteristics of the LPF is selected according to the variation of the received electric field. Responsiveness can be adaptively controlled according to fluctuations in the received electric field using digital signal processing. Here, as the adaptive control, since the output value of the AGC detection means 12 changes corresponding to the fluctuation of the received electric field, the fluctuation of the received electric field is detected based on the amount of change, and the coefficient of the LPF calculation means 32 is set. By selecting the time constant so as to correspond to a short state, the responsiveness of AGC control can be adaptively controlled.
[0041]
As described above, IF-AGC control means 30 performs AGC control only on IFamp4, and includes comparison means 32, LPF (Low Pass Filter) calculation means 32, and D / A circuit 30. The comparison unit 31 compares the value output from the ADC detection unit 12 with a preset reference value Ref, and outputs a value representing the difference. This output is low-pass filtered by the LPF calculating means 32, and the data from the variation detecting means 13 is used as a coefficient used for the low-pass filtering processing by the LPF calculating means 32.
[0042]
In this embodiment, the ID-AGC control means 30 that is an AGC control means controls the amplification gain only for IFamp4 that is an intermediate frequency amplifier that amplifies the signal converted to the intermediate frequency band. Since the gain control by the AGC control is performed only by the intermediate frequency amplifier that amplifies the signal converted to the intermediate frequency band, the amplification gain of the tuner 3 is set to the maximum, and the intermediate frequency amplifier having a large amplification gain has a wide range. Control can be realized with a simple configuration. Since the amplification gain of the tuner 3 is always maximized, effective reception processing can be performed particularly in the case of a weak electric field.
[0043]
Only the high-frequency amplifier of the tuner 3 that amplifies the signal received in the high-frequency band can also control the amplification gain. Amplification gain control by AGC control is performed only by a high-frequency amplifier that amplifies a signal converted into a high-frequency band. Therefore, in the case of a strong electric field, the amplification gain of the high-frequency amplifier is reduced, and the received signal is deteriorated by cross modulation. Can be avoided.
[0044]
Further, the amplification gain can be controlled for both the high-frequency amplifier that amplifies the signal received in the high-frequency band and the IFamp4 that amplifies the signal converted to the intermediate frequency band. Amplification gain control by AGC control is performed for both the high frequency amplifier that amplifies the signal in the high frequency band and the IFamp4 that amplifies the signal converted to the intermediate frequency band, so the analog / digital conversion is performed by changing the wide amplification gain range. The input level can be optimized. The advantages and disadvantages of performing AGC control on both the high-frequency amplifier and the intermediate frequency amplifier or performing AGC control on only one of them are the same in the other embodiments, and either method is selected. be able to.
[0045]
  FIG. 4 illustrates the present invention.PremiseThe schematic electrical configuration of a digital TV receiver 41 according to the third embodiment is partially shown. In this embodiment, parts corresponding to those of the embodiment of FIG. 1 or FIG. 3 are denoted by the same reference numerals, and redundant description is omitted. In addition, there is a portion that is basically the same as the embodiment of FIG. In the digital TV receiver 41, the fluctuation of the received electric field is detected by the upper and lower clip detection means 50, the coefficient of the LPF calculation means 32 is selected according to the detection result, and the responsiveness of the AGC control is adaptively controlled.
[0046]
The upper and lower clip detection means 50 includes comparison means 51 and 52, an OR operation means 53, and a memory 54. The comparison means 51 determines whether or not the detection output value of the AGC detection means 12 is all bits “0”. The comparison unit 52 determines whether or not the detection output value of the AGC detection unit 12 is “1”. The OR operation means 53 reads different data from the memory 54 when one of them is satisfied and when none of them is satisfied, and gives it to the LPF operation means 32 as a count. That is, the upper and lower clip detection means 50 as the fluctuation detection means detects the fluctuation of the received electric field based on the fact that the output value of the AGC detection means 12 has the same logical value for all bits.
The output value of the AGC detection means 12 is a digital value having a predetermined number of bits, and the magnitude thereof changes corresponding to the fluctuation of the received electric field. The AGC control is performed so that the input is within an appropriate range so that the A / D circuit 5 can effectively perform analog / digital conversion of a predetermined number of bits. When the input to the analog / digital conversion falls outside the range of the level represented by the digital value of the number of bits due to fluctuations in the received electric field, all the bits of the output value become 1 or 0. It can be seen that the fluctuation of the received electric field is large. When the variation of the received electric field is large, the response of AGC control can be adaptively controlled by selecting the low-pass filtering coefficient of the LPF calculating means 32 so as to correspond to a state with a short time constant.
[0047]
  FIG. 5 illustrates the present invention.PremiseA schematic electrical configuration of a digital TV receiver 61 according to a fourth embodiment is partially shown. In this embodiment, parts corresponding to those of the embodiment of FIG. 1, FIG. 3, or FIG. In addition, there is a portion that is basically the same as the embodiment of FIG. In the digital TV receiver 61, the fluctuation of the received electric field is detected by the frequency characteristic change detecting means 14, and the response of the IF / RF-AGC control means 11 is adaptively controlled according to the detection result. The IF / RF-AGC control unit 11 includes a comparison unit 62, an LPF calculation unit 63, a D / A circuit 64, an LPF calculation unit 65, and a D / A circuit 66. The frequency characteristic change detection unit 14 includes a delay unit 67, a comparison unit 68, and a memory 69. The frequency characteristic change detecting means 14 which is a fluctuation detecting means detects the fluctuation of the received electric field based on the change of the frequency characteristic of the analog / digital converted signal. In digital broadcast reception, signal processing is performed to divide into frequency components by FFT processing by the FFT means 6, so that changes in frequency characteristics can be easily detected. When the change in frequency characteristics is large, adaptive control can be performed by selecting the low-pass filtering coefficient of the LPF calculation means 63 and 65 so as to accelerate the response of AGC control.
[0048]
  FIG. 6 illustrates the present invention.PremiseA schematic electrical configuration of a digital TV receiver 71 according to a fifth embodiment is partially shown. In this embodiment, parts corresponding to those of the embodiment of FIG. 1, FIG. 3, FIG. 4 or FIG. In addition, there is a portion that is basically the same as the embodiment of FIG. In the digital TV receiver 71, the fluctuation of the received electric field is detected based on the error amount detected by the error detection / correction means 8, and the responsiveness of the IF / RF-AGC control means 11 is adaptively controlled according to the detection result. To do. That is, the fluctuation of the received electric field is detected based on the error detection amount at the time of demodulation by digital signal processing of the analog / digital converted signal. If there is a large amount of error detection, there is a high possibility of a reception environment with a weak electric field range or a large electric field fluctuation, so the low pass filtering coefficient of the LPF calculation means 63, 65 is selected so as to accelerate the response of AGC control Adaptive control can be performed. The error amount detected by the error detection / correction means 8 is counted by an error amount counting means 72 serving as a fluctuation detection means, and coefficient data stored in advance in the memory 73 is selected according to the counted value, and the LPF calculation means. 63, 65.
[0049]
In each embodiment, a speed detection means for detecting the movement speed is further included, and the selection of the low-pass filtering coefficient performed by the LPF calculation means 32, 63, 65 is changed according to the movement speed detected by the speed detection means. You may make it do. When the moving speed is fast, the reception environment is likely to change, and steep electric field fluctuations are likely to occur. Therefore, the low-pass filtering coefficients of the LPF calculation means 32, 63, 65 are selected so as to correspond to a short time constant. Thus, it is possible to perform adaptive control with respect to the traveling speed when mounted on a vehicle.
[0050]
1 is further included as frequency detection means for detecting the reception frequency, and the selection of the low-pass filtering coefficient performed by the LPF calculation means 32, 63, 65 is changed according to the detected reception frequency. It may be. As the reception frequency is higher, steep electric field fluctuations are more likely to occur. Therefore, the selection of the low-pass filtering coefficient performed by the LPF calculation means 32, 63, 65 is changed according to the detected reception frequency, and the reception frequency is changed. Thus, the responsiveness of AGC control can be adaptively controlled.
[0051]
【The invention's effect】
As described above, according to the present invention, when the AGC control means digital / analog converts the low-pass filtering processing result in the LPF means and generates it as an AGC control voltage for adjusting the amplification gain of the received signal, Since the characteristics of the low-pass filtering process are changed according to the variation of the received electric field, the responsiveness of AGC control can be adaptively controlled according to the variation of the received electric field using digital signal processing.
[0052]
  Also, ReceivedBased on the change amount of the output value of the digital detection means corresponding to the fluctuation of the received electric field, the response of AGC control is selected by selecting the coefficient of the LPF means so as to correspond to a state with a short time constant when the change amount is large. Can be adaptively controlled with respect to fluctuations in the received electric field.
[0056]
In addition, according to the present invention, amplification gain control by AGC control is performed only with an intermediate frequency amplifier, and AGC control effective in a weak electric field can be realized with a simple configuration.
[0057]
Further, according to the present invention, amplification gain control by AGC control is performed only by a high-frequency amplifier, and AGC control effective in a strong electric field can be realized with a simple configuration.
[0058]
In addition, according to the present invention, the gain control by the AGC control is performed by both the high frequency amplifier and the intermediate frequency amplifier, and a wide range of the amplification gain is changed to optimize the input level to the analog / digital conversion. it can.
[0060]
Also, according to the present invention, the higher the reception frequency, the more likely the steep electric field fluctuations to occur. Therefore, by changing the characteristics such as changing the selection of the low-pass filtering coefficient performed by the LPF means, Thus, the responsiveness of AGC control can be adaptively controlled.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic electrical configuration of a digital TV receiver 1 according to a first embodiment of the present invention.
FIG. 2 is a waveform diagram schematically showing the influence of responsiveness of AGC control in the embodiment of FIG.
FIG. 3 is a block diagram partially showing a schematic electrical configuration of a digital TV receiver 21 according to a second embodiment of the present invention.
FIG. 4 of the present inventionPremiseIt is a block diagram which shows partially the schematic electric constitution of the digital TV receiver 41 which is 3rd Embodiment.
FIG. 5 shows the present invention.PremiseIt is a block diagram which shows partially the schematic electric constitution of the digital TV receiver 61 which is 4th Embodiment.
FIG. 6 of the present inventionPremiseIt is a block diagram which shows partially the schematic electric constitution of the digital TV receiver 71 which is 5th Embodiment.
FIG. 7 is a waveform diagram schematically showing the influence of responsiveness of conventional AGC control.
[Explanation of symbols]
1, 21, 41, 61, 71 Digital TV receiver
3 Tuner
4 IFamp
5 A / D circuit
6 FFT operation means
7 Demodulation means
8 Error detection / correction means
10 CPU
11 IF / RF-AGC control means
12 AGC detection means
13 Change amount detection means
14 Frequency characteristic change detection means
22, 67 Delay means
23, 31, 51, 52, 62 comparison means
25, 54, 69, 73 memory
30 IF-AGC control means
32, 63, 65 LPF calculation means
33, 64, 66 D / A circuit
50 Upper and lower clip detection means
72 Error amount counting means

Claims (5)

予め定める形式のデジタル信号で変調された放送を高周波帯域で受信し、受信した信号を中間周波帯域に変換し、アナログ/デジタル変換して、デジタル信号処理で復調するデジタル放送受信機において、
アナログ/デジタル変換された信号を検波処理し、アナログ/デジタル変換への入力信号レベルに対応する出力値を導出するデジタル検波手段と、
デジタル検波手段からの出力値を予め設定される基準値と比較するデジタル比較手段と、
受信電界の変動を、デジタル検波手段の出力値の変化量に基づいて検出し、検出した受信電界の変動に応じて予め定める特性を選択する変動検出手段と、
デジタル比較手段の比較値が入力され、変動検出手段によって選択された特性で、低域濾波処理を施して出力するLPF手段と、
LPF手段からの出力をデジタル/アナログ変換して、変動検出手段によって受信電界の変化量が大きいと検出されるときに制御対象の時定数が短くなるように、受信信号の増幅利得を制御するための制御信号を出力するAGC制御手段とを含み、
変動検出手段は、デジタル検波手段からの出力と、デジタル検波手段からの出力を一定時間遅れさせた出力とから差の絶対値を算出することによって、デジタル検波手段の出力値の一定時間あたりの変化量を求め、求めた一定時間あたりの変化量に基づいて受信電界の変動を検出することを特徴とするデジタル放送受信機。
In a digital broadcast receiver that receives a broadcast modulated with a digital signal of a predetermined format in a high frequency band, converts the received signal to an intermediate frequency band, performs analog / digital conversion, and demodulates by digital signal processing.
A digital detection means for detecting an analog / digital converted signal and deriving an output value corresponding to an input signal level to the analog / digital conversion;
Digital comparison means for comparing the output value from the digital detection means with a preset reference value;
Fluctuation detecting means for detecting the fluctuation of the received electric field based on the amount of change in the output value of the digital detection means, and selecting a predetermined characteristic according to the detected fluctuation of the received electric field ;
Comparison value for the digital comparator means is input, by selected characteristics by variation detecting means, and LPF means for outputting the facilities to low-pass filtering process,
In order to control the amplification gain of the received signal so that the time constant to be controlled is shortened when the output from the LPF means is digital / analog converted and the fluctuation detecting means detects that the amount of change in the received electric field is large. look including an AGC control means for outputting a control signal,
The fluctuation detection means calculates the absolute value of the difference from the output from the digital detection means and the output obtained by delaying the output from the digital detection means for a fixed time, thereby changing the output value of the digital detection means per fixed time. A digital broadcast receiver characterized by obtaining a quantity and detecting a change in a received electric field based on the obtained change per fixed time .
前記AGC制御手段は、前記中間周波帯域に変換された信号を増幅する中間周波増幅器のみ、前記増幅利得の制御のための制御信号を出力することを特徴とする請求項1に記載のデジタル放送受信機。2. The digital broadcasting according to claim 1, wherein the AGC control means outputs a control signal for controlling the amplification gain only to an intermediate frequency amplifier that amplifies the signal converted into the intermediate frequency band. Receiving machine. 前記AGC制御手段は、前記高周波帯域で受信された信号を増幅する高周波増幅器のみ、前記増幅利得の制御のための制御信号を出力することを特徴とする請求項1に記載のデジタル放送受信機。2. The digital broadcast receiver according to claim 1, wherein the AGC control means outputs a control signal for controlling the amplification gain only to a high-frequency amplifier that amplifies the signal received in the high-frequency band. . 前記AGC制御手段は、前記高周波帯域で受信された信号を増幅する高周波増幅器と、前記中間周波帯域に変換された信号を増幅する中間周波増幅器との両方について、前記増幅利得の制御のための制御信号を出力することを特徴とする請求項1に記載のデジタル放送受信機。The AGC control means controls the amplification gain for both a high frequency amplifier that amplifies the signal received in the high frequency band and an intermediate frequency amplifier that amplifies the signal converted to the intermediate frequency band. The digital broadcast receiver according to claim 1, wherein the digital broadcast receiver outputs a signal . 受信周波数を検出する周波数検出手段をさらに含み、
前記LPF手段が施す低域濾波処理の特性は、周波数検出手段が検出する受信周波数と、変動検出手段が検出する受信電界の変動とに応じて、変動検出手段によって選択されることを特徴とする請求項1〜のいずれか1つに記載のデジタル放送受信機。
A frequency detection means for detecting the reception frequency;
The characteristic of the low-pass filtering performed by the LPF means is selected by the fluctuation detection means according to the reception frequency detected by the frequency detection means and the fluctuation of the received electric field detected by the fluctuation detection means. digital broadcast receiver as claimed in any one of claims 1-4.
JP2003162298A 2003-06-06 2003-06-06 Digital broadcast receiver Expired - Fee Related JP4564724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162298A JP4564724B2 (en) 2003-06-06 2003-06-06 Digital broadcast receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162298A JP4564724B2 (en) 2003-06-06 2003-06-06 Digital broadcast receiver

Publications (2)

Publication Number Publication Date
JP2004364124A JP2004364124A (en) 2004-12-24
JP4564724B2 true JP4564724B2 (en) 2010-10-20

Family

ID=34054485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162298A Expired - Fee Related JP4564724B2 (en) 2003-06-06 2003-06-06 Digital broadcast receiver

Country Status (1)

Country Link
JP (1) JP4564724B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077782B2 (en) 2005-01-11 2011-12-13 Sharp Kabushiki Kaisha Adaptive modulation control apparatus and wireless communication apparatus
EP1841113A4 (en) * 2005-01-11 2013-02-20 Sharp Kk Adaptive modulation control apparatus and wireless communication apparatus
JP4623677B2 (en) * 2005-04-25 2011-02-02 パナソニック株式会社 Automatic gain control circuit and signal reproducing apparatus
JP2006352674A (en) * 2005-06-17 2006-12-28 Mitsubishi Electric Corp Receiver
JP2008048085A (en) * 2006-08-14 2008-02-28 Sharp Corp Terrestrial digital broadcast receiver and control method
JP5073433B2 (en) * 2007-02-22 2012-11-14 ラピスセミコンダクタ株式会社 OFDM receiver
JP4985296B2 (en) * 2007-10-09 2012-07-25 カシオ計算機株式会社 Gain control device, gain control method, and reception device
US8843181B2 (en) * 2009-05-27 2014-09-23 Qualcomm Incorporated Sensor uses in communication systems
CN101989843B (en) * 2009-07-29 2013-10-30 凌阳科技股份有限公司 Automatic gain control system having hysteresis switching
WO2011074164A1 (en) * 2009-12-15 2011-06-23 パナソニック株式会社 Automatic gain control device, receiver, electronic device, and automatic gain control method
DE112010005622B4 (en) * 2010-06-02 2018-08-02 Mitsubishi Electric Corporation Digital broadcast receiver
US9380519B2 (en) 2013-03-13 2016-06-28 Qualcomm Incorporated Using motion to improve local wireless network connectivity
US9380520B2 (en) 2013-03-13 2016-06-28 Qualcomm Incorporated Using motion to improve local wireless network connectivity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251135A (en) * 1995-01-10 1996-09-27 Matsushita Electric Ind Co Ltd Transmission method for orthogonal frequency division multiplex signal and its reception device
JPH11355079A (en) * 1998-06-12 1999-12-24 Sharp Corp Automatic gain control circuit and tuner for receiving satellite broadcast
JP2000183765A (en) * 1998-12-16 2000-06-30 Victor Co Of Japan Ltd Agc device
JP2000332632A (en) * 1999-05-20 2000-11-30 Toyota Motor Corp Broadcast receiver for mobile object
JP2001102947A (en) * 1999-09-29 2001-04-13 Toshiba Corp Automatic gain control circuit and receiver
JP2003060613A (en) * 2001-08-20 2003-02-28 Kenwood Corp Ofdm receiver and ofdm signal reception method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251135A (en) * 1995-01-10 1996-09-27 Matsushita Electric Ind Co Ltd Transmission method for orthogonal frequency division multiplex signal and its reception device
JPH11355079A (en) * 1998-06-12 1999-12-24 Sharp Corp Automatic gain control circuit and tuner for receiving satellite broadcast
JP2000183765A (en) * 1998-12-16 2000-06-30 Victor Co Of Japan Ltd Agc device
JP2000332632A (en) * 1999-05-20 2000-11-30 Toyota Motor Corp Broadcast receiver for mobile object
JP2001102947A (en) * 1999-09-29 2001-04-13 Toshiba Corp Automatic gain control circuit and receiver
JP2003060613A (en) * 2001-08-20 2003-02-28 Kenwood Corp Ofdm receiver and ofdm signal reception method

Also Published As

Publication number Publication date
JP2004364124A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4564724B2 (en) Digital broadcast receiver
US5940143A (en) High-definition television signal receiving apparatus and gain control circuit thereof
JP2009105727A (en) Fm receiver
US6788923B2 (en) Receiver noise reduction with expanding gated pulses
WO2004112384A2 (en) Digital broadcast receiver
WO2012017627A1 (en) High frequency receiver apparatus and radio receiver
JP4682133B2 (en) Method and apparatus for providing an automatic gain control function using multiple feedback sources
US20070146550A1 (en) Receiving circuit, receiving apparatus, and receiving method
EP1158676A2 (en) Interference reducing circuit and television broadcasting receiver
JP3832577B2 (en) Digital satellite broadcast receiver
JP2005033247A (en) Digital signal receiver
JP4089275B2 (en) Reception control method, reception control device, and reception device
US7054395B2 (en) Automatic gain control for digital demodulation apparatus
WO2004084432A1 (en) Digital broadcast receiver apparatus
JP2012004750A (en) Broadcast receiver and broadcast receiving method
JP4818229B2 (en) Tuner circuit and receiving apparatus
WO2006061930A1 (en) Receiving device
JP2009100254A (en) Signal-receiving device and method
KR100308046B1 (en) Method and apparatus for controlling AGC of the digital TV
JP2006148592A (en) Cofdm modulation signal receiver
JP2006270582A (en) Receiving circuit
JP2006148521A (en) Cofdm modulation system receiver and adjacent channel disturbance excluding method
JP2010206312A (en) Receiver, and reception method of the same
JP2010098413A (en) Interference noise reducing device
JP3998608B2 (en) Digital satellite receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees