JP4559653B2 - Exhaust member for heat source machine - Google Patents

Exhaust member for heat source machine Download PDF

Info

Publication number
JP4559653B2
JP4559653B2 JP2001090472A JP2001090472A JP4559653B2 JP 4559653 B2 JP4559653 B2 JP 4559653B2 JP 2001090472 A JP2001090472 A JP 2001090472A JP 2001090472 A JP2001090472 A JP 2001090472A JP 4559653 B2 JP4559653 B2 JP 4559653B2
Authority
JP
Japan
Prior art keywords
exhaust
resin
reinforcing agent
resins
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001090472A
Other languages
Japanese (ja)
Other versions
JP2002286222A (en
Inventor
一人 山本
寛之 西村
隆文 川口
真一 川崎
昌宏 山田
真理子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001090472A priority Critical patent/JP4559653B2/en
Publication of JP2002286222A publication Critical patent/JP2002286222A/en
Application granted granted Critical
Publication of JP4559653B2 publication Critical patent/JP4559653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)
  • Details Of Fluid Heaters (AREA)
  • Housings, Intake/Discharge, And Installation Of Fluid Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯器などの熱源機の排気部を構成する部材として有用な熱源機用排気部材に関する。
【0002】
【従来の技術】
家庭やオフィスなどでは、ガスや電気を利用した多くの熱源機、例えば、給湯器、冷暖房機などが利用されている。この熱源機においてガスを利用した熱源機は、通常、吸気口と、水道水などが流通可能な熱交換器を備えたガス燃焼ユニットと、燃焼した排ガスを排出するための排気口とを備えており、燃焼ユニットからの排気は排気口に通じる排気部材を利用して行われる。この排気部材は、通常、燃焼ユニットに近接して配設された排気管と、この排気管からの排ガスを案内するための排気筒と、この排気筒の端部に取り付けられ、かつ排ガスを外部に放出するため排気口を備えた排気トップとで構成されている。
【0003】
このような熱源機用排気部材としては、耐熱性や不燃性などの観点から金属(SUS304などのステンレススチールなど)が使用されている。しかし、このような金属製排気部材では、量産性及び加工性の向上が大きな課題である。特に、排気トップは、複数の部材、例えば、排気筒に対して装着するための筒状装着部材と、この筒状装着部材に被せて取り付けられ、かつ排気口を形成する網状又はネット状部材とで構成されている。そのため、網状又はネット部材を金属製の筒状装着部材に緊密かつ一体に取り付けるための作業及び加工が煩雑化する。また、結露や排ガスドレンにより金属部材が腐食するため、腐蝕を防止するため、排気温度を露点以上とするための燃焼制御や腐食部への耐蝕コーティングを施す必要がある。そのため、燃焼制御のための設計、排気部材の加工処理が必要となり、排気部材を効率よく加工することが困難である。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、加工性及び量産性が高く、複数の部材で構成されていても一体性の高い熱源機用排気部材を提供することにある。
【0005】
本発明の他の目的は、耐蝕コーティングを施さなくても腐蝕の虞がなく、燃焼制御のための設計、排気部の加工を簡素化できる熱源機用排気部材を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、前記課題を達成するため鋭意検討した結果、特定の樹脂又は樹脂組成物を用いて排気部材を形成すると、熱源からの排熱に対して高い耐性を示すだけでなく、高い加工性により生産性及び量産性を改善できるとともに、排熱部材に高い耐食性を付与できること、排気部材を軽量化できるだけでなく、排気トップに適用しても騒音の発生を抑制できることを見いだし、本発明を完成した。
【0007】
すなわち、本発明の排気トップは、給水加熱器、暖房機又は熱交換器の熱源からのガスを排気するための排気路を構成し、かつ筒状装着部材と、この筒状装着部材に対して一体化した通気部材とで構成された排気トップであって、少なくとも前記筒状装着部材が、熱分解温度180℃以上のフェノール樹脂の成形体で構成されている。前記成形体は、補強剤(例えば、繊維状補強剤及び/又は粉粒状補強剤)、特に少なくとも無機質補強剤(繊維状無機質補強剤など)を含有していてもよい
【0008】
【発明の実施の形態】
本発明の熱源機用排気部材を構成する熱可塑性樹脂は、ガラス転移温度(示差走査型熱量計DSCによるガラス転移温度)が180℃以上(例えば、190〜350℃、好ましくは200〜350℃程度)であればよい。このような熱可塑性樹脂としては、例えば、芳香族ポリエステル系樹脂(ポリアリレート系樹脂、フルオレノン側鎖を有する9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンをジオール成分とするポリエステル系樹脂、全芳香族ポリエステルで構成された液晶性ポリエステル系樹脂など)、芳香族ポリアミド系樹脂、ポリスルホン系樹脂(ポリエーテルスルホン、ポリスルホンなど)、ポリフェニレンエーテル系樹脂(2,6−キシレノールの重合体など)、ポリアリーレンスルフィド系樹脂(ポリフェニレンスルフィドスルホン、ポリビフェニレンスルフィドなど)、熱可塑性ポリイミド樹脂(ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミドスルホン系樹脂など)、ポリパラバン酸などが例示できる。これらの樹脂は単独で又は二種以上組み合わせて使用できる。
【0009】
これらの樹脂のうち、ポリアリレート系樹脂、9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンをジオール成分とする芳香族ポリエステル系樹脂、全芳香族液晶性ポリエステル系樹脂、芳香族ポリアミド系樹脂、ポリスルホン系樹脂、ポリフェニレンエーテル系樹脂、ポリアリーレンスルフィド系樹脂、熱可塑性ポリイミド樹脂、ポリパラバン酸などは高いガラス転移温度及び耐熱性を有している。特に、全芳香族液晶性ポリエステル系樹脂、ポリエーテルスルホン、ポリフェニレンエーテル系樹脂、熱可塑性ポリイミド樹脂及びポリパラバン酸はガラス転移温度及び耐熱性が高い。
【0010】
熱硬化性樹脂としては、熱分解温度(熱重量分析TGAにおける重量減少開始温度又は微分熱分解開始温度)が180℃以上(例えば、200〜500℃、好ましくは200〜500℃程度)の樹脂であれば特に制限されず、例えば、フェノール樹脂、アミノ樹脂(尿素樹脂、グアナミン樹脂、メラミン樹脂など)、エポキシ樹脂(ビスフェノールA型、ノボラック型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂など)、ビニルエステル樹脂、ジアリルフタレート樹脂、不飽和ポリエステル系樹脂、ポリウレタン系樹脂(芳香族ポリイソシアネート又はポリイソシアネートの多量体(イソシアヌレート環を有するポリイソシアネートなど)と、芳香族ポリオール、芳香族ポリエステルポリオール及び/又は芳香族ポリアミンとの反応により得られる芳香族ポリウレタン系樹脂など)、ポリイミド樹脂(芳香族テトラカルボン酸と芳香族ジアミンとの縮合反応により生成する縮合型ポリイミド樹脂、ビスマレイミドと芳香族ジアミンとの反応により生成するビスマレイミド系樹脂などの付加型ポリイミド樹脂など)、シリコーン樹脂などが例示できる。これらの樹脂は単独で又は二種以上組み合わせて使用でき、共重合体であってもよい。例えば、フェノール類と、共縮合成分(尿素、メラミン、フルフラールなど)との共縮合体、芳香族ポリイソシアネート又はポリイソシアネートの多量体(イソシアヌレート環を有するポリイソシアネートなど)とエポキシ樹脂(ビスフェノールA型などの芳香族エポキシ樹脂など)と芳香族ポリアミンとの共重合体などを共重合体として用いることができる。なお、熱硬化性樹脂の硬化には、樹脂の種類に応じた慣用の硬化剤が使用できる。
【0011】
耐熱性の高い熱硬化性樹脂としては、例えば、フェノール樹脂(共縮合フェノール樹脂を含む)、芳香族エポキシ樹脂、ビニルエステル樹脂、芳香族ポリウレタン系樹脂、ポリイミド樹脂などが例示できる。
【0012】
好ましい熱硬化性樹脂は、高温での機械的強度の保持率の高いフェノール樹脂である。このフェノール樹脂は、レゾール型フェノール樹脂であってもよくノボラック型フェノール樹脂であってもよい。フェノール樹脂は、酸触媒又は塩基性触媒の存在下、フェノール類(例えば、フェノール、クレゾール類、アルキルフェノール類、アミノフェノール類など)とアルデヒド類(ホルムアルデヒド)とを反応させることにより得ることができる。
【0013】
排気部材は、複数の樹脂で構成されたポリマーアロイで構成してもよく、このポリマーアロイは熱可塑性樹脂同士、熱硬化性樹脂同士に限らず、熱可塑性樹脂と熱硬化性樹脂とを組み合わせて形成してもよい。さらに、必要であれば、ポリマーアロイは相溶化剤を含んでいてもよい。
【0014】
前記成形体は、樹脂単独で形成してもよいが、耐熱性(熱変形温度、熱分解温度など)、機械的特性などを向上させるため、補強剤を含有する樹脂組成物で形成するのが好ましい。補強剤は、繊維状補強剤であってもよく粉粒状補強剤であってもよい。繊維状補強剤としては、例えば、無機質繊維(ガラス繊維、炭素繊維、アルミナ繊維、シリカ繊維、ボロン繊維、金属繊維、ホイスカーなど)、有機質繊維(パルプなどの天然繊維、半合成繊維、アラミド繊維、レーヨンなどの合成繊維)などが例示できる。粉粒状補強剤としては、例えば、シリカ、アルミナ、酸化チタン、シラスバルーン、マイカ、タルク、炭酸カルシウム、硫酸バリウムなどが例示できる。これらの補強剤は単独で又は二種以上(同種又は異種の補強剤を二種以上)組み合わせて使用できる。これらの補強剤としては、少なくとも無機質補強剤(特に繊維状無機質補強剤などの繊維状補強剤)を利用するのが好ましい。さらに、補強剤は、難燃性補強剤であるのが好ましい。
【0015】
なお、樹脂と補強剤とは、樹脂及び補強剤の種類に応じて組み合わせることができ、例えば、フェノール樹脂と繊維状補強剤(例えば、ガラス繊維などの繊維状無機質補強剤)とを組み合わせて構成してもよい。
【0016】
繊維状補強剤の平均繊維径は、例えば、1〜30μm、好ましくは2〜20μm程度であり、平均アスペクト比は、例えば、10〜10000、好ましくは10〜1000(例えば、50〜500)程度である。粉粒状補強剤の平均粒子径は、例えば、1〜50μm、好ましくは1〜30μm程度の範囲から適当に選択できる。
【0017】
補強剤の含有量は、成形体の機械的特性を損なわない限り特に制限されず、例えば、樹脂100重量部に対して1〜300重量部、好ましくは5〜250重量部、さらに好ましくは10〜200重量部程度であってもよい。
【0018】
さらに、排気部材は、難燃剤を含有していてもよい。難燃剤としては、例えば、ハロゲン系難燃剤(臭素化エポキシ樹脂、臭素化ポリカーボネート樹脂など)、ハロゲン系難燃剤と酸化アンチモンとの組合せ、リン酸エステル系難燃剤(トリクレジルホスフェート、トリス(ジブロモプロピル)ホスフェート、縮合リン酸エステルなど)などが例示できる。これらの難燃剤も単独で又は二種以上組み合わせて使用できる。難燃剤の使用量は、例えば、樹脂100重量部に対して、1〜30重量部、好ましくは2〜25重量部程度の範囲から適当に選択できる。
【0019】
さらに、必要であれば、種々の添加剤、例えば、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤など)、着色剤、帯電防止剤などを樹脂組成物に添加してもよい。
【0020】
本発明の排気部材は、前記樹脂又は樹脂組成物を所定形状に成形した成形体で構成できる。また、排気部材は、熱源(燃焼ユニットなど)からの排ガス(ホットガス)を排気するための排気路を構成する限り、種々の部材が含まれる。そのため、排気部材は、排気路の形態や適用部位などに応じて所定の形態を備えていればよい。代表的な排気部材には、例えば、排気管、排気筒、排気トップなどが含まれ、これらの部材のうち、少なくとも1つの部材が前記成形体で構成されていればよい。このような排気部材は、前記樹脂又は樹脂組成物を成形することにより形成できるため、量産性及び加工性を大きく向上できる。しかも、結露や排ガスドレンによる腐蝕する虞がないため、燃焼制御や耐蝕コーティングなどが不要となり、熱源機の設計や成形体の加工処理を大きく改善できる。
【0021】
なお、熱源(特に燃焼ユニット)からの排ガスを排気するための前記排気部材において、排気管は、通常、熱交換器を備えた燃焼ユニットの近傍に配設され、排気筒は、前記排気管に連通して接続され、排ガスを排気トップに案内するために利用される。さらに、排気トップは、前記排気筒の端部に取り付けられ、かつ排ガスを外部に放出するため排気口を備えている。
【0022】
図1は排気トップを示す概略図である。この排気トップ1は、前記排気筒の端部に装着可能な円筒状装着部材2と、この円筒状装着部材に対して一体化した通気部材3とで構成されている。なお、円筒状装着部材2は通気部材3と一体に成形してもよい。また、前記通気部材3は、平坦な板状であってもよく、外方に向かって膨出して湾曲していてもよい。前記通気部材3は、筒状装着部材の開口部に形成することにより、鳥類などが排気部材内に侵入するのを防止するとともに、排気量を制御することにより燃焼を制御している。なお、装着部材2には、ネジ止めなどを利用して、排気筒に対して位置決めして固定するため長孔4が形成されている。
【0023】
そして、この例では、前記円筒状装着部材2及び通気部材3は、前記樹脂又は樹脂組成物により成形されている。通気部材3を樹脂又は樹脂組成物で形成することにより、成形加工が容易となり、開口部の形状を所望の形状(丸状、多角形状や格子状など)に形成することも容易であり、また、開口径の制御や排気の方向性の制御による排気制御により、排気音を低減することができる。
【0024】
このような排気部材では、排気トップ1が複数の部材(筒状装着部材および通気部材)で構成されていても、筒状装着部材2と通気部材3とを一体に成形でき、加工性のみならず一体性を大きく向上できる。そのため、通気部に風が作用しても、筒状装着部材に対して通気部材が振動することがなく、騒音の発生も大きく抑制できる。
【0025】
なお、必要であれば、排気路を構成する複数の部材[排気管、排気筒及び排気トップ(筒状装着部材など)など]のうち隣接又は連接位置の複数の部材には、互いに緊密に装着又は接続可能な装着端部を形成してもよく、隣接又は連接位置の複数の部材は、互いに一体成形してもよい。
【0026】
通気部材(網目状通気部材など)は、格子状などの適当な通気形態を有していればよく、通気孔の形状は特に制限されない。前記の例では、排気トップのうち、筒状装着部材及び通気部材を前記樹脂又は樹脂組成物で成形しているが、必要であれば、筒状装着部材及び通気部材のいずれか一方の部材を樹脂又は樹脂組成物で成形してもよい。また、筒状装着部材に対して通気部材は、嵌合、挿入などの種々の方法で装着(特に緊密に装着)してもよく、前記のように一体成形してもよい。さらに、前記通気部材(網目状通気部材)は、網目状やネット状部材であってもよく、ガラス繊維、炭素繊維、金属繊維などの網状体、パンチングメタルなどの金属板状体、セラミックスなどで形成してもよい。
【0027】
なお、排気部材の内面には、熱反射層(例えば、アルミニウム箔などの金属薄膜など)を形成又はラミネートしてもよい。
【0028】
本発明の排気部材は、種々の熱源機、例えば、燃焼ガスや電気加熱により被加熱体(水や空気など)を直接的又は熱交換ユニットにより間接的に加熱する予熱器や加熱器(例えば、給湯器などの給水加熱器、暖房機、熱交換器など)などに適用できる。
【0029】
【発明の効果】
本発明では、特定の樹脂成形体で熱源機の排気部材を構成するため、加工性及び量産性が高く、複数の部材で構成されていても一体性を向上できる。また、耐蝕コーティングを施さなくても腐蝕の虞がないため、燃焼部や燃焼制御のための設計を簡素化できるとともに、排気部の加工効率を向上できる。
【0030】
【実施例】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0031】
実施例1
ノボラック型フェノール樹脂50重量部とガラス繊維50重量部とを混練して、樹脂組成物を調製した。得られた樹脂組成物の比重は1.8であった。熱源機排気部材として、排気トップの筒状装着部材と通気部材に対応するキャビティを有する金型で成形し、400℃で2時間アニールして成形品(排気トップ)を作製した。前記樹脂組成物を用い、同様の条件でJIS規格の曲げ試験用試験片を作製した。
【0032】
耐熱性試験として、前記曲げ試験用試験片を、空気中、220℃で200時間保持し、外観変化、重量変化、強度変化を評価したところ、目視による外観検査では、試験前後で変化はみられなかった。また、重量変化率は1重量%未満であり、曲げ強度試験での最大点応力、破断点伸び、弾性率の変化率も1%未満であり、劣化はみられなかった。耐触性試験として、試験片を、35℃及び500時間の塩水噴霧試験に供した後、試験片の外観を目視で検査したところ、膨れ、割れなどの劣化は認められなかった。
【0033】
成形品(排気トップ)について、耐熱性試験と耐触性試験をおこなった。耐熱性試験において、電気炉に排気トップを配置して空気中220℃で200時間保持した後、外観変化と重量変化を評価したところ、排気トップは試験片と同じく、目視による外観検査では試験前後で変化が認められず、試験前後の重量変化率も1重量%未満であった。また、35℃で塩水噴霧試験を500時間行ない、耐触性を調べたところ、外観の目視検査により、膨れ、割れなどは認められなかった。
【0034】
比較例1
ステンレススチール(SUS304)を用いて試験片を作製し、35℃で塩水噴霧試験を500時間行ない、試験片の外観を目視で検査したところ、表面に錆が発生し、腐食による劣化がみられた。
【図面の簡単な説明】
【図1】図1は排気部材(排気トップ)の一例を示す概略図である。
【符号の説明】
1…排気トップ
2…筒状装着部材
3…通気部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust member for a heat source machine useful as a member constituting an exhaust part of a heat source machine such as a water heater.
[0002]
[Prior art]
In homes and offices, many heat source machines using gas and electricity, for example, water heaters and air conditioners are used. A heat source machine that uses gas in this heat source machine usually includes an intake port, a gas combustion unit including a heat exchanger through which tap water and the like can be circulated, and an exhaust port for discharging the burned exhaust gas. The exhaust from the combustion unit is performed using an exhaust member that communicates with the exhaust port. The exhaust member is usually attached to an exhaust pipe disposed near the combustion unit, an exhaust pipe for guiding exhaust gas from the exhaust pipe, an end of the exhaust pipe, and the exhaust And an exhaust top provided with an exhaust port for discharging to the exhaust.
[0003]
As such an exhaust member for a heat source machine, a metal (such as stainless steel such as SUS304) is used from the viewpoints of heat resistance and incombustibility. However, in such a metal exhaust member, improvement in mass productivity and workability is a major issue. In particular, the exhaust top includes a plurality of members, for example, a cylindrical mounting member for mounting on the exhaust cylinder, and a net-like or net-like member attached to the cylindrical mounting member and forming an exhaust port. It consists of This complicates work and processing for attaching the net or net member tightly and integrally to the metal cylindrical mounting member. Further, since the metal member is corroded by dew condensation or exhaust gas drainage, in order to prevent corrosion, it is necessary to apply combustion control for setting the exhaust temperature to be higher than the dew point or to apply corrosion resistant coating to the corroded portion. Therefore, design for combustion control and processing of the exhaust member are necessary, and it is difficult to efficiently process the exhaust member.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide an exhaust member for a heat source machine that has high workability and mass productivity, and is highly integrated even if it is composed of a plurality of members.
[0005]
Another object of the present invention is to provide an exhaust member for a heat source machine that does not have the risk of corrosion without being subjected to a corrosion-resistant coating, and that can simplify the design for combustion control and the processing of the exhaust part.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above problems, the inventors of the present invention not only show high resistance to exhaust heat from a heat source, but also high when an exhaust member is formed using a specific resin or resin composition. It has been found that the productivity and mass productivity can be improved by workability, and that high heat resistance can be imparted to the exhaust heat member, that not only the exhaust member can be reduced in weight, but also that noise generation can be suppressed even when applied to the exhaust top. Was completed.
[0007]
That is, the exhaust top of the present invention constitutes an exhaust passage for exhausting gas from the heat source of the feed water heater, the heater or the heat exchanger, and the cylindrical mounting member and the cylindrical mounting member a top exhaust gas is composed of a integrated ventilation member, at least the cylindrical mounting member, and a molded product of the thermal decomposition temperature of 1 80 ° C. or more phenolic resins. The molded body may contain a reinforcing agent (for example, a fibrous reinforcing agent and / or a granular reinforcing agent), particularly at least an inorganic reinforcing agent (such as a fibrous inorganic reinforcing agent) .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The thermoplastic resin constituting the exhaust member for a heat source apparatus of the present invention has a glass transition temperature (glass transition temperature by differential scanning calorimeter DSC) of 180 ° C. or higher (eg, 190 to 350 ° C., preferably about 200 to 350 ° C.). ). As such a thermoplastic resin, for example, an aromatic polyester resin (polyarylate resin, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene having a fluorenone side chain as a diol component) Resin, liquid crystalline polyester resin composed of wholly aromatic polyester, etc.), aromatic polyamide resin, polysulfone resin (polyethersulfone, polysulfone, etc.), polyphenylene ether resin (polymer of 2,6-xylenol) Etc.), polyarylene sulfide resins (polyphenylene sulfide sulfone, polybiphenylene sulfide, etc.), thermoplastic polyimide resins (polyetherimide resin, polyamideimide resin, polyimide sulfone resin, etc.), polyparabanic acid and the like. These resins can be used alone or in combination of two or more.
[0009]
Among these resins, polyarylate resins, aromatic polyester resins containing 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene as a diol component, wholly aromatic liquid crystalline polyester resins, aromatics Polyamide resins, polysulfone resins, polyphenylene ether resins, polyarylene sulfide resins, thermoplastic polyimide resins, polyparabanic acid, and the like have high glass transition temperatures and heat resistance. In particular, wholly aromatic liquid crystalline polyester resins, polyether sulfones, polyphenylene ether resins, thermoplastic polyimide resins, and polyparabanic acids have high glass transition temperatures and heat resistance.
[0010]
The thermosetting resin is a resin having a thermal decomposition temperature (a weight reduction starting temperature or a differential thermal decomposition starting temperature in thermogravimetric analysis TGA) of 180 ° C. or higher (for example, about 200 to 500 ° C., preferably about 200 to 500 ° C.). There are no particular restrictions, for example, phenol resin, amino resin (urea resin, guanamine resin, melamine resin, etc.), epoxy resin (glycidyl ether type epoxy resin such as bisphenol A type, novolac type epoxy resin, glycidyl amine type epoxy resin) Etc.), vinyl ester resins, diallyl phthalate resins, unsaturated polyester resins, polyurethane resins (aromatic polyisocyanates or polyisocyanates (such as polyisocyanates having an isocyanurate ring)), aromatic polyols, and aromatic polyesters Polyol And / or aromatic polyamines obtained by reaction with aromatic polyamines), polyimide resins (condensation type polyimide resins produced by condensation reaction of aromatic tetracarboxylic acids and aromatic diamines, bismaleimides and aromatic diamines) Examples thereof include addition-type polyimide resins such as bismaleimide-based resins produced by the reaction with silicone, and silicone resins. These resins can be used alone or in combination of two or more, and may be a copolymer. For example, co-condensates of phenols with co-condensation components (urea, melamine, furfural, etc.), aromatic polyisocyanates or polyisocyanates (polyisocyanates having an isocyanurate ring), and epoxy resins (bisphenol A type) A copolymer of aromatic epoxy resin and the like) and an aromatic polyamine can be used as the copolymer. For curing the thermosetting resin, a conventional curing agent according to the type of resin can be used.
[0011]
Examples of thermosetting resins with high heat resistance include phenol resins (including co-condensed phenol resins), aromatic epoxy resins, vinyl ester resins, aromatic polyurethane resins, polyimide resins, and the like.
[0012]
A preferable thermosetting resin is a phenol resin having a high mechanical strength retention at a high temperature. The phenol resin may be a resol type phenol resin or a novolac type phenol resin. The phenol resin can be obtained by reacting phenols (for example, phenol, cresols, alkylphenols, aminophenols, etc.) and aldehydes (formaldehyde) in the presence of an acid catalyst or a basic catalyst.
[0013]
The exhaust member may be composed of a polymer alloy composed of a plurality of resins, and this polymer alloy is not limited to thermoplastic resins and thermosetting resins, but a combination of a thermoplastic resin and a thermosetting resin. It may be formed. Furthermore, if necessary, the polymer alloy may contain a compatibilizing agent.
[0014]
The molded body may be formed of a resin alone, but in order to improve heat resistance (thermal deformation temperature, thermal decomposition temperature, etc.), mechanical properties, etc., it is formed of a resin composition containing a reinforcing agent. preferable. The reinforcing agent may be a fibrous reinforcing agent or a granular reinforcing agent. Examples of fibrous reinforcing agents include inorganic fibers (glass fibers, carbon fibers, alumina fibers, silica fibers, boron fibers, metal fibers, whiskers, etc.), organic fibers (natural fibers such as pulp, semi-synthetic fibers, aramid fibers, Examples thereof include synthetic fibers such as rayon. Examples of the particulate reinforcing agent include silica, alumina, titanium oxide, shirasu balloon, mica, talc, calcium carbonate, barium sulfate and the like. These reinforcing agents can be used alone or in combination of two or more (two or more of the same or different reinforcing agents). As these reinforcing agents, it is preferable to use at least an inorganic reinforcing agent (particularly, a fibrous reinforcing agent such as a fibrous inorganic reinforcing agent). Furthermore, the reinforcing agent is preferably a flame retardant reinforcing agent.
[0015]
In addition, resin and a reinforcing agent can be combined according to the kind of resin and a reinforcing agent, for example, it is comprised combining phenol resin and fibrous reinforcing agents (for example, fibrous inorganic reinforcing agents, such as glass fiber). May be.
[0016]
The average fiber diameter of the fibrous reinforcing agent is, for example, 1 to 30 μm, preferably about 2 to 20 μm, and the average aspect ratio is, for example, about 10 to 10000, preferably about 10 to 1000 (for example, 50 to 500). is there. The average particle diameter of the granular reinforcing agent can be appropriately selected from a range of, for example, about 1 to 50 μm, preferably about 1 to 30 μm.
[0017]
The content of the reinforcing agent is not particularly limited as long as the mechanical properties of the molded article are not impaired. For example, 1 to 300 parts by weight, preferably 5 to 250 parts by weight, and more preferably 10 to 10 parts by weight with respect to 100 parts by weight of the resin. It may be about 200 parts by weight.
[0018]
Furthermore, the exhaust member may contain a flame retardant. Examples of flame retardants include halogen flame retardants (brominated epoxy resins, brominated polycarbonate resins, etc.), combinations of halogen flame retardants and antimony oxide, phosphate ester flame retardants (tricresyl phosphate, tris (dibromo) (Propyl) phosphate, condensed phosphate ester, etc.). These flame retardants can also be used alone or in combination of two or more. The amount of the flame retardant used can be appropriately selected from the range of, for example, about 1 to 30 parts by weight, preferably about 2 to 25 parts by weight with respect to 100 parts by weight of the resin.
[0019]
Furthermore, if necessary, various additives such as stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), colorants, antistatic agents and the like may be added to the resin composition.
[0020]
The exhaust member of the present invention can be composed of a molded body obtained by molding the resin or resin composition into a predetermined shape. The exhaust member includes various members as long as an exhaust path for exhausting exhaust gas (hot gas) from a heat source (such as a combustion unit) is configured. Therefore, the exhaust member only needs to have a predetermined form according to the form of the exhaust path, the application site, and the like. Typical exhaust members include, for example, an exhaust pipe, an exhaust pipe, an exhaust top, and the like, and at least one member may be formed of the molded body. Since such an exhaust member can be formed by molding the resin or the resin composition, mass productivity and workability can be greatly improved. In addition, since there is no risk of corrosion due to condensation or exhaust gas drainage, combustion control, corrosion-resistant coating, and the like are unnecessary, and the design of the heat source machine and the processing of the molded body can be greatly improved.
[0021]
In the exhaust member for exhausting the exhaust gas from the heat source (particularly the combustion unit), the exhaust pipe is usually disposed in the vicinity of the combustion unit including a heat exchanger, and the exhaust pipe is connected to the exhaust pipe. Connected in communication and used to guide exhaust gas to the exhaust top. Further, the exhaust top is attached to an end of the exhaust cylinder and has an exhaust port for discharging the exhaust gas to the outside.
[0022]
FIG. 1 is a schematic view showing an exhaust top. The exhaust top 1 includes a cylindrical mounting member 2 that can be mounted on the end of the exhaust tube, and a ventilation member 3 that is integrated with the cylindrical mounting member. The cylindrical mounting member 2 may be formed integrally with the ventilation member 3. Moreover, the said ventilation member 3 may be a flat plate shape, and may bulge and curve toward outward. The ventilation member 3 is formed in the opening of the cylindrical mounting member, thereby preventing birds and the like from entering the exhaust member and controlling the combustion by controlling the exhaust amount. The mounting member 2 is formed with a long hole 4 for positioning and fixing with respect to the exhaust pipe using screwing or the like.
[0023]
In this example, the cylindrical mounting member 2 and the ventilation member 3 are formed of the resin or the resin composition. By forming the ventilation member 3 with a resin or a resin composition, the molding process is facilitated, and it is easy to form the shape of the opening into a desired shape (round shape, polygonal shape, lattice shape, etc.). The exhaust noise can be reduced by the exhaust control by controlling the opening diameter or the directionality of the exhaust.
[0024]
In such an exhaust member, even if the exhaust top 1 is composed of a plurality of members (a cylindrical mounting member and a ventilation member), the cylindrical mounting member 2 and the ventilation member 3 can be integrally molded, and only if it is workable. The unity can be greatly improved. Therefore, even if wind acts on the ventilation portion, the ventilation member does not vibrate with respect to the tubular mounting member, and the generation of noise can be greatly suppressed.
[0025]
If necessary, a plurality of members constituting the exhaust path [exhaust pipes, exhaust cylinders and exhaust tops (such as cylindrical mounting members)] are closely attached to a plurality of adjacent or connected positions. Alternatively, a connectable mounting end portion may be formed, and a plurality of members at adjacent or articulated positions may be integrally formed with each other.
[0026]
The ventilation member (such as a mesh-like ventilation member) may have an appropriate ventilation form such as a lattice shape, and the shape of the ventilation hole is not particularly limited. In the above example, among the exhaust top, the cylindrical mounting member and the ventilation member are formed of the resin or the resin composition. However, if necessary, either the cylindrical mounting member or the ventilation member is used. You may shape | mold with resin or a resin composition. Further, the ventilation member may be mounted (particularly tightly mounted) on the tubular mounting member by various methods such as fitting and insertion, or may be integrally formed as described above. Further, the ventilation member (mesh-like ventilation member) may be a mesh-like or net-like member, such as a net-like body such as glass fiber, carbon fiber or metal fiber, a metal plate-like body such as punching metal, ceramics, or the like. It may be formed.
[0027]
A heat reflecting layer (for example, a metal thin film such as an aluminum foil) may be formed or laminated on the inner surface of the exhaust member.
[0028]
The exhaust member of the present invention includes various heat source machines, for example, a preheater and a heater (for example, a heating object (water, air, etc.) directly or indirectly by a heat exchange unit by combustion gas or electric heating (for example, It can be applied to water heaters such as water heaters, heaters, and heat exchangers.
[0029]
【The invention's effect】
In the present invention, for configuring an exhaust member of the heat source machines in particular resin molding processability and high mass productivity, be constituted by a member of a multiple can be improved integrity. Moreover, since there is no possibility of corrosion even if the anti-corrosion coating is not applied, the design for the combustion part and the combustion control can be simplified, and the processing efficiency of the exhaust part can be improved.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[0031]
Example 1
A resin composition was prepared by kneading 50 parts by weight of a novolac type phenolic resin and 50 parts by weight of glass fiber. The specific gravity of the obtained resin composition was 1.8. The heat source machine exhaust member was molded with a mold having a hollow mounting member of the exhaust top and a cavity corresponding to the ventilation member, and annealed at 400 ° C. for 2 hours to produce a molded product (exhaust top). Using the resin composition, JIS standard bending test specimens were produced under the same conditions.
[0032]
As a heat resistance test, the test piece for bending test was held in air at 220 ° C. for 200 hours, and the appearance change, weight change, and strength change were evaluated. In the visual appearance inspection, changes were observed before and after the test. There wasn't. Further, the rate of change in weight was less than 1% by weight, the rate of change in maximum point stress, elongation at break, and elastic modulus in the bending strength test was also less than 1%, and no deterioration was observed. As a touch resistance test, the test piece was subjected to a salt spray test at 35 ° C. and 500 hours, and then the appearance of the test piece was visually inspected. As a result, deterioration such as swelling and cracking was not observed.
[0033]
The molded product (exhaust top) was subjected to a heat resistance test and a touch resistance test. In the heat resistance test, after placing the exhaust top in an electric furnace and holding it in air at 220 ° C. for 200 hours, the appearance change and the weight change were evaluated. No change was observed, and the weight change rate before and after the test was less than 1% by weight. Further, a salt spray test was conducted at 35 ° C. for 500 hours, and the contact resistance was examined. As a result of visual inspection of the appearance, no swelling or cracking was observed.
[0034]
Comparative Example 1
A test piece was prepared using stainless steel (SUS304), a salt spray test was conducted at 35 ° C. for 500 hours, and the appearance of the test piece was visually inspected. .
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an exhaust member (exhaust top).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exhaust top 2 ... Cylindrical mounting member 3 ... Ventilation member

Claims (4)

給水加熱器、暖房機又は熱交換器の熱源からのガスを排気するための排気路を構成し、かつ筒状装着部材と、この筒状装着部材に対して一体化した通気部材とで構成された排気トップであって、少なくとも前記筒状装着部材が、熱分解温度180℃以上のフェノール樹脂の成形体で構成されている排気トップ The exhaust passage for exhausting the gas from the heat source of the feed water heater, the heater or the heat exchanger is configured, and is configured by a cylindrical mounting member and a ventilation member integrated with the cylindrical mounting member. and a exhaust top, at least the cylindrical mounting member, the top exhaust gas is composed of molded product of the pyrolysis temperature of 1 80 ° C. or more phenolic resins. 成形体が少なくとも無機質補強剤を含有する請求項1記載の排気トップThe exhaust top according to claim 1, wherein the molded body contains at least an inorganic reinforcing agent. 補強剤が、繊維状補強剤および粉粒状補強剤から選択された少なくとも一種である請求項2記載の排気トップThe exhaust top according to claim 2, wherein the reinforcing agent is at least one selected from a fibrous reinforcing agent and a granular reinforcing agent. 補強剤が、繊維状無機質補強剤である請求項2記載の排気トップThe exhaust top according to claim 2, wherein the reinforcing agent is a fibrous inorganic reinforcing agent.
JP2001090472A 2001-03-27 2001-03-27 Exhaust member for heat source machine Expired - Fee Related JP4559653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090472A JP4559653B2 (en) 2001-03-27 2001-03-27 Exhaust member for heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090472A JP4559653B2 (en) 2001-03-27 2001-03-27 Exhaust member for heat source machine

Publications (2)

Publication Number Publication Date
JP2002286222A JP2002286222A (en) 2002-10-03
JP4559653B2 true JP4559653B2 (en) 2010-10-13

Family

ID=18945248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090472A Expired - Fee Related JP4559653B2 (en) 2001-03-27 2001-03-27 Exhaust member for heat source machine

Country Status (1)

Country Link
JP (1) JP4559653B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5419559B2 (en) * 2009-06-22 2014-02-19 関東電子株式会社 Spring feeder
JP6322502B2 (en) * 2014-07-08 2018-05-09 大陽日酸株式会社 Exhaust gas treatment equipment
JP6780966B2 (en) * 2016-06-30 2020-11-04 株式会社ガスター Exhaust stack and combustion equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131821U (en) * 1986-02-14 1987-08-20
JPH0192507A (en) * 1987-10-03 1989-04-11 Daiwa Kogyo Kk Muffler using heat-resistance resin
WO1999013271A1 (en) * 1997-09-10 1999-03-18 Horst Wunsch Chimney-pipe and manufacture of same
JP2000193231A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Catalytic combustor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131821U (en) * 1986-02-14 1987-08-20
JPH0192507A (en) * 1987-10-03 1989-04-11 Daiwa Kogyo Kk Muffler using heat-resistance resin
WO1999013271A1 (en) * 1997-09-10 1999-03-18 Horst Wunsch Chimney-pipe and manufacture of same
JP2000193231A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Catalytic combustor

Also Published As

Publication number Publication date
JP2002286222A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
CN107250216B (en) PAEK/PPSU/PES composition
CN108779365B (en) Polyaryletherketone composition and method for coating metal surfaces
AU610236B2 (en) Polycyanate esters of polyhydric phenols blended with thermoplastic polymers
JP6788808B2 (en) Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
JP2005306950A (en) Resin mold
Reay The use of polymers in heat exchangers
JP4559653B2 (en) Exhaust member for heat source machine
TWI431031B (en) Fabricating method of fiber reinforced composition and heat-resistant die and heat-resistant structural material using fiber reinforced composition
CN105900535A (en) Insulating layer for printed wire board, and printed wire board
WO2018120586A1 (en) Method of preparing benzoxazine-containing resin composition and prepreg and laminate made thereof
TW201226185A (en) Solar reflector in composite material based on resin reinforced with cut fibres, and uses in solar plants
CN1202958A (en) Fire resistant pipe
CN107353642A (en) Resin combination and prepreg, metal foil laminate and the interlayer dielectric using its making
JP5301121B2 (en) Synthetic resin pipe for radiant cooling and heating, and panel for radiant cooling and heating
FR2896576B1 (en) THERMAL EXCHANGE INSTALLATION WITH PLATE BEAMS
Lu et al. Preparation and properties of cyanate ester modified by epoxy resin and phenolic resin
CN104633960B (en) The loop circuit heat pipe solar energy system of thermal-collecting tube inner fin height change
CN1336905A (en) High heat conducting type carbon/carbon cellular structure
US20200332121A1 (en) Reinforced compositions
JP2002284906A (en) Front panel for heat source instrument
DE60034109D1 (en) TUBE HEAT TRANSFER ELEMENT
CN112266612B (en) Resin composition, and preparation method and application thereof
JP7297414B2 (en) Epoxy resin composition, prepreg and molding
JP4260284B2 (en) Flame retardant and flame retardant resin composition
TW453892B (en) Tube for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees