JP4558960B2 - Method for manufacturing corrugated sheet for catalyst support, corrugated sheet and catalyst support - Google Patents

Method for manufacturing corrugated sheet for catalyst support, corrugated sheet and catalyst support

Info

Publication number
JP4558960B2
JP4558960B2 JP2001028600A JP2001028600A JP4558960B2 JP 4558960 B2 JP4558960 B2 JP 4558960B2 JP 2001028600 A JP2001028600 A JP 2001028600A JP 2001028600 A JP2001028600 A JP 2001028600A JP 4558960 B2 JP4558960 B2 JP 4558960B2
Authority
JP
Japan
Prior art keywords
corrugated
central
wave
corrugated sheet
circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001028600A
Other languages
Japanese (ja)
Other versions
JP2002224752A (en
Inventor
直記 横山
安夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2001028600A priority Critical patent/JP4558960B2/en
Publication of JP2002224752A publication Critical patent/JP2002224752A/en
Application granted granted Critical
Publication of JP4558960B2 publication Critical patent/JP4558960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する分野】
本発明は自動車やオートバイの排気装置に配設される排気浄化触媒サポート用波板の製造方法、波板及び触媒サポートに関する。
【0002】
【従来の技術】
自動車やオートバイの排気装置に配設される排気浄化触媒サポートは図12に示すように、パイプ材200とパイプ材200内に組み込まれた波板100とから構成されている。波板100は高温の排気ガスに曝されるため耐熱鋼材で形成されている。波板100は触媒が担持される表面積を広げた形状を採り、通常断面5山のヘアピン形状をしている。そのような波板100は、雌型と雄型を使って5山の波部を同時にプレス成形する方法で製造されていた。そして波板100をパイプ材200に圧入して密着させた後、ろう付け加工され触媒サポートが形成されていた。
【0003】
ヘアピン形状の触媒サポートはセルが粗く、セル壁厚が厚いため、エンジン失火などによる異常高温に強く、2・4サイクルエンジンに搭載されている。
【0004】
【発明が解決しようとする課題】
波板100に使用される耐熱鋼材は、例えば、組成が20%Cr−5%Al鋼板で、厚さが0.5mm、伸びが約15%、硬度が約220HVである。このため、この耐熱鋼板は成形性が悪く、同時成形する従来の製造法ではプレス時に波板100に割れや擦り傷が発生するとともに金型にも擦り傷が発生し、問題であった。割れや擦り傷が発生するのは、中央波部が成形される途中でその両側の側波部が形成される際、金型に材料の供給が不足するため及び材料の伸びが少ないために金型と材料が擦れることによると考えられる。
【0005】
また、波板をパイプに圧入すると、波板とパイプの内壁及び波板同士に隙間が発生し、隙間のない触媒サポートを作ることが困難であった。隙間が発生するのは、圧入時に波板の波部が重なる方向に圧縮されるため、波部のR形状が潰れることによると考えられる。
【0006】
本発明は上記実情に鑑みてなされたものであり、擦り傷や割れが発生しない波板の製造方法を提供することと、パイプに圧入する際隙間が発生しない波板を製造する方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
発明に係る波板の製造方法は、粗波板を作る粗波板形成工程と、作られた粗波板の凹部に棒状のコアを挿入し、コアの挿入された状態で波部が重なる方向に押圧して矯正する矯正工程と、からなることを特徴とする。
【0009】
【実施の形態】
粗波板形成工程は、平板中央に中央波部を形成する中央波部形成工程と、該中央波部を狭持した状態でその両側の側波部を形成する側波部形成工程と、からなり、5山を持つ波板の製造を可能とする。側波部形成工程を繰り返すことで、9山の波板を製造することができる。すなわち、平板中央に中央波部を形成する中央波部形成工程と、該中央波部を狭持した状態でその両側の側波部を形成する側波部形成工程と、該側波部を狭持した状態でさらにその両側の側々波部を形成する側々波部形成工程とからなるようにする。
【0010】
前記中央波部形成工程は波状の雌型の中央凹部に平板をその中央が一致するように載置する工程と、波状の雄型の中央凸部が該雌型の中央凹部に圧入する工程と、からなるようにすると、平板中央に確実に中央波部を形成することができる。
【0011】
また、前記側波部を形成する工程を前記雌型の中央凹部の両側凹部に前記雄型の中央凸部の両側凸部が圧入する工程にすると、中央波部の両側に側波部を確実に形成することができる。側波部形成工程は前記雌型の中央凹部と両側凹部の間の凸部を、前記雄型の中央凸部と両側凸部の間の凹部に圧入する工程でも良い。
また、波状の雄型と雌型の場合は、隣り合う凸部と凸部の間は凹部であり、凹部と凹部の間は凸部であるから、側波部形成工程は、雌型の中央凹部の両側凹部に雄型の中央凸部の両側凸部が圧入するのと、雌型の中央凹部と両側凹部の間の凸部を前記雄型の中央凸部と両側凸部の間の凹部に圧入することが同時に行われる工程でも良い。
【0012】
さらに、前記雄型は前記両側凸部の中央溝部に前記中央凸部の上端部が加圧手段を介して枢着されていると、雄型を雌型に圧入する際、両側凸部を加圧するだけで最初中央凸部が圧入され、続いて中央波部を狭持した状態で両側凸部が圧入される。したがって、自動化、量産化に適している。
【0013】
前記加圧手段にはコイルばね、板ばね、油圧ピストン、など適宜使用できる。
【0014】
本発明の波板の製造方法は、粗波板を作る粗波板形成工程と、作られた粗波板の凹部に棒状のコアを挿入し、コアの挿入された状態で波部が重なる方向に押圧して矯正する矯正工程と、からなる。この波板の製造方法の粗波板形成工程は本発明の波板の製造方法に限定されない。すなわち、いかなる方法で製造された粗波板も擦り傷や割れがなければ、その粗波板の凹部に棒状のコアを挿入し、コアの挿入された状態で波部が重なる方向に押圧して矯正することで、パイプに圧入する際隙間が発生しない波板を製造することができる。
【0015】
棒状のコアは粗波板の波部の曲率半径と等しい半径のコアが好ましい。波部の形状を損なうことなく矯正できるからである。
【0016】
前記矯正する工程が雌型と雄型が閉じたとき円筒状キャビティを形成する型で波部が重なる方向に押圧して矯正する工程であると、パイプに圧入する際、隙間が発生しない波板を確実に形成することができる。
【0017】
また、円筒状キャビティの内径は、圧入すべきパイプの内径に近い方が、パイプに圧入する際、隙間が発生しない波板を、より確実に形成することができる。
矯正された波板は材料のスプリングバック作用で少し広がるので、キャビティの内径はパイプの内径より小さくても良い。
【0018】
波板に使用される鋼材は、自動車やオートバイの排気装置に配設される排気浄化触媒サポート用の場合は、たとえば、組成が20%Cr−5%Alのような耐熱鋼材製の鋼板が適している。耐熱鋼材としてはその他に、SUS304やSUS430などでもよい。
【0019】
【作用】
本発明の波板の製造方法は、中央波部形成工程の後に側波部形成工程で該中央波部を狭持した状態でその両側の側波部を形成するので、金型への材料の供給不足が生ぜず擦り傷や割れの発生が生じにくい。
【0020】
本発明の波板の製造方法は、粗波板の凹部に棒状のコアを挿入し、コアの挿入された状態で波部が重なる方向に押圧して矯正するので、パイプに圧入する際波部のR形状が潰れることがなく、隙間が発生しない。
【0021】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0022】
実施例1
実施例1による5山の波板の製造プロセスを図1〜図4に示す。図1は厚さ0.5mm、幅195mm、長さ110mmの耐熱鋼(18%Cr−3%Al)平板1を雄型2と雌型3の間に挿入した状態を示す。雄型2は、山(3)(図では○の中に3と記す)用の中央凸部21、山(1)(図では○の中に1と記す)(5)(図では○の中に5と記す)用の両側凸部22、加圧手段としての波状スプリング23とからなる。中央凸部21の元部212はコの字状をしており、元部212が両側凸部22のコの字状中央溝部222にスプリング23を介して枢着されている。スプリング23の一端は中央溝部222の頂部に、他端は元部212のコの字状凹部の低部に固着されている。したがって、中央凸部21はスプリング23の伸縮によって中央溝部222をスライドする。
【0023】
スプリング23が収縮して中央凸部21の首部211が両側凸部22の首部221に一致すると山(2)(図では○の中に2と記す)、(4)(図では○の中に4と記す)用の凹部を形成する。なお、中央凸部21の首部211が両側凸部22の先端と一致している。
【0024】
波状の雌型3は山(3)(図では○の中に3と記す)用の中央凹部31と山(1)(図では○の中に1と記す)(5)(図では○の中に5と記す)用の両側凹部32、及び中央凹部と両側凹部の間に山(2)(図では○の中に2と記す)(4)(図では○の中に4と記す)用の凸部33を持っている。
【0025】
雄型2と雌型3の互いに対応する凹凸の曲率半径は5mmである。
【0026】
図1の状態で雄型2を図示しない加圧手段で加圧すると、スプリング23が殆ど収縮しない状態で、雄型2の中央凸部21が平板1を伴って雌型3の中央凹部31に圧入されて中央波部の山(3)(図では○の中に3と記す)が形成され出すと同時に、平板1は雌型の山(2)(図では○の中に2と記す)(4)(図では○の中に4と記す)用の凸部33で下面から押し上げられ、雄型2の両側凸部22で上面から押し下げられ、図2の状態になる。さらに雄型2を加圧して降下させると、雄型2の中央凸部21が雌型3の中央凹部31に完全に圧入され、平板1に中央波部の山(3)(図では○の中に3と記す)が形成される。
【0027】
次にこの状態、すなわち、中央波部を狭持した状態でさらに雄型2を加圧すると、スプリング23が収縮し両側凸部22が降下し雌型3の山(1)(図では○の中に1と記す)(5)(図では○の中に5と記す)用の両側凹部32への圧入を開始すると同時に、中央凸部21と両側凸部22との間に山(2)(図では○の中に2と記す)(4)(図では○の中に4と記す)用の凹部を形成し始め、雌型3の山(2)(図では○の中に2と記す)(4)(図では○の中に4と記す)用の凸部33が雄型2の山(2)(図では○のかに2と記す)(4)(図では○の中に4と記す)用凹部に圧入され始める。さらに、雄型2を加圧すると、スプリング23が収縮し両側凸部22が雌型3の山(1)(図では○の中に1と記す)(5)(図では○の中に5と記す)用の両側凹部32に圧入され、雌型3の山(2)(図では○の中に2と記す)(4)(図では○の中に4と記す)用凸部33が雄型2の山(2)(図では○の中に2と記す)(4)(図では○の中に4と記す)用凹部に圧入され、最終的に図3に示す状態になり、平板1に両側の側波部が形成される。
【0028】
図4は成形後、型から取り出した波板の斜視図であるが、擦り傷や割れの発生が無かった。
【0029】
実施例2
実施例2による波板の製造プロセスを図5〜図7に示す。図5は実施例1で製造した波板10の波部にコアとしての直径10mmの丸棒6を挿入して、半円筒状の雄型4とU字状の雌型5のキャビティ内に波板10の波部が重なる方向と型が閉じる方向が一致するようにセットした状態を示す。雄型4の半円筒の曲率半径と雌型5のR部の曲率半径はそれぞれ15mmで、雄型4と雌型5が閉じた状態で直径30mmの円筒状キャビティを形成する。図5の状態で雄型4を雌型5に圧入したところ、波板10は波部が重なる方向に押圧され、図6の状態になった。
【0030】
波部の曲率を5mmに保ったまま外形を30mmに矯正することができた。図7は金型4と5から取り出し、丸棒6を取り除いた波板を示す。金型から取り出すと材料のスプリングバックにより若干広がったが、波部の変形や潰れの無い波板を製造することができた。これを内径29.4mm、外形31.8mmのステンレス製パイプに圧入したところ、波部のR形状が潰れることがなく、隙間が発生しなかった。パイプ内壁にろうスラリーを塗布した後波板を圧入し、ろう付け熱処理することで良好なヘアピン形状触媒サポートが完成した。
【0031】
実施例3
実施例3よる9山の波板の製造プロセスを図8〜図11に示す。図8は厚さ0.5mm、幅350mm、長さ110mmの耐熱鋼(18%Cr-3%Al鋼)平板1を雄型7と雌型8の間に挿入した状態を示す。雄型7は、山(5)(図では○の中に5と記す)用の中央凸部71、山(3)(図では○の中に3と記す)(7)(図では○の中に7と記す)用の第一両側凸部72、山(1)(図では○の中に1と記す)(9)(図では○の中に9と記す)用の第二両側凸部73、加圧手段としての第一波状スプリング74、第二波状スプリング75とからなる。
【0032】
中央凸部71の元部712はコの字状をしており、元部712が第一両側凸部72のコの字状中央溝部722に第一スプリング74を介して枢着されている。第一スプリング74の一端は中央溝部722の頂部に、他端は元部712のコの字状凹部の低部に固着されている。したがって、中央凸部71は第一スプリング74の伸縮によって中央溝部722をスライドする。第一スプリング74が収縮して中央凸部71の首部が両側凸部72の首部に一致すると山(2)(図では○の中に2と記す)(4)(図では○の中に4と記す)用の凹部を形成する。
【0033】
第一両側凸部72の元部は第二両側凸部73のコの字状中央溝部732に第2スプリング75を介して枢着されている。第二スプリング75の一端は中央溝部732の頂部に、他端は第一両側凸部72の上面に形成された凹部に固着されている。したがって、第一両側凸部72は第二スプリング75の伸縮によって第二両側凸部73の中央溝部732をスライドする。第二スプリングが収縮して第一両側凸部72の首部が第二両側凸部73の首部に一致すると、山(2)(図では○の中に2と記す)(8)(図では○の中に8と記す)用の凹部を形成する。
【0034】
波状の雌型8は山(5)(図では○の中に5と記す)用の中央凹部81と山(3)(図では○の中に3と記す)(7)(図では○の中に7と記す)用の第一両側凹部82、山(1)(図では○の中に1と記す)(9)(図では○の中に9と記す)用の第二両側凹部83を持ち、かつ、中央凹部と第一両側凹部の間に山(4)(図では○の中に4と記す)(6)(図では○の中に6と記す)用の凸部84を、第一両側凹部と第二両側凹部の間に山(2)(図では○の中に2と記す)(8)(図では○の中に8と記す)用の凸部85を、持っている。
【0035】
雄型7と雌型8の互いに対応する凹凸の曲率半径は5mmである。
【0036】
図8の状態で雄型7を図示しない加圧手段で加圧すると、第一スプリング74、第二スプリング75が殆ど収縮しない状態で、雄型7の中央凸部71が平板1を伴って雌型8の中央凹部81に圧入されて中央波部の山(5)(図では○の中に5と記す)が形成され出すと同時に、平板1は雌型の山(4)(図では○の中に4と記す)(6)(図では○の中に6と記す)用の凸部84で下面から押し上げられ、雄型7の第一両側凸部72で上面から押し下げられる。さらに雄型7を加圧して降下させると、雄型7の中央凸部71が雌型8の中央凹部81に完全に圧入され、平板1に中央波部の山(5)(図では○の中に5と記す)が形成される。
【0037】
次にこの状態すなわち、中央波部を狭持した状態でさらに雄型7を加圧すると、第一スプリング74が収縮し第一両側凸部72が降下し雌型8の山(3)(図では○の中に3と記す)(7)(図では○の中に7と記す)用の第一両側凹部82への圧入を開始すると同時に、中央凸部71と第一両側凸部72との間に山(4)(図では○の中に4と記す)(6)(図では○の中に6と記す)用の凹部を形成し始め、雌型8の山(4)(図では○の中に4と記す)と(6)(図では○の中に6と記す)用の凸部84が雄型7の山(4)(図では○の中に4と記す)(6)(図では○の中に6と記す)用凹部に圧入され始め、図9の状態になる。
【0038】
さらに、雄型7を加圧すると、第一両側凸部72が雌型8の第一両側凹部82に完全に圧入され、側波部の山(3)(図では○の中に3と記す)(7)(図では○の中に7と記す)及び山(4)(図では○の中に4と記す)(6)(図では○の中に6と記す)が形成される。次に、この状態すなわち、側波部を狭時した状態でさらに雄型7を加圧すると、第二スプリング75が収縮し第二両側凸部73が雌型8の山(1)(図では○の中に1と記す)(9)(図では○の中に9と記す)用の第二両側凹部83に圧入され、雌型8の山(2)(図では○の中に2と記す)(8)(図では○の中に8と記す)用凸部85が雄型7の山(2)(図では○の中に2と記す)(8)(図では○の中に8と記す)用凹部に圧入され、最終的に図10に示す状態になり、平板1に側々波部が形成される。
【0039】
図11は成形後、型から取り出した波板の断面図であるが、擦り傷や割れの発生が無かった。
【0040】
【発明の効果】
以上説明したように、本発明の波板の製造方法によれば、金型への材料の供給不足が生ぜず擦り傷や割れの発生がない。また、パイプに圧入する際、波部のR形状が潰れることがなく、隙間が発生しない。
【図面の簡単な説明】
【図1】実施例1の製造プロセスの初期段階を示す断面図である。
【図2】実施例1の製造プロセスの途中段階を示す断面図である。
【図3】実施例1の製造プロセスの最終段階を示す断面図である。
【図4】実施例1の製造プロセスで製造された波板の斜視図である。
【図5】実施例2の製造プロセスの初期段階を示す断面図である。
【図6】実施例2の製造プロセスの最終段階を示す断面図である。
【図7】実施例2の製造プロセスで製造された波板の断面図である。
【図8】実施例3の製造プロセスの初期段階を示す断面図である。
【図9】実施例3の製造プロセスの途中段階を示す断面図である。
【図10】実施例3の製造プロセスの最終段階を示す断面図である。
【図11】実施例3の製造プロセスで製造された波板の断面図である。
【図12】触媒サポートの断面図である。
【符号の説明】
1・・・平板、2、4、7・・・雄型、3、5、8・・・雌型、6・・・コア、10・・・波板、21、71・・・中央凸部、22、72、73・・・両側凸部、23、74、75…加圧手段、31、81・・・中央凹部、32、82、83・・・両側凹部
[0001]
[Field of the Invention]
The present invention relates to a method of manufacturing a corrugated plate for exhaust purification catalyst support disposed in an exhaust device of an automobile or motorcycle, and a corrugated plate and a catalyst support .
[0002]
[Prior art]
As shown in FIG. 12, the exhaust purification catalyst support disposed in the exhaust system of an automobile or motorcycle is composed of a pipe material 200 and a corrugated plate 100 incorporated in the pipe material 200. Since the corrugated plate 100 is exposed to high-temperature exhaust gas, it is made of a heat-resistant steel material. The corrugated plate 100 has a shape in which the surface area on which the catalyst is supported is increased, and is usually in the shape of a hairpin with five cross sections. Such a corrugated sheet 100 has been manufactured by a method in which five corrugations are simultaneously pressed using a female mold and a male mold. The corrugated plate 100 was pressed into the pipe member 200 and brought into close contact with it, and then brazed to form a catalyst support.
[0003]
Since the hairpin-shaped catalyst support has a rough cell and a thick cell wall, it is resistant to abnormally high temperatures due to engine misfire and the like, and is mounted on a 2.4 cycle engine.
[0004]
[Problems to be solved by the invention]
The heat-resistant steel material used for the corrugated sheet 100 is, for example, a 20% Cr-5% Al steel sheet having a thickness of 0.5 mm, an elongation of about 15%, and a hardness of about 220 HV. For this reason, this heat-resistant steel sheet has poor formability, and the conventional manufacturing method in which simultaneous forming is performed causes a problem in that the corrugated sheet 100 is cracked or scratched during pressing and the mold is also scratched. Cracks and scratches occur when the side wave part on both sides of the central wave part is being formed, because the supply of material to the mold is insufficient and the material is not stretched. It is thought that the material is rubbed.
[0005]
Further, when the corrugated plate is press-fitted into the pipe, a gap is generated between the corrugated plate, the inner wall of the pipe and the corrugated plate, and it is difficult to make a catalyst support without a gap. It is considered that the gap is generated because the corrugated portion of the corrugated plate is compressed in the direction in which the corrugated portions are overlapped during press-fitting, and the R shape of the corrugated portion is crushed.
[0006]
The present invention has been made in view of the above circumstances, and provides a method for manufacturing a corrugated sheet that does not generate scratches or cracks, and a method for manufacturing a corrugated sheet that does not generate a gap when pressed into a pipe. Is an issue.
[0008]
[Means for Solving the Problems]
Manufacturing method of engaging Ru corrugated sheet in the present invention, a coarse corrugated plate forming step of making a crude corrugated plate, insert the rod-shaped core in the recess of the created coarse corrugated, wave portion in the inserted state of the core And a correction step of correcting by pressing in the overlapping direction.
[0009]
Embodiment
The rough wave plate forming step includes a central wave portion forming step for forming a central wave portion at the center of the flat plate, and a side wave portion forming step for forming side wave portions on both sides of the central wave portion in a state where the central wave portion is sandwiched. This makes it possible to manufacture corrugated plates with five ridges. By repeating the side wave forming process, nine corrugated plates can be manufactured. That is, a central wave portion forming step for forming a central wave portion at the center of the flat plate, a side wave portion forming step for forming side wave portions on both sides of the central wave portion in a state where the central wave portion is held, and the side wave portion are narrowed. In this state, a side wave portion forming step for forming side wave portions on both sides of the holding portion is further included.
[0010]
The central wave portion forming step includes a step of placing a flat plate in a central concave portion of a corrugated female mold so that the center thereof coincides, and a step of press-fitting the corrugated male central convex portion into the central concave portion of the female mold, , The central wave portion can be reliably formed at the center of the flat plate.
[0011]
Further, if the step of forming the side wave portion is a step in which the both side convex portions of the male central convex portion are press-fitted into the both side concave portions of the female central concave portion, the side wave portions are surely provided on both sides of the central wave portion. Can be formed. The side wave portion forming step may be a step of press-fitting a convex portion between the female central concave portion and both side concave portions into a concave portion between the male central convex portion and both convex portions.
In the case of the wavy male mold and female mold, the side wave portion forming step is performed at the center of the female mold because the concave portion is between the adjacent convex portions and the convex portion is between the concave portions and the concave portions. The convex part between the male central convex part and the both side concave part is the concave part between the male central convex part and the both convex parts. It may be a process in which the press-fitting into is simultaneously performed.
[0012]
Further, when the male mold has the upper end of the central convex portion pivotally attached to the central groove portion of the convex portions on both sides via a pressurizing means, both convex portions are added when the male mold is press-fitted into the female mold. The central convex portion is first press-fitted only by pressing, and then the both convex portions are press-fitted while holding the central wave portion. Therefore, it is suitable for automation and mass production.
[0013]
As the pressurizing means, a coil spring, a leaf spring, a hydraulic piston, or the like can be used as appropriate.
[0014]
The corrugated plate manufacturing method of the present invention includes a rough corrugated plate forming step for producing a corrugated corrugated plate, a rod-shaped core inserted into a concave portion of the rough corrugated plate, and a direction in which the corrugated portions overlap with each other with the core inserted. And a correction process for pressing to correct. The rough corrugated sheet forming step of the corrugated sheet manufacturing method is not limited to the corrugated sheet manufacturing method of the present invention. That is, if the rough corrugated plate manufactured by any method is not scratched or cracked, a rod-like core is inserted into the concave portion of the rough corrugated plate, and the corrugated portion is pressed and corrected in the direction in which the core is inserted. By doing so, it is possible to manufacture a corrugated sheet that does not generate a gap when it is press-fitted into a pipe.
[0015]
The rod-shaped core is preferably a core having a radius equal to the radius of curvature of the wave portion of the rough wave plate. It is because it can correct without impairing the shape of a wave part.
[0016]
A corrugated sheet that does not generate a gap when it is press-fitted into a pipe when the correcting process is a process of correcting by pressing in the direction in which the wave portions overlap in a mold that forms a cylindrical cavity when the female mold and the male mold are closed Can be reliably formed.
[0017]
In addition, when the inner diameter of the cylindrical cavity is closer to the inner diameter of the pipe to be press-fitted, a corrugated sheet that does not generate a gap when press-fitted into the pipe can be more reliably formed.
Since the corrected corrugated sheet is slightly expanded by the springback action of the material, the inner diameter of the cavity may be smaller than the inner diameter of the pipe.
[0018]
The steel material used for the corrugated plate is, for example, a steel plate made of heat-resistant steel such as 20% Cr-5% Al in the case of an exhaust purification catalyst support disposed in an exhaust device of an automobile or motorcycle. ing. In addition, SUS304, SUS430, etc. may be used as the heat resistant steel material.
[0019]
[Action]
In the method for manufacturing a rough wave plate of the present invention, the side wave portions on both sides thereof are formed in a state where the central wave portion is sandwiched in the side wave portion forming step after the central wave portion forming step. Insufficient supply does not occur and scratches and cracks are less likely to occur.
[0020]
The corrugated plate manufacturing method of the present invention inserts a rod-shaped core into the concave portion of the rough corrugated plate, and presses and corrects in the direction in which the corrugated portion overlaps with the core inserted, so that the corrugated portion is pressed into the pipe. The R shape is not crushed and no gap is generated.
[0021]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[0022]
Example 1
A manufacturing process of five rough wave plates according to Example 1 is shown in FIGS. FIG. 1 shows a state in which a heat-resistant steel (18% Cr-3% Al) flat plate 1 having a thickness of 0.5 mm, a width of 195 mm, and a length of 110 mm is inserted between a male mold 2 and a female mold 3. The male mold 2 has a central convex portion 21 for a mountain (3) (indicated by 3 in the circle) , a mountain (1) (indicated by 1 in the circle) and (5) (indicated by a circle in the figure). 2) and a wave spring 23 as a pressurizing means. The base portion 212 of the central convex portion 21 has a U-shape, and the base portion 212 is pivotally attached to the U-shaped central groove portion 222 of the both side convex portions 22 via a spring 23. One end of the spring 23 is fixed to the top of the central groove portion 222, and the other end is fixed to the lower portion of the U-shaped recess of the base portion 212. Therefore, the central convex portion 21 slides on the central groove portion 222 by the expansion and contraction of the spring 23.
[0023]
When the spring 23 contracts and the neck portion 211 of the central convex portion 21 coincides with the neck portion 221 of the convex portions 22 on both sides, peaks (2) (indicated by 2 in circles in the figure ) , (4) (in circles in the figure ) 4)) is formed. The neck portion 211 of the central convex portion 21 coincides with the tips of the both side convex portions 22.
[0024]
The corrugated female mold 3 has a central recess 31 for a mountain (3) (denoted by 3 in the circle) and a mountain (1) (denoted by 1 in the circle in the diagram ) , (5) (in the diagram, o Between the recesses 32 for both sides and the central recesses and the recesses on both sides (2) (shown as 2 in the circle in the figure ) and (4) (4 in the circle in the figure) it has a convex portion 33 for abbreviated).
[0025]
The curvature radii of the concaves and convexes corresponding to each other of the male mold 2 and the female mold 3 are 5 mm.
[0026]
When the male mold 2 is pressed by a pressing means (not shown) in the state of FIG. 1, the central convex portion 21 of the male mold 2 is brought into the central concave portion 31 of the female mold 3 together with the flat plate 1 in a state where the spring 23 hardly contracts. At the same time as the peak of the central wave part (3) (denoted by 3 in the circle) is formed, the flat plate 1 is a female mountain (2) (denoted by 2 in the circle). And (4) is pushed up from the lower surface by the convex portion 33 (denoted by 4 in the circle) and pushed down from the upper surface by the both side convex portions 22 of the male mold 2 to be in the state of FIG. When the male mold 2 is further pressed and lowered, the central convex portion 21 of the male mold 2 is completely press-fitted into the central concave portion 31 of the female mold 3, and the peak (3) of the central wave portion (3 in FIG. Formed as 3) .
[0027]
Next, when the male mold 2 is further pressed in this state, that is, in the state where the central wave portion is held, the spring 23 contracts and the convex portions 22 on both sides descend, and the mountain (1) of the female mold 3 (in FIG. At the same time as press-fitting into both side recesses 32 for ( 1) and (5) (indicated by 5 in the circle) , a peak (2 ) (Denoted as 2 in the circle in the figure ) , (4) began to form a recess for ( denoted as 4 in the circle) , and the female mold 3 peak (2) (in the circle in the figure) 2) (4) (shown as 4 in the circle in the figure) is a male 2 peak (2) (shown as 2 in the circle) , (4) (in the figure) It begins to be press-fitted into the recess for 4) . Further, when the male mold 2 is pressurized, the spring 23 contracts and the convex portions 22 on both sides are the ridges (1) of the female mold 3 (indicated by 1 in the circle) and (5) (in the circle in the figure). 5 (denoted as 5) and press-fitted into the recesses 32 on both sides of the female mold 3 (2) (denoted as 2 in o in the figure) , (4) (denoted as 4 in o in the figure) 33 is press-fitted into the recess for the male mold 2 (2) (denoted as 2 in circle in the figure ) , (4) (denoted as 4 in circle in the figure ) , and finally the state shown in FIG. Thus, side wave portions on both sides are formed on the flat plate 1.
[0028]
FIG. 4 is a perspective view of the corrugated sheet taken out of the mold after molding, but there was no generation of scratches or cracks.
[0029]
Example 2
The manufacturing process of the corrugated sheet according to Example 2 is shown in FIGS. FIG. 5 shows that a corrugated portion of the corrugated plate 10 manufactured in the first embodiment is inserted with a round bar 6 having a diameter of 10 mm as a core, and waves are inserted into the cavities of a semi-cylindrical male mold 4 and a U-shaped female mold 5. The state which set so that the direction where the wave part of the board | plate 10 overlaps and the direction which a type | mold closes corresponds is shown. The radius of curvature of the half cylinder of the male mold 4 and the radius of curvature of the R portion of the female mold 5 are each 15 mm, and a cylindrical cavity having a diameter of 30 mm is formed with the male mold 4 and the female mold 5 closed. When the male mold 4 was press-fitted into the female mold 5 in the state of FIG. 5, the corrugated sheet 10 was pressed in the direction in which the wave portions overlap, and the state of FIG. 6 was reached.
[0030]
The outer shape could be corrected to 30 mm while maintaining the curvature of the wave part at 5 mm. FIG. 7 shows the corrugated sheet taken out of the dies 4 and 5 and with the round bar 6 removed. When it was taken out from the mold, it was slightly spread by the spring back of the material, but a corrugated sheet without wave portion deformation or crushing could be produced. When this was press-fitted into a stainless steel pipe having an inner diameter of 29.4 mm and an outer diameter of 31.8 mm, the R shape of the wave portion was not crushed and no gap was generated. After applying the brazing slurry to the inner wall of the pipe, the corrugated plate was press-fitted and brazed and heat treated to complete a good hairpin-shaped catalyst support.
[0031]
Example 3
A manufacturing process of nine corrugated plates according to Example 3 is shown in FIGS. FIG. 8 shows a state in which a heat-resistant steel (18% Cr-3% Al steel) flat plate 1 having a thickness of 0.5 mm, a width of 350 mm, and a length of 110 mm is inserted between the male mold 7 and the female mold 8. The male mold 7 has a central protrusion 71 for a mountain (5) (indicated by 5 in the circle in the figure) , a mountain (3) (indicated by 3 in the circle in the figure ) and (7) (indicated by a circle in the figure). first both side protrusions 72 for denoted as 7) into the mountains (1) (referred to as 1 in ○ in the figure) and (9) (referred to as 9 in ○ in the figure) the second for It comprises a convex portion 73 on both sides, a first wave spring 74 as a pressurizing means, and a second wave spring 75.
[0032]
The base portion 712 of the central convex portion 71 has a U-shape, and the base portion 712 is pivotally attached to the U-shaped central groove portion 722 of the first both-side convex portion 72 via a first spring 74. One end of the first spring 74 is fixed to the top of the central groove 722, and the other end is fixed to the lower part of the U-shaped recess of the base 712. Accordingly, the central convex portion 71 slides on the central groove portion 722 by the expansion and contraction of the first spring 74. When the first spring 74 contracts and the neck portion of the central convex portion 71 coincides with the neck portions of the both side convex portions 72, a mountain (2) (indicated in the circle with 2) , (4) (in the circle in the circle) 4)) is formed.
[0033]
The base part of the first both-side convex part 72 is pivotally attached to the U-shaped central groove part 732 of the second two-side convex part 73 via the second spring 75. One end of the second spring 75 is fixed to the top of the central groove 732, and the other end is fixed to a recess formed on the upper surface of the first both-side protrusion 72. Therefore, the first both-side convex portion 72 slides on the central groove portion 732 of the second both-side convex portion 73 by the expansion and contraction of the second spring 75. When the second spring contracts and the neck portion of the first both-side convex portion 72 coincides with the neck portion of the second both-side convex portion 73, a peak (2) (indicated by 2 in a circle in the figure ) , (8) (in the figure) A recess for 8) is formed.
[0034]
The wavy female mold 8 has a central recess 81 for a mountain (5) (shown as 5 in a circle) and a mountain (3) (shown as 3 in a circle) , (7) (shown as a circle) the first sides recesses 82 for referred to 7) in, referred to as 1 in the ○ is a mountain (1) (FIG.), (9) (referred to as 9 in ○ in the figure) the second sides for Convex 83 for convexity (4) (denoted as 4 in circle in the figure ) and (6) ( denoted as 6 in circle in the figure) between the central recess and the first side recesses Convex part 84 for the peaks (2) (denoted as 2 in the circle in the figure ) and (8) ( denoted as 8 in the circle in the figure) between the first both-side recessed part and the second both-side recessed part Have 85.
[0035]
The curvature radii of the concaves and convexes corresponding to each other of the male mold 7 and the female mold 8 are 5 mm.
[0036]
When the male mold 7 is pressed by a pressing means (not shown) in the state of FIG. 8, the central projection 71 of the male mold 7 with the flat plate 1 is female with the first spring 74 and the second spring 75 being hardly contracted. The plate 1 is pressed into the central recess 81 of the mold 8 to form a peak (5) of the central wave portion (indicated by 5 in the circle), and at the same time, the flat plate 1 has a female peak (4) (circle in the drawing). It is pushed up from the lower surface by the convex portion 84 for (6 is written in the circle) and (6) (indicated by 6 in the circle) , and is pushed down from the upper surface by the first both-side convex portion 72 of the male mold 7. When the male mold 7 is further pressed and lowered, the central convex portion 71 of the male mold 7 is completely press-fitted into the central concave portion 81 of the female mold 8, and the peak (5) of the central wave portion (5 in the figure) (Denoted 5 in the inside) is formed.
[0037]
Next, when the male die 7 is further pressed in this state, that is, with the central wave portion sandwiched, the first spring 74 contracts and the first side convex portion 72 descends, and the mountain (3) of the female die 8 (FIG. Then, press-fitting into the first both-side recess 82 for (7) (shown as 3 in ○) and (7) (shown as 7 in ○ in the figure) is started, and at the same time, the central protrusion 71 and the first both-side protrusion 72 Beginning to form a recess for the mountain (4) (denoted as 4 in the circle in the figure ) and (6) (denoted as 6 in the circle in the figure) between the female and the female ( 8 ) The convex part 84 for (6 in the figure is marked as 4 ) and (6) (in the figure is marked as 6 in the circle) is the mountain 7 of the male mold (4) (in the figure, marked as 4 in the circle). ) , (6) It begins to be press-fitted into the recess for 6 (indicated by 6 in the circle) , and the state shown in FIG. 9 is obtained.
[0038]
Further, when the male mold 7 is pressurized, the first both-side convex portions 72 are completely press-fitted into the first both-side concave portions 82 of the female mold 8, and the side wave crest (3) (indicated by 3 in the circle). ) And (7) (indicated by 7 in the circle) and mountains (4) (indicated by 4 in the circle) and (6) (indicated by 6 in the circle) are formed. The Next, when the male die 7 is further pressed in this state, that is, in a state where the side wave portion is narrowed, the second spring 75 is contracted and the second both-side convex portion 73 is the mountain (1) of the female die 8 (in the drawing). It is press-fitted into the second side recess 83 for (9) ( denoted as 1 in o) and (9) (denoted as 9 in o in the figure ), and the ridge (2) of the female mold 8 (2 in o in the figure) and referred), (8) (referred to as 2 in ○ in 8 and denoted) protruding portion 85 of the male die 7 for mountain (2) (Figure in ○ in the figure), in (8) (Fig ○ And is finally pressed into a state as shown in FIG. 10, and side wave portions are formed on the flat plate 1.
[0039]
FIG. 11 is a cross-sectional view of the corrugated sheet taken out from the mold after molding, but there was no generation of scratches or cracks.
[0040]
【The invention's effect】
As described above, according to the corrugated plate manufacturing method of the present invention, there is no shortage of material supply to the mold, and no scratches or cracks occur. Moreover, when press-fitting into the pipe, the R shape of the wave portion is not crushed and no gap is generated.
[Brief description of the drawings]
1 is a cross-sectional view showing an initial stage of a manufacturing process of Example 1. FIG.
2 is a cross-sectional view showing an intermediate stage in the manufacturing process of Example 1. FIG.
3 is a cross-sectional view showing the final stage of the manufacturing process in Example 1. FIG.
4 is a perspective view of a corrugated sheet manufactured by the manufacturing process of Example 1. FIG.
5 is a cross-sectional view showing an initial stage of a manufacturing process of Example 2. FIG.
6 is a cross-sectional view showing the final stage of the manufacturing process in Example 2. FIG.
7 is a cross-sectional view of a corrugated sheet manufactured by the manufacturing process of Example 2. FIG.
8 is a cross-sectional view showing an initial stage of a manufacturing process in Example 3. FIG.
9 is a cross-sectional view showing an intermediate stage in the manufacturing process of Example 3. FIG.
10 is a cross-sectional view showing the final stage of the manufacturing process in Example 3. FIG.
11 is a cross-sectional view of a corrugated sheet manufactured by the manufacturing process of Example 3. FIG.
FIG. 12 is a cross-sectional view of a catalyst support.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Flat plate, 2, 4, 7 ... Male type | mold, 3, 5, 8 ... Female type | mold, 6 ... Core, 10 ... Corrugated sheet, 21, 71 ... Central convex part 22, 72, 73... Both side convex portions, 23, 74, 75... Pressurizing means, 31, 81.

Claims (6)

粗波板を作る粗波板形成工程と、
作られた粗波板の凹部に棒状のコアを挿入し、コアの挿入された状態で波部が重なる方向に押圧して矯正する矯正工程と、
からなることを特徴とする波板の製造方法。
A rough corrugated sheet forming process for creating a rough corrugated sheet;
A straightening process in which a rod-shaped core is inserted into the concave portion of the produced rough corrugated plate, and the corrugated portion is pressed and corrected in a state where the core is inserted, and
A method for manufacturing a corrugated sheet comprising:
前記矯正する工程は雌型と雄型が閉じたとき円筒状キャビティを形成する型で波部が重なる方向に押圧して矯正する工程である請求項に記載の波板の製造方法。2. The corrugated sheet manufacturing method according to claim 1 , wherein the correcting step is a step of correcting the corrugated portion by pressing in a direction in which the wave portions overlap with a die that forms a cylindrical cavity when the female die and the male die are closed. 前記粗波板を作る粗波板形成工程は、平板中央に中央波部を形成する中央波部形成工程と、該中央波部を狭持した状態でその両側の側波部を形成する側波部形成工程とからなる請求項1または2に記載の波板の製造方法。The rough wave plate forming step for forming the rough wave plate includes a central wave portion forming step for forming a central wave portion at the center of the flat plate, and side waves for forming side wave portions on both sides of the central wave portion while sandwiching the central wave portion. The method for manufacturing a corrugated sheet according to claim 1, comprising a part forming step. 前記中央波部形成工程は波状の雌型の中央凹部に平板をその中央が一致するように載置する工程と、波状の雄型の中央凸部が該雌型の中央凹部に圧入する工程と、からなる請求項3に記載の波板の製造方法。The central wave portion forming step includes a step of placing a flat plate in a central concave portion of a corrugated female mold so that the center thereof coincides, and a step of press-fitting the corrugated male central convex portion into the central concave portion of the female mold, The manufacturing method of the corrugated sheet of Claim 3 which consists of these. 請求項1〜4のいずれかの製造方法で製造される外径が略円形で断面がヘアピン形状の波板。A corrugated sheet having an outer diameter substantially circular and a hairpin shape in section produced by the production method according to claim 1. 請求項5の波板をパイプに組み込んだ排気浄化触媒サポート。An exhaust purification catalyst support incorporating the corrugated plate of claim 5 in a pipe.
JP2001028600A 2001-02-05 2001-02-05 Method for manufacturing corrugated sheet for catalyst support, corrugated sheet and catalyst support Expired - Fee Related JP4558960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028600A JP4558960B2 (en) 2001-02-05 2001-02-05 Method for manufacturing corrugated sheet for catalyst support, corrugated sheet and catalyst support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028600A JP4558960B2 (en) 2001-02-05 2001-02-05 Method for manufacturing corrugated sheet for catalyst support, corrugated sheet and catalyst support

Publications (2)

Publication Number Publication Date
JP2002224752A JP2002224752A (en) 2002-08-13
JP4558960B2 true JP4558960B2 (en) 2010-10-06

Family

ID=18893074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028600A Expired - Fee Related JP4558960B2 (en) 2001-02-05 2001-02-05 Method for manufacturing corrugated sheet for catalyst support, corrugated sheet and catalyst support

Country Status (1)

Country Link
JP (1) JP4558960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357574A (en) * 2011-07-08 2012-02-22 明光市嘉益电控科技有限公司 Corrugated plate punching device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10327455A1 (en) * 2003-06-18 2005-01-05 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for producing a structured sheet-metal strip
DE102004001419A1 (en) 2003-05-30 2004-12-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Metal sheet, e.g. for supporting catalytic converter for treating vehicle exhaust, has slits near center which enclose microstructured area extending below its surface, where slits have recesses at their corners
ES2310290T3 (en) 2003-05-30 2009-01-01 Emitec Gesellschaft Fur Emissionstechnologie Mbh MANUFACTURE OF A STRUCTURED SHEET FOR EXHAUST GAS TREATMENT DEVICES.
JP4179986B2 (en) * 2003-12-26 2008-11-12 サクラ工業株式会社 CORE PIECE OF EXHAUST CATALYST DEVICE, ITS MANUFACTURING METHOD, AND INSERTION AND FIXING METHOD THEREOF
JP5380149B2 (en) * 2008-08-20 2014-01-08 サクラ工業株式会社 Exhaust gas catalyst device manufacturing method and exhaust gas catalyst device manufactured by this method
JP5515410B2 (en) * 2009-05-15 2014-06-11 株式会社デンソー Bending method and processing apparatus
JP5409307B2 (en) * 2009-12-03 2014-02-05 サクラ工業株式会社 Exhaust gas catalyst device manufacturing method and exhaust gas catalyst device manufactured by this method
JP5579478B2 (en) * 2010-03-29 2014-08-27 株式会社柿生精密 Pressure holding device
US8720247B2 (en) 2011-11-22 2014-05-13 Denso Corporation Method for bending process and processing machine
JP5517082B2 (en) * 2012-01-17 2014-06-11 株式会社デンソー Corrugated sheet manufacturing apparatus, corrugated sheet manufacturing method, and heat exchanger
US11387525B2 (en) 2020-03-09 2022-07-12 GM Global Technology Operations LLC Two-stage plunger press systems and methods for forming battery cell tabs
CN111842559B (en) * 2020-07-06 2022-03-15 湖北三江航天红阳机电有限公司 Omega-shaped hoop forming device and method
CN114618943A (en) * 2022-03-15 2022-06-14 浙江嘉诚动能科技股份有限公司 Special mold for forming corrugated plate of evaporator and corrugated forming process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561729U (en) * 1979-06-19 1981-01-09
JPS59232636A (en) * 1983-06-13 1984-12-27 Toyota Motor Corp Production of menifold pipe
JPS60257930A (en) * 1984-06-06 1985-12-19 Toyota Auto Body Co Ltd Press working method and its device
JPH04371322A (en) * 1991-06-17 1992-12-24 Mitsubishi Electric Corp Method and die for forming corrugated fin
JPH08141412A (en) * 1994-11-25 1996-06-04 Toyota Motor Corp Manufacture of honeycomb body for metallic carrier
JP2000079415A (en) * 1998-09-02 2000-03-21 Akito Asai Press-working device and press-working method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561729U (en) * 1979-06-19 1981-01-09
JPS59232636A (en) * 1983-06-13 1984-12-27 Toyota Motor Corp Production of menifold pipe
JPS60257930A (en) * 1984-06-06 1985-12-19 Toyota Auto Body Co Ltd Press working method and its device
JPH04371322A (en) * 1991-06-17 1992-12-24 Mitsubishi Electric Corp Method and die for forming corrugated fin
JPH08141412A (en) * 1994-11-25 1996-06-04 Toyota Motor Corp Manufacture of honeycomb body for metallic carrier
JP2000079415A (en) * 1998-09-02 2000-03-21 Akito Asai Press-working device and press-working method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357574A (en) * 2011-07-08 2012-02-22 明光市嘉益电控科技有限公司 Corrugated plate punching device

Also Published As

Publication number Publication date
JP2002224752A (en) 2002-08-13

Similar Documents

Publication Publication Date Title
JP4558960B2 (en) Method for manufacturing corrugated sheet for catalyst support, corrugated sheet and catalyst support
US10058912B2 (en) Method for producing a forged crankshaft
CN101823089A (en) Bending and compression combination-type corrugated steel web formation device
CN110935759A (en) U-O shaping of members bent about three spatial axes
CN102078888A (en) Method for manufacturing steel pipe with long round section
CN107427901A (en) The manufacture method of crankshaft forging
KR100540842B1 (en) How to make pad springs for automobile disc brakes
US7237423B1 (en) Apparatus for stretch forming blanks
EP2883627A1 (en) Method for manufacturing steel pipe
JPH10170172A (en) Double tube type heat exchanger
WO2009069920A2 (en) Manufacturing method of eccentric cone with knuckle
WO2017085868A1 (en) Fuel cell separator and production method therefor
JP2006266321A (en) Pipe manufacturing method and inner side pipe of double pipe type pipe
CN105556087A (en) Catalyst casing-integrated exhaust manifold and method for manufacturing same
JP4546592B2 (en) Metal pipe bending method and metal bent pipe
CN110125249A (en) The manufacturing method of metal forming body
JP5380149B2 (en) Exhaust gas catalyst device manufacturing method and exhaust gas catalyst device manufactured by this method
KR100361463B1 (en) Plastic method of outer pipe body for engine mountain bracket
JP4256700B2 (en) Mesh-like spacing holder, method for manufacturing the same, and exhaust manifold
JP2004351488A (en) Method for producing tubular member having partition plate by hydraulic forming
JP7071719B2 (en) Bent pipe and its manufacturing method, and exhaust pipe system to which this bent pipe is applied
US7316803B2 (en) Fiber and corrugated metal mat support
JP3593381B2 (en) Pipe flattening method and die used for it
JP2010012515A (en) Metallic pipe and manufacturing method thereof
JPH10237424A (en) Production of gasket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees