JP4563537B2 - Sealed lead-acid battery separator - Google Patents
Sealed lead-acid battery separator Download PDFInfo
- Publication number
- JP4563537B2 JP4563537B2 JP36487099A JP36487099A JP4563537B2 JP 4563537 B2 JP4563537 B2 JP 4563537B2 JP 36487099 A JP36487099 A JP 36487099A JP 36487099 A JP36487099 A JP 36487099A JP 4563537 B2 JP4563537 B2 JP 4563537B2
- Authority
- JP
- Japan
- Prior art keywords
- separator
- sealed lead
- surface area
- specific surface
- inorganic powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電解液の保持性と極板との密着性に優れ、しかも平均孔径が小さく耐短絡性にも優れた密閉形鉛蓄電池用セパレータに関する。
【0002】
【従来の技術】
従来、耐短絡性に優れた密閉形鉛蓄電池用セパレータとして、ガラス繊維と無機粉体で構成したものや、ガラス繊維、合成繊維及び無機粉体で構成したものが知られている。
例えば、特開昭58−206046号公報には、SiO2粒子を保持したガラス繊維もしくは合成繊維からなるセパレータが開示されている。
また、特開昭61−269852号公報には、平均直径1.0〜5.0μmの含アルカリ珪酸塩ガラスを主体とする繊維と、比表面積が100m2/g以上のシリカ粉末を主体とする粉末を、このシリカ粉末量がセパレータ重量の40wt%になるように湿式混抄し、ガラス繊維の間隙に粉末粒子を介在させて孔径を微細化するとともに、繊維同士又は繊維と粉末粒子とを、主として抄造の際に生じる水ガラス状物質によって相互に結合するようにした密閉形蓄電池用セパレータが開示されている。
さらに、特開平6−176749号公報には、ポリオレフィン系合成パルプ、ガラス繊維、合成繊維及び無機粉体を配合し、混合抄造した鉛電池用セパレータが開示されている。
【0003】
【発明が解決しようとする課題】
上記のセパレータにおいて、結合剤を使用しないものは、電池組立時に無機粉体が脱落することにより、組立作業に支障を来すことがある。
また、水ガラス状物質によって繊維同士又は繊維と無機粉末とを結合するようにしたセパレータでは、pHを2.5〜3.5に保った水の中で一定時間分散させる必要があり、しかも、無機質からなる水ガラス状物質を結合剤としていることからセパレータが硬くなるため、電池組立作業に支障を来すことがある。
また、合成パルプ及び合成繊維からなる合成樹脂をバインダーとしたセパレータでは、材料相互間を強く結合するため、前記のセパレータと同様にセパレータが硬くなり、電池組立作業に支障を来すことがある。
【0004】
【課題を解決するための手段】
本発明の密閉形鉛電池用セパレータは、上記の問題点を解決するために、請求項1記載の通り、ガラス繊維と無機質粉体を含有した無機材料を主体として湿式混抄される密閉形鉛蓄電池用セパレータにおいて、分子量100万以上のイオン性高分子凝集剤を用いて、前記無機材料間が結合され、前記ガラス繊維がBET法に基づく平均直径が0.5μm〜1μmの微細ガラス繊維であり、前記無機質粉体が比表面積が150m 2 /g〜300m 2 /gの二酸化珪素であり、前記無機質粉体の添加量が15wt%〜40wt%であり、前記イオン性高分子凝集剤の添加量が抄紙スラリーの全固体重量を基準として0.05wt%〜0.5wt%であり、平均孔径が5μm以下であり、BET法に基づく比表面積が20m 2 /g〜130m 2 /g未満であることを特徴とする。
【0005】
【発明の実施の形態】
本発明は、前記のように平均直径が0.5μm〜1μmの範囲の微細ガラス繊維と無機質粉体を含有した無機材料を主体として湿式混抄される密閉形鉛蓄電池用セパレータにおいて、分子量100万以上のイオン性高分子凝集剤を用いて無機材料間を結合するようにしたことにより、材料相互間を適度な結合力で結合でき、柔軟な抄紙シートとすることができる。
【0006】
また、紙層構造を決定する微細ガラス繊維の平均直径を前記のように0.5μm〜1μmの範囲としたことで、基本繊維構造自体の細孔径分布が小さくなり、しかも、繊維同士が構成する細孔に無機粉体が充満するため、前記繊維構造の細孔径分布はさらに小さくなり、結果的に平均孔径が5μm以下の耐短絡性の優れた柔軟な密閉形鉛電池用セパレータを得ることができる。
【0007】
さらに、微細ガラス繊維の平均直径を0.5μm〜1μmの範囲としたことにより、ガラス繊維重量当たりの繊維本数を多くすることができ、BET法に基づくセパレータの比表面積にして130m2/gまでの多量の無機質粉体を湿式混抄した密閉形鉛電池用セパレータとすることができる。
【0008】
前記ガラス繊維としては、例えば、耐酸性のCガラスを、溶融、紡糸して得られるBET法に基づく平均繊維直径が0.5〜1μmの範囲から選択した微細なガラス繊維を使用する。
【0009】
また、無機質粉体としては、耐酸性を有するタルク、珪藻土、二酸化珪素等が使用可能であるが、無機質粉体の混抄による微孔の縮小効果が大きく、純度の高い材料が得られる点から、比表面積が150m2/g〜300m2/gの二酸化珪素の使用が好ましい。
【0010】
前記二酸化珪素粉体の添加量は、15〜40wt%が好ましい。これは、15wt%未満では、微孔の縮小効果が小さいため、耐短絡性の優れたセパレータを得ることができず、また、40wt%を超えるとセパレータが硬くなり電池組立作業に支障を来すだけでなく、セパレータから無機質粉体が脱落するからである。
【0011】
また、イオン性高分子凝集剤としては、分子量100万以上のアクリルアミドを含有する水溶性のカチオン性共重合体やエチレンイミン等のカチオン性高分子凝集剤を使用できるが、アニオン性、あるいはノニオン性高分子凝集剤との併用も可能である。
このようなイオン性高分子凝集剤は、微細ガラス繊維と無機質粉体を含有した無機材料を主体とする抄紙全材料に対してフロック形成を促し、そのフロック形成により無機質粉体の繊維材料への定着効率を著しく高めるとともに、無機材料を主体とした材料を相互に緩く結合するため、軟らかい密閉形鉛電池セパレータが得られる。
【0012】
なお、前記のイオン性高分子凝集剤の分子量は、100万以上が必要であり、100万未満では、無機質粉体の繊維材料への定着効率が低下し、多量の無機質粉体を混抄することが困難となるため好ましくない。また、イオン性高分子凝集剤の添加量は、抄紙スラリーの全固体重量を基準として0.05wt%〜0.5wt%の範囲が好ましい。これは、0.05wt%未満では、無機質粉体の繊維材料への定着効率が著しく低下するとともに、材料間の結合効果が期待できず、また、0.5wt%を超えると強いフロックを形成し、シート均質度の低下、即ち、地合の低下をもたらすからである。
【0013】
【実施例】
次に、本発明の具体的な実施例を比較例及び従来例とともに説明する。
〔実施例1〕
平均繊維径0.7μm、比表面積2.3m2/gの耐酸性ガラス繊維75部と比表面積230m2/gの二酸化珪素25部を水流型分散機を用いて混合分散させた後、分子量150万のカチオン性アクリルアミド0.2部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い、厚さ1.0mmの密閉形鉛電池用セパレータを得た。なお、本実施例以下、その配合量を表す部は、重量部を示すものとする。
【0014】
〔実施例2〕
平均繊維径1.0μm、比表面積1.5m2/gの耐酸性ガラス繊維75部と比表面積230m2/gの二酸化珪素25部を水流型分散機を用いて混合分散させた後、分子量150万のカチオン性アクリルアミド0.2部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い、厚さ1.0mmの密閉形鉛電池用セパレータを得た。
【0015】
〔比較例1〕
平均繊維径1.5μm、比表面積1.0m2/gの耐酸性ガラス繊維75部と比表面積230m2/gの二酸化珪素25部を水流型分散機を用いて混合分散させた後、分子量150万のカチオン性アクリルアミド0.2部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い、厚さ1.0mmの密閉形鉛電池用セパレータを得た。
【0016】
〔比較例2〕
平均繊維径1.0μm、比表面積1.5m2/gの耐酸性ガラス繊維90部と比表面積230m2/gの二酸化珪素10部を水流型分散機を用いて混合分散させた後、分子量150万のカチオン性アクリルアミド0.2部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い、厚さ1.0mmの密閉形鉛電池用セパレータを得た。
【0017】
〔比較例3〕
平均繊維径0.7μm、比表面積2.3m2/gの耐酸性ガラス繊維75部と比表面積230m2/gの二酸化珪素25部を水流型分散機を用いて混合分散させた後、分子量50万のカチオン性アクリルアミド0.2部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造を行ったが、二酸化珪素のガラス繊維に対する定着効率が悪いため、所望のセパレータを得ることができなかった。
【0018】
〔従来例1〕
平均繊維径0.7μm、比表面積2.3m2/gの耐酸性ガラス繊維50部と比表面積230m2/gの二酸化珪素25部及びポリエチレン合成パルプ25部を水流型分散機を用いて混合分散させた後、分子量50万のカチオン性アクリルアミド0.2部を含む水溶液を添加し、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い、厚さ1.0mmの密閉形鉛電池用セパレータを得た。
【0019】
〔従来例2〕
平均繊維径1.0μm、比表面積1.5m2/gの耐酸性ガラス繊維75部と比表面積230m2/gの二酸化珪素25部を水流型分散機を用いて混合分散させた後、硫酸を添加して水のpHを3とし、10分間混合して抄紙用スラリーを得た。次いで、該スラリーを用いて抄造・乾燥を行い、厚さ1.0mmの密閉形鉛電池用セパレータを得た。
【0020】
実施例1、2と比較例1〜3及び従来例1、2によって得た密閉形鉛電池用セパレータの特性測定を行い、その結果を表1に示した。
【0021】
【表1】
【0022】
上記表1から明らかなように、本実施例の密閉形鉛電池用セパレータのみが、比表面積が大きく、平均孔径が小さく、しかも圧縮時相対厚さが小さいものとなり、その結果、電解液の保持性と極板との密着性に優れ、しかも平均孔径が小さく耐短絡性にも優れた密閉形鉛蓄電池用セパレータが得られることが確認できた。
また、従来例1のセパレータでは、ポリエチレン合成パルプと分子量50万のカチオン性アクリルアミドを併用したことにより、二酸化珪素の繊維材料に対する定着効率は良好であったが、圧縮時の相対厚さが厚く、従ってセパレータの風合いが硬くなったことから、電池組立作業性が低下する結果であった。
また、従来例2のセパレータは、分子量100万以上のカチオン性アクリルアミドを使用していないことから、実施例のセパレータに対してガラス繊維の定着率が悪いことが予想されたが、酸性処理の効果により使用水がやや白濁する程度で、ほぼ所望のセパレータを得ることができた。しかし、このセパレータは、従来例1と同様に圧縮時の相対厚さが厚く、従ってセパレータの風合いが硬くなったことから、電池組立作業性が低下する結果であった。
【0023】
【発明の効果】
以上説明したように、本発明は、微細ガラス繊維と無機質粉体を含有した無機材料を主体として湿式混抄される密閉形鉛電池用セパレータにおいて、分子量100万以上のイオン性高分子凝集剤を用いて無機材料間を結合したことにより、材料相互間を適度な結合力で結合できるため、柔軟な抄紙シートとすることができる。また、紙層構造を決定する微細ガラス繊維の平均直径を0.5μm〜1μmの範囲としたことで、基本繊維構造自体の細孔径分布が小さくなり、しかも繊維同士が構成する細孔に無機質粉末が充満するため、細孔の径分布はさらに小さくなり、結果的に平均孔径が5μm以下の耐短絡性の優れた柔軟な密閉形鉛電池用セパレータを得ることができる。さらに、本発明の密閉形鉛電池用セパレータを使用すれば、電池組立てが容易となり、また、電池使用時において短絡を生じにくいことから電池寿命の延長効果を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed lead-acid battery separator having excellent electrolyte retention and adhesion to an electrode plate, and having a small average pore diameter and excellent short-circuit resistance.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a sealed lead-acid battery separator excellent in short-circuit resistance, those composed of glass fiber and inorganic powder, and those composed of glass fiber, synthetic fiber, and inorganic powder are known.
For example, JP-A-58-206046 discloses a separator made of glass fiber or synthetic fiber holding SiO 2 particles.
Japanese Patent Application Laid-Open No. 61-269852 is mainly composed of fibers mainly composed of alkali-containing silicate glass having an average diameter of 1.0 to 5.0 μm and silica powder having a specific surface area of 100 m 2 / g or more. The powder is wet-mixed so that the silica powder amount is 40 wt% of the separator weight, and the pore diameter is refined by interposing the powder particles in the gap between the glass fibers, and the fibers or the fibers and the powder particles are mainly used. A separator for a sealed storage battery is disclosed which is bonded to each other by a water glass-like substance generated during papermaking.
Furthermore, Japanese Patent Laid-Open No. 6-176749 discloses a lead battery separator in which polyolefin synthetic pulp, glass fiber, synthetic fiber and inorganic powder are blended and mixed.
[0003]
[Problems to be solved by the invention]
Of the above separators, those that do not use a binder may interfere with the assembly work due to the inorganic powder falling off during battery assembly.
Moreover, in a separator that binds fibers or fibers and inorganic powder by a water glass-like substance, it is necessary to disperse for a certain time in water whose pH is kept at 2.5 to 3.5, Since the separator is hard because it uses a water-glass-like substance made of an inorganic material as a binder, it may interfere with battery assembly work.
Moreover, in the separator which used the synthetic resin which consists of synthetic pulp and a synthetic fiber as a binder, since materials are couple | bonded strongly, a separator becomes hard similarly to the said separator, and it may interfere with battery assembly work.
[0004]
[Means for Solving the Problems]
Sealed lead battery separator of the present invention, in order to solve the above problems, as in Claim 1 wherein, sealed lead being wet混抄inorganic material containing glass fibers and inorganic powder mainly In the battery separator, the inorganic material is bonded using an ionic polymer flocculant having a molecular weight of 1 million or more, and the glass fiber is a fine glass fiber having an average diameter of 0.5 μm to 1 μm based on the BET method. the inorganic powder is a specific surface area of silicon dioxide of 150m 2 / g~300m 2 / g, the addition amount of the inorganic powder is 15 wt% 40 wt%, the added amount of the ionic polymer flocculating agent There was 0.05 wt% to 0.5 wt% based on the total solids weight of the papermaking slurry, an average pore diameter is at 5μm or less and a specific surface area based on BET method 20m 2 / g~130m 2 and less than g.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the present invention provides a sealed lead-acid battery separator that is wet-mixed mainly with an inorganic material containing fine glass fibers having an average diameter in the range of 0.5 μm to 1 μm and inorganic powder, and has a molecular weight of 1 million or more. By bonding the inorganic materials using the ionic polymer flocculant, the materials can be bonded with an appropriate bonding force, and a flexible papermaking sheet can be obtained.
[0006]
In addition, by setting the average diameter of the fine glass fibers that determine the paper layer structure in the range of 0.5 μm to 1 μm as described above, the pore size distribution of the basic fiber structure itself is reduced, and the fibers constitute each other. Since the pores are filled with inorganic powder, the pore size distribution of the fiber structure is further reduced, and as a result, it is possible to obtain a flexible sealed lead battery separator excellent in short circuit resistance with an average pore size of 5 μm or less. it can.
[0007]
Furthermore, by setting the average diameter of the fine glass fibers in the range of 0.5 μm to 1 μm, the number of fibers per glass fiber weight can be increased, and the specific surface area of the separator based on the BET method can be up to 130 m 2 / g. A separator for a sealed lead battery in which a large amount of inorganic powder is wet-mixed.
[0008]
As said glass fiber, the fine glass fiber selected from the range whose average fiber diameter based on BET method obtained by melt-spinning acid-resistant C glass is 0.5-1 micrometer is used, for example.
[0009]
In addition, as the inorganic powder, acid-resistant talc, diatomaceous earth, silicon dioxide, etc. can be used, but the effect of reducing the pores by mixing the inorganic powder is large, and a material with high purity can be obtained. the specific surface area is preferred to use the silicon dioxide 150m 2 / g~300m 2 / g.
[0010]
The addition amount of the silicon dioxide powder is preferably 15 to 40 wt%. If the amount is less than 15 wt%, the effect of reducing the micropores is small, so a separator with excellent short-circuit resistance cannot be obtained. If the amount exceeds 40 wt%, the separator becomes hard and hinders battery assembly work. In addition, the inorganic powder falls off from the separator.
[0011]
Further, as the ionic polymer flocculant, a water-soluble cationic copolymer containing acrylamide having a molecular weight of 1 million or more and a cationic polymer flocculant such as ethyleneimine can be used, but anionic or nonionic A combined use with a polymer flocculant is also possible.
Such an ionic polymer flocculant promotes the formation of flocks for all papermaking materials mainly composed of inorganic materials containing fine glass fibers and inorganic powders, and the formation of flocs to fiber materials of inorganic powders. Since the fixing efficiency is remarkably enhanced and materials mainly composed of inorganic materials are loosely bonded to each other, a soft sealed lead battery separator can be obtained.
[0012]
The molecular weight of the ionic polymer flocculant is required to be 1 million or more. If the molecular weight is less than 1 million, the fixing efficiency of the inorganic powder to the fiber material is lowered, and a large amount of the inorganic powder is mixed. Is not preferable because it becomes difficult. The addition amount of the ionic polymer flocculant is preferably in the range of 0.05 wt% to 0.5 wt% based on the total solid weight of the papermaking slurry. If the amount is less than 0.05 wt%, the fixing efficiency of the inorganic powder to the fiber material is remarkably lowered, and the bonding effect between the materials cannot be expected. If the amount exceeds 0.5 wt%, a strong floc is formed. This is because the sheet homogeneity is lowered, that is, the formation is lowered.
[0013]
【Example】
Next, specific examples of the present invention will be described together with comparative examples and conventional examples.
[Example 1]
After mixing and dispersing 75 parts of acid-resistant glass fiber having an average fiber diameter of 0.7 μm and a specific surface area of 2.3 m 2 / g and 25 parts of silicon dioxide having a specific surface area of 230 m 2 / g using a water-type disperser, the molecular weight is 150. An aqueous solution containing 0.2 part of 10,000 cationic acrylamide was added and mixed for 10 minutes to obtain a papermaking slurry. Next, the slurry was used for papermaking and drying to obtain a sealed lead battery separator having a thickness of 1.0 mm. In the following examples, the part representing the blending amount represents part by weight.
[0014]
[Example 2]
After mixing and dispersing 75 parts of acid-resistant glass fibers having an average fiber diameter of 1.0 μm and a specific surface area of 1.5 m 2 / g and 25 parts of silicon dioxide having a specific surface area of 230 m 2 / g using a water-type disperser, the molecular weight is 150. An aqueous solution containing 0.2 part of 10,000 cationic acrylamide was added and mixed for 10 minutes to obtain a papermaking slurry. Next, the slurry was used for papermaking and drying to obtain a sealed lead battery separator having a thickness of 1.0 mm.
[0015]
[Comparative Example 1]
After mixing and dispersing 75 parts of acid-resistant glass fibers having an average fiber diameter of 1.5 μm and a specific surface area of 1.0 m 2 / g and 25 parts of silicon dioxide having a specific surface area of 230 m 2 / g using a water-type disperser, the molecular weight is 150. An aqueous solution containing 0.2 part of 10,000 cationic acrylamide was added and mixed for 10 minutes to obtain a papermaking slurry. Next, the slurry was used for papermaking and drying to obtain a sealed lead battery separator having a thickness of 1.0 mm.
[0016]
[Comparative Example 2]
After 90 parts of acid-resistant glass fibers having an average fiber diameter of 1.0 μm and a specific surface area of 1.5 m 2 / g and 10 parts of silicon dioxide having a specific surface area of 230 m 2 / g are mixed and dispersed using a water-type disperser, the molecular weight is 150. An aqueous solution containing 0.2 part of 10,000 cationic acrylamide was added and mixed for 10 minutes to obtain a papermaking slurry. Next, the slurry was used for papermaking and drying to obtain a sealed lead battery separator having a thickness of 1.0 mm.
[0017]
[Comparative Example 3]
After mixing and dispersing 75 parts of acid-resistant glass fiber having an average fiber diameter of 0.7 μm and a specific surface area of 2.3 m 2 / g and 25 parts of silicon dioxide having a specific surface area of 230 m 2 / g using a water-type disperser, the molecular weight is 50 An aqueous solution containing 0.2 part of 10,000 cationic acrylamide was added and mixed for 10 minutes to obtain a papermaking slurry. Next, papermaking was performed using the slurry, but a desired separator could not be obtained due to poor fixing efficiency of silicon dioxide to glass fibers.
[0018]
[Conventional example 1]
Mixing and dispersing 50 parts of acid-resistant glass fiber having an average fiber diameter of 0.7 μm and a specific surface area of 2.3 m 2 / g, 25 parts of silicon dioxide having a specific surface area of 230 m 2 / g and 25 parts of polyethylene synthetic pulp using a water flow type disperser. Then, an aqueous solution containing 0.2 part of cationic acrylamide having a molecular weight of 500,000 was added and mixed for 10 minutes to obtain a papermaking slurry. Next, the slurry was used for papermaking and drying to obtain a sealed lead battery separator having a thickness of 1.0 mm.
[0019]
[Conventional example 2]
After mixing and dispersing 75 parts of acid-resistant glass fiber having an average fiber diameter of 1.0 μm and a specific surface area of 1.5 m 2 / g and 25 parts of silicon dioxide having a specific surface area of 230 m 2 / g using a water-type disperser, sulfuric acid was added. The pH of water was adjusted to 3 and mixed for 10 minutes to obtain a papermaking slurry. Next, the slurry was used for papermaking and drying to obtain a sealed lead battery separator having a thickness of 1.0 mm.
[0020]
The characteristics of the separators for sealed lead batteries obtained in Examples 1 and 2, Comparative Examples 1 to 3 and Conventional Examples 1 and 2 were measured, and the results are shown in Table 1.
[0021]
[Table 1]
[0022]
As is clear from Table 1 above, only the sealed lead battery separator of this example has a large specific surface area, a small average pore diameter, and a small relative thickness during compression. It was confirmed that a separator for a sealed lead-acid battery having excellent properties and adhesion between the electrode plates and having a small average pore diameter and excellent short-circuit resistance was obtained.
Further, in the separator of Conventional Example 1, by using polyethylene synthetic pulp and cationic acrylamide having a molecular weight of 500,000, the fixing efficiency with respect to the fiber material of silicon dioxide was good, but the relative thickness at the time of compression was thick, Therefore, since the texture of the separator became hard, the battery assembly workability was lowered.
Further, since the separator of Conventional Example 2 does not use cationic acrylamide having a molecular weight of 1,000,000 or more, it was expected that the fixing rate of the glass fiber was worse than that of the separator of the Example. As a result, almost the desired separator could be obtained with the water used becoming slightly cloudy. However, this separator had a large relative thickness when compressed, as in Conventional Example 1, and thus the texture of the separator became hard, resulting in a decrease in battery assembly workability.
[0023]
【The invention's effect】
As described above, the present invention uses an ionic polymer flocculant having a molecular weight of 1 million or more in a sealed lead battery separator that is wet-mixed mainly with an inorganic material containing fine glass fibers and inorganic powder. Since the inorganic materials are bonded to each other, the materials can be bonded with an appropriate bonding force, so that a flexible papermaking sheet can be obtained. In addition, since the average diameter of the fine glass fiber that determines the paper layer structure is in the range of 0.5 μm to 1 μm, the pore diameter distribution of the basic fiber structure itself is reduced, and the inorganic powder is formed in the pores that the fibers constitute. Therefore, the pore size distribution is further reduced, and as a result, a flexible sealed lead-acid battery separator having an average pore size of 5 μm or less and excellent short circuit resistance can be obtained. Furthermore, if the sealed lead battery separator of the present invention is used, battery assembly is facilitated, and a short circuit is unlikely to occur when the battery is used.
Claims (1)
分子量100万以上のイオン性高分子凝集剤を用いて、前記無機材料間が結合され、
前記ガラス繊維がBET法に基づく平均直径が0.5μm〜1μmの微細ガラス繊維であり、前記無機質粉体が比表面積が150m 2 /g〜300m 2 /gの二酸化珪素であり、
前記無機質粉体の添加量が15wt%〜40wt%であり、前記イオン性高分子凝集剤の添加量が抄紙スラリーの全固体重量を基準として0.05wt%〜0.5wt%であり、
平均孔径が5μm以下であり、BET法に基づく比表面積が20m 2 /g〜130m 2 /g未満であることを特徴とする密閉形鉛蓄電池用セパレータ。In the separator for sealed lead-acid battery that is wet混抄inorganic material containing glass fibers and inorganic powder mainly,
The inorganic materials are bonded using an ionic polymer flocculant having a molecular weight of 1 million or more ,
The average diameter glass fibers based on the BET method is fine glass fibers 0.5Myuemu~1myuemu, the inorganic powder is the specific surface area of silicon dioxide of 150m 2 / g~300m 2 / g,
The addition amount of the inorganic powder is 15 wt% to 40 wt%, the addition amount of the ionic polymer flocculant is 0.05 wt% to 0.5 wt% based on the total solid weight of the papermaking slurry,
The average pore diameter is at 5μm or less, sealed lead-acid battery separator, wherein the specific surface area based on BET method is less than 20m 2 / g~130m 2 / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36487099A JP4563537B2 (en) | 1999-12-22 | 1999-12-22 | Sealed lead-acid battery separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36487099A JP4563537B2 (en) | 1999-12-22 | 1999-12-22 | Sealed lead-acid battery separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001185114A JP2001185114A (en) | 2001-07-06 |
JP4563537B2 true JP4563537B2 (en) | 2010-10-13 |
Family
ID=18482882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36487099A Expired - Fee Related JP4563537B2 (en) | 1999-12-22 | 1999-12-22 | Sealed lead-acid battery separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4563537B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1328801C (en) * | 2004-02-25 | 2007-07-25 | 张华康 | Diaphragm plates in colloid lead acid battery and preparation method |
KR100742959B1 (en) | 2004-09-02 | 2007-07-25 | 주식회사 엘지화학 | Organic/inorganic composite porous film and electrochemical device using the same |
EP1784876B1 (en) | 2004-09-02 | 2018-01-24 | LG Chem, Ltd. | Organic/inorganic composite porous film and electrochemical device prepared thereby |
TWI330136B (en) * | 2005-11-28 | 2010-09-11 | Lg Chemical Ltd | Organic/inorganic composite porous membrane and electrochemical device using the same |
KR100966024B1 (en) | 2007-04-24 | 2010-06-24 | 주식회사 엘지화학 | A electrochemical device having a different kind of separators |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06176749A (en) * | 1992-12-01 | 1994-06-24 | Nippon Muki Co Ltd | Bag-shape separator for lead-acid battery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2745308B2 (en) * | 1988-09-20 | 1998-04-28 | 日本無機株式会社 | Manufacturing method of storage battery separator |
JP3054254B2 (en) * | 1991-10-29 | 2000-06-19 | 日本無機株式会社 | Paper-made separator for lead-acid battery, its manufacturing method and lead-acid battery |
-
1999
- 1999-12-22 JP JP36487099A patent/JP4563537B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06176749A (en) * | 1992-12-01 | 1994-06-24 | Nippon Muki Co Ltd | Bag-shape separator for lead-acid battery |
Also Published As
Publication number | Publication date |
---|---|
JP2001185114A (en) | 2001-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4529677A (en) | Battery separator material | |
AU592178B2 (en) | Sheet material suitable for use as a battery separator | |
CN106684297B (en) | AGM separator with high specific surface area and application thereof | |
US5298348A (en) | Battery separator for nickel/metal hydride batteries | |
US5225298A (en) | Sealed lead acid battery and separator for use in sealed lead acid battery | |
JP4563537B2 (en) | Sealed lead-acid battery separator | |
CN109616605B (en) | Lithium ion battery diaphragm and preparation method thereof | |
WO2000055930A1 (en) | Sealed lead-acid battery separator | |
CN113113731A (en) | Diaphragm, preparation method thereof and lithium ion battery | |
AU636733B2 (en) | Battery separator for recombinant batteries | |
JP2002216733A (en) | Separator for sealed lead-acid battery and manufacturing method for it | |
CN109065810A (en) | A kind of preparation method of aluminum oxyhydroxide slurry | |
IT8319386A1 (en) | MATERIAL FOR BATTERY SEPARATORS AND METHOD FOR ITS FORMATION | |
JP6544126B2 (en) | Control valve type lead storage battery | |
JP2003109567A (en) | Separator for closed lead storage battery | |
JP3416992B2 (en) | Sealed lead-acid battery separator | |
CN115275519A (en) | Inorganic coating battery diaphragm and preparation method thereof and battery | |
JP3060632B2 (en) | Separators for liquid lead-acid batteries | |
JP2005268006A (en) | Separator for storage battery, and its manufacturing method | |
JP2005108538A (en) | Separator for sealed lead-acid battery, and sealed lead-acid battery | |
CN106116238A (en) | A kind of dry powder and mortar plasticizing intensifier | |
CA1235736A (en) | Battery separator material | |
CN106116239A (en) | A kind of plasticizing intensifier | |
JP5201862B2 (en) | Sealed lead-acid battery separator and sealed lead-acid battery | |
JPS60221954A (en) | Separator for storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20041227 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060731 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100727 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100729 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4563537 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |