JP4564720B2 - インキュベータおよび細胞培養方法 - Google Patents

インキュベータおよび細胞培養方法 Download PDF

Info

Publication number
JP4564720B2
JP4564720B2 JP2003104877A JP2003104877A JP4564720B2 JP 4564720 B2 JP4564720 B2 JP 4564720B2 JP 2003104877 A JP2003104877 A JP 2003104877A JP 2003104877 A JP2003104877 A JP 2003104877A JP 4564720 B2 JP4564720 B2 JP 4564720B2
Authority
JP
Japan
Prior art keywords
cell
cells
culture
far
incubator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003104877A
Other languages
English (en)
Other versions
JP2004305137A (ja
Inventor
菊治 山下
友康 石川
Original Assignee
菊治 山下
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 菊治 山下 filed Critical 菊治 山下
Priority to JP2003104877A priority Critical patent/JP4564720B2/ja
Priority to EP04725820A priority patent/EP1619240A1/en
Priority to PCT/JP2004/004930 priority patent/WO2004090092A1/ja
Publication of JP2004305137A publication Critical patent/JP2004305137A/ja
Priority to US11/072,678 priority patent/US20060057712A1/en
Application granted granted Critical
Publication of JP4564720B2 publication Critical patent/JP4564720B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、インキュベータおよび細胞培養方法に関する。生体の細胞等の培養は、一般的には、細菌やカビ等による汚染や感染を防ぐために、密閉された容器、いわゆるCO2インキュベータ内において、温度や湿度、酸素および二酸化炭素の分圧が一定に保たれた条件の下で行われる。
本発明は内部環境の変化を低減し、安定した条件で細胞を培養するか、かかる細胞の培養に使用されるインキュベータに関する。
また、細胞の培養においては、培養する細胞に対して増殖因子を作用させることによって細胞の増殖を促進したり、未分化な細胞に対して分化誘導因子を作用させることによって、細胞の分化を促進することが行われている。
本発明は、かかる細胞の分化や増殖を促進させる因子として、遠赤外線を利用した細胞の培養方法に関する。
【0002】
【従来の技術】
従来から使用されているインキュベータは、その外部から密閉しうる培養室を備えており、この培養室の内壁には、断熱材として機能するウォータージャケットが設けられている。このため、培養室内の気体の温度が外気の影響によって状変動することを防ぐことができるから、培養室内の気体からの熱伝達によって加温されている細胞の温度を一定に保つことができる。
しかるに、細胞の培養過程においては、定期的に細胞の状態を把握する必要があり、そのためには、培養中の細胞を培養室から定期的に取り出して検査・分析することが必要がある。細胞を取り出すためには、インキュベータの扉等をあけなければならないが、そのときに、培養室内には外気が流入してしまう。すると、培養室内の気体の温度が変化してしまうし、流入した外気に雑菌が存在している場合には、流入した雑菌によって細胞が汚染されてしまう可能性がある。
【0003】
かかる問題を解決する技術として、従来例1、2のインキュベータ(特許文献1、2)がある。
従来例1のインキュベータは、その内部に、培養中の細胞が配置されている試料収納部から搬出入口まで試料を搬送する内部搬送手段を設けている。この内部搬送手段は試料のみを搬送することができるから、搬出入口の大きさを試料を収容している容器が通る程度にすればよく、搬出入口の大きさを小さくすることができる。すると、試料を出し入れするときに、インキュベータ内に流入する外気を少なくすることができるから、培養室内の気体の温度変化を抑えることができるし、雑菌などが侵入する確率を低くすることができる。
【0004】
また、従来例2のインキュベータ(特許文献2)は、培養室内にその内部の気体を循環させる循環通路を設けており、この循環通路に殺菌灯として紫外線ランプを配置している。このため、培養室内の気体を循環通路を通して循環させれば、紫外線ランプが発する紫外線を気体に照射させることができるから、その気体に含まれる雑菌を死滅させることができる。
【0005】
【特許文献1】
特開平11−89559号公報
【特許文献2】
特開2000−166536号公報
【0006】
【発明が解決しようとする課題】
しかるに、従来例1のインキュベータは、その内部に、内部搬送手段が設けられているため、試料を出し入れするときに起きる外気の流入を少なくすることはできるが、その反面、インキュベータ自体が大型化、複雑化するため、その重量が重く取り扱いが困難になるという問題がある。
また、従来例2のインキュベータは、培養室内の気体を循環通路を通して循環させていれば、雑菌を死滅させることができるが、外気とともに流入した全ての雑菌を死滅させるにはある程度時間がかかる。すると、気体が循環している間に、雑菌が細胞に付着してしまえば、その雑菌は殺すことができないため、細胞が汚染されてしまう。かといって、紫外線ランプからの光を直接細胞等に照射すれば、雑菌とともに紫外線を照射された細胞も死滅してしまうという問題がある。
さらに、従来例1、2のインキュベータは、いずれもウォータージャケットによって外部との断熱性を確保するものであると考えられるが、断熱性を高く保つためには、ウォータージャケットに収容する水の量を多くしなければならない。すると、ウォータージャケットが大型化するため、インキュベータ自体も大型にならざるを得ない。そして、ウォータージャケットに収容される水の量が多くなれば、当然に、インキュベータの重量も重くなる。したがって、インキュベータの設置には、広い設置スペースが必要であるし、インキュベータを設置するためには、その重量を支持することができる特別な台等が必要になり、設置コストも高くなるという問題がある。
そして、ウォータージャケットには大量の水が収容されているが故に、インキュベータの起動に時間がかかるし、培養中に何らかの要因で水温が低下した場合、復帰までに、インキュベータ内を所定の温度まで上昇させるのに非常に長時間を要するという問題がある。
【0007】
本発明はかかる事情に鑑み、培養条件を確実に一定に保つことができ、装置を軽量かつ小型化することができ、細胞が雑菌などによって汚染されることを効果的に防ぐことができるインキュベータおよび、細胞の増殖や未分化な細胞の分化を促進することができる細胞培養方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1のインキュベータは、
密閉された培養空間内の内部環境の変化を低減し、温度、湿度、酸素および二酸化炭素の分圧が一定に保たれた培養条件下で、細胞の分化を促進するための遠赤外線COインキュベータであって、未分化な細胞、又は幼弱な細胞であって、多分化能を有するかあるいは分化する能力を有する細胞を培養するための密閉可能な培養空間を有し、該培養空間内の内部環境を、所定の状態に維持する環境調整手段を備えており、前記環境調整手段が、培養空間内を殺菌する殺菌手段を備えており、前記殺菌手段が、遠赤外線を放射する遠赤外線放射部を備えており、さらに前記環境調整手段が、培養条件として、該培養空間の気体を、その温度が36.5℃〜37.5℃に、湿度が約100%に、さらに気体成分の体積割合を、空気が95%に、二酸化炭素が5%に、それぞれ維持してなることを特徴とする。
請求項2のインキュベータは、請求項1に記載の発明において、前記遠赤外線放射部が、遠赤外線を放射する素材として、セラミックスパウダーで構成された放射体を備えてなることを特徴とする。
請求項3のインキュベータは、請求項1の発明において、前記遠赤外線放射部が、7〜12μmの波長帯に、または請求項2の発明においてはさらに長い波長帯に、放射する遠赤外線のエネルギー密度のピークを有するように調整されていることを特徴とする。
請求項4のインキュベータは、請求項1から3のいずれか一に記載の発明において、 前記遠赤外線放射部が、面状発熱体であることを特徴とする。
請求項5のインキュベータは、請求項4に記載の発明において、
前記面状発熱体が、防水性を有する素材によって形成された上下一対の基材と、
該上下一対の基材の間に液密に密封された、通電されると遠赤外線を放射する放射部と、該放射部に電力を供給する電力供給手段とから構成されており、前記放射部が、前記上下一対の基材の内面に、放射体を印刷することによって形成されていることを特徴とする。
請求項6のインキュベータは、請求項5記載の発明において、前記放射体が、正の温度係数を有する素材であることを特徴とする。
請求項7のインキュベータは、請求項5又は6に記載の発明において、前記電力供給手段が、前記上下一対の基材と一体に形成され、その先端が培養空間の外部まで延長された被覆部と、該一対の被覆部の先端から前記放射部まで設けられた導電部とからなり、該導電部が、前記上下一対の被覆部の内面に、導電性を有する素材を印刷することによって形成されており、その先端部と前記放射部との間の部分が前記一対の被覆部の間に液密に密封されていることを特徴とする。
請求項8のインキュベータは、請求項1から7のいずれか一に記載の発明において、前記インキュベータはさらに、前記培養空間に培養対象を配置するための試料保持部材を備えており、前記試料保持部材が、前記遠赤外線放射部を備えており、前記試料保持部材が、前記インキュベータに対して着脱可能に取り付けられていることを特徴とする。
請求項9のインキュベータは、請求項1から8のいずれか一に記載の発明において、培養する細胞を培養液に浸した状態で、遠赤外線を照射して培養することで細胞の分化を促進するよう構成してなることを特徴とする。
請求項10のインキュベータは、請求項1から9のいずれか一に記載の発明において、前記インキュベータはさらに、前記培養空間の周囲を囲む断熱材としてウォータージャケットを設けないことを特徴とする。
請求項11の細胞培養方法は、培養する細胞を、その温度を所定の温度領域に保持した状態で培養する培養方法であって、前記細胞が、未分化な細胞、又は幼弱な細胞であって、多分化能を有するかあるいは分化する能力を有する造血幹細胞であり、前記細胞に、遠赤外線を照射させ、36.5℃〜37.5℃に保持して、細胞の分化を促進させることを特徴とする。
請求項12の細胞培養方法は、培養する細胞を、その温度を所定の温度領域に保持した状態で培養する培養方法であって、前記細胞が、未分化な細胞、又は幼弱な細胞であって、多分化能を有するかあるいは分化する能力を有する、動物細胞または、ウィルス感染細胞や遺伝子組み換え細胞であり、前記細胞に、遠赤外線を照射させ、培養条件として、該培養空間の気体を、その温度が36.5℃〜37.5℃に、湿度が約100%に、さらに気体成分の体積割合を、空気が95%に、二酸化炭素が5%に、それぞれ保持して、細胞の分化を促進させることを特徴とする。
請求項13の細胞培養方法は、培養する細胞を、その温度を所定の温度領域に保持した状態で培養する培養方法であって、前記細胞が、骨髄、末梢血、臍帯血、組織由来の幹細胞や分化過程にあるか、あるいは分化する能力のある細胞や胚性幹細胞である未分化な細胞であって、多分化能を有するかあるいは分化する能力を有する細胞であり、前記細胞に、遠赤外線を照射させ、培養条件として、該培養空間の気体を、その温度が36.5℃〜37.5℃に、湿度が約100%に、さらに気体成分の体積割合を、空気が95%に、二酸化炭素が5%に、それぞれ保持して、細胞の分化を促進させることを特徴とする。
また血液製剤は、培養された血液の有形、無形成分からなる製剤で全血製剤、赤血球製剤、血漿製剤、血小板製剤、血液凝固第VIII因子製剤、アルブミン製剤、免疫グロブリン製剤などがあり、前記血液の有形、無形成分が、造血幹細胞に対して遠赤外線を照射し、該造血幹細胞を分化、産成させたものであることを特徴とする。
【0009】
【発明の実施の形態】
つぎに、本発明の実施形態を図面に基づき説明する。
本発明のインキュベータは、骨髄、末梢血、臍帯血、組織由来の幹細胞や分化過程にあるか、あるいは分化する能力のある細胞や胚性幹細胞等の細胞を所定の培養条件に保った状態で培養するために使用される装置であって、その培養条件を維持するための環境調整手段が、遠赤外線を放射する遠赤外線放射部を備えていることが特徴である。
【0010】
まず、本発明のインキュベータの概要を説明する。
図1は本実施形態のインキュベータ1の概略斜視図である。図2は本実施形態のインキュベータ1の概略正面図である。図3は本実施形態のインキュベータ1の概略横断面図である。図1〜図3に示すように、本実施形態のインキュベータ1は、その内部に培養空間1hを有する本体2と、この本体2に対して開閉可能に取り付けられた扉3とを備えており、扉3を閉めると、本体2の培養空間1hが外部から気密に密閉されるように構成されている。
そして、本体2には、図示しない気体交換手段が設けられている。この気体交換手段は、空気および二酸化炭素濃度あるいは、酸素、窒素および二酸化炭素濃度が所定の気体分圧に保たれた培養用気体を本体2の培養空間1h内に供給する、例えばガスボンベやコンプレッサー等の気体供給部と、培養空間1h内の気体を排出して培養空間1h内の気圧を一定に保つ、例えばコンプレッサー等の気体排出部を備えている。
また、本体2には、培養空間1h内の空気の温度を調節する温度調整手段10や、空気の湿度を調節する、例えば水バットや噴霧器等の加湿手段が設けられている。そして、図3に示すように、本体2には、培養空間1hの周囲を囲むように、例えばウレタンやスポンジ等の断熱材2aが設けられている。また、扉3にも、扉3を閉めたときに、本体2の培養空間1hと外部との間を遮断するように、例えばプラスチック内扉等の断熱材3aが設けられている。
【0011】
上記のごとき構成であるから、本実施形態のインキュベータ1は、扉3をしめた状態で、気体交換手段、温度調整手段10および加湿手段を作動させれば、本体2の培養空間1h内の内部環境を所望の状態に維持することができるから、本体2の培養空間1h内に配置された細胞等を、外部と隔離した状態で、所定の培養に適した環境で培養することができるのである。
なお、上記の気体交換手段、温度調整手段10および加湿手段および断熱材2a,3aが特許請求の範囲にいう環境調整手段を構成している。
【0012】
さて、本実施形態の温度調整手段10について詳細に説明する。
図2および図3に示すように、前記本体2の培養空間1hの内壁には、温度調整手段10の面状発熱体11が設けられている。この面状発熱体11は、面状発熱体11に供給する電力を調整する制御部18に接続されている。この制御部18は、培養空間1hや培養する細胞の温度に応じて、面状発熱体11に供給する電力を調整し面状発熱体11の温度を調整するものである。
面状発熱体11は、通電されると発熱し、かつ培養空間1hの内部に向けて遠赤外線を放出する放射部13を備えている(図4参照)。つまり、面状発熱体11は、放射部13が発生した熱だけでなく、発熱したときに放出する遠赤外線によって培養空間1h内の気体を加熱することができるのである。
しかも、面状発熱体11から放射された遠赤外線は、培養空間1h内の気体を媒体とすることなく、輻射機構により面状発熱体11から培養する細胞まで直接伝播する。この場合、遠赤外線の有するエネルギが直接細胞に供給されることとなる。
【0013】
このため、培養する細胞を、気体からの熱伝達だけでなく、遠赤外線によっても加温することができるから、遠赤外線が培養に照射されてさえいれば、たとえ培養する細胞の周囲の気体の温度が変化したとしても、細胞自体の温度変化を抑えることができる。すると、扉3の開閉による外気の流入による培養空間1h内の気体の温度変化をそれほど気にする必要がないから、培養空間1h内に培養中の細胞を搬送するような特別な装置を設ける必要もなく、インキュベータ1の構造を単純化することができる。
【0014】
また、細胞周囲の気体温度の変化が細胞自体の温度変化に与える影響が小さいので、培養空間1hと外部との間の断熱性を極端に高くする必要がない。すると、従来のインキュベータのごとく、断熱のためのウォータージャケットを設ける必要がなく、一般的な断熱材2a,3aを使用しても十分に細胞自体の温度変化は抑えることができるから、装置を小型・軽量にすることができる。
【0015】
さらに、一旦培養空間1h内の気体が所定の温度まで上昇すれば、面状発熱体11から遠赤外線の形態で放出されるエネルギのうち、気体に吸収されるエネルギが減少する。すると、面状発熱体11から遠赤外線として放出されるエネルギは、その大部分が培養する細胞に供給され、細胞自体の加温に使用されることとなる。そして、遠赤外線の有するエネルギは面状発熱体11の温度に依存するから、遠赤外線によって加温される細胞の温度を、面状発熱体11とほぼ同じ温度まで加温することができる。
【0016】
また、面状発熱体11の表面から放射される遠赤外線のエネルギー密度のピークが、7〜12μmの波長帯に形成されるように調整されている。この7〜12μmの波長は、生育光線と呼ばれる波長帯であり、植物などの成長に有効であるが、動物、特にヒトの細胞、例えば肝細胞や皮膚細胞、骨芽細胞、免疫細胞等の増殖する能力を有する細胞や、造血幹細胞や間質幹細胞等、自己増殖しかつ複数の高度な細胞に分化することができる幹細胞の培養において、培養する細胞に生育光線を照射すれば、遠赤外線を照射しない場合に比べて、細胞の増殖や分化を促進される。この細胞の増殖や分化が促進する原因としては、増殖や分化に影響する遺伝子や増殖因子や分化誘導因子を活性化させることや、逆に、増殖や分化を抑制する遺伝子や抑制因子の働きを抑えること、遠赤外線が直接増殖因子や分化誘導因子として機能することが考えられる。細胞が未分化で、各種組織の細胞に分化可能な細胞、例えば、骨髄、末梢血、臍帯血、組織由来の幹細胞や胚性幹細胞等の未分化な細胞を遠赤外線を照射した状態で培養すれば、非常に感受性が高く未分化な細胞自体の増殖を促進できることはもちろん、その未分化な細胞から所望の細胞への分化も促進させることができるから、少しの未分化な細胞から、所望の分化した細胞を容易かつ大量に培養することができる。また、肝細胞や骨芽細胞等、既に各組織に分化しているが増殖可能な細胞を、遠赤外線を照射した状態で培養すれば、長期間作用させると増殖を活性化させることができる。
つまり、本実施形態のインキュベータ1を用いて細胞を培養すれば、従来のインキュベータに比べて細胞の増殖及び分化促進効率を向上させることができるのである。
【0017】
また、面状発熱体11の表面から放射される遠赤外線が、所定の波長のエネルギー密度が強い場合には、面状発熱体11から照射される遠赤外線によって、培養空間1h内の気体に含まれる雑菌を死滅させることができるから、培養中の細胞が雑菌等によって汚染されることを防ぐことができる。
しかも、遠赤外線を使用しているので、培養している細胞に直接照射しても悪影響を与えることがないから、既に細胞に付着している雑菌であっても死滅させることができ、培養中の細胞の汚染をより確実に防ぐことができる。つまり、温度調整手段を、殺菌手段としても機能させることができるのである。
上記の面状発熱体11が、特許請求の範囲にいう遠赤外線放射部である。
【0018】
なお、殺菌手段は、温度調整手段10の面状発熱体11と別に設けてもよく、この場合、遠赤外線のエネルギー密度のピークが、上記の波長域に形成されるように調整することができるから、殺菌手段による殺菌効果を高くすることができる。
さらになお、遠赤外線放射部は、上記のごとき面状発熱体11でなくてもよく、所定の波長の遠赤外線を細胞に照射できるものであれば、特に限定はない。
【0019】
つぎに、面状発熱体11について、詳細に説明する。
図4は本実施形態のインキュベータ1に使用される面状発熱体11の概略単体図であって、(A)は概略平面図であり、(B)は(A)のB−B線断面図である。同図において、符号12は、ポリエチレンテレフタレート(PET)を素材とし、フィルム状に形成された上下一対の基材を示している。この上下一対の基材12,12は、防水性および遠赤外線を透過する性質を有するものであり、両者の内面間に水等の液体が浸透しないように、内面同士が貼り合わされている。
【0020】
図4に示すように、この上下一対の基材12,12の内面の間には、放射部13が液密に密封されている。この放射部13は、例えは銀ペースト、銅ペースト等の導電性の素材からなり、後述する電力供給手段20に接続されている電極部14を備えている。この電極部14は、前記導電性の素材を上下一対の基材12,12の内面に印刷することによって形成されたものであり、対向する一対の電極14a,14b を備えている。そして、電極部14は、後述する電力供給手段20に接続されている。
この電極部14の対向する電極14a,14b 間における、上下一対の基材12,12の内面には、それぞれ放射体15が、対向する電極14a,14b の両方に接触するように印刷されている。この放射体15は、カーボンブラックやカーボングラファイト、セラミックスパウダー、アルミナ、ジルコン等の金属紛等遠赤外線を放射する素材と、ポリエチレングリコール等を基材とした半導体等の有する正温度係数(P.T.C:PositiveTemperature Coefficiennt)機能、いわゆる自己温度制御機能を有する素材を含むものである。
【0021】
このため、電力供給手段20から電力が供給されると、電極部14の対向する電極14a,14b 間に電圧が印加されるため、放射体15に電流が流れる。すると、PTC素材および放射素材が自己発熱して温度が上昇するから、その温度に応じた波長の遠赤外線を放射素材から放出させることができる。
しかも、放射体15が、正の温度係数を有する素材であるから、特別な制御機構やセンサを採用しなくても、PTC素材や放射素材の温度が所定の温度近傍に確実に維持することができる。すると、放射体15から放射される遠赤外線の波長やエネルギー密度の分布を所定の状態に保つことができる。よって、面状発熱体11の温度変化による遠赤外線の状態が変化、つまり細胞に放射される遠赤外線の状態を一定に保つことができるから、細胞の温度変化を防ぐことができ、安定した状態で細胞を培養することができる。
【0022】
そして、放射部13が、いずれも上下一対の基材12,12の内面に導電性の素材や放射体15を印刷することによって形成されているから、面状発熱体11はその製造が容易になるし、安価に製造することができる。
【0023】
また、インキュベータ1の内部は、その湿度が約100%の状態に保たれるため、面状発熱体11の防水性が非常に大きな問題となるが、図4に示すように、放射部13は、上下一対の基材12,12の間に液密に密封されている。よって、上下一対の基材12,12の間に水分が浸透することを防ぐことができるから、インキュベータ1の内部のように、湿度が約100%に近い、過酷な条件で長時間使用しても、漏電や短絡の発生を防ぐことができる。
なお、図4に示すように、基材12の表面にオレフィン粘着フィルム等、防水性のさらに高い素材で形成されたシートをコーティングすれば、面状発熱体11の防水性をさらに高くすることができる。
【0024】
面状発熱体を、上記のごとく湿度の高い条件で使用する場合には、発熱する部分と、その部分に電力を供給する電源コードとの接続部分への水分の浸透をどのように防ぐかが非常に重要であるが、本願に採用されている面状発熱体11は、従来の電源コードに当たる電力供給手段20を以下のごとき構成としたことによって、防水性を高めており、水分の浸透を確実に防いでいる。
【0025】
図4に示すように、電力供給手段20は、上下一対の被覆部21,21と、この上下一対の被覆部21,21の間に設けられた導電部22を備えている。
上下一対の被覆部21,21は、上下一対の基材12,12とそれぞれ一体に形成されたものである。この上下一対の被覆部21,21は、面状発熱体11をインキュベータ1の本体2の培養空間1hに取り付けたときに、その先端を、培養空間1hの外部に配置することができるような長さまで延長されている。そして、この上下一対の被覆部21,21は、上下一対の基材12,12と同様に、両者の内面間に水等の液体が浸透しないように、内面同士が貼り合わされている。
また、導電部22は、前記放射部13の電極部14と同様に、導電性の素材を上下一対の被覆部21,21の内面に印刷によって形成されており、かつ上下一対の被覆部21,21の間に液密に密封されている。そして、導電部22の基端部分は、前記放射部13の電極部14に接続されており、先端部分は、上下一対の被覆部21,21の先端部分に配置されている。
【0026】
上記のごとく、電力供給手段20は、その上下一対の被覆部21,21が、上下一対の基材12,12と一体に形成されているから、電力供給手段20と放射部13との接続部分を外部から確実に液密に密閉することができる。すると、培養空間1h内部の湿度が100%に近い状態であっても、両者の接続部分から水分が上下一対の基材12,12内に浸み込むことを確実に防ぐことができる。
また、導電部22も印刷によって形成されているから、放射部13と同時に形成することができるから、面状発熱体11の製造工数を少なくすることができ、安価に製造することができる。とくに、導電部22の素材に、放射部13の素材と同じ素材を使用すれば、両者の接続部分の抵抗を少なくすることができるし、同じ素材を印刷することになるから導電部22の形成も容易になる。
【0027】
図1、図2および図5に示すように、インキュベータ1の本体2の培養空間1h内に、培養する細胞が配置される試料保持部材5を設け、この試料保持部材5の内部に前述した面状発熱体11を設けてもよい。この場合、試料保持部材5が遠赤外線を伝達する素材によって形成しておけば、空気を介さずに、細胞に直接遠赤外線を供給することができる。すると、培養空間1h内の水蒸気に吸収される遠赤外線を少なくすることができるから、細胞の温度をより確実に一定に保つことができるし、エネルギー効率も高くすることができる。
また、各試料保持部材5に設けられた面状発熱体11が放射する遠赤外線の波長を調整すれば、各試料保持部材5毎に細胞に照射する遠赤外線の波長を調整することができるから、一の培養空間1h内においても、異なる培養条件で細胞を培養することができる。
なお、各試料保持部材5には、培養空間1h内部の気体の循環を効率よく行なうために、上下を貫通する複数の貫通穴5hが形成されている。この場合、面状発熱体11において、試料保持部材5の貫通穴5hと対応する場所に貫通穴を設けておけばよい。
【0028】
そして、試料保持部材5を、本体2に対して着脱可能に取り付ければ、培養する細胞や、その細胞を収容している容器にあわせて試料保持部材5の数を調整すれば、培養空間1h内の広さなどを調整することができる。
この場合、面状発熱体11への電力の供給機構および、その部分の防水性能が問題となるが、マグネット式端子やピンタイプの端子を使用する事により、防水性を保つ事が出来る。
【0029】
つぎに、本発明の細胞培養方法を説明する。
本発明の細胞培養方法は、培養する細胞を、その細胞自体の温度を所定の温度領域、例えば36.5〜37.5℃に保持した状態で培養する培養方法であって、その培養中に、細胞に対して遠赤外線を照射させることが特徴である。
本発明の細胞培養方法では、培養する細胞を、その細胞を培養する空間の気体からの熱伝達だけでなく、照射される遠赤外線によっても加温してその温度を調整することができる。言い換えれば、細胞を培養する空間の気体から供給される熱的なエネルギをだけでなく、遠赤外線によって供給されるエネルギによって細胞の温度を調整することができる。すると、気体の温度の変化が細胞の温度に与える影響を抑えることができ、気体の温度が変化しても、細胞の温度をほぼ一定の温度に調整しておくことができるから、安定した状態で細胞を培養することができる。
【0030】
そして、遠赤外線を培養する細胞に対して照射することによって、遠赤外線を照射しない場合に比べて、細胞の増殖や分化を促進される。この細胞の増殖や分化が促進する原因としては、増殖や分化に影響する遺伝子や増殖因子や分化誘導因子を活性化させることや、逆に、増殖や分化を抑制する遺伝子や抑制因子の働きを抑えること、遠赤外線が直接増殖因子や分化誘導因子として機能することが考えられる。細胞が未分化で、各種組織の細胞に分化可能な細胞、例えば、骨髄、末梢血、臍帯血、組織由来の幹細胞や胚性幹細胞等の未分化な細胞を遠赤外線を照射した状態で培養すれば、非常に感受性が高く未分化な細胞自体の増殖を促進できることはもちろん、その未分化な細胞から所望の細胞への分化も促進させることができるから、少しの未分化な細胞から、所望の分化した細胞を容易かつ大量に培養することができる。また、肝細胞や骨芽細胞等、既に各組織に分化しているが増殖可能な細胞を、遠赤外線を照射した状態で培養すれば、長期間作用させると増殖を活性化させることができる。
【0031】
とくに、造血幹細胞を培養した場合には、遠赤外線によって造血幹細胞の増殖と分化が同時に促進されるから、血液細胞等の所望の分化した細胞を容易かつ大量に培養することができる。例えば、数ml程度の量の骨髄細胞のみを培養しても、この骨髄細胞に含まれる造血幹細胞が増殖し、増殖した造血幹細胞がさらにあらゆる血球細胞に分化するので、全ての血液細胞を含む血液系を構築させることができる。
【0032】
また、造血幹細胞を間質幹細胞と混合培養すると、全ての分化した血液細胞を容易かつ大量に培養することができる。すると、培養液から所望の有形成分、つまり所望の血液細胞だけを抽出すれば、所望の血液成分を含む血液製剤を簡単に製造することができる。そして、血液製剤原料は、わずかの骨髄細胞だけであるから、これらの各成分を抽出して、全血製剤、赤血球製剤、血漿製剤、血小板製剤、血液凝固第VIII因子製剤、アルブミン製剤、免疫グロブリン製剤などを製造することができる。
なお、骨髄細胞を培養するときに、培養液だけでなく血液を混合しておけば、さらに飛躍的に大量の血液細胞や血液成分を得ることができるため、各血液製剤をさらに大量に安価に製造することができる。
【0033】
【実施例】
本発明の遠赤外線を照射する面状発熱体を備えたインキュベータ(以下では赤外線CO2インキュベータという)を使用して血液細胞および接着細胞を培養した場合における各細胞の増殖および分化の状態を調べ、一般的なインキュベータ、つまりニクロム線によって培養空間内の気体を加熱し、培養室内の気体の温度を調整する構成を有するインキュベータ(以下ではニクロム線CO2インキュベータという)を使用して血液細胞および接着細胞を培養した場合における各細胞の増殖および分化の状態と比較した。
なお、培養条件は、いずれのインキュベータにおいても同じ条件とし、培養空間の気体が、その温度が37℃、湿度が100%、気体成分の体積割合が、空気が95%、二酸化炭素が5%とした。また、培養液には、体積割合で1%の抗生物質(GIBCO,N.Y.,USA)と50%の血清(FETAL BOVINE SERUM(SGMA,Irvine KA12,UK ))を含有するMEM(SIGMA,Irvine KA12,UK)を使用した。
さらに、培養液には、全培養液に対する質量割合が0〜30%の間で添加する血液の量を変化させて、培養液に添加する血液の量が培養に与える影響も調べた。
【0034】
(実施例1)
造血幹細胞を培養した場合において、培養液中に含まれる赤血球およびヘモグロビンの数の増減を調べた。
(1)ウサギ(Japan White,6〜7週齢,北山ラベス株式会社,伊那JAPAN)の骨髄を培養液(DULBECCO'S MODIFIED NUTRIENT MIXTURE F-12 HAM(SIGMA,Irvine KA12,UK)、1%Antibiotic−Antimycotic(GIBCO,N.Y.,USA)入)20mlの中で懸濁した。
(2)懸濁液を、50mlチューブ(Falcon,NJ,USA)、12本へ均等に分けた。
(3)遠心分離機(SAKUMA R300S−11,東京)(1000rpm,5min)にかけ、骨髄細胞を沈降させ、上清のみを吸い取った。
(4)以下に示すような血液濃度となるように、血液と培養液を混ぜて60mlの溶液を調整し、遠心操作で沈降させた骨髄細胞に加えた。
【表1】
Figure 0004564720
(5)24穴プレート(Nunk,Denmark)を2枚ずつ(計14枚)用意し、1mlずつ3ヶ所にまき、0日目、1日目、3日目、5日目、7日目、10日目、14日目、計7日分の試料とした。なお、措定誤差をなくすため1日に3ヶ所を測定し平均をとった。
(6)赤外線CO2インキュベータ(NAPCO,IL,USAの製品を改良)に1枚、ニクロム線CO2インキュベータ(NAPCO,IL,USA)に1枚入れて放置し、0、1、3、5、7、10、14日後に各試料をピペットでよく混ぜ、エッペンドルフチューブ(eppendorf,UK)に移した。
(7)各試料を血球数自動計測装置(Sysmex K-4500,神戸)を用いて、3回ずつ赤血球数を測定した。
【0035】
図6、7に示すように、遠赤外線を照射すると、対照群に比べて、血液濃度20,30%では活発に赤血球が産成され、血液濃度30%、培養14日では対照群が−9.88×104個/μlであるのに対して、91.12×104個/μlに達した。
また、ヘモグロビンは、対照群、遠赤外線照射群ともに、血液濃度依存的に、また、経時的に増加し、血液濃度30%、培養14日では対照群の約4.8倍に増加した。
【0036】
(実施例2)
造血幹細胞を培養した場合において、培養液中に含まれる白血球および造血幹細胞の数の増減を調べた。
(1)ウサギ(Japan White,6〜7週齢,北山ラベス株式会社,伊那JAPAN)の骨髄を培養液(DULBECCO'S MODIFIED NUTRIENT MIXTURE F-12 HAM(SIGMA,Irvine KA12,UK)、1%Antibiotic−Antimycotic(GIBCO,N.Y.,USA)入)20mlの中で懸濁した。
(2)懸濁液を、50mlチューブ(Falcon,NJ,USA)、12本へ均等に分けた。
(3)遠心分離機(SAKUMA R300S-11,東京)(1000rpm,5min)にかけ、骨髄細胞を沈降させ、上清のみを吸い取った。
(4)以下に示すような血液濃度となるように、血液と培養液を混ぜて60mlの溶液を調整し、遠心操作で沈降させた骨髄細胞に加えた。
【表2】
Figure 0004564720
(5)24穴プレート(Nunk,Denmark)を2枚ずつ(計14枚)用意し、1mlずつ3ヶ所にまき、0日目、1日目、3日目、5日目、7日目、10日目、14日目、計7日分の試料とした。(※誤差をなくすため1日に3ヶ所を測定し平均をとった。)
(6)赤外線CO2インキュベータ(NAPCO,IL,USAの製品を改良)に1枚、ニクロム線CO2インキュベータ(NAPCO,IL,USA)に1枚入れて放置し、0、1、3、5、7、10、14日後に各試料をピペットでよく混ぜ、エッペンドルフチューブ(eppendorf,UK)に移した。
(7)各試料を血球数自動計測装置(Sysmex K-4500,神戸)を用いて、3回ずつ白血球と骨髄細胞数を測定した。
【0037】
図8に示すように、白血球および造血幹細胞は、血液濃度20%までは、対照群、遠赤外線照射群ともに、血液濃度依存的に、また、経時的に増加し、血液濃度30%、培養10日では遠赤外線照射群は、対照群の約3.0倍に増加した。
【0038】
(実施例3)
造血幹細胞を培養した場合において、培養液中に含まれる血小板の数の増減を調べた。
(1)ウサギ(Japan White,6〜7週齢,北山ラベス株式会社,伊那JAPAN)の骨髄を培養液(DULBECCO'S MODIFIED NUTRIENT MIXTURE F-12 HAM(SIGMA,Irvine KA12,UK)、1%Antibiotic−Antimycotic(GIBCO,N.Y.,USA)入)20mlの中で懸濁した。
(2)懸濁液を、50mlチューブ(Falcon,NJ,USA)、12本へ均等に分けた。
(3)遠心分離機(SAKUMA R300S-11,東京)(1000rpm,5min)にかけ、骨髄細胞を沈降させ、上清のみを吸い取った。
(4)以下に示すような血液濃度となるように、血液と培養液を混ぜて60mlの溶液を調整し、遠心操作で沈降させた骨髄細胞に加えた。
【表3】
Figure 0004564720
なお、使用した培養液には、血清を含んでいない。
(5)24穴プレート(Nunk,Denmark)を2枚ずつ(計14枚)用意し、1mlずつ3ヶ所に
まき、0日目、1日目、3日目、5日目、7日目、10日目、14日目、計7日分の試料とした。 (※誤差をなくすため1日に3ヶ所を測定し平均をとった。)
(6)赤外線CO2インキュベータ(NAPCO,IL,USAの製品を改良)に1枚、ニクロム線CO2インキュベータ(NAPCO,IL,USA)に1枚入れて放置し、0、1、3、5、7、10、14日後に各試料をピペットでよく混ぜ、エッペンドルフチューブ(eppendorf,UK)に移した。
(7)各試料を血球数自動計測装置(Sysmex K-4500,神戸)を用いて、3回ずつ血小板数を測定した。
【0039】
図9に示すように、血小板は、血液濃度20%までは、対照群、遠赤外線照射群ともに、血液濃度依存的に増加し、5〜7日目をピークに減少し、さらに10日以降に増加することが明らかになった。遠赤外線照射群の血小板の産成量は血液濃度20%、培養14日では対照群の約2.4倍に増加した。
【0040】
(実施例4)
造血幹細胞とともに接着細胞を培養した場合において、接着細胞の数の増減を調べた。
(1)ウサギ(Japan White,6〜7週齢,北山ラベス株式会社,伊那JAPAN)の骨髄を培養液(DULBECCO'S MODIFIED NUTRIENT MIXTURE F-12 HAM(SIGMA,Irvine KA12,UK)、1%Antibiotic−Antimycotic(GIBCO,N.Y.,USA)入)20mlの中で懸濁した。
(2)懸濁液を、50mlチューブ(Falcon,NJ,USA)、12本へ均等に分けた。
(3)遠心分離機(SAKUMA R300S-11,東京)(1000rpm,5min)にかけ、骨髄細胞を沈降させ、上清のみを吸い取った。
(4)以下に示すような血液濃度となるように、血液と培養液を混ぜて60mlの溶液を調整し、遠心操作で沈降させた骨髄細胞に加えた。
【表4】
Figure 0004564720
(5)24穴プレート(Nunk,Denmark)を2枚ずつ(計14枚)用意し、1mlずつ3ヶ所にまき、0日目、1日目、3日目、5日目、7日目、10日目、14日目、計7日分の試料とした。(※誤差をなくすため1日に3ヶ所を測定し平均をとった。)
(6)赤外線CO2インキュベータ(NAPCO,IL,USAの製品を改良)に1枚、ニクロム線CO2インキュベータ(NAPCO,IL,USA)に1枚入れて放置し、0、1、3、5、7、10、14日後に浮遊細胞液を捨てた。
(7)空になったプレートにHank’s Balanced Salt Solution(GIBCO,N.Y.,USA)を400μl加えて、プレートを洗って吸い取った。
(8)Trypsin−EDTA(GIBCO,N.Y.,USA)を300μl入れ、しばらく放置し、ピペット操作にて細胞を剥離し、血清を100μl加えた。
(9)エッペンドルフチューブ(eppendorf,UK)に移し替えて、血球計数盤(サンリード硝子,東京)と血球数自動計測装置(Sysmex K-4500,神戸)にてそれぞれ測定した。
【0041】
なお、剥離された細胞の数は、血球計数盤を使用して、以下の手順で数えた。
まず、計算盤にカバーグラスをかぶせ、隙間から培養細胞を注入し、顕微鏡で細胞数を数えた。なお、注入の誤差を考慮して5回数えた。そして、四辺内の細胞数をAとすると、求める細胞濃度はA×104個/mlとなる
【0042】
図10に示すように、接着細胞は血液濃度20%までは、有意な差は認められなかったが、血液濃度30%では、培養3〜10日までのすべての試料で遠赤外線照射群は対照群に比べて有意に増加した。培養10日目以降は、培養液の交換ができなかったため、細胞は死滅した。
【0043】
(実施例5)
接着細胞のみを培養した場合において、接着細胞の数の増減を調べた。
(1)マウス骨芽細胞であるST−2(理化学研究所ジーンバンク,筑波)、MC3T3−E1(理化学研究所ジーンバンク,筑波)、C3H10T1/2(研究資源バンク,大阪)の3種類の細胞100万個を、培養液{ST−2:RPMI1640(GIBCO,N.Y.,USA)10%FETAL BOVINE SERUMD(SIGMA,Irvine KA12,UK)、1%Antibiotic−Antimycotic(GIBCO,N.Y.,USA),MC3T3−E1:DULBECCO’S MODIFIED EAGLE’S MEDIUM NUTRIENT MIXTURE F−12 HAM(SIGMA,Irvine KA12,UK)、10%FETAL BOVINE SERUMD(SIGMA,Irvine KA12,UK)、1%Antibiotic−Antimycotic(GIBCO,N.Y.,USA),C3H10T1/2: BASAL MEDIUM OF EAGLE WITHEARLE’S SALTS(GIBCO,N.Y.,USA),10%FETAL BOVINE SERUMD(SIGMA,Irvine KA12,UK)、1%Antibiotic−Antimycotic(GIBCO,N.Y.,USA)} を18ml加え,よく懸濁した。
(2)24穴プレート(Nunk,Denmark)に1穴に対し、400μlずつ播いた。
(3)30分後に1穴に対して600μlの培養液を足した。なお、24穴プレートの1穴の容量は1ml程度である。
(4)ニクロム線CO2インキュベータ(NAPCO,IL,USA)と遠赤外線CO2インキュベータ(NAPCO,IL,USAの製品を改良)にて培養を開始した。
(5)1日3回(1穴に1回)で、0、1、3、5、7、10、14日目に細胞数を測定した。
【0044】
培養された細胞の数は、以下の手順で測定した。
(1)培養液を吸い取り、Hank’s Balanced Salt Solution(GIBCO,N.Y.,USA)を400μl入れ、再び吸い取った。
(2)Trypsin−EDTA(GIBCO,N.Y.,USA)を300μl入れ、しばらく放置(5分程度)し、ピペット操作にて接着細胞を剥離し、血清を100μl加え、再びよくピペッティングした。
(3)エッペンドルフチューブ(eppendorf,UK)に移し替えて、血球計数盤(サンリード硝子,東京)で3〜4回、血球数自動計測装置(Sysmex K-4500,神戸)を用いて、3〜4回ずつ測定した。なお、誤差をなくすため1日に3ヶ所を測定し平均をとった。
【0045】
図10に示すように、マウス骨芽細胞であるST−2、MC3T3−E1、C3H10T1/2 の3種類すべての細胞で、培養14日まで、遠赤外線照射群と対照群との有意な差は認められなかった。
【発明の効果】
【0046】
請求項1の発明によれば、培養空間内に培養する細胞等を配置すれば、外部から培養する細胞等を密閉することができる。しかも、環境調整手段によって培養空間内の内部環境が所定の状態に維持されるから、培養する細胞等を、その増殖や分化に適した状態で確実に培養することができる。また、細胞は、遠赤外線によって輻射により直接か水蒸気等を介して加温されることになるから、細胞周囲の気体の温度に影響されることなく、遠赤外線放射部とほぼ同等の温度に保持することができる。すると、培養空間と外部との間の断熱性を極端に高くする必要がないから、ウォータージャケットを設ける必要がなく、装置を小型・軽量にすることができる。そして、外気の流入による気体の温度変化を気にする必要がないから、培養空間内に特別な装置を設ける必要もない。
また遠赤外線によって未分化な細胞の分化が促進されるから、未分化な細胞から、所望の分化した細胞を容易かつ大量に培養することができる。
請求項2の発明によれば、培養空間内に培養する細胞等を配置すれば、外部から培養する細胞等を密閉することができる。しかも、環境調整手段によって培養空間内の内部環境が所定の状態に維持されるから、培養する細胞等を、その増殖や分化に適した状態で確実に培養することができる。また、遠赤外線放射部から照射される遠赤外線によって、培養室内の気体に含まれる雑菌を死滅させることができるから、培養中の細胞が雑菌等によって汚染されることを防ぐことができる。しかも、遠赤外線を使用しているので、培養している細胞に直接照射しても悪影響を与えることがないから、既に細胞に付着している雑菌であっても死滅させることができ、培養中の細胞の汚染をより確実に防ぐことができる。
請求項3の発明によれば、遠赤外線による細胞の増殖や分化を促進させることができる。よって、細胞の培養効率を向上させることができる。
請求項4の発明によれば、遠赤外線放射部が面状発熱体であるから、装置をより一層コンパクトに構成することができる。
請求項5の発明によれば、電力供給手段によって放射部に電力を供給すれば、放射部から遠赤外線を放射させることができる。しかも、放射部が上下一対の基材の内面に放射体を印刷することによって放射部を形成しているので、面状発熱体の製造が容易になるし、安価に製造することができる。また、放射部は、上下一対の基材の間に液密に密封されているから、インキュベータ内の湿度が非常に高い条件で長時間使用しても、漏電や短絡の発生を防ぐことができ、安定した状態で細胞に遠赤外線を照射することができる。
請求項6の発明によれば、放射体が、正の温度係数を有する素材である、つまり、自己温度調整機能を有しているから、細胞に放射される遠赤外線の状態を一定に保つことができる。よって、遠赤外線放射部の温度変化によって、細胞に照射される遠赤外線の状態が変化することを防ぐことができるから、細胞の温度変化を防ぐことができ、安定した状態で細胞を培養することができる。
請求項7の発明によれば、電力供給手段の被覆部が、上下一対の基材と一体に形成されているから、電力供給手段と放射部との接続部分を確実に外部から液密に密閉することができる。すると、培養空間内部の湿度が100%に近い状態であっても、水分が放射部内に浸み込むことを確実に防ぐことができる。また、導電部を、放射部と同時に形成することができるから、面状発熱体の製造工数を少なくすることができ、安価に製造することができる。
請求項8の発明によれば、試料保持部材に設けられた遠赤外線放射部から、空気を介さずに、細胞に直接遠赤外線を供給することができるから、細胞の温度をより確実に一定に保つことができる。しかも、空気に吸収される遠赤外線の量を少なくすることできるから、エネルギー効率を高くすることができる。また、遠赤外線放射部から細胞直接に遠赤外線を供給するから、細胞毎に遠赤外線放射部から供給される遠赤外線の波長を調整することができるから、一の培養空間内においても、異なる培養条件で細胞を培養することができる。
また試料保持部材の数を調整すれば、培養空間内の広さなどを調整することができる。
請求項10の発明によれば、断熱のためのウォータージャケットを設ける必要がなく、一般的な断熱材を使用しても十分に細胞自体の温度変化は抑えることができるから、装置を小型・軽量にすることができる。
請求項11の発明によれば、細胞を遠赤外線によって加温するので、細胞周囲の気体の温度に影響されることなく、遠赤外線放射体とほぼ同等の温度に保持することができる。よって、遠赤外線放射体を制御するだけで、細胞の温度を確実に制御することができる。しかも、遠赤外線の殺菌効果によって細胞の周囲の気体に含まれる雑菌および細胞に付着している雑菌を死滅させることができるから、培養中の細胞の汚染を確実に防ぐことができる。
請求項12の発明によれば、ほとんどすべての細胞を培養することができ、多くの分化能を持った細胞の増殖と分化を促進することができる。
請求項13の発明によれば、遠赤外線によって幹細胞の分化が促進されるから、血液細胞等の所望の分化した細胞を容易かつ大量に培養することができる。
また血液製剤は、遠赤外線によって造血幹細胞の分化が促進されるから、血液細胞等の所望の分化した細胞を容易かつ大量に培養することができる。よって、所望の有形成分を有する製剤を大量かつ安価に製造することができる。
【図面の簡単な説明】
【0047】
【図1】本実施形態のインキュベータ1の概略斜視図である。
【図2】本実施形態のインキュベータ1の概略正面図である。
【図3】本実施形態のインキュベータ1の概略横断面図である。
【図4】本実施形態のインキュベータ1に使用される面状発熱体11の概略単体図であって、(A)は概略平面図であり、(B)は(A)のB−B線断面図である。
【図5】本実施形態のインキュベータ1に使用される試料保持部材5の概略説明図であって、(A)は単体平面図であり、(B)は接続部の5aの拡大断面図であり、(C)は試料保持部材5を本体2に接続した状態における接続部分の拡大図である。
【図6】本発明のインキュベータおよび一般的なインキュベータを使用して造血幹細胞を培養した場合において、赤血球の細胞数の増減を比較した図である。
【図7】本発明のインキュベータおよび一般的なインキュベータを使用して造血幹細胞を培養した場合において、ヘモグロビンの細胞数の増減を比較した図である。
【図8】本発明のインキュベータおよび一般的なインキュベータを使用して造血幹細胞を培養した場合において、白血球の細胞数の増減を比較した図である。
【図9】本発明のインキュベータおよび一般的なインキュベータを使用して造血幹細胞を培養した場合において、血小板の細胞数の増減を比較した図である。
【図10】本発明のインキュベータおよび一般的なインキュベータを使用して造血幹細胞とともに接着細胞を培養した場合において、接着細胞の細胞数の増減を比較した図である。
【図11】本発明のインキュベータおよび一般的なインキュベータを使用してマウス骨芽細胞であるST−2、MC3T3−E1、C3H10T1/2 の3種類の細胞を培養した場合において、細胞数の増減を比較した図である。
【符号の説明】
【0048】
1 インキュベータ
1h 培養空間
5 試料保持手段
10 温度調整手段
11 面状発熱体
12 基材
13 放射部
15 放射体
20 電力供給部
21 被覆部
22 導電部

Claims (13)

  1. 密閉された培養空間内の内部環境の変化を低減し、温度、湿度、酸素および二酸化炭素の分圧が一定に保たれた培養条件下で、細胞の分化を促進するための遠赤外線COインキュベータであって、
    未分化な細胞、又は幼弱な細胞であって、多分化能を有するかあるいは分化する能力を有する細胞を培養するための密閉可能な培養空間を有し、該培養空間内の内部環境を、所定の状態に維持する環境調整手段を備えており、
    前記環境調整手段が、
    培養空間内を殺菌する殺菌手段を備えており、
    前記殺菌手段が、遠赤外線を放射する遠赤外線放射部を備えており、
    さらに前記環境調整手段が、培養条件として、該培養空間の気体を、その温度が36.5℃〜37.5℃に、湿度が約100%に、さらに気体成分の体積割合を、空気が95%に、二酸化炭素が5%に、それぞれ維持してなることを特徴とするインキュベータ。
  2. 前記遠赤外線放射部が、遠赤外線を放射する素材として、セラミックスパウダーで構成された放射体を備えてなることを特徴とする請求項1に記載のインキュベータ。
  3. 前記遠赤外線放射部が、7〜12μmの波長帯に、放射する遠赤外線のエネルギー密度のピークを有するように調整されている
    ことを特徴とする請求項1又は2に記載のインキュベータ。
  4. 前記遠赤外線放射部が、面状発熱体である
    ことを特徴とする請求項1から3のいずれか一に記載のインキュベータ。
  5. 前記面状発熱体が、
    防水性を有する素材によって形成された上下一対の基材と、
    該上下一対の基材の間に液密に密封された、通電されると遠赤外線を放射する放射部と、
    該放射部に電力を供給する電力供給手段と
    から構成されており、
    前記放射部が、前記上下一対の基材の内面に、放射体を印刷することによって形成されている
    ことを特徴とする請求項4に記載のインキュベータ。
  6. 前記放射体が、正の温度係数を有する素材である
    ことを特徴とする請求項5記載のインキュベータ。
  7. 前記電力供給手段が、
    前記上下一対の基材と一体に形成され、その先端が培養空間の外部まで延長された被覆部と、
    該一対の被覆部の先端から前記放射部まで設けられた導電部とからなり、
    該導電部が、前記上下一対の被覆部の内面に、導電性を有する素材を印刷することによって形成されており、その先端部と前記放射部との間の部分が前記一対の被覆部の間に液密に密封されている
    ことを特徴とする請求項5又は6に記載のインキュベータ。
  8. 前記インキュベータはさらに、前記培養空間に培養対象を配置するための試料保持部材を備えており、
    前記試料保持部材が、前記遠赤外線放射部を備えており、
    前記試料保持部材が、前記インキュベータに対して着脱可能に取り付けられている
    ことを特徴とする請求項1から7のいずれか一に記載のインキュベータ。
  9. 培養する細胞を培養液に浸した状態で、遠赤外線を照射して培養することで細胞の分化を促進するよう構成してなることを特徴とする請求項1から8のいずれか一に記載のインキュベータ。
  10. 前記インキュベータはさらに、前記培養空間の周囲を囲む断熱材としてウォータージャケットを設けないことを特徴とする請求項1から9のいずれか一に記載のインキュベータ。
  11. 培養する細胞を、その温度を所定の温度領域に保持した状態で培養する培養方法であって、
    前記細胞が、未分化な細胞、又は幼弱な細胞であって、多分化能を有するかあるいは分化する能力を有する造血幹細胞であり、
    前記細胞に、遠赤外線を照射させ、
    36.5℃〜37.5℃に保持して、
    細胞の分化を促進させる
    ことを特徴とする細胞培養方法。
  12. 培養する細胞を、その温度を所定の温度領域に保持した状態で培養する培養方法であって、
    前記細胞が、未分化な細胞、又は幼弱な細胞であって、多分化能を有するかあるいは分化する能力を有する、動物細胞または、ウィルス感染細胞や遺伝子組み換え細胞であり、
    前記細胞に、遠赤外線を照射させ、
    培養条件として、該培養空間の気体を、その温度が36.5℃〜37.5℃に、湿度が約100%に、さらに気体成分の体積割合を、空気が95%に、二酸化炭素が5%に、それぞれ保持して、
    細胞の分化を促進させる
    ことを特徴とす細胞培養方法。
  13. 培養する細胞を、その温度を所定の温度領域に保持した状態で培養する培養方法であって、
    前記細胞が、骨髄、末梢血、臍帯血、組織由来の幹細胞や分化過程にあるか、あるいは分化する能力のある細胞や胚性幹細胞である未分化な細胞であって、多分化能を有するかあるいは分化する能力を有する細胞であり、
    前記細胞に、遠赤外線を照射させ、
    培養条件として、該培養空間の気体を、その温度が36.5℃〜37.5℃に、湿度が約100%に、さらに気体成分の体積割合を、空気が95%に、二酸化炭素が5%に、それぞれ保持して、
    細胞の分化を促進させる
    ことを特徴とす細胞培養方法。
JP2003104877A 2003-04-09 2003-04-09 インキュベータおよび細胞培養方法 Expired - Fee Related JP4564720B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003104877A JP4564720B2 (ja) 2003-04-09 2003-04-09 インキュベータおよび細胞培養方法
EP04725820A EP1619240A1 (en) 2003-04-09 2004-04-05 Incubator and method of cell culturing
PCT/JP2004/004930 WO2004090092A1 (ja) 2003-04-09 2004-04-05 インキュベータおよび細胞培養方法
US11/072,678 US20060057712A1 (en) 2003-04-09 2005-03-03 Incubator and cell culturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104877A JP4564720B2 (ja) 2003-04-09 2003-04-09 インキュベータおよび細胞培養方法

Publications (2)

Publication Number Publication Date
JP2004305137A JP2004305137A (ja) 2004-11-04
JP4564720B2 true JP4564720B2 (ja) 2010-10-20

Family

ID=33156863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104877A Expired - Fee Related JP4564720B2 (ja) 2003-04-09 2003-04-09 インキュベータおよび細胞培養方法

Country Status (4)

Country Link
US (1) US20060057712A1 (ja)
EP (1) EP1619240A1 (ja)
JP (1) JP4564720B2 (ja)
WO (1) WO2004090092A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006230329C1 (en) * 2005-03-31 2013-03-14 Secretary Of The Department Of Health And Human Services Light as a replacement for mitogenic factors on progenitor cells
CN101238218A (zh) * 2005-05-20 2008-08-06 维克西斯公司 初级细胞的转导
JP2007054468A (ja) * 2005-08-26 2007-03-08 Univ Of Tokushima 骨形成促進装置、骨形成促進方法および骨治療器具
KR100732193B1 (ko) 2006-07-07 2007-06-25 유창수 미생물 배양기
KR100809836B1 (ko) * 2007-02-16 2008-03-04 고려대학교 산학협력단 압력 조절 배양 장치
GB0713121D0 (en) * 2007-07-06 2007-08-15 Univ Keele Refrigerated gas equilibration device
CN102161970B (zh) * 2011-01-20 2013-01-23 重庆大学 便携式细胞培养箱
CN104390827A (zh) * 2014-12-15 2015-03-04 王东生 血液孵育器
JP7286538B2 (ja) * 2017-06-07 2023-06-05 株式会社 資生堂 細胞培養方法、細胞評価方法、および細胞培養装置
CN107912304A (zh) * 2017-12-29 2018-04-17 武汉艾德士生物科技有限公司 一种静音植物组织培养箱
CN109022280A (zh) * 2018-10-17 2018-12-18 皖南医学院 一种细胞临时培养设备
CN110628707B (zh) * 2019-11-01 2020-07-24 浙江大学 一种提高哺乳动物胚胎体外存活率的培养方法
CN110791430B (zh) * 2019-12-02 2020-10-30 浙江大学 一种基于胚胎体外培养技术的高品质牛羊卵母细胞培养箱
CN111849773A (zh) * 2020-08-11 2020-10-30 中国工程物理研究院核物理与化学研究所 一种细胞氚水辐照实验装置
KR102653563B1 (ko) * 2021-12-16 2024-04-02 재단법인 한국탄소산업진흥원 원적외선 방출 및 온도조절이 가능한 세포배양장치
WO2024039273A1 (en) * 2022-08-16 2024-02-22 Bpc Instruments Ab An incubator system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010778A (ja) * 2000-06-29 2002-01-15 Misato Kk 細胞の増殖促進方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07219650A (ja) * 1994-01-27 1995-08-18 Naito Densei Machida Seisakusho:Kk 定温度・定湿度制御装置
US5792427A (en) * 1996-02-09 1998-08-11 Forma Scientific, Inc. Controlled atmosphere incubator
US6070093A (en) * 1997-12-02 2000-05-30 Abbott Laboratories Multiplex sensor and method of use
JP3670876B2 (ja) * 1998-09-29 2005-07-13 三洋電機株式会社 培養装置
JP3381154B2 (ja) * 2000-02-25 2003-02-24 修 山崎 茹で卵様食品の製造装置
KR100386958B1 (ko) * 2000-06-09 2003-06-09 주식회사 리독스 정수장치
US20040081577A1 (en) * 2002-10-29 2004-04-29 Macaluso Virgil J. Method of treating comestible material for disinfestation, enzyme denaturation and microorganism control
DE10301780B3 (de) * 2003-01-18 2004-08-26 Dräger Medical AG & Co. KGaA Verfahren zur Regelung der Temperatur einer Inkubatorhaube
US20050147641A1 (en) * 2004-01-02 2005-07-07 Qi Yu Plastic water and beverage bottle and manufacturing process thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010778A (ja) * 2000-06-29 2002-01-15 Misato Kk 細胞の増殖促進方法

Also Published As

Publication number Publication date
WO2004090092A1 (ja) 2004-10-21
JP2004305137A (ja) 2004-11-04
US20060057712A1 (en) 2006-03-16
EP1619240A1 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
US20060057712A1 (en) Incubator and cell culturing method
US20200017848A1 (en) Methods for Culturing Cells in an Alternating Ionic Magnetic Resonance (AIMR) Multiple-Chambered Culture Apparatus
Zeitelhofer et al. High-efficiency transfection of mammalian neurons via nucleofection
Mobini et al. Direct current electrical stimulation chamber for treating cells in vitro
US20050170491A1 (en) Automatic culture apparatus for cell or tisse with biological origin
Sun et al. Maturation of human stem cell-derived cardiomyocytes in biowires using electrical stimulation
US20190376014A1 (en) Apparatus and methods for in vitro preclinical human trials
NZ540442A (en) Large-scale electroporation plates, systems, and methods of use
Akiyama et al. An electrical stimulation culture system for daily maintenance-free muscle tissue production
Rimington et al. Differentiation of bioengineered skeletal muscle within a 3D printed perfusion bioreactor reduces atrophic and inflammatory gene expression
Rosenberg et al. Photobiomodulation of human osteoblast‐like cells in vitro by low‐intensity‐pulsed LED light
US20170145365A1 (en) Cell culturing device and closed-system culture vessel
Licata et al. Bioreactor technologies for enhanced organoid culture
CN105358707B (zh) 筛选多能干细胞生长促进因子的方法
US20030113832A1 (en) Apparatus and method for assaying electrophysiological effects
WO2021161130A1 (en) System, method and device for culture of a multicellular structure
Sandell et al. Mammalian cell culture
Ben-Nun et al. Generation of induced pluripotent stem cells from mammalian endangered species
JPWO2006057444A1 (ja) 細胞の分化度自動診断方法
Mirsaidi et al. Preparation and Osteogenic Differentiation of Scaffold‐Free Mouse Adipose‐Derived Stromal Cell Microtissue Spheroids (ASC‐MT)
JP2018161097A (ja) 培養細胞供試体の作製方法
Borrego et al. Isolation and characterization of methionine-independent clones from methionine-dependent cancer cells
Warner et al. Mammalian cell culture
Suhonen et al. Ex vivo and in vivo gene delivery to the brain
Edelmann et al. A bioreactor to apply multimodal physical stimuli to cultured cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees