JP4563109B2 - Method for producing foam dustproof material, and method for producing dustproof structure using foam dustproof material - Google Patents

Method for producing foam dustproof material, and method for producing dustproof structure using foam dustproof material Download PDF

Info

Publication number
JP4563109B2
JP4563109B2 JP2004237703A JP2004237703A JP4563109B2 JP 4563109 B2 JP4563109 B2 JP 4563109B2 JP 2004237703 A JP2004237703 A JP 2004237703A JP 2004237703 A JP2004237703 A JP 2004237703A JP 4563109 B2 JP4563109 B2 JP 4563109B2
Authority
JP
Japan
Prior art keywords
foam
dustproof material
producing
dustproof
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004237703A
Other languages
Japanese (ja)
Other versions
JP2005097566A (en
Inventor
誠 齋藤
伸幸 高橋
克彦 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004237703A priority Critical patent/JP4563109B2/en
Publication of JP2005097566A publication Critical patent/JP2005097566A/en
Application granted granted Critical
Publication of JP4563109B2 publication Critical patent/JP4563109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、発泡防塵材、および該発泡防塵材が用いられた防塵構造に関し、さらに詳細には、優れた防塵性を有するとともに、微小なクリアランスに対しても良好に追従することができる発泡防塵材、および該発泡防塵材が用いられた防塵構造に関する。   The present invention relates to a foam dustproof material and a dustproof structure using the foam dustproof material. More specifically, the present invention has a foam dustproof material that has excellent dustproofness and can follow a minute clearance well. The present invention relates to a dustproof structure using the foamed dustproof material.

従来、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ等の画像表示装置に固定された画像表示部材や、いわゆる「携帯電話」や「携帯情報端末」等に固定されたカメラやレンズなどの光学部材を、所定の部位(固定部など)に固定する際に、防塵材が使用されている。また、複写機やプリンターなどの画像形成装置に用いられるトナーカートリッジから、トナーが漏れるのを防止するためにも、防塵材が使用されている。このような防塵材としては、低発泡で且つ独立気泡構造を有する微細セルウレタン系発泡体や高発泡ウレタンを圧縮成形したものの他、独立気泡を有する発泡倍率30倍程度のポリエチレン系発泡体などが使用されていた。具体的には、例えば、密度0.3〜0.5g/cm3のポリウレタン系発泡体からなるガスケット(特許文献1参照)や、平均気泡径が1〜500μmの発泡構造体からなる電気・電子機器用シール材(特許文献2参照)などが使用されている。 Conventionally, an image display member fixed to an image display device such as a liquid crystal display, an electroluminescence display, a plasma display, or an optical member such as a camera or a lens fixed to a so-called “mobile phone” or “portable information terminal” A dustproof material is used when fixing to a predetermined part (fixed part or the like). A dustproof material is also used to prevent toner from leaking from toner cartridges used in image forming apparatuses such as copying machines and printers. Examples of such a dustproof material include a low-foaming microcellular urethane foam having a closed cell structure and a highly foamed urethane compression molding, a polyethylene foam having a closed cell and a foaming ratio of about 30 times. It was used. Specifically, for example, a gasket (see Patent Document 1) made of a polyurethane foam having a density of 0.3 to 0.5 g / cm 3 , and an electric / electronic product made of a foamed structure having an average cell diameter of 1 to 500 μm. Equipment sealing materials (see Patent Document 2) and the like are used.

また、従来、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ等の画像表示装置に装着された画像表示部材や、いわゆる「携帯電話」や「携帯情報端末」等に装着されたカメラやレンズなどの光学部材において、防塵材が使用される部分のクリアランス(clearance;すきま、間隔)は、十分に大きく、そのため、防塵材をあまり圧縮しなくても使用することが可能であった。従って、防塵材の持つ圧縮反発力について特に気にする必要がなかった。   Conventionally, an image display member mounted on an image display device such as a liquid crystal display, an electroluminescence display, or a plasma display, or an optical member such as a camera or lens mounted on a so-called “mobile phone” or “portable information terminal” In this case, the clearance (clearance; clearance) of the portion where the dustproof material is used is sufficiently large. Therefore, the dustproof material can be used without much compression. Therefore, there was no need to worry about the compression repulsion force of the dustproof material.

特開2001−100216号公報JP 2001-100216 A 特開2002−309198号公報JP 2002-309198 A

しかしながら、近年、光学部材(画像表示装置、カメラ、レンズなど)が装着(セット)される製品が薄型化されていくにつれ、防塵材が使われる部分のクリアランスが減少していく傾向にある。また、最近になって、従来使用されていた防塵材がその反発力の大きさゆえに使用できない状況が発生しつつある。そのため、優れた防塵性を発揮できるとともに、微小なクリアランスに対しても追従可能な優れた柔軟性を有している防塵材が求められている。   However, in recent years, as a product on which an optical member (an image display device, a camera, a lens, etc.) is mounted (set) is thinned, the clearance in a portion where a dustproof material is used tends to decrease. Recently, a situation has arisen in which a conventionally used dustproof material cannot be used because of its large repulsive force. Therefore, there is a demand for a dustproof material that can exhibit excellent dustproofness and has excellent flexibility that can follow even minute clearances.

なお、例えば、特開2001−100216号公報に記載のガスケット(すなわち、密度0.3〜0.5g/cm3のポリウレタン系発泡体からなるガスケット)では、発泡倍率を抑えることで液晶表示画面のガタツキを防止するとしているが、柔軟性や緩衝性が十分ではない。 For example, in the gasket described in Japanese Patent Laid-Open No. 2001-100216 (that is, a gasket made of a polyurethane foam having a density of 0.3 to 0.5 g / cm 3 ), the liquid crystal display screen is reduced by suppressing the expansion ratio. Although it is supposed to prevent rattling, flexibility and buffering properties are not sufficient.

また、特開2002−309198号公報に記載の電気・電子機器用シール材(すなわち、平均気泡径が1〜500μmの発泡構造体からなる電気・電子機器用シール材)では、発泡材としての圧縮反発力について言及されていない。   In addition, in the sealing material for electric / electronic devices described in JP-A-2002-309198 (that is, the sealing material for electric / electronic devices made of a foam structure having an average cell diameter of 1 to 500 μm), compression as a foaming material is performed. There is no mention of repulsion.

従って、本発明の目的は、優れた防塵性を有しているとともに、微小なクリアランスに対しても追従可能な優れた柔軟性を有している防塵材、及び該防塵材が用いられている防塵構造を提供することにある。
本発明の他の目的は、光学部材を、薄型化の製品に装着する際であっても好適に使用することができる防塵材、及び該防塵材が用いられている防塵構造を提供することにある。
Accordingly, an object of the present invention is to use a dustproof material having excellent dustproofness and having excellent flexibility capable of following even a minute clearance, and the dustproof material. It is to provide a dustproof structure.
Another object of the present invention is to provide a dustproof material that can be suitably used even when the optical member is mounted on a thin product, and a dustproof structure in which the dustproof material is used. is there.

本発明者らは、前記目的を達成するため鋭意検討した結果、防塵材として、特定の特性を有している発泡体により構成されたものを用いると、優れた防塵性を発揮することができるとともに、微小なクリアランスに対しても良好に追従することができることを見出した。本発明はこれらの知見に基づいて完成されたものである。   As a result of intensive investigations to achieve the above object, the present inventors can exhibit excellent dust resistance when using a dustproof material made of a foam having specific characteristics. At the same time, it has been found that it is possible to follow a minute clearance well. The present invention has been completed based on these findings.

すなわち、本発明は、発泡体により構成された防塵材を製造する方法であって、オレフィン系エラストマーとオレフィン系エラストマー以外のオレフィン系重合体の混合物であり、その混合比率(重量基準)が前者/後者で20/80〜80/20である熱可塑性ポリマーに、6〜100MPaの高圧の不活性ガスを10〜350℃の含浸温度で含浸させた後、減圧する工程を経て、平均セル径が10〜90μm、50%圧縮した時の対反発荷重が0.1〜3.0N/cm2、見掛け密度が0.01〜0.10g/cm3の特性を有する発泡体を連続方式で形成する工程を含むことを特徴とする発泡防塵材の製造方法を提供する。

That is, the present invention is a method for producing a dustproof material composed of a foam, which is a mixture of an olefin elastomer and an olefin polymer other than the olefin elastomer, and the mixing ratio (weight basis) is the former / In the latter case, a thermoplastic polymer of 20/80 to 80/20 is impregnated with a high pressure inert gas of 6 to 100 MPa at an impregnation temperature of 10 to 350 ° C., and then subjected to a pressure reducing process, and the average cell diameter is 10 A step of forming a foam having a characteristic of a repulsive load of 0.1 to 3.0 N / cm 2 and an apparent density of 0.01 to 0.10 g / cm 3 in a continuous system when compressed to 90 μm and 50%. The manufacturing method of the foaming dustproof material characterized by including these is provided.

立気泡構造または半連続半独立気泡構造を有する発泡体を形成することが好ましい。さらに、発泡体の片面または両面に粘着層を形成する工程を含んでもよく、該粘着層、フィルム層を介して、発泡体上に形成することが好ましい。また、粘着層、アクリル系粘着剤により形成てもよい。 It is preferable to form a foam having independent cell structure or a semi-interconnected semi-closed cell structure. Furthermore, may include a step of forming a viscous adhesive layer on one or both sides of the foam, the pressure-sensitive adhesive layer, through the film layer is preferably formed on the foam. Further, the adhesive layer may be formed by an acrylic adhesive.

このような発泡体の製造方法としては、溶融した熱可塑性ポリマーに不活性ガスを加圧状態下で含浸させた後、減圧とともに成形に付して発泡体を形成してもよい。さらに、減圧後、さらに加熱することにより発泡体を形成することが好ましい。 As a method for producing such a foam is impregnated with an inert gas to the molten thermoplastic polymer under a pressurized state, subjected to shaping with vacuum may form a foam. Furthermore, reduced after pressurization, to form a foam by further heating preferred.

前記不活性ガスとしては、二酸化炭素を好適に用いることができ、含浸時の不活性ガスは、超臨界状態であることが好ましい。   As the inert gas, carbon dioxide can be preferably used, and the inert gas during impregnation is preferably in a supercritical state.

このような発泡防塵材の製造方法は、光学部材を固定部に固定する際や、トナーカートリッジからトナーが漏れることを防ぐ際に好適に用いる発泡防塵材を製造することができる。 Such a method for producing a foam dustproof material can produce a foam dustproof material suitably used when the optical member is fixed to the fixing portion or when the toner is prevented from leaking from the toner cartridge.

また、本発明は、光学部材を固定部に固定する際の防塵構造を製造する方法であって、前記発泡防塵材の製造方法により発泡防塵材を得て、光学部材と固定部との間に、前記発泡防塵材が用いられている構造を製造することを特徴とする光学部材の防塵構造の製造方法を提供する。さらにまた、本発明は、光学部材が固定部に固定されている構造体を製造する方法であって、前記発泡防塵材の製造方法により発泡防塵材を得て、光学部材、前記発泡防塵材を介して固定部に固定することを特徴とする光学部材を有する構造体の製造方法を提供する。

The present invention also relates to a method for manufacturing a dustproof structure for fixing an optical member to a fixed portion, wherein a foamed dustproof material is obtained by the method for manufacturing a foamed dustproof material, and the optical member is fixed between the fixed portion. The manufacturing method of the dustproof structure of the optical member characterized by manufacturing the structure in which the said foaming dustproof material is used is provided. Furthermore, the present invention is a method for manufacturing a structure in which an optical member is fixed to a fixed portion, wherein the foamed dustproof material is obtained by the foamed dustproof material manufacturing method, and the optical member is converted into the foamed dustproof material. A method for manufacturing a structure having an optical member, characterized in that the structure is fixed to a fixing portion via a pin.

本発明の発泡防塵材は、優れた防塵性を有しているとともに、微小なクリアランスに対しても追従可能な優れた柔軟性を有している。また、光学部材を、薄型化の製品に装着する際であっても好適に使用することができる。   The foamed dustproof material of the present invention has excellent dustproofness and has excellent flexibility that can follow even minute clearances. In addition, the optical member can be suitably used even when it is mounted on a thin product.

[発泡防塵材を構成する発泡体]
本発明の発泡防塵材[発泡体により構成された防塵材(シール材)]は、平均セル径(平均気泡径)が10〜90μm、50%圧縮した時の対反発荷重(50%圧縮時の反発力)が0.1〜3.0N/cm2、見掛け密度が0.01〜0.10g/cm3の特性を有している発泡体により構成されている。このように、発泡体の平均セル径の上限を90μm以下(好ましくは80μm以下)とすることにより、防塵性を高めるとともに、遮光性を良好とすることができ、一方、発泡体の平均セル径の下限を10μm以上(好ましくは20μm以上)とすることにより、クッション性(衝撃吸収性)を良好とすることができる。
[Foam constituting foam dustproof material]
The foam dustproof material of the present invention [dustproof material composed of foam (seal material)] has an average cell diameter (average cell diameter) of 10 to 90 μm and a repulsive load when compressed by 50% (at the time of 50% compression) (Repulsive force) is 0.1 to 3.0 N / cm 2 and the apparent density is 0.01 to 0.10 g / cm 3 . Thus, by setting the upper limit of the average cell diameter of the foam to 90 μm or less (preferably 80 μm or less), it is possible to improve the dustproof property and improve the light shielding property, while the average cell diameter of the foam By making the lower limit of 10 μm or more (preferably 20 μm or more), cushioning properties (impact absorbability) can be improved.

また、発泡体の50%圧縮した時の対反発荷重(50%圧縮時の反発力)の上限を3.0N/cm2以下(好ましくは2.0N/cm2以下、さらに好ましくは1.8N/cm2以下)とすることにより、狭いクリアランスにおいても、発泡防塵材の反発による不具合の発生を防止することができ、一方、発泡体の50%圧縮した時の対反発荷重の下限を0.1N/cm2以上(好ましくは0.2N/cm2以上)とすることにより、優れた防塵性を確保することができる。 Further, the upper limit of the repulsive load when the foam is compressed by 50% (repulsive force at the time of 50% compression) is 3.0 N / cm 2 or less (preferably 2.0 N / cm 2 or less, more preferably 1.8 N). / Cm 2 or less), even in a narrow clearance, it is possible to prevent the occurrence of problems due to the rebound of the foam dustproof material, while the lower limit of the repulsive load when the foam is compressed by 50% is set to 0. By setting it to 1 N / cm 2 or more (preferably 0.2 N / cm 2 or more), excellent dust resistance can be ensured.

さらにまた、発泡体の見掛け密度の上限を0.10g/cm3以下(好ましくは0.08g/cm3以下)とすることにより、柔軟性を高めることができ、一方、発泡体の見掛け密度の下限を0.01g/cm3以上(好ましくは0.02g/cm3以上)とすることにより、優れた防塵性を確保することができる。 Furthermore, by setting the upper limit of the apparent density of the foam to 0.10 g / cm 3 or less (preferably 0.08 g / cm 3 or less), the flexibility can be increased, while the apparent density of the foam is By setting the lower limit to 0.01 g / cm 3 or more (preferably 0.02 g / cm 3 or more), excellent dust resistance can be ensured.

このような発泡体としては、前記特性を有していれば、その組成や、気泡構造などは特に制限されないが、例えば、気泡構造としては、独立気泡構造、半連続半独立気泡構造(独立気泡構造と連続気泡構造とが混在している気泡構造であり、その割合は特に制限されない)が好ましく、特に、発泡体中に独立気泡構造部が80%以上(なかでも90%以上)となっている気泡構造が好適である。   If such a foam has the above-mentioned properties, its composition and cell structure are not particularly limited. For example, as the cell structure, a closed cell structure, a semi-continuous semi-closed cell structure (closed cell) It is a cell structure in which a structure and an open cell structure are mixed, and the ratio is not particularly limited), and in particular, the closed cell structure part is 80% or more (in particular, 90% or more) in the foam. A bubble structure is preferred.

本発明の発泡防塵材において、発泡体を製造する方法としては、物理的方法、化学的方法等、発泡成形に通常用いられる方法が採用できる。一般的な物理的方法は、クロロフルオロカーボン類または炭化水素類などの低沸点液体(発泡剤)をポリマーに分散させ、次に加熱し発泡剤を揮発させることにより気泡を形成させるものである。また化学的方法は、ポリマーベースに添加された化合物(発泡剤)の熱分解により生じたガスによりセルを形成し、発泡体を得る方法である。最近の環境問題などに鑑みると、物理的手法が好ましい。   In the foam dustproof material of the present invention, as a method for producing the foam, a method usually used for foam molding such as a physical method and a chemical method can be adopted. A common physical method is to form bubbles by dispersing a low boiling point liquid (foaming agent) such as chlorofluorocarbons or hydrocarbons in a polymer and then heating to volatilize the foaming agent. The chemical method is a method of obtaining a foam by forming cells with a gas generated by thermal decomposition of a compound (foaming agent) added to a polymer base. In view of recent environmental problems, a physical method is preferable.

なお、このような発泡体の製造には、天然ゴムまたは合成ゴム(クロロプレンゴム、エチレン、プロピレン、ターポリマーなど)、加硫剤、発泡剤、充填剤などの構成成分を、バンバリーミキサーや加圧ニーダなどの混練り機で混練したのち、カレンダ、押し出し機、コンベアベルトキャスティングなどにより連続的に混練しつつ、シーツ状、ロッド状に成型し、これを加熱して加硫、発泡させ、さらに必要によりこの加硫発泡体を所定形状に裁断加工する方法や、天然ゴムまたは合成ゴム、加硫剤、発泡剤、充填剤などの構成成分を、ミキシングロールで混練し、この混練組成物をバッチ式により、型で加硫、発泡ならびに成形する方法などを使用することができる。   For the production of such foams, components such as natural rubber or synthetic rubber (chloroprene rubber, ethylene, propylene, terpolymer, etc.), vulcanizing agents, foaming agents, fillers, etc. are used in a Banbury mixer or pressurizing. After kneading with a kneader such as a kneader, continuously kneading with a calendar, extruder, conveyor belt casting, etc., forming into a sheet shape or rod shape, heating it, vulcanizing and foaming, further necessary The vulcanized foam is cut into a predetermined shape, and components such as natural rubber or synthetic rubber, vulcanizing agent, foaming agent and filler are kneaded with a mixing roll, and this kneaded composition is batch-type. Thus, a method of vulcanizing, foaming and molding with a mold can be used.

特に本発明では、セル径が小さく且つセル密度の高い発泡体が得られることから、高圧の不活性ガスを発泡剤として用いる方法、例えば、熱可塑性ポリマーに、高圧の不活性ガスを含浸させた後、減圧する工程を経て、発泡体を形成する方法が好ましい。特に、発泡剤として二酸化炭素を用いると、不純物の少ないクリーンな発泡体を得ることができ、好ましい。前述のような物理的方法による発泡方法では、発泡剤として用いられる物質の可燃性や毒性、及びオゾン層破壊などの環境への影響が懸念される。また、化学的方法による発泡方法では、発泡ガスの残渣が発泡体中に残存するため、特に低汚染性の要求が高い電子機器用途においては、腐食性ガスやガス中の不純物による汚染が問題となる。なお、これらの物理的発泡方法及び化学的発泡方法では、いずれにおいても微細な気泡構造を形成することは難しく、特に300μm以下の微細気泡を形成することは極めて困難であるといわれている。   In particular, in the present invention, since a foam having a small cell diameter and a high cell density can be obtained, a method using a high-pressure inert gas as a foaming agent, for example, a thermoplastic polymer is impregnated with a high-pressure inert gas. Thereafter, a method of forming a foam through a step of reducing the pressure is preferable. In particular, when carbon dioxide is used as a foaming agent, a clean foam with few impurities can be obtained, which is preferable. In the foaming method based on the physical method as described above, there is a concern about the impact on the environment such as the flammability and toxicity of the substance used as the foaming agent and the destruction of the ozone layer. In addition, in the foaming method based on the chemical method, the residue of the foaming gas remains in the foam, so that the contamination by the corrosive gas or impurities in the gas is a problem particularly in the electronic device application where the demand for low pollution is high. Become. In both of these physical foaming methods and chemical foaming methods, it is difficult to form a fine bubble structure, and it is particularly difficult to form fine bubbles of 300 μm or less.

このように、本発明では、発泡体の製造方法としては、高圧の不活性ガスを発泡剤として用いる方法を利用した製造方法が好適であり、前述ように、熱可塑性ポリマーに、高圧の不活性ガスを含浸させた後、減圧する工程を経て、発泡体を形成する方法を好適に採用することができる。なお、不活性ガスを含浸させる際には、予め成形した未発泡成形物に不活性ガスを含浸させてもよく、また、溶融した熱可塑性ポリマーに不活性ガスを加圧状態下で含浸させてもよい。従って、具体的には、発泡体の製造方法としては、例えば、熱可塑性ポリマーに高圧の不活性ガスを含浸させた後、減圧する工程を経て形成される方法、熱可塑性ポリマーからなる未発泡成形物に高圧の不活性ガスを含浸させた後、減圧する工程を経て形成される方法、または溶融した熱可塑性ポリマーに不活性ガスを加圧状態下で含浸させた後、減圧とともに成形に付して形成される方法が好適である。   Thus, in the present invention, a production method using a method using a high-pressure inert gas as a foaming agent is suitable as a method for producing a foam. As described above, a high-pressure inert gas is added to the thermoplastic polymer. A method of forming a foam through a step of reducing the pressure after impregnating the gas can be suitably employed. In addition, when impregnating with the inert gas, the pre-molded unfoamed molded product may be impregnated with the inert gas, or the molten thermoplastic polymer is impregnated with the inert gas under pressure. Also good. Therefore, specifically, as a method for producing a foam, for example, a method in which a thermoplastic polymer is impregnated with a high-pressure inert gas and then decompressed, an unfoamed molding made of a thermoplastic polymer. A method in which a product is impregnated with a high-pressure inert gas and then decompressed, or a molten thermoplastic polymer is impregnated with an inert gas under pressure, and then subjected to molding with reduced pressure. The method formed by this is preferable.

(熱可塑性ポリマー)
本発明において、発泡体(樹脂発泡体)の素材である熱可塑性ポリマーとしては、熱可塑性を示すポリマーであって、高圧ガスを含浸可能なものであれば特に制限されない。このような熱可塑性ポリマーとして、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレンとプロピレンとの共重合体、エチレン又はプロピレンと他のα−オレフィンとの共重合体、エチレンと他のエチレン性不飽和単量体(例えば、酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、ビニルアルコール等)との共重合体などのオレフィン系重合体;ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)などのスチレン系重合体;6−ナイロン、66−ナイロン、12−ナイロンなどのポリアミド;ポリアミドイミド;ポリウレタン;ポリイミド;ポリエーテルイミド;ポリメチルメタクリレートなどのアクリル系樹脂;ポリ塩化ビニル;ポリフッ化ビニル;アルケニル芳香族樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル;ビスフェノールA系ポリカーボネートなどのポリカーボネート;ポリアセタール;ポリフェニレンスルフィドなどが挙げられる。
(Thermoplastic polymer)
In the present invention, the thermoplastic polymer that is a material of the foam (resin foam) is not particularly limited as long as it is a polymer exhibiting thermoplasticity and can be impregnated with a high-pressure gas. Examples of such thermoplastic polymers include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, copolymers of ethylene and propylene, ethylene or propylene and other α-olefins. Olefin polymers such as copolymers, copolymers of ethylene and other ethylenically unsaturated monomers (eg, vinyl acetate, acrylic acid, acrylic ester, methacrylic acid, methacrylic ester, vinyl alcohol, etc.) Styrene-based polymers such as polystyrene and acrylonitrile-butadiene-styrene copolymer (ABS resin); polyamides such as 6-nylon, 66-nylon, and 12-nylon; polyamideimide; polyurethane; polyimide; polyetherimide; Methacrylate Acrylic resins, polyvinyl chloride, polyvinyl fluoride; alkenyl aromatic resin; polyacetal; polycarbonate such as bisphenol-A based polycarbonate, polyethylene terephthalate, polyesters such as polybutylene terephthalate and poly (phenylene sulfide) and the like.

また、前記熱可塑性ポリマーには、常温ではゴムとしての性質を示し、高温では熱可塑性を示す熱可塑性エラストマーも含まれる。このような熱可塑性エラストマーとして、例えば、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン−酢酸ビニル共重合体、ポリブテン、ポリイソブチレン、塩素化ポリエチレンなどのオレフィン系エラストマー;スチレン−ブタジエン−スチレン共重合体、スチレン−イソプレン−スチレン共重合体、スチレン−イソプレン−ブタジエン−スチレン共重合体、それらの水素添加物ポリマーなどのスチレン系エラストマー;熱可塑性ポリエステル系エラストマー;熱可塑性ポリウレタン系エラストマー;熱可塑性アクリル系エラストマーなどが挙げられる。これらの熱可塑性エラストマーは、例えば、ガラス転移温度が室温以下(例えば20℃以下)であるため、防塵材又はシール材としたとき柔軟性及び形状追随性に著しく優れる。   The thermoplastic polymer also includes a thermoplastic elastomer that exhibits properties as a rubber at room temperature and exhibits thermoplasticity at a high temperature. Examples of such thermoplastic elastomers include olefin elastomers such as ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-vinyl acetate copolymer, polybutene, polyisobutylene, and chlorinated polyethylene; Styrenic elastomers such as butadiene-styrene copolymers, styrene-isoprene-styrene copolymers, styrene-isoprene-butadiene-styrene copolymers, and hydrogenated polymers thereof; thermoplastic polyester elastomers; thermoplastic polyurethane elastomers A thermoplastic acrylic elastomer and the like. These thermoplastic elastomers, for example, have a glass transition temperature of room temperature or lower (for example, 20 ° C. or lower), so that they are remarkably excellent in flexibility and shape followability when used as a dustproof material or a sealing material.

熱可塑性ポリマーは単独で又は2種以上混合して使用できる。また、発泡体の素材(熱可塑性ポリマー)として、熱可塑性エラストマー、熱可塑性以外の熱可塑性ポリマー、熱可塑性エラストマーと熱可塑性エラストマー以外の熱可塑性ポリマーとの混合物の何れを用いることもできる。   A thermoplastic polymer can be used individually or in mixture of 2 or more types. As the foam material (thermoplastic polymer), any of thermoplastic elastomers, thermoplastic polymers other than thermoplastics, and mixtures of thermoplastic elastomers and thermoplastic polymers other than thermoplastic elastomers can be used.

前記熱可塑性エラストマーと熱可塑性エラストマー以外の熱可塑性ポリマーとの混合物として、例えば、エチレン−プロピレン共重合体等のオレフィン系エラストマーとポリプロピレン等のオレフィン系重合体との混合物などが挙げられる。熱可塑性エラストマーと熱可塑性エラストマー以外の熱可塑性ポリマーとの混合物を用いる場合、その混合比率は、例えば、前者/後者=1/99〜99/1程度(好ましくは10/90〜90/10程度、さらに好ましくは20/80〜80/20程度)である。   Examples of the mixture of the thermoplastic elastomer and a thermoplastic polymer other than the thermoplastic elastomer include a mixture of an olefin elastomer such as an ethylene-propylene copolymer and an olefin polymer such as polypropylene. When a mixture of a thermoplastic elastomer and a thermoplastic polymer other than the thermoplastic elastomer is used, the mixing ratio is, for example, the former / the latter = 1/99 to 99/1 (preferably about 10/90 to 90/10, More preferably, it is about 20/80 to 80/20).

(不活性ガス)
本発明で用いられる不活性ガスとしては、上記熱可塑性ポリマーに対して不活性で且つ含浸可能なものであれば特に制限されず、例えば、二酸化炭素、窒素ガス、空気等が挙げられる。これらのガスは混合して用いてもよい。これらのうち、発泡体の素材として用いる熱可塑性ポリマーへの含浸量が多く、含浸速度の速い二酸化炭素が好適である。
(Inert gas)
The inert gas used in the present invention is not particularly limited as long as it is inert with respect to the thermoplastic polymer and can be impregnated, and examples thereof include carbon dioxide, nitrogen gas, and air. These gases may be mixed and used. Among these, carbon dioxide having a large impregnation amount into the thermoplastic polymer used as the material of the foam and having a high impregnation rate is preferable.

熱可塑性ポリマーに含浸させる際の不活性ガスは超臨界状態であるのが好ましい。超臨界状態では、熱可塑性ポリマーへのガスの溶解度が増大し、高濃度の混入が可能である。また、含浸後の急激な圧力降下時には、前記のように高濃度であるため、気泡核の発生が多くなり、その気泡核が成長してできる気泡の密度が気孔率が同じであっても大きくなるため、微細な気泡を得ることができる。なお、二酸化炭素の臨界温度は31℃、臨界圧力は7.4MPaである。   The inert gas when impregnating the thermoplastic polymer is preferably in a supercritical state. In the supercritical state, the solubility of the gas in the thermoplastic polymer is increased, and a high concentration can be mixed. In addition, when the pressure drops rapidly after impregnation, since the concentration is high as described above, the generation of bubble nuclei increases, and the density of bubbles formed by the growth of the bubble nuclei is large even if the porosity is the same. Therefore, fine bubbles can be obtained. Carbon dioxide has a critical temperature of 31 ° C. and a critical pressure of 7.4 MPa.

発泡体を形成する際、熱可塑性ポリマーに、必要に応じて添加剤を添加してもよい。添加剤の種類は特に限定されず、発泡成形に通常使用される各種添加剤を用いることができる。このような添加剤として、例えば、気泡核剤、結晶核剤、可塑剤、滑剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、老化防止剤、充填剤、補強剤、難燃剤、帯電防止剤、界面活性剤、加硫剤、表面処理剤などが挙げられる。添加剤の添加量は、気泡の形成等を損なわない範囲で適宜選択でき、通常の熱可塑性エラストマー等の熱可塑性ポリマーの成形に用いられる添加量を採用できる。   When forming a foam, you may add an additive to a thermoplastic polymer as needed. The kind of additive is not specifically limited, Various additives normally used for foam molding can be used. Examples of such additives include cell nucleating agents, crystal nucleating agents, plasticizers, lubricants, colorants (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, fillers, reinforcing agents, Examples include a flame retardant, an antistatic agent, a surfactant, a vulcanizing agent, and a surface treatment agent. The addition amount of the additive can be appropriately selected within a range that does not impair the formation of bubbles, and the addition amount used for molding a thermoplastic polymer such as a normal thermoplastic elastomer can be adopted.

前記滑剤は熱可塑性ポリマーの流動性を向上させるとともに、ポリマーの熱劣化を抑制する作用を有する。本発明において用いられる滑剤としては、熱可塑性ポリマーの流動性の向上に効果を示すものであれば特に制限されず、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックスなどの炭化水素系滑剤;ステアリン酸、ベヘニン酸、12−ヒドロキシステアリン酸などの脂肪酸系滑剤;ステアリン酸ブチル、ステアリン酸モノグリセリド、ペンタエリスリトールテトラステアレート、硬化ヒマシ油、ステアリン酸ステアリルなどのエステル系滑剤などが挙げられる。   The lubricant has the effect of improving the fluidity of the thermoplastic polymer and suppressing the thermal deterioration of the polymer. The lubricant used in the present invention is not particularly limited as long as it exhibits an effect on improving the fluidity of the thermoplastic polymer. For example, hydrocarbon-based lubricants such as liquid paraffin, paraffin wax, microwax and polyethylene wax; Examples include fatty acid-based lubricants such as stearic acid, behenic acid, and 12-hydroxystearic acid; ester-based lubricants such as butyl stearate, monoglyceride stearate, pentaerythritol tetrastearate, hydrogenated castor oil, and stearyl stearate.

(発泡体の製造)
熱可塑性ポリマーに、高圧の不活性ガスを含浸させることにより、発泡体を製造する方法としては、具体的には、熱可塑性ポリマーに、不活性ガスを高圧下で含浸させるガス含浸工程、該工程後に圧力を低下させて樹脂を発泡させる減圧工程、及び必要に応じて加熱により気泡を成長させる加熱工程を経て形成する方法などが挙げられる。この場合、前述のように、予め成形した未発泡成形物を不活性ガスに含浸させてもよく、また、溶融した熱可塑性ポリマーに不活性ガスを加圧状態下で含浸させた後、減圧の際に成形に付してもよい。これらの工程は、バッチ方式、連続方式の何れの方式で行ってもよい。
(Manufacture of foam)
As a method for producing a foam by impregnating a thermoplastic polymer with a high-pressure inert gas, specifically, a gas impregnation step of impregnating a thermoplastic polymer with an inert gas under high pressure, the step Examples of the method include a decompression step in which the pressure is lowered later to foam the resin, and a heating method in which bubbles are grown by heating as necessary. In this case, as described above, the pre-molded unfoamed molded product may be impregnated with an inert gas, or after the molten thermoplastic polymer is impregnated with an inert gas under pressure, the pressure is reduced. You may attach | subject to shaping | molding. These steps may be performed by either a batch method or a continuous method.

バッチ方式によれば、例えば以下のようにして発泡体を形成できる。すなわち、まず、単軸押出機、二軸押出機等の押出機を使用してポリオレフィン樹脂、熱可塑性エラストマーなどの熱可塑性ポリマーを押し出すことにより、未発泡成形物(発泡体成形用樹脂シート等)を形成する。或いは、ローラ、カム、ニーダ、バンバリ型の羽根を設けた混練機を使用して、ポリオレフィン樹脂、熱可塑性エラストマーなどの熱可塑性ポリマーを均一に混練しておき、これを熱板のプレス機を用いてプレス成形し、熱可塑性ポリマーを基材樹脂として含む未発泡成形物(発泡体成形用樹脂シート等)を形成する。そして、得られた未発泡成形物を耐圧容器中に入れ、高圧の不活性ガスを導入し、該不活性ガスを未発泡成形物中に含浸させる。この場合、未発泡成形物の形状は特に限定されず、ロール状、板状等の何れであってもよい。また、高圧の不活性ガスの導入は連続的に行ってもよく不連続的に行ってもよい。十分に高圧の不活性ガスを含浸させた時点で圧力を解放し(通常、大気圧まで)、基材樹脂中に気泡核を発生させる。気泡核はそのまま室温で成長させてもよく、また、必要に応じて加熱することによって成長させてもよい。加熱の方法としては、ウォーターバス、オイルバス、熱ロール、熱風オーブン、遠赤外線、近赤外線、マイクロ波などの公知乃至慣用の方法を採用できる。このようにして気泡を成長させた後、冷水などにより急激に冷却し、形状を固定化する。   According to the batch method, for example, a foam can be formed as follows. That is, first, an unfoamed molded product (such as a resin sheet for foam molding) is obtained by extruding a thermoplastic polymer such as a polyolefin resin or a thermoplastic elastomer using an extruder such as a single screw extruder or a twin screw extruder. Form. Alternatively, a kneading machine equipped with rollers, cams, kneaders, and Banbury type blades is used to uniformly knead a thermoplastic polymer such as a polyolefin resin and a thermoplastic elastomer, and this is used with a hot plate press. Then, an unfoamed molded product (such as a resin sheet for foam molding) containing a thermoplastic polymer as a base resin is formed. Then, the obtained unfoamed molded product is put in a pressure vessel, a high-pressure inert gas is introduced, and the inert gas is impregnated in the unfoamed molded product. In this case, the shape of the unfoamed molded product is not particularly limited, and may be any of a roll shape, a plate shape, and the like. The introduction of the high-pressure inert gas may be performed continuously or discontinuously. When impregnated with a sufficiently high-pressure inert gas, the pressure is released (usually up to atmospheric pressure), and bubble nuclei are generated in the base resin. Bubble nuclei may be grown at room temperature as they are, or may be grown by heating as necessary. As a heating method, a known or conventional method such as a water bath, an oil bath, a hot roll, a hot air oven, a far infrared ray, a near infrared ray, or a microwave can be adopted. After the bubbles are grown in this way, the shape is fixed rapidly by cooling with cold water or the like.

一方、連続方式によれば、例えば以下のようにして発泡体を形成できる。すなわち、熱可塑性ポリマーを単軸押出機、二軸押出機等の押出機を使用して混練しながら高圧の不活性ガスを注入し、十分にガスを熱可塑性ポリマー中に含浸させた後、押し出して圧力を解放し(通常、大気圧まで)、発泡と成形とを同時に行い、場合によっては加熱することにより気泡を成長させる。気泡を成長させた後、冷水などにより急激に冷却し、形状を固定化する。   On the other hand, according to a continuous system, a foam can be formed as follows, for example. In other words, high-pressure inert gas is injected while kneading the thermoplastic polymer using an extruder such as a single-screw extruder or twin-screw extruder, and the thermoplastic polymer is sufficiently impregnated into the thermoplastic polymer, followed by extrusion. The pressure is released (usually up to atmospheric pressure), foaming and molding are performed simultaneously, and in some cases, the bubbles are grown by heating. After the bubbles are grown, the shape is fixed rapidly by cooling with cold water or the like.

前記ガス含浸工程における圧力は、例えば6MPa以上(例えば6〜100MPa程度)、好ましくは8MPa以上(例えば8〜100MPa程度)である。圧力が6MPaより低い場合には、発泡時の気泡成長が著しく、気泡径が大きくなりすぎて、前記範囲の小さな平均セル径(平均気泡径)を得ることができず、防塵効果が低下する。これは、圧力が低いとガスの含浸量が高圧時に比べて相対的に少なく、気泡核形成速度が低下して形成される気泡核数が少なくなるため、1気泡あたりのガス量が逆に増えて気泡径が極端に大きくなるからである。また、6MPaより低い圧力領域では、含浸圧力を少し変化させるだけで気泡径、気泡密度が大きく変わるため、気泡径及び気泡密度の制御が困難になりやすい。   The pressure in the gas impregnation step is, for example, 6 MPa or more (for example, about 6 to 100 MPa), preferably 8 MPa or more (for example, about 8 to 100 MPa). When the pressure is lower than 6 MPa, the bubble growth at the time of foaming is remarkable, the bubble diameter becomes too large, a small average cell diameter (average bubble diameter) in the above range cannot be obtained, and the dustproof effect is reduced. This is because, when the pressure is low, the amount of gas impregnation is relatively small compared to when the pressure is high, and the number of bubble nuclei formed is reduced due to a decrease in the bubble nucleus formation rate. This is because the bubble diameter becomes extremely large. Further, in the pressure region lower than 6 MPa, the bubble diameter and the bubble density change greatly only by slightly changing the impregnation pressure, so that it is difficult to control the bubble diameter and the bubble density.

ガス含浸工程における温度は、用いる不活性ガスや熱可塑性ポリマーの種類等によって異なり、広い範囲で選択できるが、操作性等を考慮した場合、例えば、10〜350℃程度である。例えば、シート状などの未発泡成形物に不活性ガスを含浸させる場合の含浸温度は、バッチ式では10〜200℃程度、好ましくは40〜200℃程度である。また、ガスを含浸させた溶融ポリマーを押し出して発泡と成形とを同時に行う場合の含浸温度は、連続式では60〜350℃程度が一般的である。なお、不活性ガスとして二酸化炭素を用いる場合には、超臨界状態を保持するため、含浸時の温度は32℃以上、特に40℃以上であるのが好ましい。   The temperature in the gas impregnation step varies depending on the type of inert gas and thermoplastic polymer used, and can be selected in a wide range. However, considering operability and the like, it is, for example, about 10 to 350 ° C. For example, the impregnation temperature when impregnating an unfoamed molded article such as a sheet with an inert gas is about 10 to 200 ° C., preferably about 40 to 200 ° C. in a batch system. Further, the impregnation temperature in the case of simultaneously performing foaming and molding by extruding a molten polymer impregnated with gas is generally about 60 to 350 ° C. in a continuous type. When carbon dioxide is used as the inert gas, the temperature during impregnation is preferably 32 ° C. or higher, particularly 40 ° C. or higher in order to maintain a supercritical state.

前記減圧工程において、減圧速度は、特に限定されないが、均一な微細気泡を得るため、好ましくは5〜300MPa/秒程度である。また、前記加熱工程における加熱温度は、例えば、40〜250℃程度、好ましくは60〜250℃程度である。   In the decompression step, the decompression rate is not particularly limited, but is preferably about 5 to 300 MPa / second in order to obtain uniform fine bubbles. Moreover, the heating temperature in the said heating process is about 40-250 degreeC, for example, Preferably it is about 60-250 degreeC.

上記の平均セル径(平均気泡径)、50%圧縮した時の対反発荷重及び見掛け密度は、用いる不活性ガス及び熱可塑性ポリマーや熱可塑性エラストマーの種類などに応じて、例えば、ガス含浸工程における温度、圧力、時間などの操作条件、減圧工程における減圧速度、温度、圧力などの操作条件、減圧後の加熱温度などを適宜選択、設定することにより調整することができる。   The average cell diameter (average bubble diameter), the repulsive load and the apparent density when compressed by 50%, depending on the type of inert gas and thermoplastic polymer or thermoplastic elastomer used, for example, in the gas impregnation step It can be adjusted by appropriately selecting and setting operating conditions such as temperature, pressure, time, etc., operating conditions such as pressure reducing speed, temperature, pressure, etc., heating temperature after reducing pressure, etc.

[発泡防塵材]
本発明の発泡防塵材(発泡シール材)は、前述のような特定の特性を有している発泡体から構成されている。発泡防塵材は、発泡体単独の形態であっても、その機能が有効に発揮された発泡防塵材とすることができるが、発泡体の片面または両面に他の層又は基材(特に、粘着層など)が設けられている形態の発泡防塵材であってもよい。例えば、発泡体の片面または両面に粘着層を有している形態の発泡防塵材とすると、光学部材等の部材又は部品を被着体へ固定ないし仮止めすることができるようになる。従って、本発明の発泡防塵材としては、発泡防塵材を構成する発泡体の少なくとも一方の面(片面または両面)に、粘着層を有していることが好ましい。
[Foam dustproof material]
The foaming dustproof material (foaming sealing material) of this invention is comprised from the foam which has the above specific characteristics. Even if the foam dustproof material is in the form of a foam alone, it can be a foam dustproof material whose function is effectively exhibited, but other layers or substrates (especially adhesives) on one or both sides of the foam. It may be a foam dustproof material provided with a layer or the like. For example, when a foam dustproof material having an adhesive layer on one or both sides of a foam is used, a member or component such as an optical member can be fixed or temporarily fixed to an adherend. Therefore, the foam dustproof material of the present invention preferably has an adhesive layer on at least one surface (one surface or both surfaces) of the foam constituting the foam dustproof material.

前記粘着層を形成する粘着剤としては、特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤(天然ゴム系粘着剤、合成ゴム系粘着剤など)、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、ポリアミド系粘着剤、エポキシ系粘着剤、ビニルアルキルエーテル系粘着剤、フッ素系粘着剤などの公知の粘着剤を適宜選択して用いることができる。また、粘着剤は、ホットメルト型粘着剤であってもよい。粘着剤は、単独で又は2種以上組み合わせて使用することができる。なお、粘着剤は、エマルジョン系粘着剤、溶剤系粘着剤、オリゴマー系粘着剤、固系粘着剤などのいずれの形態の粘着剤であってもよい。   The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited, and examples thereof include acrylic pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives (natural rubber-based pressure-sensitive adhesives, synthetic rubber-based pressure-sensitive adhesives), silicone-based pressure-sensitive adhesives, and polyester-based pressure-sensitive adhesives. Known pressure-sensitive adhesives such as adhesives, urethane-based pressure-sensitive adhesives, polyamide-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, and fluorine-based pressure-sensitive adhesives can be appropriately selected and used. Further, the adhesive may be a hot melt adhesive. An adhesive can be used individually or in combination of 2 or more types. The pressure-sensitive adhesive may be any form of pressure-sensitive adhesive such as an emulsion-based pressure-sensitive adhesive, a solvent-based pressure-sensitive adhesive, an oligomer-based pressure-sensitive adhesive, or a solid-type pressure-sensitive adhesive.

粘着剤としては、被着体への汚染防止などの観点から、アクリル系粘着剤が好適である。   As the pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive is suitable from the viewpoint of preventing contamination of the adherend.

粘着層は、公知乃至慣用の形成方法を利用して形成することができ、例えば、所定の部位又は面上に粘着剤を塗布する方法(塗布方法)、剥離ライナーなどの剥離フィルム上に、粘着剤を塗布して粘着層を形成した後、該粘着層を、所定の部位又は面上に転写する方法(転写方法)などが挙げられる。なお、粘着層の形成に際しては、公知乃至慣用の塗布方法(流延方法、ロールコーター方法、リバースコータ方法、ドクターブレード方法など)を適宜利用することができる。   The pressure-sensitive adhesive layer can be formed by using a known or conventional forming method. For example, a method of applying a pressure-sensitive adhesive on a predetermined site or surface (coating method), a pressure-sensitive adhesive film on a release film such as a release liner, etc. Examples thereof include a method (transfer method) of applying an agent to form an adhesive layer and then transferring the adhesive layer onto a predetermined site or surface. In forming the pressure-sensitive adhesive layer, a known or conventional coating method (such as a casting method, a roll coater method, a reverse coater method, a doctor blade method) can be appropriately used.

粘着層の厚みとしては、通常、2〜100μm(好ましくは10〜100μm)程度である。粘着層は、薄層であるほど、端部のゴミや埃の付着を防止する効果が高いため、厚みは薄い方が好ましい。なお、粘着層は、単層、積層体のいずれの形態を有していてもよい。   The thickness of the adhesive layer is usually about 2 to 100 μm (preferably 10 to 100 μm). The thinner the adhesive layer, the higher the effect of preventing the adhesion of dust and dirt at the end, and thus the thinner the adhesive layer, the better. In addition, the adhesion layer may have any form of a single layer or a laminated body.

また、粘着層は、他の層(下層)を介して、発泡体上に形成されていてもよい。このような下層としては、例えば、基材層(特に、フィルム層)や、他の粘着層の他、中間層、下塗り層などが挙げられる。   Moreover, the adhesion layer may be formed on the foam through another layer (lower layer). Examples of such a lower layer include a base material layer (particularly, a film layer), other adhesive layers, an intermediate layer, an undercoat layer, and the like.

さらにまた、粘着層が発泡体の一方の面(片面)にのみ形成されている場合、発泡体の他方の面には、他の層が形成されていてもよく、例えば、他の種類の粘着層や、基材層などが挙げられる。   Furthermore, when the adhesive layer is formed only on one side (one side) of the foam, another layer may be formed on the other side of the foam, for example, other types of adhesives. Examples thereof include a layer and a base material layer.

本発明の発泡防塵材の形状や厚みなどとしては、特に制限されず、用途などに応じて適宜選択することができる。例えば、発泡防塵材の厚みとしては、0.5〜5mm(好ましくは0.8〜3mm)程度の範囲から選択することができる。   The shape, thickness, and the like of the foam dustproof material of the present invention are not particularly limited and can be appropriately selected depending on the application. For example, the thickness of the foam dustproof material can be selected from a range of about 0.5 to 5 mm (preferably 0.8 to 3 mm).

また、発泡防塵材としては、通常、用いられる装置に合わせた種々の形状に加工されて、製品化される。   Moreover, as a foaming dustproof material, it is processed into various shapes according to the apparatus normally used, and is commercialized.

本発明の発泡防塵材は、前述のような特性を有しているので、気泡が非常に微細であり、また、50%圧縮した時の対反発荷重が低く柔軟性が良好であり、且つ見掛け密度が低い。すなわち、セル径(気泡径)を小さく保持させたまま、微小なクリアランスに対応可能な優れた柔軟性を発現させており、そのため、本来必要な防塵性能を保持したまま、微小なクリアランスに対しても良好に追従することができる。しかも、高発泡であり、軽量である。   Since the foamed dustproof material of the present invention has the above-mentioned characteristics, the bubbles are very fine, the repulsive load when compressed by 50% is low, the flexibility is good, and the appearance is good. The density is low. In other words, while maintaining a small cell diameter (bubble diameter), it has developed excellent flexibility that can handle minute clearances. Can follow well. Moreover, it is highly foamed and lightweight.

また、発泡体が熱可塑性エラストマー等の熱可塑性ポリマーからなるため柔軟性に優れるとともに、発泡剤として二酸化炭素等の不活性ガスを用いるので、従来の物理発泡法及び化学発泡法と異なり、有害物質が発生したり汚染物質が残存することがなくクリーンである。そのため、特に電子機器等の内部に用いる防塵材としても好適に利用できる。   In addition, since the foam is made of a thermoplastic polymer such as a thermoplastic elastomer, it is excellent in flexibility and uses an inert gas such as carbon dioxide as a foaming agent. Therefore, unlike conventional physical foaming methods and chemical foaming methods, harmful substances are used. No cleanup or contaminants remain, and it is clean. Therefore, it can be suitably used particularly as a dustproof material used inside an electronic device or the like.

従って、本発明の発泡防塵材は、各種部材又は部品(例えば、光学部材など)を、所定の部位に取り付ける(装着する)際に用いられる防塵材として有用である。特に、発泡防塵材は、小型の部材又は部品(例えば、小型の光学部材など)を、薄型化の製品に装着する際であっても好適に用いることができる。   Therefore, the foam dustproof material of the present invention is useful as a dustproof material used when various members or parts (for example, optical members) are attached (attached) to a predetermined site. In particular, the foam dustproof material can be suitably used even when a small member or component (for example, a small optical member) is mounted on a thin product.

発泡防塵材を利用して取付(装着)可能な光学部材としては、例えば、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ等の画像表示装置に装着される画像表示部材(特に、小型の画像表示部材)や、いわゆる「携帯電話」や「携帯情報端末」等の移動体通信の装置に装着されるカメラやレンズ(特に、小型のカメラやレンズ)などが挙げられる。   As an optical member that can be attached (attached) using a foam dustproof material, for example, an image display member (particularly a small image display member) attached to an image display device such as a liquid crystal display, an electroluminescence display, or a plasma display. In addition, a camera or a lens (particularly, a small camera or lens) attached to a mobile communication device such as a so-called “mobile phone” or “portable information terminal” can be used.

また、発泡防塵材は、トナーカートリッジからトナーが漏れることを防ぐ際にの防塵材としても用いることができる。このように、発泡防塵材を利用して取付可能なトナーカートリッジとしては、複写機やプリンターなどの画像形成装置に使用されるトナーカートリッジなどが挙げられる。   The foam dustproof material can also be used as a dustproof material when preventing toner from leaking from the toner cartridge. As described above, examples of the toner cartridge that can be attached using the foam dustproof material include a toner cartridge used in an image forming apparatus such as a copying machine or a printer.

(光学部材を有する構造体)
本発明の光学部材を有する構造体(光学部材が所定の部位に取り付けられている構造体)では、光学部材が、前記発泡防塵材を介して所定の部位に取り付けられている(装着されている)。このような構造体としては、例えば、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ等の画像表示装置(特に、小型の画像表示部材が光学部材として装着されている画像表示装置)や、カメラやレンズ(特に、小型のカメラ又はレンズ)が光学部材として装着されている、いわゆる「携帯電話」や「携帯情報端末」等の移動体通信の装置などが挙げられる。前記構造体は、従来より薄型化の製品であってもよく、その厚みや形状などは特に制限されない。
(Structure having optical member)
In the structure having the optical member of the present invention (the structure in which the optical member is attached to a predetermined part), the optical member is attached (attached) to the predetermined part via the foam dustproof material. ). Examples of such a structure include an image display device such as a liquid crystal display, an electroluminescence display, and a plasma display (in particular, an image display device in which a small image display member is mounted as an optical member), a camera, and a lens ( In particular, mobile communication devices such as so-called “mobile phones” and “portable information terminals” in which a small camera or lens) is mounted as an optical member. The structure may be a thinner product than before, and the thickness and shape thereof are not particularly limited.

(防塵構造)
本発明の防塵構造(光学部材を所定の部位に取り付ける際の防塵構造)は、光学部材が、前記発泡防塵材を介して取り付けられている構造を有している。防塵構造としては、光学部材を、所定の部位に取り付ける(装着する)際に、前記発泡防塵材が用いられていれば、他の構造は特に制限されない。従って、光学部材や、該光学部材を取り付ける所定の部位などは特に制限されず、適宜選択することが可能であり、例えば、光学部材としては、前述のような光学部材などが挙げられる。
(Dust-proof structure)
The dustproof structure of the present invention (dustproof structure when the optical member is attached to a predetermined part) has a structure in which the optical member is attached via the foamed dustproof material. The dustproof structure is not particularly limited as long as the foamed dustproof material is used when the optical member is attached (attached) to a predetermined site. Accordingly, the optical member and the predetermined part to which the optical member is attached are not particularly limited and can be appropriately selected. Examples of the optical member include the optical member as described above.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、発泡体の平均セル径(平均気泡径)、50%圧縮した時の対反発荷重(50%圧縮時の反発力)、見掛け密度は、以下の方法により求めた。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In addition, the average cell diameter (average cell diameter) of foam, the repulsive load when compressed by 50% (repulsive force when compressed by 50%), and the apparent density were determined by the following methods.

(平均セル径)
デジタルマイクロスコープ(商品名「VH−8000」キーエンス株式会社製)により、発泡体気泡部の拡大画像を取り込み、画像解析ソフト(商品名「Win ROOF」三谷商事株式会社製)を用いて、画像解析することにより、平均セル径(μm)を求めた。
(Average cell diameter)
A digital microscope (trade name “VH-8000” manufactured by Keyence Corporation) is used to capture an enlarged image of the foam bubble, and image analysis is performed using image analysis software (trade name “Win ROOF”, manufactured by Mitani Corporation). The average cell diameter (μm) was determined.

(50%圧縮した時の対反発荷重)
JIS K 6767に記載されている発泡体の圧縮硬さ測定方法に準じて測定した。具体的には、直径30mmの円形状に切り出した試験片を、複数枚重ねて厚みを約25mmとし、圧縮速度10mm/minで50%まで圧縮したときの応力を単位面積(cm2)当たりに換算して、50%圧縮した時の対反発荷重(N/cm2)とした。
(Repulsive load at 50% compression)
It measured according to the compression hardness measuring method of the foam described in JIS K 6767. Specifically, a plurality of test pieces cut into a circular shape with a diameter of 30 mm are stacked to a thickness of about 25 mm, and the stress when compressed to 50% at a compression rate of 10 mm / min per unit area (cm 2 ). Converted to the repulsive load (N / cm 2 ) when compressed by 50%.

(見掛け密度)
40mm×40mmの打抜き刃型にて発泡体を打抜き、打抜いた試料の寸法を測定する。また、測定端子の直径(φ)20mmである1/100ダイヤルゲージにて厚みを測定する。これらの値から発泡体の体積を算出した。
次に、発泡体の重量を最小目盛り0.01g以上の上皿天秤にて測定する。これらの値より発泡体の見掛け密度(g/cm3)を算出した。
(Apparent density)
The foam is punched with a 40 mm × 40 mm punching blade mold, and the dimensions of the punched sample are measured. Further, the thickness is measured with a 1/100 dial gauge having a measurement terminal diameter (φ) of 20 mm. The volume of the foam was calculated from these values.
Next, the weight of the foam is measured with an upper pan balance having a minimum scale of 0.01 g or more. From these values, the apparent density (g / cm 3 ) of the foam was calculated.

(実施例1)
ポリプロピレン45重量部と、ポリオレフィン系エラストマー45重量部と、ポリエチレン10重量部と、水酸化マグネシウム10重量部と、カーボン10重量部とを、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13(注入後12)MPaの圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、ポリマー全量に対して5重量%の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、発泡体を得た。この発泡体において、平均セル径は70μm、50%圧縮した時の対反発荷重(50%圧縮時の反発力)は1.5N/cm2、見掛け密度は0.05g/cm3であった。
Example 1
45 parts by weight of polypropylene, 45 parts by weight of a polyolefin-based elastomer, 10 parts by weight of polyethylene, 10 parts by weight of magnesium hydroxide, and 10 parts by weight of carbon in a twin-screw kneader manufactured by Japan Steel Works (JSW) The mixture was kneaded at a temperature of 200 ° C., extruded into a strand, cooled to water, and formed into a pellet. The pellets were put into a single screw extruder manufactured by Nippon Steel Works, and carbon dioxide gas was injected under an atmosphere of 220 ° C. at a pressure of 13 (12 after injection) MPa. Carbon dioxide gas was injected at a ratio of 5% by weight with respect to the total amount of the polymer. After sufficiently saturating the carbon dioxide gas, it was cooled to a temperature suitable for foaming and then extruded from a die to obtain a foam. In this foam, the average cell diameter was 70 μm, the repulsive load when 50% compressed (the repulsive force at 50% compression) was 1.5 N / cm 2 , and the apparent density was 0.05 g / cm 3 .

(実施例2)
ポリプロピレン30重量部と、ポリオレフィン系エラストマー60重量部と、ポリエチレン10重量部と、水酸化マグネシウム10重量部と、カーボン10重量部とを、日本製鋼所社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13(注入後12)MPaの圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、ポリマー全量に対して5重量%の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、発泡体を得た。この発泡体において、平均セル径は80μm、50%圧縮時の反発力は1.0N/cm2、見掛け密度は0.05g/cm3であった。
(Example 2)
30 parts by weight of polypropylene, 60 parts by weight of a polyolefin-based elastomer, 10 parts by weight of polyethylene, 10 parts by weight of magnesium hydroxide, and 10 parts by weight of carbon were mixed at 200 ° C. with a biaxial kneader manufactured by Nippon Steel Works. After kneading at the temperature, it was extruded into a strand, cooled to water, and formed into a pellet. The pellets were put into a single screw extruder manufactured by Nippon Steel Works, and carbon dioxide gas was injected under a 220 ° C. atmosphere and a pressure of 13 (12 after injection) MPa. Carbon dioxide gas was injected at a ratio of 5% by weight with respect to the total amount of the polymer. After sufficiently saturating the carbon dioxide gas, it was cooled to a temperature suitable for foaming and then extruded from a die to obtain a foam. In this foam, the average cell diameter was 80 μm, the repulsion force at 50% compression was 1.0 N / cm 2 , and the apparent density was 0.05 g / cm 3 .

(実施例3)
ポリプロピレン60重量部と、ポリオレフィン系エラストマー30重量部と、ポリエチレン10重量部と、水酸化マグネシウム10重量部と、カーボン10重量部と、ステアリン酸モノグリセリド1重量部とを、日本製鋼所社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13(注入後12)MPaの圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、ポリマー全量に対して5重量%の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから押出して、発泡体を得た。この発泡体において、平均セル径は80μm、50%圧縮時の反発力は2.4N/cm2、見掛け密度は0.03g/cm3であった。
(Example 3)
60 parts by weight of polypropylene, 30 parts by weight of a polyolefin-based elastomer, 10 parts by weight of polyethylene, 10 parts by weight of magnesium hydroxide, 10 parts by weight of carbon, and 1 part by weight of stearic acid monoglyceride were prepared by Nippon Steel Corporation. The mixture was kneaded at a temperature of 200 ° C. with a shaft kneader, extruded into a strand, cooled in water, and formed into a pellet. The pellets were put into a single screw extruder manufactured by Nippon Steel Works, and carbon dioxide gas was injected under a 220 ° C. atmosphere and a pressure of 13 (12 after injection) MPa. Carbon dioxide gas was injected at a ratio of 5% by weight with respect to the total amount of the polymer. After sufficiently saturating the carbon dioxide gas, it was cooled to a temperature suitable for foaming and then extruded from a die to obtain a foam. In this foam, the average cell diameter was 80 μm, the repulsion force at 50% compression was 2.4 N / cm 2 , and the apparent density was 0.03 g / cm 3 .

(比較例1)
平均セル径が70μm、50%圧縮時の反発力が8N/cm2、且つ見掛け密度が0.4g/cm3である特性を有するポリウレタンを主成分とする発泡体を用いた。
(Comparative Example 1)
A foam mainly composed of polyurethane having the characteristics of an average cell diameter of 70 μm, a repulsive force at 50% compression of 8 N / cm 2 , and an apparent density of 0.4 g / cm 3 was used.

(比較例2)
平均セル径が250μm、且つ見掛け密度が0.03g/cm3である特性を有するポリウレタンを主成分とする発泡体を、元の厚さの50%まで圧縮し熱成形した成形品を用いた。なお、該成形品において、平均セル径は90μm、50%圧縮時の反発力は5N/cm2、見掛け密度は0.06g/cm3であった。
(Comparative Example 2)
A molded article obtained by compressing and foaming a foam mainly composed of polyurethane having the characteristics of an average cell diameter of 250 μm and an apparent density of 0.03 g / cm 3 to 50% of the original thickness was used. The molded product had an average cell diameter of 90 μm, a repulsive force at 50% compression of 5 N / cm 2 , and an apparent density of 0.06 g / cm 3 .

(比較例3)
平均セル径が400μm、50%圧縮時の反発力が0.5N/cm2、且つ見掛け密度が0.09g/cm3である特性を有する、エチレン−プロピレン−ジエン系ゴム(EPDM)を主成分とする発泡体を用いた。
(Comparative Example 3)
Main component is ethylene-propylene-diene rubber (EPDM) having an average cell diameter of 400 μm, a repulsive force at 50% compression of 0.5 N / cm 2 and an apparent density of 0.09 g / cm 3. The foam was used.

(評価)
実施例1〜3及び比較例1〜3に係る発泡体について、50%圧縮した時の通気性、クリアランス追従性を、それぞれ、下記の50%圧縮時通気度測定方法、クリアランス追従性評価方法により評価した。評価結果を表1に示す。また、実施例1及び比較例1に係る発泡体について、そのクリーン度を無機発生ガス量分析、有機発生ガス量分析、温水抽出イオン成分量分析により評価した。無機発生ガス量分析の結果を表2、有機発生ガス量分析の結果を表3、温水抽出イオン成分量分析の結果を表4に示す。なお、表2及び4において、「<」は検出限界を示す
(Evaluation)
For the foams according to Examples 1 to 3 and Comparative Examples 1 to 3, the breathability and clearance followability when compressed by 50% were respectively measured by the following 50% compression breathability measurement method and clearance followability evaluation method. evaluated. The evaluation results are shown in Table 1. Further, the cleanliness of the foams according to Example 1 and Comparative Example 1 was evaluated by inorganic gas generation amount analysis, organic gas generation amount analysis, and hot water extraction ion component amount analysis. The results of inorganic gas generation analysis are shown in Table 2, the results of organic gas generation analysis are shown in Table 3, and the results of hot water extraction ion component analysis are shown in Table 4. In Tables 2 and 4, “<” indicates the detection limit.

(50%圧縮時通気度測定方法)
JIS L 1096に準拠するフラジール型通気度試験装置を用いて、50%圧縮した時の通気度(50%圧縮時の通気度;cc/cm2/sec)を測定した。
(Measurement method of air permeability at 50% compression)
The air permeability when compressed by 50% (air permeability when compressed by 50%; cc / cm 2 / sec) was measured using a Frazier type air permeability tester based on JIS L 1096.

(クリアランス追従性評価方法)
図1に示されるような治具に、発泡体をセットし、上面側のアクリル板の変形の状態を目視にて観察した。具体的には、厚さ20mmのアクリル板の左右の端部に、厚さ0.4mmのスペーサーを設置し、前記スペーサーで挟まれた中央部に厚さ1mmの発泡体を設置し、この上面に、厚さ10mmのアクリル板を設置して、両端のスペーサー部において、上面側のアクリル板(厚さ10mm)側から荷重をかけて圧縮し、その際の上面側のアクリル板の変形の有無を目視で観察した。
(Clearance followability evaluation method)
A foam was set in a jig as shown in FIG. 1, and the state of deformation of the acrylic plate on the upper surface side was visually observed. Specifically, a spacer with a thickness of 0.4 mm is installed on the left and right ends of an acrylic plate with a thickness of 20 mm, and a foam with a thickness of 1 mm is installed in the center between the spacers. In addition, a 10 mm thick acrylic plate is installed, and at the spacer portions at both ends, compression is applied by applying a load from the upper acrylic plate (thickness 10 mm) side, and whether the upper acrylic plate is deformed at that time Was visually observed.

(無機発生ガス量分析)
作製した発泡体から10cm2を切り取り(厚さ1.0mm)、燃焼装置用試料ボードに載せて秤量した。次に、燃焼装置を用いて100℃×1時間加熱し、発生したガスを捕集液(純水)に捕集した。その捕集液について、IC(DIONEX社製、DX−500)を用いて定量分析を行った。
(Inorganic gas generation analysis)
10 cm 2 was cut out from the produced foam (thickness: 1.0 mm), placed on a sample board for a combustion apparatus, and weighed. Next, it heated at 100 degreeC * 1 hour using the combustion apparatus, and generated gas was collected by the collection liquid (pure water). About the collection liquid, quantitative analysis was performed using IC (DIONEX company make, DX-500).

(有機発生ガス量分析)
作製した発泡体から50cm2を切り取り(厚さ1.0mm)、バイアル瓶に入れて秤量した。密栓した後、バイアル瓶をヘッドスペースオートサンプラーにより、100℃×1時間加熱し、加熱状態のガス1.0mlについて、GC(Hewlett Packard製、HP6980)を用いて定量分析を行った。
(Analysis of organic gas generation)
50 cm 2 was cut from the produced foam (thickness: 1.0 mm), placed in a vial, and weighed. After sealing, the vial was heated by a headspace autosampler at 100 ° C. for 1 hour, and 1.0 ml of the heated gas was quantitatively analyzed using GC (manufactured by Hewlett Packard, HP 6980).

(温水抽出イオン成分量分析)
作製した発泡体から50cm2を切り取り(厚さ1.0mm)、PMP製容器に入れて秤量した。次に、純水50mlを加え、蓋をして、乾燥機にて100℃×2時間の温水抽出を行った。その抽出液について、IC(DIONEX社製、DX−500)を用いて定量分析を行った。
(Hot water extraction ion component analysis)
50 cm 2 was cut out from the produced foam (thickness: 1.0 mm) and weighed in a PMP container. Next, 50 ml of pure water was added, the cap was capped, and hot water extraction at 100 ° C. for 2 hours was performed with a dryer. About the extract, quantitative analysis was performed using IC (made by DIONEX, DX-500).

Figure 0004563109
Figure 0004563109

Figure 0004563109
Figure 0004563109

Figure 0004563109
Figure 0004563109

Figure 0004563109
Figure 0004563109

表1から明らかなように、実施例1〜3に係る発泡体は、50%圧縮した際にも通気性がなく、優れた防塵性が発揮されていることが確認された。また、厚さ1mmの発泡体を、0.4mmの厚みに圧縮しても、良好なクリアランス追従性が発揮されており、従って、例えば、光学部材を所定の部位に装着する際に、光学部材と所定の部位との間の隙間が狭くても、光学部材に変形を与えないことが確認された。また、発泡防塵材は、トナーカートリッジからトナーが漏れることを防ぐ際にの防塵材としても好適に用いることができることが確認された。さらに、表2〜4から明らかなように、実施例に係る発泡体は不純物が少なく、クリーンな発泡体であることが確認された。   As is clear from Table 1, it was confirmed that the foams according to Examples 1 to 3 did not have air permeability even when compressed by 50% and exhibited excellent dust resistance. Further, even when a foam having a thickness of 1 mm is compressed to a thickness of 0.4 mm, good clearance followability is exhibited. Therefore, for example, when an optical member is mounted on a predetermined portion, the optical member It was confirmed that the optical member is not deformed even if the gap between the first member and the predetermined portion is narrow. It was also confirmed that the foam dustproof material can be suitably used as a dustproof material when preventing toner from leaking from the toner cartridge. Furthermore, as is clear from Tables 2 to 4, it was confirmed that the foams according to the examples were clean with few impurities.

実施例におけるクリアランス追従性評価方法を示す概略断面図である。It is a schematic sectional drawing which shows the clearance followability evaluation method in an Example.

Claims (13)

発泡体により構成された防塵材を製造する方法であって、オレフィン系エラストマーとオレフィン系エラストマー以外のオレフィン系重合体の混合物であり、その混合比率(重量基準)が前者/後者で20/80〜80/20である熱可塑性ポリマーに、6〜100MPaの高圧の不活性ガスを10〜350℃の含浸温度で含浸させた後、減圧する工程を経て、平均セル径が10〜90μm、50%圧縮した時の対反発荷重が0.1〜3.0N/cm2、見掛け密度が0.01〜0.10g/cm3の特性を有する発泡体を連続方式で形成する工程を含むことを特徴とする発泡防塵材の製造方法。 A method for producing a dustproof material composed of a foam, which is a mixture of an olefin elastomer and an olefin polymer other than the olefin elastomer, the mixing ratio (weight basis) of which is 20/80 to the former / the latter. An 80/20 thermoplastic polymer is impregnated with a high pressure inert gas of 6 to 100 MPa at an impregnation temperature of 10 to 350 ° C., and then subjected to a pressure reducing process, and the average cell diameter is 10 to 90 μm and 50% compressed. Characterized in that it includes a step of forming a foam having a characteristic of a repulsive load of 0.1 to 3.0 N / cm 2 and an apparent density of 0.01 to 0.10 g / cm 3 in a continuous manner. The manufacturing method of foaming dustproof material. 独立気泡構造または半連続半独立気泡構造を有する発泡体を形成する請求項1記載の発泡防塵材の製造方法。 The manufacturing method of the foaming dustproof material of Claim 1 which forms the foam which has a closed-cell structure or a semi-continuous semi-closed-cell structure. さらに、発泡体の片面または両面に粘着層を形成する工程を含む請求項1又は2記載の発泡防塵材の製造方法。 Furthermore, the manufacturing method of the foaming dustproof material of Claim 1 or 2 including the process of forming the adhesion layer in the single side | surface or both surfaces of a foam. 粘着層を、フィルム層を介して、発泡体上に形成する請求項3記載の発泡防塵材の製造方法。 The manufacturing method of the foaming dust-proof material of Claim 3 which forms an adhesion layer on a foam through a film layer. 粘着層を、アクリル系粘着剤により形成する請求項3又は4記載の発泡防塵材の製造方法。 The manufacturing method of the foaming dustproof material of Claim 3 or 4 which forms an adhesion layer with an acrylic adhesive. 溶融した熱可塑性ポリマーに不活性ガスを加圧状態下で含浸させた後、減圧とともに成形に付して発泡体を形成する請求項1〜5の何れかの項に記載の発泡防塵材の製造方法。 The foamed dustproof material according to any one of claims 1 to 5, wherein the molten thermoplastic polymer is impregnated with an inert gas under pressure and then subjected to molding together with reduced pressure to form a foam. Method. 減圧後、さらに加熱することにより発泡体を形成する請求項1〜6の何れかの項に記載の発泡防塵材の製造方法。 The method for producing a foam dustproof material according to any one of claims 1 to 6, wherein the foam is formed by further heating after decompression. 不活性ガスが二酸化炭素である請求項1〜7の何れかの項に記載の発泡防塵材の製造方法。 The method for producing a foamed dustproof material according to any one of claims 1 to 7, wherein the inert gas is carbon dioxide. 含浸時の不活性ガスが超臨界状態である請求項1〜8の何れかの項に記載の発泡防塵材の製造方法。 The method for producing a foamed dustproof material according to any one of claims 1 to 8, wherein the inert gas during impregnation is in a supercritical state. 光学部材を所定の部位に取り付ける際に用いられる発泡防塵材を製造する請求項1〜9の何れかの項に記載の発泡防塵材の製造方法。 The manufacturing method of the foaming dustproof material in any one of Claims 1-9 which manufactures the foaming dustproof material used when attaching an optical member to a predetermined | prescribed site | part. 光学部材を所定の部位に取り付ける際の防塵構造を製造する方法であって、請求項1〜9の何れかの項に記載の発泡防塵材の製造方法により発泡防塵材を得て、光学部材が、前記の発泡防塵材を介して取り付けられている構造を製造することを特徴とする光学部材の防塵構造の製造方法。 A method for producing a dustproof structure when an optical member is attached to a predetermined part, wherein the foamed dustproof material is obtained by the foamed dustproof material producing method according to any one of claims 1 to 9, and the optical member is The manufacturing method of the dust-proof structure of the optical member characterized by manufacturing the structure attached through the said foaming dust-proof material. 光学部材が所定の部位に取り付けられている構造体を製造する方法であって、請求項1〜9の何れかの項に記載の発泡防塵材の製造方法により発泡防塵材を得て、光学部材を、前記の発泡防塵材を介して所定の部位に取り付けることを特徴とする光学部材を有する構造体の製造方法。 A method for producing a structure in which an optical member is attached to a predetermined part, wherein a foamed dustproof material is obtained by the foamed dustproof material producing method according to any one of claims 1 to 9, and the optical member is obtained. Is attached to a predetermined part via the foam dustproof material, and a method for producing a structure having an optical member. トナーカートリッジからトナーが漏れることを防ぐ際に用いられる発泡防塵材を形成する請求項1〜9の何れかの項に記載の発泡防塵材の製造方法。 The method for producing a foam dustproof material according to any one of claims 1 to 9, wherein a foam dustproof material used to prevent toner from leaking from the toner cartridge is formed.
JP2004237703A 2003-08-22 2004-08-17 Method for producing foam dustproof material, and method for producing dustproof structure using foam dustproof material Expired - Lifetime JP4563109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237703A JP4563109B2 (en) 2003-08-22 2004-08-17 Method for producing foam dustproof material, and method for producing dustproof structure using foam dustproof material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003298409 2003-08-22
JP2004237703A JP4563109B2 (en) 2003-08-22 2004-08-17 Method for producing foam dustproof material, and method for producing dustproof structure using foam dustproof material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009216884A Division JP5317905B2 (en) 2003-08-22 2009-09-18 Foam dustproof material and dustproof structure using the foam dustproof material

Publications (2)

Publication Number Publication Date
JP2005097566A JP2005097566A (en) 2005-04-14
JP4563109B2 true JP4563109B2 (en) 2010-10-13

Family

ID=34467059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237703A Expired - Lifetime JP4563109B2 (en) 2003-08-22 2004-08-17 Method for producing foam dustproof material, and method for producing dustproof structure using foam dustproof material

Country Status (1)

Country Link
JP (1) JP4563109B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5153110B2 (en) 2006-10-02 2013-02-27 日東電工株式会社 Polyolefin resin foam and production method thereof
JP5289871B2 (en) * 2007-09-21 2013-09-11 日東電工株式会社 Foam dustproof material with fine cell structure
JP4980198B2 (en) * 2007-10-26 2012-07-18 日東電工株式会社 Foam material with slit for mounting step structure
JP5594938B2 (en) 2008-02-26 2014-09-24 日東電工株式会社 Foam waterproof material with fine cell structure
JP4842358B2 (en) 2008-12-04 2011-12-21 日東電工株式会社 Double-sided adhesive tape
JP6006350B2 (en) * 2009-03-04 2016-10-12 日東電工株式会社 Conductive resin foam
JP5701508B2 (en) * 2009-03-04 2015-04-15 日東電工株式会社 Conductive resin foam
JP2010242061A (en) * 2009-03-19 2010-10-28 Nitto Denko Corp Flame-retardant resin foam and flame-retardant foamed member
JP5856448B2 (en) * 2010-12-14 2016-02-09 日東電工株式会社 Resin foam and foam sealing material
JP5969260B2 (en) 2011-07-14 2016-08-17 日東電工株式会社 Resin foam, method for producing the same, and foam sealing material
CN104334620A (en) * 2012-05-28 2015-02-04 日东电工株式会社 Thermoplastic resin foam and foam sealant
JP2014012821A (en) * 2012-06-07 2014-01-23 Nitto Denko Corp Resin foam and foaming material
JP2014015605A (en) * 2012-06-11 2014-01-30 Nitto Denko Corp Resin foam and foam seal material
JP5580911B2 (en) * 2013-02-26 2014-08-27 Dmノバフォーム株式会社 Foam formed with olefin resin composition and method for producing the same
JP6358825B2 (en) * 2013-04-10 2018-07-18 日東電工株式会社 Resin foam composite
JP2014077136A (en) * 2013-11-19 2014-05-01 Nitto Denko Corp Foam waterproof material having fine cell structure
JP2014094575A (en) * 2013-12-24 2014-05-22 Nitto Denko Corp Impact absorbing material
JP5833213B2 (en) * 2014-10-31 2015-12-16 日東電工株式会社 Shock absorber
CN106700250B (en) * 2016-12-08 2022-07-29 广东美的环境电器制造有限公司 Dustproof modified plastic, preparation method and application thereof, dustproof electric fan blade and dustproof electric fan
US20220185982A1 (en) * 2019-04-10 2022-06-16 Nitto Denko Corporation Flame-retardant foamed object and foam member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255739A (en) * 1989-03-28 1990-10-16 Toray Ind Inc Continuous sheet of crosslinked foamed material
WO1990014385A1 (en) * 1989-05-16 1990-11-29 Toray Industries, Inc. Continuous sheet of electron beam crosslinked foam
JPH1045933A (en) * 1996-08-05 1998-02-17 Bridgestone Corp Rubber foam
JP2002309198A (en) * 2001-04-13 2002-10-23 Nitto Denko Corp Sealing material for electrical and electronic apparatus
JP2003147112A (en) * 2001-09-03 2003-05-21 Nitto Denko Corp Rubber form
JP2003160685A (en) * 2001-11-27 2003-06-03 Nitto Denko Corp Rubber foam for sealing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255739A (en) * 1989-03-28 1990-10-16 Toray Ind Inc Continuous sheet of crosslinked foamed material
WO1990014385A1 (en) * 1989-05-16 1990-11-29 Toray Industries, Inc. Continuous sheet of electron beam crosslinked foam
JPH1045933A (en) * 1996-08-05 1998-02-17 Bridgestone Corp Rubber foam
JP2002309198A (en) * 2001-04-13 2002-10-23 Nitto Denko Corp Sealing material for electrical and electronic apparatus
JP2003147112A (en) * 2001-09-03 2003-05-21 Nitto Denko Corp Rubber form
JP2003160685A (en) * 2001-11-27 2003-06-03 Nitto Denko Corp Rubber foam for sealing

Also Published As

Publication number Publication date
JP2005097566A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP5317905B2 (en) Foam dustproof material and dustproof structure using the foam dustproof material
JP4563109B2 (en) Method for producing foam dustproof material, and method for producing dustproof structure using foam dustproof material
JP5289871B2 (en) Foam dustproof material with fine cell structure
JP5594938B2 (en) Foam waterproof material with fine cell structure
KR102209173B1 (en) Resin foam and foam sealing material
JP2010215805A (en) Shock absorbing material
JP5508115B2 (en) Resin foam and foam member
JP5833213B2 (en) Shock absorber
JP5990435B2 (en) Resin foam sheet and resin foam composite
JP6425973B2 (en) Resin foam and foam member
WO2013168798A1 (en) Resin foam and foam sealing material
JP5427972B2 (en) Resin foam
JP4980198B2 (en) Foam material with slit for mounting step structure
JP2014094575A (en) Impact absorbing material
JP2014077136A (en) Foam waterproof material having fine cell structure
JP5872524B2 (en) Foam member
JP5620022B2 (en) Resin foam and foam member
JP2013147663A (en) Impact absorbing material
JP5620021B2 (en) Resin foam and foam member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160806

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250