JP4559765B2 - Magnet rotor forming method - Google Patents

Magnet rotor forming method Download PDF

Info

Publication number
JP4559765B2
JP4559765B2 JP2004108718A JP2004108718A JP4559765B2 JP 4559765 B2 JP4559765 B2 JP 4559765B2 JP 2004108718 A JP2004108718 A JP 2004108718A JP 2004108718 A JP2004108718 A JP 2004108718A JP 4559765 B2 JP4559765 B2 JP 4559765B2
Authority
JP
Japan
Prior art keywords
magnetic
magnet
mold
molding
magnet rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004108718A
Other languages
Japanese (ja)
Other versions
JP2005295716A (en
Inventor
宏明 長沼
良三 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisca Corp
Original Assignee
Nisca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisca Corp filed Critical Nisca Corp
Priority to JP2004108718A priority Critical patent/JP4559765B2/en
Publication of JP2005295716A publication Critical patent/JP2005295716A/en
Application granted granted Critical
Publication of JP4559765B2 publication Critical patent/JP4559765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明はカメラ、携帯電話等の各種機器の駆動部に用いられる電磁駆動装置における磁石ロータのインサート成形方法及びこれを用いた磁石ロータに関する。   The present invention relates to a magnet rotor insert molding method in an electromagnetic drive device used in a drive unit of various devices such as a camera and a mobile phone, and a magnet rotor using the same.

一般にカメラ装置などに用いられる電磁駆動装置は回動自在に軸受支持した円筒形状の永久磁石を励磁コイルで回転させてシャッタ羽根などの作動機能部を駆動している。このような磁石ロータはNS極に着磁された回転体と、この回転体を回転自在に支持する中心軸と、回転運動を外部に伝達する作動アームとから構成されている。   2. Description of the Related Art Generally, an electromagnetic drive device used for a camera device or the like drives an operation function unit such as a shutter blade by rotating a cylindrical permanent magnet supported by a bearing so as to be rotatable by an exciting coil. Such a magnet rotor is composed of a rotating body magnetized on the NS pole, a central axis that rotatably supports the rotating body, and an operating arm that transmits rotational motion to the outside.

かかる磁石ロータの成形は次の2つの方法が知られている。
第1の方法はフェライトなどの強磁性体の粉末を焼結によって中空円筒形状に形成し、これとは別に回転軸と作動アームとを合成樹脂のモールド成形で一体に形成し、次いで強磁性体の中空内に回転軸を挿入して接着剤で固定し、この一体化した強磁性体に着磁してロータ構成体を製造する方法である。この方法によるときは磁性体を焼結工程で回転軸をモールド成形工程で個別に生産できるメリットがあるが製造工程が多く、特に接着剤の漏洩による機能低下などのディメリットがある。
The following two methods are known for forming such a magnet rotor.
In the first method, a powder of a ferromagnetic material such as ferrite is formed into a hollow cylindrical shape by sintering, and separately from this, a rotating shaft and an operating arm are integrally formed by molding a synthetic resin, and then the ferromagnetic material is formed. In this method, a rotating shaft is inserted into the hollow, fixed with an adhesive, and magnetized on this integrated ferromagnetic body to manufacture a rotor structure. When this method is used, there is a merit that the magnetic material can be individually produced by the sintering process and the rotating shaft can be produced individually by the molding process, but there are many manufacturing processes, and there are disadvantages such as deterioration of the function due to leakage of the adhesive.

第2の方法は強磁性体の粉末素材を中空円筒形状に形成し、この磁性体を成形型内にインサートして樹脂材料を射出し、中心の回転軸と作動アームとを一体に成形する方法である。この方法は磁石と回転体と作動アームとを同時に成形することが出来、成形工程も比較的少ないというメリットがあるが、強磁性体に着磁する磁極方向と作動アームの方向とを正確に位置合わせすることが困難である。つまり成形型内に強磁性体を正しい姿勢で装填し、その位置を保持しながら樹脂材料を射出する際に磁石ロータの径が3〜5ミリ程度である場合には成形型と磁性体との位置合わせが困難である。   The second method is to form a ferromagnetic powder material into a hollow cylindrical shape, insert the magnetic body into a molding die, inject a resin material, and integrally mold the central rotating shaft and the operating arm. It is. This method has the merit that the magnet, the rotating body, and the working arm can be molded at the same time and the molding process is relatively small. However, the magnetic pole direction magnetizing the ferromagnetic material and the direction of the working arm are accurately positioned. It is difficult to match. In other words, when the ferromagnetic material is loaded in a correct posture in the mold and the diameter of the magnet rotor is about 3 to 5 mm when the resin material is injected while maintaining its position, the mold and the magnetic material Alignment is difficult.

そこで特許文献1(特開平11−138553号公報)には、異方性の磁性材料を用いて磁性体を中空筒型に形成し、一方成形型を非磁性材で形成するのと同時に作動アームの成形部と直交する方向に磁界を生起する。そしてこの磁界の方向と内部に装填した磁性体の磁化容易軸を一致させ射出成形し、その後この磁化容易軸に沿って射出成形後のロータに着磁する方法が提案されている。この方法によるときは射出成形型の内部で磁性体は磁界の方向に倣ってその姿勢を保ち、同時に成形される作動アームと正しい位置関係で一体化成形できる特徴がある。   Therefore, in Patent Document 1 (Japanese Patent Application Laid-Open No. 11-138553), a magnetic body is formed into a hollow cylinder using an anisotropic magnetic material, while an operating arm is formed at the same time as forming a mold using a nonmagnetic material. A magnetic field is generated in a direction perpendicular to the molded part. A method has been proposed in which the direction of the magnetic field and the easy magnetization axis of a magnetic material loaded therein are made to coincide with each other and injection molded, and then the rotor after injection molding is magnetized along the easy magnetization axis. When this method is used, the magnetic body is characterized in that it can maintain its posture along the direction of the magnetic field inside the injection mold and can be integrally molded with the working arm that is molded at the same time.

特開平11−138553号公報JP-A-11-138553

上述の特許文献1などで知られる従来の方法は、まず磁性体の材料が異方性に限られ等方性の材料を使用することが出来ない。また円柱状の磁性体を成形型内に生起した磁界と磁性体の磁化容易軸とが大きく異なった角度で装填すると磁性体の磁極方向と作動アームの位置(角度)がズレることがある。特に磁性体の外径を5mm以下に構成した場合には成形型内に磁性体の方向をある程度揃えながら装填することは煩雑な作業とその自動化が困難である問題を有している。更に成形型に磁界を発生させる為に埋設する磁石はNS極が正しく一致させなければ所望の磁力線が得られないが磁性体はその加工が困難であり、また成形型内に埋設した磁性体は射出成形時の温度変化や衝撃でその位置が狂ったり破損する恐れがある。   In the conventional method known from the above-mentioned Patent Document 1 or the like, first, the magnetic material is limited to anisotropy, and an isotropic material cannot be used. In addition, if a columnar magnetic body is loaded at a significantly different angle between the magnetic field generated in the mold and the magnetization easy axis of the magnetic body, the magnetic pole direction of the magnetic body may deviate from the position (angle) of the operating arm. In particular, when the outer diameter of the magnetic body is configured to be 5 mm or less, it is difficult to load the mold while aligning the direction of the magnetic body to a certain extent, making it difficult to automate the work. Furthermore, a magnet embedded in order to generate a magnetic field in the mold cannot obtain the desired lines of magnetic force unless the NS poles are aligned correctly, but the magnetic body is difficult to process, and the magnetic body embedded in the mold is There is a risk that the position may be changed or damaged due to temperature change or impact during injection molding.

そこで本発明は磁石ロータをインサート成形する際に、成形型内で伝動アームの位置と強磁性体の位置とを正確に位置合わせすることが出来、成形時の不良も少なく、成形型への磁性体の装填作業も容易である成形方法を提供し、同時に中空円筒形状の強磁性体にインサート成形で回転軸と伝動アームとを一体に形成し、この回転軸と強磁性体とが環境温度、経時的な変化によって空転し強磁性体に生起した回転力が伝動アームに伝達されない問題を解決し、確実に駆動伝達することが可能な磁石ロータの提供をその課題としている。   Therefore, according to the present invention, when insert-molding a magnet rotor, the position of the transmission arm and the position of the ferromagnetic material can be accurately aligned in the mold, and there are few defects during molding, and the magnetic force to the mold is reduced. It provides a molding method that makes it easy to load the body, and at the same time, the rotary shaft and the transmission arm are integrally formed by insert molding on a hollow cylindrical ferromagnetic material. An object of the present invention is to provide a magnet rotor that can solve the problem that the rotational force generated in the ferromagnetic body due to idling due to a change with time is not transmitted to the transmission arm and that can reliably transmit the drive.

本発明は上記課題を解決するため以下の構成を採用したものである。
まず請求項1の発明は、強磁性体を中空円筒形状に形成し、この磁性体を少なくとも1つの作動アーム成形部を有する成形型内に装填した後、樹脂材料を射出して強磁性体と作動アームとを一体成形する磁石ロータの成形方法であって、まず中空円筒形状の強磁性体の周面を少なくとも2極に分極着磁し、中心には断面非円形状の軸孔を有するように形成する。そして上記成形型は、非磁性材で形成し、上記磁性体を回動自在に装填する磁性体挿入部と上記作動アームを成形する作動アーム形成部と、この作動アーム形成部に対し所定角度位置で上記磁性体挿入部に配置された軟磁性材から成る位置決め部材とで構成する。次いで上記強磁性体を上記磁性体挿入部に収容し、この強磁性体を上記位置決め部材の吸引によって上記作動アーム成形部と所定の角度位置に回転させて位置決めすると共に保持し、この状態で上記成形型部に樹脂材料を射出して磁石ロータを成形する。この構成によって上述の課題を達成することが出来る。
The present invention employs the following configuration in order to solve the above problems.
According to the first aspect of the present invention, the ferromagnetic material is formed into a hollow cylindrical shape, and after the magnetic material is loaded into a mold having at least one working arm molding portion, the resin material is injected to obtain the ferromagnetic material. A method of forming a magnet rotor that integrally molds an operating arm, wherein first, the peripheral surface of a hollow cylindrical ferromagnetic body is polarized and magnetized to at least two poles, and a shaft hole having a non-circular cross section is formed at the center. To form. The mold is made of a non-magnetic material, and a magnetic body insertion portion for rotatably loading the magnetic body, an operation arm formation portion for forming the operation arm, and a predetermined angular position with respect to the operation arm formation portion. And a positioning member made of a soft magnetic material disposed in the magnetic body insertion portion. Next, the ferromagnetic material is accommodated in the magnetic material insertion portion, and the ferromagnetic material is rotated and positioned at a predetermined angular position with the operating arm molding portion by suction of the positioning member, and in this state, the magnetic material is inserted. A magnet material is molded by injecting a resin material into the mold part. With this configuration, the above-described problem can be achieved.

次に請求項2の発明は、前記強磁性体を周側面にNS2極に分極して着磁し、前記位置決め部材を前記磁性体挿入部に互いに対向する一対の軟磁性部材で構成することによってカメラ装置などの磁石ロータの成形が可能である。   According to a second aspect of the present invention, the ferromagnetic body is polarized with NS2 poles on the peripheral side surface and magnetized, and the positioning member is composed of a pair of soft magnetic members opposed to the magnetic body insertion portion. Magnet rotors such as camera devices can be molded.

また、請求項3の発明は前記強磁性体の軸孔を断面矩形状に形成することによって強磁性体と伝動アームとを確実に一体化することが出来る。   According to a third aspect of the present invention, the ferromagnetic body and the transmission arm can be reliably integrated by forming the axial hole of the ferromagnetic body in a rectangular cross section.

請求項4及び5の発明は、前記強磁性体はネオジウムなどの磁性体粉末を焼結型内で磁場を作用させて焼成することによって形成することによって異方性磁石成形と同時に残留磁気によって強磁性体の外周に磁気を帯びさせることが可能となる。   According to the fourth and fifth aspects of the present invention, the ferromagnetic material is formed by firing a magnetic powder such as neodymium by applying a magnetic field in a sintering mold, thereby strengthening the magnet by residual magnetism at the same time as forming an anisotropic magnet. It becomes possible to make magnetism around the outer periphery of the magnetic body.

本発明は周囲を少なくとも2極に分極着磁された中空円筒形状の強磁性体を成形型内に挿入する際に軟磁性材から成る位置決め部材で磁極を吸引して位置決め保持し、この状態で樹脂材料を射出して作動アームを一体成形する為、作動アームの方向と強磁性体の磁極との位置合わせが正確かつ容易である。特に強磁性体を成形型の磁性体挿入部に装填する際に強磁性体に形成した非円形状の軸孔の形状を目安に装填することが可能となり、強磁性体の成形型への挿入作業、特に極めて小さな外径の磁性体の挿入作業が容易である。   In the present invention, when inserting a hollow cylindrical ferromagnetic body polarized around at least two poles into a mold, a magnetic pole is attracted and held by a positioning member made of a soft magnetic material. Since the operation arm is integrally formed by injecting the resin material, the alignment between the direction of the operation arm and the magnetic pole of the ferromagnetic material is accurate and easy. In particular, when a ferromagnetic material is loaded into the magnetic body insertion part of the molding die, it is possible to load it using the shape of a non-circular shaft hole formed in the ferromagnetic material as a guide, and insertion of the ferromagnetic material into the molding die The operation, in particular, the operation of inserting a magnetic material having an extremely small outer diameter is easy.

また成形後の磁石ロータは断面非円形状の中空軸孔内に回転軸が形成され、この回転軸と一体に伝動アームが形成される為、インサート成形によって分離し易い回転軸と強磁性体とは断面非円形状で嵌合する為強磁性体に生ずる回転力は確実に回転軸と伝動アームとに伝達される。特に使用途上での環境温度の変化によって強磁性体と回転軸との膨張係数が異なっても非円形状であるため緩みが生ずることが少なく確実に回転を伝動アームに伝えることが出来る。   In addition, the magnet rotor after molding has a rotating shaft formed in a hollow shaft hole having a non-circular cross section, and a transmission arm is formed integrally with the rotating shaft. Since the non-circular cross section is fitted, the rotational force generated in the ferromagnetic material is reliably transmitted to the rotating shaft and the transmission arm. In particular, even if the expansion coefficient of the ferromagnet and the rotating shaft are different due to changes in the environmental temperature during use, since the non-circular shape is formed, looseness is less likely to occur and the rotation can be reliably transmitted to the transmission arm.

以下の図示の好適な実施の形態に基づいて本発明を詳述する。図1は、本発明に係わる磁石ロータ(以下ロータという)の構成を示す分解斜視図、図2はロータの成形型を示す概念図であり斜視図を示している。図3はその平面図である。   The present invention will be described in detail based on the following preferred embodiments shown in the drawings. FIG. 1 is an exploded perspective view showing a configuration of a magnet rotor (hereinafter referred to as a rotor) according to the present invention, and FIG. 2 is a conceptual view showing a rotor mold and a perspective view. FIG. 3 is a plan view thereof.

図1に基づいてロータの構成を説明すると、ロータ1は磁石部材2と回転軸部材3と伝動アーム部材4とで構成される。磁石部材2は外周方向にN−S2極若しくは4極等複数極に分極して着磁された円形筒状の永久磁石で構成される。図示の磁石部材2は中空円筒状に形成され、中心は断面矩形状の中空軸孔2aが設けられ上端面2b及び下端面2cは平坦面に形成されている。回転軸部材3は上下のフランジ3a、3bと回転軸3cとから構成され上下のフランジ3a、3bは磁石部材2の上端面2b及び下端面2cと接合する位置に、回転軸3cは中空軸孔2aと適合するようになっている。   The configuration of the rotor will be described with reference to FIG. 1. The rotor 1 includes a magnet member 2, a rotating shaft member 3, and a transmission arm member 4. The magnet member 2 is composed of a circular cylindrical permanent magnet that is polarized by being polarized in a plurality of poles such as NS2 poles or 4 poles in the outer circumferential direction. The illustrated magnet member 2 is formed in a hollow cylindrical shape, a hollow shaft hole 2a having a rectangular cross section is provided at the center, and an upper end surface 2b and a lower end surface 2c are formed as flat surfaces. The rotary shaft member 3 is composed of upper and lower flanges 3a, 3b and a rotary shaft 3c. The upper and lower flanges 3a, 3b are in positions where they are joined to the upper end surface 2b and the lower end surface 2c of the magnet member 2, and the rotary shaft 3c is a hollow shaft hole. It is adapted to 2a.

伝動アーム部材4は磁石部材2の径方向外側に突出するアーム部4aに連なる伝動部4bとから形成され、伝動部4bの先端には後述する羽根部材と嵌合する連結部4cが形成されている。この磁石部材2と回転軸部材3と伝動アーム部材4とは図1に示す形状に以下のように一体成形される。前記磁石部材2はサマリウムとコバルトとの混合材料、ネオジム(NdFeB)を主成分とする材料、フェライトを主成分とする材料などの粉末を円筒形状で中心に断面矩形状(図示のものは四角形)の中空軸孔を形成する形状の焼成型に充填する。   The transmission arm member 4 is formed of a transmission portion 4b connected to an arm portion 4a protruding outward in the radial direction of the magnet member 2, and a connecting portion 4c is formed at the tip of the transmission portion 4b to be fitted with a blade member described later. Yes. The magnet member 2, the rotary shaft member 3, and the transmission arm member 4 are integrally formed in the shape shown in FIG. 1 as follows. The magnet member 2 has a cylindrical shape and a rectangular cross section with a powder of a mixed material of samarium and cobalt, a material mainly composed of neodymium (NdFeB), a material mainly composed of ferrite, etc. Is filled into a firing mold having a shape that forms a hollow shaft hole.

次いでこの焼成型で加熱焼結すると図1に磁石部材2として示す形状の焼成品が形成される。この焼結時に所定の磁場のなかで焼成すると異方性磁石となり、磁界をかけないで焼成すると等方性磁石となる。前者の異方性磁石は、図4に示すように磁場の方向X−Xに磁化容易軸が形成され、この磁化容易軸は矩形状の中空軸孔2aと一定の位置関係が形成される。図示の四角形の中空軸孔2aと磁化容易軸X−Xとは四角形の中央を横切る(図示X−X線)関係にあり、中空軸孔2aの位置で磁化容易軸X−Xが割り出せることとなり、またこの異方性の磁石は磁化容易軸方向に残留磁界を帯びている。一方、焼結時に磁界を付与しない等方性の磁石には磁化容易軸は存在せず、また残留磁界を帯びることもない。   Next, when this sintering mold is heated and sintered, a sintered product having a shape shown as a magnet member 2 in FIG. 1 is formed. When sintered in a predetermined magnetic field during sintering, an anisotropic magnet is formed, and when sintered without applying a magnetic field, an isotropic magnet is formed. In the former anisotropic magnet, an easy magnetization axis is formed in the magnetic field direction XX, as shown in FIG. 4, and this easy magnetization axis forms a fixed positional relationship with the rectangular hollow shaft hole 2a. The rectangular hollow shaft hole 2a shown in the figure and the easy magnetization axis XX are in a relationship crossing the center of the square (XX line shown in the figure), and the easy magnetization axis XX can be determined at the position of the hollow shaft hole 2a. The anisotropic magnet has a residual magnetic field in the easy axis direction. On the other hand, an isotropic magnet that does not apply a magnetic field during sintering does not have an easy magnetization axis and does not have a residual magnetic field.

以上のように形成した強磁性体の成型品はインサート成形により回転軸部材3と伝動アーム部材4とが一体成形されることとなる。本発明はこのインサート成形の前工程で強磁性体を着磁して磁化させる。その方法は(イ)焼結成型品が異方性磁石として成形した場合は、焼結時の磁場で磁化した残留磁気(ロ)焼結成型品が異方性磁石として成形した場合に減磁処理を施して消磁し、次いで所定の強さの磁界を磁化容易軸に沿って印加する。この段階で最終的な永久磁石を生成する。(ハ)焼結成型品が等方性磁石として成形した場合は磁化する。このいずれかの方法で成型品は円筒形状の周側面に分極した磁極が少なくともN−S2極存在するようにする。   In the ferromagnetic molded product formed as described above, the rotary shaft member 3 and the transmission arm member 4 are integrally formed by insert molding. In the present invention, the ferromagnetic material is magnetized and magnetized in the pre-process of the insert molding. The method is as follows: (a) When the sintered molded product is molded as an anisotropic magnet, the remanent magnetism (b) magnetized by the magnetic field during sintering is demagnetized when the sintered molded product is molded as an anisotropic magnet. A demagnetizing process is performed, and then a magnetic field having a predetermined strength is applied along the easy magnetization axis. At this stage, a final permanent magnet is generated. (C) When a sintered molded product is molded as an isotropic magnet, it is magnetized. By any one of these methods, the molded product has at least N-S2 poles polarized on the cylindrical peripheral side surface.

尚、上記減磁処理は焼結型の成型品に焼結時に印加した磁場と逆方向の磁場を印加すれば良く、また磁化は焼結型の成型品を着磁機で強い磁場を作用させて磁性を帯びさせる。この場合印加する磁極の方向は中空軸孔2aの矩形状と一定の角度になるようにする。従って磁石部材2に着磁機で着磁した場合も、また焼結時の残留磁気もいずれも矩形状の中心軸孔2aに対し所定の方向、図示の場合は四角形の中央をクロスする方向に位置することとなる。   The demagnetization treatment may be performed by applying a magnetic field in the opposite direction to the magnetic field applied during sintering to the sintered mold, and the magnetization is performed by applying a strong magnetic field to the sintered mold with a magnetizer. To make it magnetic. In this case, the direction of the magnetic pole to be applied is set at a constant angle with the rectangular shape of the hollow shaft hole 2a. Therefore, both the magnet member 2 is magnetized by a magnetizer, and the residual magnetism during sintering is in a predetermined direction with respect to the rectangular central shaft hole 2a, in the direction shown in FIG. Will be located.

次に成形型の構造について説明すると、通常成形型は固定型と可動型に区割して製作され、この固定型と可動型は成形する製品の形状に応じて複数の型(入子)に分割される。図示のものは磁石ロータの形状から2つに分割され、磁石ロータ1は図5(a)に示す平面で上側が固定型、下側が可動型で形成されている。図5(a)に成形型の構造を示し、10は固定型、11は可動型である。   Next, the structure of the mold will be explained. Normally, the mold is divided into a fixed mold and a movable mold. The fixed mold and the movable mold are divided into a plurality of molds (nesting) according to the shape of the product to be molded. Divided. The illustrated one is divided into two parts according to the shape of the magnet rotor, and the magnet rotor 1 is formed in a plane shown in FIG. 5A, with the upper side being a fixed type and the lower side being a movable type. FIG. 5A shows the structure of the mold, 10 is a fixed mold, and 11 is a movable mold.

固定型10には回転軸3cの一端部(図1上端部)を形成する軸端形成部12とフランジ3aの形成部13と伝動アーム部材4の形成部14と伝動部4bの形成部15と連結部4cの形成部16とがそれぞれ形成してある。可動型11には磁石部材2を挿入する磁性体挿入部17が形成してある。可動型11には回転軸部材3の他端側フランジ3bを形成する形成部21と軸端形成部がそれぞれ形成してある。従って、磁性体挿入部17に磁石部材2を装填した後樹脂材料を射出すれば図1の磁石ロータ1が成形されることとなる。尚、図示23は固定型に形成した射出口である。図示25は成形品を取出す為の押出棒の挿入孔である。   The fixed mold 10 includes a shaft end forming portion 12 that forms one end of the rotating shaft 3c (upper end in FIG. 1), a flange 13a forming portion 13, a transmission arm member 4 forming portion 14, and a transmission portion 4b forming portion 15. A connecting portion 4c and a forming portion 16 are formed. The movable mold 11 is formed with a magnetic body insertion portion 17 into which the magnet member 2 is inserted. The movable mold 11 is formed with a forming portion 21 that forms the other end side flange 3b of the rotating shaft member 3 and a shaft end forming portion. Therefore, if the resin material is injected after the magnetic member 2 is loaded in the magnetic material insertion portion 17, the magnet rotor 1 shown in FIG. 1 is formed. In addition, 23 shown in the figure is an injection port formed in a fixed mold. 25 shown in the figure is an insertion hole of an extrusion rod for taking out a molded product.

そこで本発明は上述のように成形した磁石部材2を上記成形型(固定型10と可動型11)に装填して樹脂材料を射出し、回転軸部材3と伝動アーム部材4とを一体成形する際に伝動アーム部材4と磁石部材2との角度位置を簡単に位置合わせするように以下の構造を採用したものである。   Therefore, in the present invention, the magnet member 2 molded as described above is loaded into the molding die (the fixed die 10 and the movable die 11), the resin material is injected, and the rotary shaft member 3 and the transmission arm member 4 are integrally molded. In this case, the following structure is adopted so that the angular positions of the transmission arm member 4 and the magnet member 2 can be easily aligned.

まず磁石部材2は前述のように筒形状の周側面が少なくとも2極に分極され着磁されている。この着磁は異方性磁石の場合焼結成形時の残留磁気であっても良い。そして前記成形型は少なくとも磁性体挿入部17の周囲を非磁性材で形成する。図示のものは可動型11と固定型10とをステンレス綱のブロック材を切削して形成している。このような構成で図2に示すように可動型11の磁性体挿入部17の周囲に軟磁性材から成る位置決め部材26、27を配置する。すると磁性体挿入部17に装填した磁石部材2はこの位置決め部材26、27に吸引されて磁石部材2の磁極の方向と位置決め部材26、27の方向とが一致する。   First, as described above, the magnet member 2 is magnetized with the cylindrical peripheral side surface polarized to at least two poles. In the case of an anisotropic magnet, this magnetization may be the residual magnetism during sintering. And the said shaping | molding die forms the circumference | surroundings of the magnetic body insertion part 17 with a nonmagnetic material. In the illustrated example, the movable mold 11 and the fixed mold 10 are formed by cutting a stainless steel block material. With such a configuration, positioning members 26 and 27 made of a soft magnetic material are arranged around the magnetic body insertion portion 17 of the movable mold 11 as shown in FIG. Then, the magnet member 2 loaded in the magnetic body insertion portion 17 is attracted by the positioning members 26 and 27 so that the magnetic pole direction of the magnet member 2 and the direction of the positioning members 26 and 27 coincide.

そこで図示のものは鉄などの軟磁性材の位置決め部材を磁性体挿入部17の周囲に互いに対向する位置に一対設けている。この一対の位置決め部材26、27が対向する直線X−Xに対して伝動アーム部材4の形成部14の方向Y−Yが直交する位置に位置決め部材26、27を配置している。従って磁石部材2の磁極の方向X−Yと直交する方向に伝動アーム部材4が形成されることとなる。   Therefore, in the illustrated example, a pair of positioning members made of a soft magnetic material such as iron are provided around the magnetic body insertion portion 17 at positions facing each other. The positioning members 26 and 27 are arranged at positions where the direction YY of the forming portion 14 of the transmission arm member 4 is orthogonal to the straight line XX where the pair of positioning members 26 and 27 are opposed. Therefore, the transmission arm member 4 is formed in a direction orthogonal to the magnetic pole direction XY of the magnet member 2.

また、位置決め部材26、27は図2のように先鋭形状(ナイフエッジ)に形成し、その先端面が互いに対向(対峙)するようにしてあり、これは磁性体挿入部17に装填した磁石部材2が位置決め部材に吸引される際に偏らないように配慮した為である。このように位置決め部材26、27の先端を先鋭形状に形成すると円筒形状の磁石部材2はその先鋭部に吸引される為、位置決め部材26、27が若干偏向いて取付けられても伝動アーム部材4と磁石部材2の磁極とは直交する位置関係が得られる。   Further, the positioning members 26 and 27 are formed in a sharp shape (knife edge) as shown in FIG. 2, and their front end surfaces are opposed (opposed) to each other. This is a magnet member loaded in the magnetic material insertion portion 17. This is because consideration has been given so as not to be biased when 2 is attracted to the positioning member. When the tips of the positioning members 26 and 27 are formed in a sharp shape in this way, the cylindrical magnet member 2 is attracted to the sharpened portion, so that even if the positioning members 26 and 27 are attached with a slight deflection, the transmission arm member 4 and A positional relationship orthogonal to the magnetic poles of the magnet member 2 is obtained.

次に図7に従って磁石ロータの製作工程を説明する。まず強磁性材料の粉末を焼結型に充填し、磁界を作用させて所定方向の磁場で焼成し異方性の磁石部材を形成するか或いは磁界を作用させることなく加熱焼成して等方性の磁石部材を形成する。このとき焼成型は円筒形状で中央に非円形例えば矩形状の軸孔を形成し、図1に示す磁石部材2を形成する。また磁石部材2を異方性に形成する場合には磁場の方向(磁化容易軸)図4X−Xを軸孔2aに対して所定の角度方向に設定する。この方向は非円形状の軸孔2aの形状から磁化容易軸がどの方向であるか割出せる方向に設定する。そして磁化容易軸に沿って逆方向の磁場を印加して減磁(消磁)するか、或いは減磁することなく成形型から取出し、減磁した場合は着磁工程に移行する。   Next, the manufacturing process of the magnet rotor will be described with reference to FIG. First, powder of a ferromagnetic material is filled in a sintered mold and fired in a magnetic field in a predetermined direction by applying a magnetic field to form an anisotropic magnet member, or heated and fired without applying a magnetic field. The magnet member is formed. At this time, the firing mold is cylindrical, and a non-circular, for example, rectangular shaft hole is formed in the center to form the magnet member 2 shown in FIG. When the magnet member 2 is formed anisotropically, the direction of the magnetic field (magnetization easy axis) FIG. 4X-X is set in a predetermined angular direction with respect to the shaft hole 2a. This direction is set to a direction in which the easy magnetization axis can be determined from the shape of the non-circular shaft hole 2a. Then, a magnetic field in the opposite direction along the easy magnetization axis is applied to demagnetize (demagnetize), or take out from the mold without demagnetization.

そこで磁石部材2が異方性で減磁処理された場合及び等方性に形成された場合には所定方向に着磁する。この着磁処理は円筒形状の磁石部材2の外周に少なくともN−S2極に分極着磁或いはN−S4極など適宜設定された極数に着磁する。この時の着磁方向は中心の軸孔2aと所定の角度方向に軸孔2aの形状から磁極の方向が割出せるように設定する。   Therefore, when the magnet member 2 is anisotropic and demagnetized, and is formed isotropic, it is magnetized in a predetermined direction. In this magnetizing process, the cylindrical magnet member 2 is magnetized to an appropriate number of poles, such as polarization magnetization or N-S4 poles, at least NS2 poles. The magnetization direction at this time is set so that the direction of the magnetic pole can be determined from the shape of the shaft hole 2a in a predetermined angular direction with respect to the central shaft hole 2a.

次に成形型に図示の場合は可動型11に形成した磁性体挿入部17に磁石部材2を挿入する。この挿入はインサート自動機によって自動的に挿入するか、或いはオペレータが挿入するかいずれかの方法で行う。この時非円形の中空軸孔2aと位置決め部材26、27との位置関係が所定の角度範囲内となるように挿入する。   Next, in the case shown in the drawing mold, the magnet member 2 is inserted into the magnetic body insertion portion 17 formed in the movable mold 11. This insertion is performed either automatically by an automatic inserter or by an operator. At this time, it is inserted so that the positional relationship between the non-circular hollow shaft hole 2a and the positioning members 26 and 27 is within a predetermined angle range.

これを図4に基づいて説明すると、磁石部材2を異方性に形成した場合には磁化容易軸が、等方性に形成した場合には着磁方向が図示X−X方向に位置合わせすると伝動アーム部材4を形成する形成部14と磁極の方向が直交する関係となる。   This will be explained with reference to FIG. 4. When the magnet member 2 is formed anisotropically, the easy axis of magnetization is aligned, and when it is formed isotropic, the magnetization direction is aligned with the XX direction shown in the figure. The forming portion 14 forming the transmission arm member 4 and the magnetic poles are orthogonal to each other.

そこで磁石部材2は中空軸孔2aの形状を基準に磁性体挿入部17に位置決め部材26、27に対し所定角度範囲例えば45度範囲内で挿入する。つまり、磁石部材2の磁性体挿入部17への挿着を位置決め部材26、27の位置を目安に挿入するが、正確に磁極の方向と位置決め部材26、27の位置とが一致するように位置合わせする必要はない。   Therefore, the magnet member 2 is inserted into the magnetic body insertion portion 17 with respect to the positioning members 26 and 27 within a predetermined angle range, for example, 45 degrees, based on the shape of the hollow shaft hole 2a. That is, the insertion of the magnet member 2 into the magnetic body insertion portion 17 is inserted with reference to the positions of the positioning members 26 and 27, but the positions of the magnetic poles and the positioning members 26 and 27 are exactly aligned. There is no need to match.

このように目安で挿入した磁石部材2は磁性体挿入部17内で磁極が位置決め部材26、27に吸引されて回転し、磁極の方向と位置決め部材26、27とが完全に一致することとなる。つまり磁性体挿入部17を形成した可動型11は非磁性部材で形成され、位置決め部材26、27は軟磁性材で形成されているので着磁された磁石部材2は磁性体挿入部17内で回転し磁極の方向と位置決め部材26、27とが一致し、その位置に保持されることとなる。   Thus, the magnetic member 2 inserted as a guide rotates in the magnetic material insertion portion 17 with the magnetic poles attracted to the positioning members 26 and 27, and the direction of the magnetic poles and the positioning members 26 and 27 completely coincide with each other. . That is, the movable mold 11 on which the magnetic body insertion portion 17 is formed is formed of a nonmagnetic member, and the positioning members 26 and 27 are formed of a soft magnetic material, so that the magnetized magnet member 2 is placed inside the magnetic body insertion portion 17. The direction of the magnetic pole rotates and the positioning members 26 and 27 coincide with each other and are held in that position.

次にこのように成形型に設けた位置決め部材26、27の磁極吸引作用で磁石部材2を保持した状態で射出口23から樹脂材料を射出する。樹脂材料は機械的強度と環境温度変化から適宜選択すれば良いが、図示のものはポリアセタール樹脂を用いている。   Next, the resin material is injected from the injection port 23 in a state where the magnet member 2 is held by the magnetic pole attracting action of the positioning members 26 and 27 provided in the mold as described above. The resin material may be appropriately selected from mechanical strength and environmental temperature change, but the illustrated material uses polyacetal resin.

このようにして磁石ロータのインサート成形が行われ、図1の磁石ロータ1が成形型から取り出される。次いで磁石部材2を異方性で着磁処理することなく焼成時の残留磁気を帯びた状態でインサートした場合には最終工程として着磁処理を施す。   In this manner, insert molding of the magnet rotor is performed, and the magnet rotor 1 of FIG. 1 is taken out from the mold. Next, when the magnet member 2 is inserted in a state of having residual magnetism during firing without being anisotropically magnetized, the magnetizing process is performed as a final process.

かかる工程で成形された磁石ロータ1は中空円筒形状の磁石部材2と回転軸部材3の回転軸3cとは断面非円形状で形成されることとなる。従って図示のように断面矩形状に形成したときには通常温度変化によってネオジウムなどの磁石部材に比べポリアセタール樹脂などの回転軸3cの膨張及び収縮が大きいが、回転軸3cが収縮した場合にも図4に鎖線で示すように収縮する為、磁石部材2と回転軸3cとが空転することがない。環境温度変化と同様にインサート成形後の経時変化(樹脂成形時のひけ)についても同様の形状変化となる。   In the magnet rotor 1 formed in this process, the hollow cylindrical magnet member 2 and the rotary shaft 3c of the rotary shaft member 3 are formed in a non-circular cross section. Therefore, when it is formed in a rectangular shape as shown in the figure, the expansion and contraction of the rotating shaft 3c such as polyacetal resin is larger than that of a magnet member such as neodymium due to a normal temperature change. Since it contracts as shown by the chain line, the magnet member 2 and the rotating shaft 3c do not idle. Similar to the environmental temperature change, the change in shape after insert molding (sink during resin molding) is the same shape change.

次いで上述の磁石ロータを用いた電磁駆動装置について説明する。図6はカメラ装置用のシャッタ、絞り装置を駆動する駆動装置に採用した場合を示す。図6において、G02はコイル枠で、上下2体で構成され、内部に磁石ロータG01を回動自在に軸支し、外側に電導コイルG03を巻廻する凹溝を有し電導コイルG03を巻廻するものである。G03は電導コイルで、コイル枠G02に巻廻され、駆動電流の供給とその供給方向により磁石ロータG01を適宜回動するものである。G04はシールド用ヨークで、磁石ロータG01を内側に軸支した状態でコイル枠G02の外周に電導コイルを巻廻した状態でその外周を包み込むよう装着され、磁石ロータG01への外部磁界を遮蔽するものである。   Next, an electromagnetic drive device using the above-described magnet rotor will be described. FIG. 6 shows a case where the present invention is adopted in a driving device for driving a shutter and a diaphragm device for a camera device. In FIG. 6, G02 is a coil frame, which is composed of two upper and lower bodies, has a magnet rotor G01 pivotally supported inside, and has a concave groove around which the conductive coil G03 is wound, and the conductive coil G03 is wound around it. It is something to turn around. G03 is a conductive coil, which is wound around the coil frame G02, and rotates the magnet rotor G01 as appropriate depending on the supply of drive current and the supply direction. G04 is a shielding yoke, which is mounted so as to wrap around the outer periphery of the coil frame G02 with the magnet rotor G01 pivotally supported on the inner side, and shields the external magnetic field to the magnet rotor G01. Is.

このシールド用ヨークは、図8に示すように外周の一部が断面C字形状に一部にスリット状の切り欠きが形成してある。この切り欠き部に磁石ロータG01の着磁極NSを結ぶ線が直交する位置を安定点(中立点)としてロータはこの切り欠き部に回転する力が常に及ぶ。従ってこの装置電源がオフになったときに磁石ロータはその磁極がこの切り欠部に一致する位置に保持されることとなる。このように構成することにより、係止機構等が不要で、単に駆動電流の遮断、電源のオフにより磁石ロータの位置制御が容易である。   As shown in FIG. 8, the shield yoke has a part of the outer periphery having a C-shaped cross section and a slit-like notch formed in part. The rotor always receives a rotational force at this notch, with the position where the line connecting the magnetic pole NS of the magnet rotor G01 intersects the notch as a stable point (neutral point). Therefore, when the apparatus power supply is turned off, the magnet rotor is held at a position where the magnetic pole coincides with the notch. With this configuration, a locking mechanism or the like is unnecessary, and the position of the magnet rotor can be easily controlled simply by cutting off the drive current and turning off the power.

次に上述の駆動装置を用いてカメラ装置のシャッタ羽根を開閉する場合について説明する。図8に示す装置は装置基板(以下地板という)Fにシャッタ羽根Eと絞り羽根Cとを組込んだユニットとして構成され、地板Fにはシャッタ羽根Eの駆動手段Hと絞り羽根Cとを区割する中間板(仕切板)であり、図示Bは押え板である。この光量調節装置は以下の構成から成り後述する撮像装置の結像レンズ内に組込まれる。   Next, a case where the shutter blades of the camera device are opened and closed using the above-described driving device will be described. The apparatus shown in FIG. 8 is configured as a unit in which a shutter blade E and a diaphragm blade C are incorporated into an apparatus substrate (hereinafter referred to as a base plate) F. The ground plate F is divided into a driving means H and a diaphragm blade C for the shutter blade E. An intermediate plate (partition plate) to be split, and B in the figure is a presser plate. This light quantity adjusting device has the following configuration and is incorporated in an imaging lens of an imaging device described later.

地板Fは樹脂などのモールド成形で形成され、シャッタ羽根Eと絞り羽根Cとこの両羽根部材を開閉駆動する駆動手段HとGとを取付け支持する適宜形状に構成される。地板Fには撮影光軸と一致する開口F01が形成されこの開口F01は後述の中間板Dに形成される露出開口D01より大きい口径にしてある。地板Fにはシャッタ羽根Eと絞り羽根Cとを回動自在に軸支するそれぞれピン形状の絞り羽根支軸F02とシャッタ羽根支軸F03が一体に形成されている。そしてこの地板Fにはシャッタ羽根Eが組込まれ、次いで中間板(仕切板)Dが、その上に絞り羽根Cが、更にその上に押さえ板Bが重ね合わせて組込まれる。   The base plate F is formed by molding of resin or the like, and is configured in an appropriate shape to attach and support the shutter blade E, the diaphragm blade C, and the driving means H and G that open and close the blade members. An opening F01 coinciding with the photographing optical axis is formed in the base plate F, and this opening F01 has a larger diameter than an exposure opening D01 formed in an intermediate plate D described later. The base plate F is integrally formed with a pin-shaped stop blade support shaft F02 and a shutter blade support shaft F03, which rotatably support the shutter blade E and the stop blade C, respectively. Then, a shutter blade E is incorporated in the base plate F, and then an intermediate plate (partition plate) D, a diaphragm blade C thereon, and a pressing plate B are further superimposed thereon.

シャッタ羽根Eはシャッタ羽根F03に回動自在に支持され地板Fに形成されたガイドリブF06に案内されて前記開口F01を覆う位置(閉位置、以下クローズ位置という)とこの開口F01から退避した開放位置(開位置、以下オープン位置という)との間で移動自在に支持されることとなる。このシャッタ羽根Eには後述のシャッタ駆動手段Hの伝動ピンH12が係合する長孔F05が形成してあり、地板Fには伝動ピンH12を貫通するスリット孔F05が設けてある。このシャッタ羽根部材Eは、前レンズAから入光し中間板Dに形成された露出開口を通過しCCD等の固体撮像素子Jにより受光される被写体光を適宜遮断し、絞り羽根部材Cと共に適正露光を得るためのシャッタで、ポリエステルフィルム、テトロンフィルム等を素材に黒色顔料を塗装、蒸着したシートからなる。図中、E01は回転中心孔で、地板Fのシャッタ羽根回転中心軸F03が貫通し、このシャッタ羽根回転中心軸F03に回転可能に軸支される。E02は作動スリット孔で、シャッタ羽根駆動手段Hの作動ピンH12が貫通し、回転中心孔E01を中心にシャッタ羽根部材Eを揺動するためのものである。   The shutter blade E is rotatably supported by the shutter blade F03 and guided by a guide rib F06 formed on the base plate F so as to cover the opening F01 (closed position, hereinafter referred to as a closed position) and an open position retracted from the opening F01. It is supported movably between (open position, hereinafter referred to as open position). The shutter blade E has a long hole F05 in which a transmission pin H12 of a shutter driving means H, which will be described later, is engaged. The base plate F has a slit hole F05 that penetrates the transmission pin H12. The shutter blade member E appropriately blocks subject light received by the solid-state imaging device J such as a CCD that enters the front lens A and passes through the exposure opening formed in the intermediate plate D. A shutter for obtaining exposure, which is made of a sheet obtained by coating and vapor-depositing a black pigment on a polyester film, a tetron film, or the like. In the figure, E01 is a rotation center hole through which the shutter blade rotation center axis F03 of the base plate F passes, and is rotatably supported by the shutter blade rotation center axis F03. Reference numeral E02 denotes an operation slit hole through which the operation pin H12 of the shutter blade driving means H penetrates and swings the shutter blade member E around the rotation center hole E01.

また地板Fには開閉自在に支持したシャッタ羽根Eの運動を規制する突起から成るストッパF08とF09が一体に設けてあり、羽根Eはクローズ位置でストッパF09に当接し、オープン位置でストッパF08に当接し、それ以上の回動を規制される。従ってこのストッパF08、F09がシャッタ羽根Eの運動を規制する規制部材となる。このように地板Fに開閉自在に支持されたシャッタ羽根Eは中間板(仕切板)Dで覆われる。この中間板Dは地板Fに一体形成した突起F10、F11に支持され、地板Fと中間板Dとの間にはシャッタ羽根Eが回動するギャップが形成されている。上記シャッタ羽根Eは樹脂フィルムで形成され、この中間板も同一素材など樹脂フィルムで形成してある。   Further, the base plate F is integrally provided with stoppers F08 and F09 made of protrusions for restricting the movement of the shutter blade E supported so as to be freely opened and closed. The blade E contacts the stopper F09 at the closed position and contacts the stopper F08 at the open position. Abutting and further rotation is restricted. Accordingly, the stoppers F08 and F09 serve as regulating members that regulate the movement of the shutter blades E. Thus, the shutter blade E supported by the base plate F so as to be freely opened and closed is covered with an intermediate plate (partition plate) D. The intermediate plate D is supported by protrusions F10 and F11 formed integrally with the base plate F, and a gap in which the shutter blade E rotates is formed between the base plate F and the intermediate plate D. The shutter blade E is formed of a resin film, and this intermediate plate is also formed of a resin film such as the same material.

この中間板Dは地板の開口F01と一致する露出開口D01が形成され、図示のものは4mm径に形成してある。この露出開口D01はシャッタ羽根Eがオープン状態で最大の撮影光量を後述の撮像装置の固体撮像素子に導くこととなるがその口径を4mm以下にする。これによって太陽光などの強い光がCCDなどの撮像素子に送られても焼付く恐れがなく、実験によって求めた限界値である。中間板Dには絞り羽根支軸F02が貫通する孔D02とシャッタ羽根支軸F03が貫通する孔D03が形成され、同様に絞り羽根駆動手段Gの作動ピンG12が貫通するスリットD04とシャッタ羽根駆動手段Hの作動ピンH12が貫通するスリットD05が形成されている。尚図示D06は絞り羽根Cとシャッタ羽根Eが露出開口D01から退避したときの退避エリアである。シャッタ羽根Eと絞り羽根Cとは露出開口D01に進入した姿勢と退避エリアD06に位置する姿勢とにそれぞれ露出開口を挟んで直線的に対向する位置に回動中心となる支軸F02と支軸F03が配置されている。図示D07は位置決め凹溝孔で地板Fに形成したピンF12が嵌合し、D08は位置決め孔で地板FのピンF18が嵌合する。   The intermediate plate D is formed with an exposed opening D01 that coincides with the opening F01 of the base plate, and the illustrated one is formed with a diameter of 4 mm. The exposure opening D01 guides the maximum photographing light amount to a solid-state image pickup device of an image pickup apparatus to be described later when the shutter blade E is in an open state. As a result, even if strong light such as sunlight is sent to an image pickup device such as a CCD, there is no fear of burning, and this is a limit value obtained through experiments. The intermediate plate D is formed with a hole D02 through which the diaphragm blade support shaft F02 passes and a hole D03 through which the shutter blade support shaft F03 passes. Similarly, a slit D04 through which the operating pin G12 of the diaphragm blade drive means G passes and the shutter blade drive. A slit D05 through which the operating pin H12 of the means H passes is formed. Incidentally, D06 in the drawing is a retreat area when the diaphragm blade C and the shutter blade E are retreated from the exposure opening D01. The shutter blade E and the diaphragm blade C are respectively pivoted at a position that linearly opposes the posture that enters the exposure opening D01 and the posture that is located in the retreat area D06 with the exposure opening interposed therebetween. F03 is arranged. In the figure, D07 is a positioning concave groove hole and a pin F12 formed on the ground plane F is fitted, and D08 is a positioning hole and a pin F18 of the ground plane F is fitted.

次に絞り羽根Cについて説明すると、後述の撮像装置の前レンズAから入光した被写体光が中間板Dに形成された露出開口D01から固体撮像素子Jに至る光量を調節するための絞り羽根Cは以下のように構成する。樹脂フィルムの打抜きで形成した羽根Cには前記中間板Dの露出開口D01より小径の絞り開口C03が設けられ、前記地板に形成された支軸F02と係合する回転中心孔C01と後述の絞り羽根駆動手段Gの作動ピンG12と係合するスリットC02が形成されている。絞り開口の近辺には図2で説明するNDフィルタを取付ける取付基準孔C04が設けられている。   Next, the diaphragm blade C will be described. The diaphragm blade C for adjusting the amount of light from the exposure aperture D01 formed in the intermediate plate D to the solid-state image sensor J from the subject light incident from the front lens A of the imaging device described later. Is constructed as follows. The blade C formed by punching the resin film is provided with a diaphragm opening C03 having a diameter smaller than the exposure opening D01 of the intermediate plate D, and a rotation center hole C01 that engages with a support shaft F02 formed on the base plate and a diaphragm described later. A slit C02 that engages with the operating pin G12 of the blade driving means G is formed. An attachment reference hole C04 for attaching the ND filter described in FIG. 2 is provided in the vicinity of the aperture opening.

次に押え板Bについて説明すると、金属板で略地板Fと同一形状に形成された押さえ板Bは地板Fとの間に上述のシャッタ羽根Eと絞り羽根Cを組込んでユニットを構成している。この押さえ板Bには露出開口D01と中心が一致する開口B01が形成され、この開口B01は露出開口D01より大きい径に形成されている。B02は地板に形成した支軸F02と係合し、B03は支軸F03と係合する逃げ孔であり、同様にB04は絞り羽根駆動装置の作動ピンG12が運動する逃げ孔であり、B05はシャッタ駆動装置の作動ピンH12の逃げ孔である。B07は前記ストッパF08、B08は前記ストッパF09のそれぞれ逃げ孔である。   Next, the presser plate B will be described. The presser plate B, which is formed of a metal plate substantially in the same shape as the base plate F, constitutes a unit by incorporating the shutter blade E and the aperture blade C described above between the base plate F. Yes. An opening B01 whose center coincides with the exposure opening D01 is formed in the pressing plate B, and the opening B01 is formed to have a diameter larger than that of the exposure opening D01. B02 is engaged with a support shaft F02 formed on the main plate, B03 is an escape hole that engages with the support shaft F03, and similarly, B04 is an escape hole through which the operating pin G12 of the diaphragm blade drive device moves, and B05 is This is a relief hole of the operating pin H12 of the shutter driving device. B07 is a stopper hole for the stopper F08, and B08 is a relief hole for the stopper F09.

図中B09及びB10は位置決め孔であり、地板に形成した突起F12とF13がそれぞれ係合する。これによって地板と押さえ板とは位置合わせされる。そして押さえ板Bには同様に適宜数図示のものは6個所にギャップ調整用の折曲部B11が形成してあり地板Fと中間板Dと押さえ板Bとの間の隙間を形成している。また係止凹部B12が2個所に設けてあり地板Fに形成した爪F14、F15と嵌合して地板と一体化(固定)してある。尚図中D08は位置決め孔で地板Fの中間板位置決めピンF13が貫通する為の逃げ孔である。   B09 and B10 in the figure are positioning holes, and the projections F12 and F13 formed on the main plate engage with each other. As a result, the base plate and the holding plate are aligned. Similarly, in the press plate B, several appropriately illustrated bent portions B11 are formed at six locations to form gaps between the base plate F, the intermediate plate D, and the press plate B. . Moreover, the latching recessed part B12 is provided in two places, and it fits with the nail | claws F14 and F15 formed in the ground plane F, and is integrated (fixed) with the ground plane. In addition, D08 in the figure is an escape hole for the intermediate plate positioning pin F13 of the ground plane F to penetrate through the positioning hole.

以上説明した光量調節装置はデジタルカメラ、ビデオカメラ等のレンズ鏡筒に組込まれ、被写体からの光が固体撮像素子に至る撮像光路の光量を遮断するシャッタ或いは光量を大小調節する絞り等の光量調節を行う。図9は撮像装置の概略を示し、Aは撮像レンズの前レンズであり、Iは後レンズを示している。通常複数のレンズアレイから構成される撮像レンズは焦点位置調節の為撮像光路(以下光路という)に沿って移動自在に鏡筒(図示せず)に組込まれその可動レンズには駆動モータが連結されている。その構造は広く知られているので省略する。   The light amount adjusting device described above is incorporated in a lens barrel of a digital camera, a video camera, etc., and adjusts the amount of light such as a shutter that blocks the amount of light in the imaging optical path where light from the subject reaches the solid-state image sensor, or a diaphragm that adjusts the amount of light. I do. FIG. 9 shows an outline of the imaging apparatus, A is a front lens of the imaging lens, and I is a rear lens. An imaging lens usually composed of a plurality of lens arrays is incorporated in a lens barrel (not shown) so as to be movable along an imaging optical path (hereinafter referred to as an optical path) for focal position adjustment, and a drive motor is connected to the movable lens. ing. Its structure is well known and will be omitted.

このフォーカシング機構のモータには駆動回路FMが接続されている。撮像レンズの結像面には固体撮像素子Jが配置され、この固体撮像素子は解像度に応じた画像数の光電変換素子が配列され、結像された被写体像を電気的に変換する。例えばCCDとして知られるディバイスは光によって電荷を生起するチャージ層とこのチャージ層の電荷を外部に転送するトランスファー層とから構成され、トランスファー層にはCCD制御回路J01が結線されている。このCCD制御回路J01はトランスファー層からの電荷を蓄積するバッファーメモリーと、増幅回路と、A/D変換回路とが組込まれ、基準クロックからの信号に応じて各画素の電荷をトランスファー層からバッファーメモリーに転送する。前述の光量調節装置はユニット化され前レンズAと後レンズIとの間に組込まれ、シャッタ駆動手段(駆動メータ)Gにはシャッタ駆動シャッタ駆動回路SHが絞り駆動手段(駆動メータ)Hには絞り駆動回路IRが設けられている。これ等の制御回路はカメラ装置全体を制御するCPU100に連結されCPU100で各動作が制御される。CPU100にはレリーズスイッチSW2と電源スイッチSW1の信号が伝達されるように結線されている。そこで図10に基づいてその動作を説明する。   A driving circuit FM is connected to the motor of the focusing mechanism. A solid-state imaging device J is disposed on the imaging surface of the imaging lens. The solid-state imaging device has a number of photoelectric conversion elements arranged in accordance with the resolution, and electrically converts the formed subject image. For example, a device known as a CCD is composed of a charge layer that generates charge by light and a transfer layer that transfers the charge of the charge layer to the outside, and a CCD control circuit J01 is connected to the transfer layer. This CCD control circuit J01 incorporates a buffer memory for accumulating charges from the transfer layer, an amplifier circuit, and an A / D conversion circuit, and charges each pixel from the transfer layer to a buffer memory in accordance with a signal from a reference clock. Forward to. The light quantity adjusting device described above is unitized and incorporated between the front lens A and the rear lens I. A shutter drive shutter drive circuit SH is provided in the shutter drive means (drive meter) G, and an aperture drive means (drive meter) H is provided in the aperture drive means (drive meter) H. An aperture driving circuit IR is provided. These control circuits are connected to a CPU 100 that controls the entire camera apparatus, and each operation is controlled by the CPU 100. The CPU 100 is connected so that signals from the release switch SW2 and the power switch SW1 are transmitted. The operation will be described with reference to FIG.

カメラの電源スイッチがON操作(ST01)されるとCPU100は各駆動構成部に電源を供給する。例えば液晶などの表示画面を備えたカメラにあっては液晶のバックライトが点灯し表示可能となり、固体撮像素子Jも生起した電荷を画像処理回路に転送し表示画面に送る。この時光量調節装置のシャッタ羽根E及び絞り羽根Cはその駆動手段H、Gの励磁コイルH03、G03に電源が供給されていない。(電源スイッチSW1がOFFのときと同一の状態)。この状態でシャッタ羽根Eはオープン位置に、絞り羽根Cは退避位置に位置し被写体からの光量は固体撮像素子Jに結像され表示画面に表示される。   When the power switch of the camera is turned on (ST01), the CPU 100 supplies power to each drive component. For example, in a camera equipped with a display screen such as a liquid crystal, the backlight of the liquid crystal is turned on and display is possible, and the solid-state image sensor J also transfers the generated charge to the image processing circuit and sends it to the display screen. At this time, power is not supplied to the excitation coils H03 and G03 of the driving means H and G of the shutter blade E and the diaphragm blade C of the light amount adjusting device. (The same state as when the power switch SW1 is OFF). In this state, the shutter blade E is in the open position, the aperture blade C is in the retracted position, and the amount of light from the subject is imaged on the solid-state image sensor J and displayed on the display screen.

この装置電源操作(ST01)と同時に表示画面に複写体像が表示されモニタ(ST02)が実行される。次いで使用者がこのモニタに表示された状態で撮影(動画撮影モード)するか静止画状態で撮影(スチール撮影モード)するかモード選択スイッチを操作する(ST03)。スチール撮影モード(一駒撮影モードと云う)が選択されると、使用者はモニタ表示で或いはファインダーから被写体を確認しレリーズ操作を実行する。このレリーズ操作を行わず電源スイッチSW01をOFFすると全ての操作が終了し電源供給が断たれ撮影終了となる(ST04)。レリーズ操作はまずシャッタ釦を半押状態に操作する(ST05)。するとその信号でCPU100はモータFMを駆動しフォーカシング動作を実行しピント調整を行う。同時にCPUはCCDの受光量から適正露光量を演算し絞り羽根を使用するか否かを決定する。シャッタ釦が全押状態に操作されると(ST06)CPUは絞り羽根を使用(小絞り撮影)する場合は絞り駆動回路IRに励磁コイルG03に電源供給する指示信号を発する。この信号を受けて絞り駆動回路IRは励磁コイルG03に所定の電流を供給し、コイルG03に生起した磁界でロータは回転する。このロータの回転で伝動ピンG12は絞り羽根Cを図3時計方向に回転し二点鎖線の状態から一点鎖線位置へ移動しストッパ(絞り羽根規制手段)F09に突き当たり、励磁コイルG03に所定電流が供給される間羽根Cはこの状態に維持される(ST07)。この絞り羽根Cの動作の見込み時間の後CPU100はCCD制御回路J01にリセット信号を発する。このリセット信号でCCD制御回路J01はバッファーメモリーに貯えられた画像データを無効としてリセットする(ST08)。このリセット完了で露光が開始され被写体からの光はCCDのチャージ層で光電変換される。   Simultaneously with this apparatus power operation (ST01), the copy body image is displayed on the display screen and the monitor (ST02) is executed. Next, the user operates the mode selection switch to shoot in the state displayed on the monitor (moving image shooting mode) or to shoot in the still image state (still shooting mode) (ST03). When the still shooting mode (called single frame shooting mode) is selected, the user confirms the subject on the monitor display or from the viewfinder and executes the release operation. If the power switch SW01 is turned off without performing the release operation, all the operations are finished, the power supply is cut off, and the photographing is finished (ST04). In the release operation, the shutter button is first pressed halfway (ST05). In response to the signal, the CPU 100 drives the motor FM to execute a focusing operation and adjust the focus. At the same time, the CPU calculates an appropriate exposure amount from the received light amount of the CCD and determines whether or not to use the aperture blade. When the shutter button is fully depressed (ST06), the CPU issues an instruction signal for supplying power to the excitation coil G03 to the aperture driving circuit IR when using the aperture blade (small aperture imaging). In response to this signal, the diaphragm drive circuit IR supplies a predetermined current to the exciting coil G03, and the rotor rotates by the magnetic field generated in the coil G03. With this rotation of the rotor, the transmission pin G12 rotates the diaphragm blade C in the clockwise direction in FIG. 3 and moves from the two-dot chain line state to the one-dot chain line position, hits the stopper (diaphragm blade regulating means) F09, and a predetermined current is applied to the exciting coil G03. While being supplied, the blade C is maintained in this state (ST07). After the expected time for the operation of the diaphragm blade C, the CPU 100 issues a reset signal to the CCD control circuit J01. With this reset signal, the CCD control circuit J01 invalidates and resets the image data stored in the buffer memory (ST08). Exposure is started upon completion of the reset, and light from the subject is photoelectrically converted by the charge layer of the CCD.

CPU100は演算によって得た所定の時間(露出時間)が経過するとシャッタ駆動回路SHにシャッタ閉鎖の指示信号を発する。回路SHはこの信号を得てシャッタ駆動手段(駆動メータ)Hの励磁コイルH03に所定電流を通電する。この電流の供給でコイルH03に生起した電流はロータを回転しシャッタ羽根Eをオープン位置から点線で示すクローズ位置に移動する。この羽根の移動で被写体からの光は完全に閉じられ、CCDの露光が終了する(ST09)。駆動回路SHは羽根がクローズ位置に移動した後もコイルH03に所定の電流を通電し続けコイルH03の生起磁界は、ロータを反時計方向に回転する力を付与する。従って羽根Eはストッパ(シャッタ羽根規制手段)F09に突き当たって静止した状態を維持する(ST10)。この時外部から衝撃など外力が及んでも羽根はクローズ位置に保持されることとなる。   When a predetermined time (exposure time) obtained by calculation elapses, the CPU 100 issues a shutter closing instruction signal to the shutter driving circuit SH. The circuit SH obtains this signal and supplies a predetermined current to the excitation coil H03 of the shutter drive means (drive meter) H. The current generated in the coil H03 by supplying this current rotates the rotor and moves the shutter blade E from the open position to the closed position indicated by the dotted line. With this movement of the blades, the light from the subject is completely closed, and the exposure of the CCD is completed (ST09). The drive circuit SH continues to energize the coil H03 with a predetermined current even after the blades have moved to the closed position, and the generated magnetic field of the coil H03 applies a force that rotates the rotor counterclockwise. Accordingly, the blade E keeps the stationary state by hitting the stopper (shutter blade regulating means) F09 (ST10). At this time, even if an external force such as an impact is applied from the outside, the blade is held in the closed position.

次いでCPU100はCCD制御回路J01に露出終了の信号を発しCCDのチャージ層に帯電した電荷をトランスファー層を介して画像処理回路に転送する。このデータの転送はCCDの各画素の電荷は順次X・Y方向に走査信号に従って行われ、その制御はCCD制御回路の基準クロックに基づいて行われる。従ってCCDおよび制御回路の特性によってデータ転送時間が定められる。そこでCPU100はこのデータ転送時間に基づいて予め設定した時間(少なくともデータ転送時間より長い時間)励磁コイルH03に所定電流を供給する。するとシャッタ羽根Eはクローズ位置に保持され、データ転送過程で外部の光がCCDに到達することがない(ST11)。   Next, the CPU 100 issues an exposure end signal to the CCD control circuit J01, and transfers the charge charged in the charge layer of the CCD to the image processing circuit via the transfer layer. This data transfer is performed in accordance with the scanning signal in the X and Y directions sequentially for the charge of each pixel of the CCD, and the control is performed based on the reference clock of the CCD control circuit. Therefore, the data transfer time is determined by the characteristics of the CCD and the control circuit. Therefore, the CPU 100 supplies a predetermined current to the exciting coil H03 for a preset time (at least longer than the data transfer time) based on the data transfer time. Then, the shutter blade E is held at the closed position, and external light does not reach the CCD during the data transfer process (ST11).

次にCPU100は所定の設定時間が経過すると絞り駆動回路IRとシャッタ駆動回路SHに動作終了信号を発する。この信号で絞り駆動回路IRは励磁コイルに逆方向の電流を供給し、羽根Cを作動位置から退避位置に移動する(ST12)。この動作の後電流の供給を断つ。すると羽根Eは駆動手段のロータがヨークに形成されたカット(スリット)部に永久磁石の磁力で吸引されストッパF08に突き当たって静止する(ST13)。
同様にシャッタ駆動回路SHは励磁コイルH03に逆方向の電流を供給し、羽根Eを点線クローズ位置から二点鎖線のオープン位置に移動する(ST14)。この状態で励磁コイルH03への通電を断つと、シャッタ駆動手段HのロータはヨークH04に形成したスリット部に吸引され羽根EはストッパF07に突き当たった状態でオープン位置に保持される。かかる動作で光量調節装置は初期状態となり次の撮影動作に備える。
Next, when a predetermined set time has elapsed, the CPU 100 issues an operation end signal to the aperture driving circuit IR and the shutter driving circuit SH. With this signal, the diaphragm drive circuit IR supplies a reverse current to the exciting coil, and moves the blade C from the operating position to the retracted position (ST12). After this operation, the supply of current is cut off. Then, the blade E is attracted to the cut (slit) portion formed on the yoke by the rotor of the driving means by the magnetic force of the permanent magnet, and abuts against the stopper F08 and stops (ST13).
Similarly, the shutter drive circuit SH supplies a current in the reverse direction to the exciting coil H03, and moves the blade E from the dotted line closed position to the two-dot chain line open position (ST14). When the energization to the exciting coil H03 is cut off in this state, the rotor of the shutter driving means H is attracted to the slit portion formed in the yoke H04, and the blade E is held at the open position in a state where it abuts against the stopper F07. With this operation, the light amount adjusting device is in an initial state and is ready for the next photographing operation.

尚、以上の絞り羽根及びシャッタ羽根の動作は励磁コイルに供給する電流を正逆反転することによって開閉する場合を説明したが、絞り羽根Cに退避方向の力を付与するスプリング(クローズスプリング)同様にシャッタ羽根Eにオープン方向の力を付与するスプリングを設けた場合には上記ST12及びST14で逆電流を通電することなく単に供給電源をOFFすれば良い。またこの場合には駆動メータのヨークにスリットを設けて磁石ロータを一方向に吸引する必要もない。その他の動作は上述と同様となる。   The operation of the diaphragm blades and shutter blades has been described in the case where the current supplied to the exciting coil is opened and closed by reversing forward and backward. However, the operation is similar to a spring (close spring) that applies a retracting direction force to the diaphragm blades C. In the case where the shutter blade E is provided with a spring for applying a force in the opening direction, it is only necessary to turn off the supply power without applying a reverse current in ST12 and ST14. In this case, it is not necessary to provide a slit in the yoke of the drive meter to attract the magnet rotor in one direction. Other operations are the same as described above.

本発明の磁石ロータの構造を示す分解斜視図。The disassembled perspective view which shows the structure of the magnet rotor of this invention. 本発明の磁石ロータの成形方法に用いる成形型の構造を示す斜視図。The perspective view which shows the structure of the shaping | molding die used for the shaping | molding method of the magnet rotor of this invention. 図2の成形型の平面を示す説明図。Explanatory drawing which shows the plane of the shaping | molding die of FIG. 異方性磁石の磁場の方向を示す説明図。Explanatory drawing which shows the direction of the magnetic field of an anisotropic magnet. 磁石ロータの成形型の構造を示し、(a)は中央縦断面図(b)は平面図をそれぞれ示す。The structure of the magnet rotor mold is shown, (a) is a central longitudinal sectional view (b) and a plan view is shown. 図1の磁石ロータを用いた電磁駆動装置の中央縦断断面図。The center longitudinal cross-sectional view of the electromagnetic drive device using the magnet rotor of FIG. 本発明のインサート成形方法の工程を示す説明図。Explanatory drawing which shows the process of the insert molding method of this invention. 図6の電磁駆動装置を用いたシャッタ羽根開閉装置の組み立て分解斜視図。FIG. 7 is an exploded exploded perspective view of a shutter blade opening / closing device using the electromagnetic driving device of FIG. 6. 図8の装置を用いたカメラ装置の概略構成の説明図。Explanatory drawing of schematic structure of the camera apparatus using the apparatus of FIG. 図8の装置における動作フローチャート。The operation | movement flowchart in the apparatus of FIG.

1 ロータ
2 磁石部材
2a 中空軸孔
3 回転軸部材
3a、3b上下のフランジ
3c 回転軸
4 伝動アーム部材
4a アーム部
4b 伝動部
4c 連結部
10 固定型
11 可動型
12 軸端形成部
13 形成部
14 形成部
17 磁性体挿入部
22 軸端形成部
23 射出口
25 挿入孔
26 位置決め部材
27 位置決め部材
DESCRIPTION OF SYMBOLS 1 Rotor 2 Magnet member 2a Hollow shaft hole 3 Rotary shaft member 3a, 3b Upper and lower flanges 3c Rotating shaft 4 Transmission arm member 4a Arm part 4b Transmission part 4c Connection part 10 Fixed type | mold 11 Movable type | mold 12 Shaft end formation part 13 Formation part 14 Formation part 17 Magnetic body insertion part 22 Shaft end formation part 23 Injection port 25 Insertion hole 26 Positioning member 27 Positioning member

Claims (5)

強磁性体を中空円筒形状に形成し、この磁性体を少なくとも1つの作動アーム成形部を有する成形型内に装填した後、樹脂材料を射出して強磁性体と作動アームとを一体成形する磁石ロータの成形方法であって、
上記中空円筒形状の強磁性体は、周面を少なくとも2極に分極着磁され、中心に断面非円形状の軸孔を有するように形成され、
上記成形型は、非磁性材で形成され上記磁性体を回動自在に装填する磁性体挿入部と上記作動アームを成形する作動アーム形成部とこの作動アーム形成部に対し所定角度位置で上記磁性体挿入部に配置された軟磁性材から成る位置決め部材とで構成し、
上記強磁性体を上記磁性体挿入部に収容し、この強磁性体を上記位置決め部材の吸引によって上記作動アーム成形部と所定の角度位置に回転させて位置決めすると共に保持し、
次いで上記成形型部に樹脂材料を射出するようにしたことを特徴とする磁石ロータの成形方法。
A magnet in which a ferromagnetic body is formed into a hollow cylindrical shape, and the magnetic body is loaded into a mold having at least one operating arm molding portion, and then a resin material is injected to integrally mold the ferromagnetic body and the operating arm. A method of forming a rotor,
The hollow cylindrical ferromagnet is formed such that the peripheral surface is polarized and magnetized to at least two poles, and has a non-circular axial hole in the center,
The molding die is formed of a non-magnetic material, and includes a magnetic body insertion portion for rotatably loading the magnetic body, an operating arm forming portion for molding the operating arm, and the magnetic arm at a predetermined angular position with respect to the operating arm forming portion. It consists of a positioning member made of a soft magnetic material arranged in the body insertion part,
The ferromagnetic body is accommodated in the magnetic body insertion portion, and the ferromagnetic body is rotated and positioned at a predetermined angular position with the operating arm molding portion by suction of the positioning member, and is held.
Next, a molding method of a magnet rotor, wherein a resin material is injected into the molding die.
前記強磁性体は周側面にNS2極に分極着磁され、前記位置決め部材は前記磁性体挿入部に互いに対向する一対の軟磁性部材で構成されていることを特徴とする請求項1記載の磁石ロータの成形方法。   2. The magnet according to claim 1, wherein the ferromagnetic body is polarized and magnetized with NS2 poles on a peripheral side surface, and the positioning member is composed of a pair of soft magnetic members facing each other to the magnetic body insertion portion. Rotor molding method. 前記強磁性体の軸孔は断面矩形状である請求項1記載の磁石ロータの成形方法。   The method for forming a magnet rotor according to claim 1, wherein the axial hole of the ferromagnetic body has a rectangular cross section. 前記強磁性体はネオジウムなどの磁性体粉末を焼結型内で磁場を作用させて焼成して形成することを特徴とする請求項1記載の磁石ロータの成形方法。   2. The method of forming a magnet rotor according to claim 1, wherein the ferromagnetic body is formed by firing a magnetic powder such as neodymium by applying a magnetic field in a sintering mold. 前記強磁性体のN−S着磁は焼結成形時の磁場によって磁極を形成することを特徴とする請求項4記載の磁石ロータの成形方法。   5. The method of forming a magnet rotor according to claim 4, wherein the N-S magnetization of the ferromagnetic body forms a magnetic pole by a magnetic field during sintering.
JP2004108718A 2004-04-01 2004-04-01 Magnet rotor forming method Expired - Fee Related JP4559765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108718A JP4559765B2 (en) 2004-04-01 2004-04-01 Magnet rotor forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108718A JP4559765B2 (en) 2004-04-01 2004-04-01 Magnet rotor forming method

Publications (2)

Publication Number Publication Date
JP2005295716A JP2005295716A (en) 2005-10-20
JP4559765B2 true JP4559765B2 (en) 2010-10-13

Family

ID=35328037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108718A Expired - Fee Related JP4559765B2 (en) 2004-04-01 2004-04-01 Magnet rotor forming method

Country Status (1)

Country Link
JP (1) JP4559765B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910611B2 (en) * 2006-10-04 2012-04-04 ソニー株式会社 Actuator device and imaging device for optical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207916A (en) * 1988-02-16 1989-08-21 Matsushita Electric Ind Co Ltd Manufacture of magnet roll
JPH0629139A (en) * 1991-01-10 1994-02-04 Copal Co Ltd Anisotropic resin magnet with functional member
JPH11138553A (en) * 1997-11-14 1999-05-25 Copal Co Ltd Insert mold and insert molding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207916A (en) * 1988-02-16 1989-08-21 Matsushita Electric Ind Co Ltd Manufacture of magnet roll
JPH0629139A (en) * 1991-01-10 1994-02-04 Copal Co Ltd Anisotropic resin magnet with functional member
JPH11138553A (en) * 1997-11-14 1999-05-25 Copal Co Ltd Insert mold and insert molding method

Also Published As

Publication number Publication date
JP2005295716A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
CN100552521C (en) Imaging device and the light amount control apparatus that uses therein
US7374353B2 (en) Light control apparatus and optical apparatus
US6606206B2 (en) Impact absorbent shifting device
US20100220402A1 (en) Lens barrel and imaging device
CN102667609B (en) Focal plane shutter and optical apparatus
US7995287B2 (en) Lens barrel and imaging apparatus
US20080137348A1 (en) Magnetic actuator and light quantity adjusting device
JP4559765B2 (en) Magnet rotor forming method
JP2006330314A (en) Light quantity adjusting device, imaging optical unit and imaging apparatus
KR20070013606A (en) Iris apparatus having function of shutter and the iris apparatus controlling method thereof
US6860655B2 (en) Driving apparatus, light-amount regulating apparatus, and lens driving apparatus
JP4599198B2 (en) Lens holding unit
JP2014092650A (en) Imaging unit
US20060269281A1 (en) Manufacturing method of magnet rotor, magnet rotor manufactured by the method, electromagnetic drive device and light quantity adjustment device using the magnet rotor
JPS5816208A (en) Lens barrel having incorporated with electromagnetic induction mechanism
US6981807B2 (en) Electromagnetic drive device and light quantity adjustment device using the same
JP2001324749A (en) Image pickup device
JP2014137535A (en) Imaging apparatus
JP5047460B2 (en) Imaging optical unit and imaging apparatus
JP4559771B2 (en) Light amount adjusting device and imaging device provided with the same
US10718993B2 (en) Blade opening and closing device and image pickup device
JP6595830B2 (en) Blade driving device and optical apparatus provided with blade driving device
JP5047459B2 (en) Light amount adjusting device, imaging optical unit, and imaging device
JP4334337B2 (en) Camera blade drive
KR100714795B1 (en) Iris Apparatus having Function of Shutter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R150 Certificate of patent or registration of utility model

Ref document number: 4559765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees