JP4558152B2 - Room pressure control method in advanced clean facility - Google Patents

Room pressure control method in advanced clean facility Download PDF

Info

Publication number
JP4558152B2
JP4558152B2 JP2000226476A JP2000226476A JP4558152B2 JP 4558152 B2 JP4558152 B2 JP 4558152B2 JP 2000226476 A JP2000226476 A JP 2000226476A JP 2000226476 A JP2000226476 A JP 2000226476A JP 4558152 B2 JP4558152 B2 JP 4558152B2
Authority
JP
Japan
Prior art keywords
fan
air
facility
air supply
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000226476A
Other languages
Japanese (ja)
Other versions
JP2002039580A (en
Inventor
健一 得田
正史 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2000226476A priority Critical patent/JP4558152B2/en
Publication of JP2002039580A publication Critical patent/JP2002039580A/en
Application granted granted Critical
Publication of JP4558152B2 publication Critical patent/JP4558152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高度清浄施設における室圧制御方法に関し、特に、給気量が排気量に対して所定の量差を維持することで施設の室圧を安定させると共に、施設間の空気の流れが一方向になるように室圧を維持する高度清浄施設における室圧制御方法に関する。
【0002】
【従来の技術】
高度な清浄度が必要とされる生産施設や、汚染物質を取り扱う産業施設では、当該室と他室もしくは外部との間に発生する空気の相互汚染が問題となる。この問題を避けるためには、室間の空気の流れを一方向とするように室圧制御が行われている。
【0003】
このような生産施設の一つである、医薬品製造工場、食品工場、半導体製造工場のような建物では、外部からの粉じんや雑菌の侵入を防がなければならないことから、室圧を外気または周囲室に対して陽圧になるように制御している。
【0004】
一方、特殊薬品工場やバイオハザード対策施設(以下、BH施設と呼称する)では、室内の空気が外部に漏洩するのを防がなければならないために、室圧を外気に対して陰圧に保つように室圧制御を行っている。
【0005】
従来の室圧制御は、図4に示す制御回路によって実施されており、上記の過程におけるファンの起動・停止時においては、当該室と他室との間に要求室圧を保つために、以下の運転制御を採用していた。
【0006】
BH施設20は、飼育室21と前室22から構成されており、その間はドア23によって接続されている。又、飼育室21には、安全キャビネット24等が配置されており、所定の作業を実施できるように構成されている。
【0007】
BH施設20には、空調機内の給気ファン25と排気ファン26とによって空調空気の供給と室内からの排気が行われている。給気ファン25と各室との間には、それぞれに、定風量装置27と高性能フィルタ28とが配置されており、各室と排気ファン26との間には、高性能フィルタ28と変風量装置29とがそれぞれに配置されている。尚、安全キャビネット24と排気ファン26との間にも、汚染空気が外部に排出されないように、高性能フィルタ28が配置されている。
【0008】
飼育室21と前室22とは、それぞれの定風量装置27によって給気風量を一定に保つと共に、飼育室21と前室22との間に配置された差圧計30からの差圧信号によって、飼育室21が前室22に対して陰圧を常に保つように、変風量装置29の流量を互いに調整している。これによって、飼育室21と前室22との間は、例えば30(Pa)の差圧が常に保持されるように制御されており、前室22から飼育室21への空気の流れを形成している。
【0009】
しかし、BH施設では、作業内容の変更等に際して空調の停止を行なう必要があり、変更後には早急にファンを再起動させて、当該室の空気が外部に漏洩しないように、室圧を外気に対して陰圧に戻すための室圧制御を行う必要があった。
【0010】
このために、上記制御回路においても、給排気ファン25、26にインバータ31を採用することで、給排気ファンの定格回転数が変えられると共に、スタートさせてから定格回転に至るまでの立上り時間も制御できるようにしており、起動時における給排気ファンの起動特性をそれぞれに異なる設定にすることによって、BH施設20の再起同時における正常な稼働状態を指向している。
【0011】
これらの制御は、インバータ31の設定を制御盤32において調整することで行われているものであり、図5は、従来行われていた制御形態例、図6は、これによって制御された前室における絶対圧の推移状態である。
【0012】
制御盤32における調整と制御は、図5のフローチャートに従って行われるものであり、調整のスタートから定常運転の持続までは、以下の順序で展開される。
【0013】
(1)給排気ファンの定格回転数の設定。給気ファン25の定格回転数(Rs)と排気ファン26の定格回転数(Re)をRe>Rsに設定する。
【0014】
(2)給排気ファンの定格回転数に達するまでの起動時間の設定。給気ファン25の起動時間(Ts)と排気ファン26の起動時間(Te)をTs>Teに設定する。
【0015】
(3)給排気ファンの電源入りと同時起動。給排気ファンの回転数の上昇速度が異なるために、室内は次第に陰圧が強くなる。
【0016】
(4)排気ファン26のTe時間後の定格運転。Te時間後の陰圧は最も大きくなる。
【0017】
(5)給気ファン25のTs時間後の定格運転。給排気ファンの回転数の差による所望の陰圧に収斂する。(6)定常運転の持続。
【0018】
以上のフローチャートに従って起動した給排気ファンによって、形成される前室における絶対圧の推移状態は、図6に示されている。
【0019】
図示のように、排気ファン26はTe時間(110秒)後には定格運転に到達するのに対して、給気ファン25はそれより長いTs時間(230秒)後に定格運転に到達することから、その間の給気ファン25と排気ファン26の回転数の差が時間と共に大きくなる。
【0020】
このために、上述のような経過を辿ることで、前室22では、給気ファン25が正常運転に至るまでに室圧が最大350(Pa)も過剰に下がるという問題が生じている。
【0021】
このような室圧の過剰な低下は、内装材料の剥がれという事故を招く恐れがあることから、BH施設における稼働形態としては極めて重大な問題である。
【0022】
【発明が解決しようとする課題】
本発明は、上記問題に鑑みて検討されたものであり、給気量が排気量に対して所定の量差を維持することで、施設の室圧を安定させると共に、施設間の空気の流れが常に一方向になるように室圧を維持している高度清浄施設における室圧制御方法を提供している。
【0023】
【課題を解決するための手段】
請求項1に記載されている発明である高度清浄施設における室圧制御方法は、施設に給気する給気ファンと施設から排気する排気ファンとを相互に制御することで所定の室圧を維持している高度清浄施設における室圧制御方法であって、給気量が排気量に対して所定の量差を維持するように、起動特性が同一の給気ファンと排気ファンとを用いて、始動に排気ファンを先に起動しその後で給気ファンを起動する時間差をタイマーにより設けると共に、これら排気ファンと給気ファンの回転数に差を持たせることを特徴としており、BH施設を起動させる際にも室圧の過剰な低下を発生させることなく安定させた差圧を保持している。給排気ファンの起動の時間設定を変えること、並びに給排気ファンの回転数の設定を変えることで容易に調整することが出来る。
【0024】
請求項2に記載されている発明である高度清浄施設における室圧制御方法は、施設に給気する給気ファンと施設から排気する排気ファンとを相互に制御することで、扉を介して連絡する前室と作業室とを所定の室圧に維持している高度清浄施設における室圧制御方法であって、各室における給気量が排気量に対して所定の量差を維持するように、起動特性が同一の給気ファンと排気ファンとを用いて、始動に排気ファンを先に起動しその後で給気ファンを起動する時間差をタイマーにより設けると共に、これら排気ファンと給気ファンの回転数に差を持たせ、かつ、前室の量差が作業室の量差に対して所定の室圧差を維持するように、前室と作業室それぞれの排気流量を変風量装置で調整することを特徴としており、BH施設を起動させる際にも室圧の過剰な低下を発生させることなく安定させた差圧を保持すると共に、前室と作業室との空気の流れを常に一方向にしている。給排気ファンの起動の時間設定を変えること、並びに給排気ファンの回転数の設定を変えることで容易に調整することが出来る。
【0025】
【発明の実施の形態】
本発明による高度清浄施設における室圧制御方法は、施設に給気する給気ファンと施設から排気する排気ファンとを相互に制御することで、扉を介して連絡する前室と作業室とを所定の室圧に維持している高度清浄施設における室圧制御方法において、各室における給気量が排気量に対して所定の量差を維持するように、起動特性が同一の給気ファンと排気ファンとを用いて、始動に排気ファンを先に起動しその後で給気ファンを起動する時間差をタイマーにより設けると共に、これら排気ファンと給気ファンの回転数に差を持たせ、かつ、前室の量差が作業室の量差に対して所定の室圧差を維持するように、前室と作業室それぞれの排気流量を変風量装置で調整している。
【0026】
これによって、BH施設を起動させる際にも室圧の過剰な低下を発生させることなく安定させた差圧を保持すると共に、前室と作業室との空気の流れを常に一方向に維持できる。
【0027】
以下に、本発明の実施の形態を図面に基づいて説明するが、理解を容易にするために、従来と同様の装置等については同符号を付している。
【0028】
図1は、BH施設20の制御回路図を示している。BH施設20は、従来例と同様に飼育室21と前室22及びその間のドア23から構成されている。そして、飼育室21に安全キャビネット24等を配置することも同様である。
【0029】
そして、BH施設20は、給気ファン25と排気ファン26とが配置されて外気の供給と室内からの排気を行っており、給気ファン25と各室間に配置されている定風量装置27、高性能フィルタ28及び各室と排気ファン26との間に配置されている高性能フィルタ28と変風量装置29も、安全キャビネット24と排気ファン26間に配置されている高性能フィルタ28と共々に従来例と同様に稼働して、汚染空気が外部に排出されないように運転制御されている。
【0030】
又、飼育室21と前室22とは、それぞれの定風量装置27によって給気風量を一定に保つと共に、飼育室21が前室22に対して陰圧を保つように変風量装置29の流量は差圧計30の差圧信号で互いに調整されており、常に所定の差圧が保持されるように制御されることで、前室22から飼育室21への空気の流れを形成している。
【0031】
本発明における制御回路は、従来と同様にインバータ31による給排気ファン25、26の定格回転数の変更とスタートから定格回転に至るまでの立上り時間の制御が可能であるばかりでなく、これに加えて、給排気ファン25、26の起動回路にタイマー33を接続している。
【0032】
従って、本発明では、タイマー33の設定を互いに異ならせることで、給排気ファン25、26を同時に電源入れしても、給排気ファン25、26をそれぞれ別々にスタートさせるように構成することが出来る。
【0033】
以上の給排気ファンに対する制御は、制御盤32においてインバータ31とタイマー33の設定を調整することで行われ、これによってBH施設20の起動時における理想的な稼働を以下のように達成している。
【0034】
図2は、本発明による室圧制御方法の実施の形態を示すフローチャート図であり、調整のスタートから定常運転の持続までは、以下の順序で展開される図示のフローチャートにおいては、スタートとして給排気ファンを起動させる以前の設定が行われる。
【0035】
(101)給排気ファンの定格回転数の設定。給気ファン25の定格回転数(Rs)と排気ファン26の定格回転数(Re)をRe>Rsに設定する。
【0036】
(102)給排気ファンの定格回転数に達するまでの起動時間の設定。給気ファン25の起動時間(Ts)と排気ファン26の起動時間(Te)をTs=Teに設定する。
【0037】
(103)給排気ファンのタイマーの設定。給気ファン25の作動時間=Tと排気ファン26の作動時間=0を設定する。(104)給排気ファンのスイッチオン。
【0038】
(105)排気ファンの電源入り。排気ファン26が作動時間=0で直ちに起動し、室内に陰圧が発生する。
【0039】
(106)給気ファンの電源入り。給気ファン25が作動時間=Tを経た後に起動し、陰圧は極端に低下しないで最大になる。
【0040】
(107)Te時間後に排気ファン26の定格運転。給気ファンの回転数の増加で陰圧が低減される。
【0041】
(108)Ts+T時間後に給気ファン25の定格運転。給排気ファンの回転数の差による所望の陰圧に収斂する。(109)定常運転の持続。
【0042】
以上のフローチャートに従って運転される給排気ファンは、前室において図3に示されるような絶対圧の推移状態を形成する。
【0043】
排気ファン26は、図示のようにスイッチオンと同時に起動するので室内には外気に対して陰圧が発生する。陰圧は、T時間後に給気ファン25が起動するまで増加を続けるが、給気ファン25が起動すると陰圧の増加は停止し、給気ファン25の回転数の増加に連れて陰圧は低減される。
【0044】
本実施の形態では、給気ファン25がT時間後に起動するまで、排気ファン26の運転によって排気が続けられ、陰圧の増加が継続される。そして、この間に排気ファンと給気ファン25との間に形成される圧力差は、零から給気ファン25が起動する約120(Pa)近くまで増加し、その後は、給排気ファンの起動特性を同一(Ts=Te)にしていることで、排気ファン26が定格運転に至るまで、その圧力差が保持されることになる。
【0045】
この運転制御によって前室の絶対圧は低下するが、給気ファン25の運転で圧力差の増加が停止された後に一定値に保持されることから、低下する絶対圧の最大値は従来のように極端な値にまで低下されることなく停止して、図示のように穏やかな曲線を描いて陰圧を低減して行き、給気ファン25の定格運転に至って所定の陰圧に収斂している。
【0046】
以上のように、本実施の形態では、起動特性の同一な排気ファンと給気ファンとをスタート時間に差を持たせて起動することで、給気量と排気量との間に所定の量差を保持するようにして、BH施設を起動させる際にも室圧の過剰な低下を発生させることなく安定させた差圧を保持している。
【0047】
又、上記の運転状態は、飼育室においても同様に実施されている。このために、飼育室21と前室22とは、それぞれに変風量装置29による排気流量を調整しながら、流量差による陰圧を保つように構成されているが、各室は起動時においても極めて安定した状態に維持されている。
【0048】
従って、飼育室21と前室22との間に設置されている、差圧計30の差圧信号で互いに調整される各室間の差圧も、各室の室圧が安定されていることから安定された状態で保持されることになり、制御系に相互干渉を発生させることもなく、前室22から飼育室21への空気の流れも、殆ど乱されることなく形成することができる。
【0049】
上記実施の形態では、給気量と排気量との間に所定の量差を保持するための手段として、起動特性の同一な排気ファンと給気ファンとをスタート時間に差を持たせて起動させているが、本発明による高度清浄施設における室圧制御方法では、他の手段においても同様の機能を確立することができる。
【0050】
他の実施形態の第1は、排気ファンと給気ファンの回転数に差を持たせることで、BH施設に所定の量差を形成する手段である。
【0051】
本実施の形態では、図3で表示しているファン回転数で明らかにしているように、インバータの設定によって、排気ファンの回転数を給気ファンの回転数よりも所定値だけ大きくなるように制御しており、回転数の差による供給風量の差を所定値に保持することによって、BH施設に外気に対して所定の陰圧を形成している。
【0052】
この際に給排気ファンに形成される起動特性(起動から定格回転数に達するまでの時間の設定)は同一であるが、排気ファンを先にスタートさせることは、BH施設に外気に対して陰圧を前以て形成して置くことになるから、BH施設に当初段階で外気に対して如何なる陰圧を形成するかによって定められる。
【0053】
以上のように、本発明による高度清浄施設における室圧制御方法は、高度清浄施設において、給気量が排気量に対して所定の量差を維持するように、起動特性が同一の給気ファンと排気ファンとを用いて、始動に排気ファンを先に起動しその後で給気ファンを起動する時間差をタイマーにより設けると共に、これら排気ファンと給気ファンの回転数に差を持たせ、かつ、前室の量差が作業室の量差に対して所定の室圧差を維持するように、前室と作業室それぞれの排気流量を変風量装置で調整しているので、BH施設を起動させる際にも室圧の過剰な低下を発生させることなく施設の室圧を安定させると共に、施設間の空気の流れが常に一方向になるように室圧を維持している。
【0054】
以上、本発明を実施の形態に基づいて詳細に説明してきたが、本発明は上記実施の形態に何ら限定されるものでなく、発明の趣旨に反しない範囲において、各種の変更が可能であることは当然である。
【0055】
【発明の効果】
請求項1に記載されている発明である高度清浄施設における室圧制御方法は、施設に給気する給気ファンと施設から排気する排気ファンとを相互に制御することで所定の室圧を維持している高度清浄施設における室圧制御方法であって、給気量が排気量に対して所定の量差を維持するように、起動特性が同一の給気ファンと排気ファンとを用いて、始動に排気ファンを先に起動しその後で給気ファンを起動する時間差をタイマーにより設けると共に、これら排気ファンと給気ファンの回転数に差を持たせることを特徴としているので、BH施設を起動させる際にも室圧の過剰な低下を発生させることなく安定させた差圧を保持する効果を奏している。給排気ファンの起動の時間設定を変えること、並びに給排気ファンの回転数の設定を変えることで容易に調整出来る効果を奏している。詳細には、先に排気ファンが起動するので施設内には外気に対して陰圧が発生し、この陰圧は、その後に給気ファンが起動するまで増加を続けるが、給気ファンが起動すると陰圧の増加は停止し、給気ファンの回転数の増加に連れて陰圧は低減され、この運転制御によって施設の絶対圧は低下するが、給気ファンの運転で圧力差の増加が停止された後に一定値に保持されることから、低下する絶対圧の最大値は従来のように極端な値にまで低下されることなく停止して、穏やかに陰圧を低減して行き、給気ファンの定格運転に至って所定の陰圧に収斂させることができて、施設を起動させる際にも室圧の過剰な低下を発生させることなく安定させた差圧を保持することができる。
【0056】
請求項2に記載されている発明である高度清浄施設における室圧制御方法は、施設に給気する給気ファンと施設から排気する排気ファンとを相互に制御することで、扉を介して連絡する前室と作業室とを所定の室圧に維持している高度清浄施設における室圧制御方法であって、各室における給気量が排気量に対して所定の量差を維持するように、起動特性が同一の給気ファンと排気ファンとを用いて、始動に排気ファンを先に起動しその後で給気ファンを起動する時間差をタイマーにより設けると共に、これら排気ファンと給気ファンの回転数に差を持たせ、かつ、前室の量差が作業室の量差に対して所定の室圧差を維持するように、前室と作業室それぞれの排気流量を変風量装置で調整することを特徴としているので、BH施設を起動させる際にも室圧の過剰な低下を発生させることなく安定させた差圧を保持すると共に、前室と作業室との空気の流れを常に一方向にする効果を奏している。給排気ファンの起動の時間設定を変えること、並びに給排気ファンの回転数の設定を変えることで容易に調整出来る効果を奏している。詳細には、先に排気ファンが起動するので施設内には外気に対して陰圧が発生し、この陰圧は、その後に給気ファンが起動するまで増加を続けるが、給気ファンが起動すると陰圧の増加は停止し、給気ファンの回転数の増加に連れて陰圧は低減され、この運転制御によって施設の絶対圧は低下するが、給気ファンの運転で圧力差の増加が停止された後に一定値に保持されることから、低下する絶対圧の最大値は従来のように極端な値にまで低下されることなく停止して、穏やかに陰圧を低減して行き、給気ファンの定格運転に至って所定の陰圧に収斂させることができて、施設を起動させる際にも室圧の過剰な低下を発生させることなく安定させた差圧を保持することができ、そしてこの運転状態は、作業室においても同様であって、作業室と前室とは、それぞれに変風量装置による排気流量を調整しながら、流量差による陰圧を保つように構成されていて、各室を起動時においても極めて安定した状態に維持することができる。
【図面の簡単な説明】
【図1】本発明による高度清浄施設の室圧制御方法における制御回路図
【図2】本発明による高度清浄施設にの室圧制御方法におけるフローチャート図
【図3】本発明による高度清浄施設の室圧制御方法による室圧状態
【図4】従来の高度清浄施設の室圧制御方法における制御回路図
【図5】従来の高度清浄施設にの室圧制御方法におけるフローチャート図
【図6】従来の高度清浄施設の室圧制御方法による室圧状態
【符号の説明】
20BH施設、21飼育室、22前室、23ドア、24安全キャビネット、25給気ファン、26排気ファン、27定風量装置、28高性能フィルタ、29変風量装置、30差圧計、31インバータ、32制御盤、33タイマー、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a room pressure control method in an advanced clean facility, and in particular, the air supply amount maintains a predetermined amount difference with respect to the exhaust amount, thereby stabilizing the room pressure of the facility, and the air flow between the facilities. The present invention relates to a room pressure control method in an advanced clean facility that maintains a room pressure in one direction.
[0002]
[Prior art]
In production facilities that require a high degree of cleanliness and industrial facilities that handle pollutants, cross-contamination of air generated between the room and other rooms or the outside becomes a problem. In order to avoid this problem, the chamber pressure control is performed so that the air flow between the chambers is in one direction.
[0003]
In buildings such as pharmaceutical manufacturing factories, food factories, and semiconductor manufacturing factories, which are one of these production facilities, it is necessary to prevent intrusion of dust and germs from the outside. It is controlled so as to be positive pressure to the chamber.
[0004]
On the other hand, in special chemical factories and biohazard countermeasure facilities (hereinafter referred to as BH facilities), room air must be prevented from leaking to the outside, so the room pressure is kept negative with respect to the outside air. The room pressure is controlled as follows.
[0005]
Conventional chamber pressure control is performed by the control circuit shown in FIG. 4, and at the time of starting and stopping the fan in the above process, in order to maintain the required chamber pressure between the chamber and the other chamber, The operation control was adopted.
[0006]
The BH facility 20 is composed of a breeding room 21 and an anterior room 22, which are connected by a door 23. The breeding room 21 is provided with a safety cabinet 24 and the like so that a predetermined work can be performed.
[0007]
The BH facility 20 is supplied with conditioned air and exhausted from the room by an air supply fan 25 and an exhaust fan 26 in the air conditioner. A constant air volume device 27 and a high performance filter 28 are arranged between the air supply fan 25 and each chamber, respectively. Between each chamber and the exhaust fan 26, a high performance filter 28 and a variable filter 28 are arranged. Air volume devices 29 are arranged in each. A high-performance filter 28 is also disposed between the safety cabinet 24 and the exhaust fan 26 so that contaminated air is not discharged outside.
[0008]
The breeding room 21 and the front room 22 keep the air supply air volume constant by the constant air volume devices 27, and also by the differential pressure signal from the differential pressure gauge 30 arranged between the breeding room 21 and the front room 22. The flow rate of the air volume change device 29 is adjusted mutually so that the breeding room 21 always maintains a negative pressure with respect to the front room 22. As a result, the differential pressure of, for example, 30 (Pa) is controlled between the breeding room 21 and the front room 22 so that an air flow from the front room 22 to the breeding room 21 is formed. ing.
[0009]
However, at the BH facility, it is necessary to stop the air conditioning when the work content is changed, etc. After the change, the fan is restarted as soon as possible so that the air in the room does not leak outside. On the other hand, it was necessary to control the room pressure to return to the negative pressure.
[0010]
For this reason, also in the above control circuit, by adopting the inverter 31 for the air supply / exhaust fans 25, 26, the rated rotational speed of the air supply / exhaust fan can be changed and the rise time from the start to the rated rotation is also increased. By controlling the startup characteristics of the air supply / exhaust fans at the time of startup, the normal operating state at the same time as the restart of the BH facility 20 is directed.
[0011]
These controls are performed by adjusting the setting of the inverter 31 in the control panel 32. FIG. 5 shows an example of a conventional control form, and FIG. 6 shows the front chamber controlled thereby. It is the transition state of absolute pressure at.
[0012]
The adjustment and control in the control panel 32 are performed according to the flowchart of FIG. 5 and are developed in the following order from the start of adjustment to the continuation of steady operation.
[0013]
(1) Setting the rated speed of the supply / exhaust fan. The rated rotational speed (Rs) of the air supply fan 25 and the rated rotational speed (Re) of the exhaust fan 26 are set to Re> Rs.
[0014]
(2) Setting of the starting time until the rated speed of the supply / exhaust fan is reached. The start time (Ts) of the air supply fan 25 and the start time (Te) of the exhaust fan 26 are set to Ts> Te.
[0015]
(3) Simultaneous startup when the air supply / exhaust fan is turned on. Since the speed of increase of the rotational speed of the supply / exhaust fan is different, the negative pressure gradually increases in the room.
[0016]
(4) Rated operation after Te time of the exhaust fan 26. The negative pressure after Te time becomes the largest .
[0017]
(5) Rated operation after Ts time of the air supply fan 25. It converges to the desired negative pressure due to the difference in the rotation speed of the supply and exhaust fans. (6) Sustained steady operation.
[0018]
The transition state of the absolute pressure in the front chamber formed by the air supply / exhaust fan started according to the above flowchart is shown in FIG.
[0019]
As shown in the figure, the exhaust fan 26 reaches the rated operation after Te time (110 seconds), whereas the supply fan 25 reaches the rated operation after a longer Ts time (230 seconds). The difference in rotational speed between the air supply fan 25 and the exhaust fan 26 during that time increases with time.
[0020]
For this reason, by following the above-described process, there is a problem in the front chamber 22 that the maximum chamber pressure drops by 350 (Pa) excessively until the air supply fan 25 reaches normal operation.
[0021]
Such an excessive decrease in the room pressure is a very serious problem as an operation mode in a BH facility because it may cause an accident that the interior material is peeled off.
[0022]
[Problems to be solved by the invention]
The present invention has been studied in view of the above problems, and the air supply amount maintains a predetermined amount difference with respect to the exhaust amount, thereby stabilizing the room pressure of the facility and the air flow between the facilities. Provides a room pressure control method in an advanced clean facility that maintains the room pressure so that the pressure is always in one direction.
[0023]
[Means for Solving the Problems]
According to a first aspect of the present invention, the room pressure control method in the highly clean facility maintains a predetermined room pressure by mutually controlling an air supply fan that supplies air to the facility and an exhaust fan that exhausts air from the facility. A room pressure control method in an advanced clean facility using an air supply fan and an exhaust fan having the same starting characteristics so that the air supply amount maintains a predetermined amount difference with respect to the exhaust amount. A time difference between starting the exhaust fan first before starting and then starting the air supply fan is provided by a timer , and the rotational speed of the exhaust fan and air supply fan is made different, and the BH facility is started. Even in this case, a stable differential pressure is maintained without causing an excessive decrease in the chamber pressure. It can be easily adjusted by changing the startup time setting of the supply / exhaust fan and changing the rotation speed of the supply / exhaust fan.
[0024]
The room pressure control method in an advanced clean facility according to claim 2 communicates via a door by mutually controlling an air supply fan that supplies air to the facility and an exhaust fan that exhausts air from the facility. A chamber pressure control method in an advanced clean facility in which the front chamber and the working chamber are maintained at a predetermined chamber pressure so that the air supply amount in each chamber maintains a predetermined amount difference with respect to the exhaust amount Using an air supply fan and an exhaust fan with the same starting characteristics, a timer is used to set a time difference between starting the exhaust fan first before starting and then starting the air supply fan, and rotation of the exhaust fan and air supply fan. The exhaust flow rate of each of the front chamber and the work chamber should be adjusted with a variable air flow rate device so that the difference in the number of the front chamber and the volume difference in the front chamber maintains a predetermined chamber pressure difference with respect to the volume difference in the work chamber. And when activating the BH facility Holds the differential pressure is stabilized without also generating the excessive decrease in chamber pressure, and the flow of air between the front chamber and the working chamber always in one direction. It can be easily adjusted by changing the startup time setting of the supply / exhaust fan and changing the rotation speed of the supply / exhaust fan.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The room pressure control method in an advanced clean facility according to the present invention includes a front chamber and a work chamber communicated via a door by mutually controlling an air supply fan that supplies air to the facility and an exhaust fan that exhausts air from the facility. In a room pressure control method in an advanced clean facility maintained at a predetermined room pressure, an air supply fan having the same start-up characteristic is used so that the air supply amount in each chamber maintains a predetermined amount difference with respect to the exhaust amount. Using the exhaust fan, a time difference between starting the exhaust fan first and starting the air supply fan after the start is provided by a timer , and the rotation speed of the exhaust fan and the air supply fan is made different. The exhaust flow rate of each of the front chamber and the working chamber is adjusted by a variable air flow device so that the chamber volume difference maintains a predetermined chamber pressure difference with respect to the working chamber volume difference.
[0026]
As a result, even when the BH facility is activated, a stable differential pressure can be maintained without causing an excessive decrease in the chamber pressure, and the air flow between the front chamber and the working chamber can always be maintained in one direction.
[0027]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding, the same reference numerals are given to the same devices and the like as in the past.
[0028]
FIG. 1 shows a control circuit diagram of the BH facility 20. The BH facility 20 includes a breeding room 21, a front room 22, and a door 23 therebetween, as in the conventional example. And it is the same also to arrange | position the safety cabinet 24 grade | etc., In the breeding room 21. FIG.
[0029]
The BH facility 20 is provided with an air supply fan 25 and an exhaust fan 26 to supply outside air and exhaust air from the room, and a constant air volume device 27 disposed between the air supply fan 25 and each room. The high-performance filter 28 and the high-performance filter 28 disposed between each chamber and the exhaust fan 26 and the variable air flow device 29 are also combined with the high-performance filter 28 disposed between the safety cabinet 24 and the exhaust fan 26. In addition, the operation is controlled in the same manner as in the conventional example so that the contaminated air is not discharged to the outside.
[0030]
Further, the breeding room 21 and the front room 22 keep the supply air volume constant by the constant air volume devices 27 and the flow rate of the variable air volume device 29 so that the breeding room 21 maintains a negative pressure with respect to the front room 22. Are adjusted with each other by a differential pressure signal of the differential pressure gauge 30 and controlled to always maintain a predetermined differential pressure, thereby forming an air flow from the front chamber 22 to the breeding room 21.
[0031]
The control circuit according to the present invention not only can change the rated rotation speed of the supply / exhaust fans 25 and 26 by the inverter 31 and control the rise time from the start to the rated rotation as in the prior art. Thus, a timer 33 is connected to the starting circuit of the supply / exhaust fans 25 and 26.
[0032]
Therefore, in the present invention, by setting the timers 33 to be different from each other, even if the power supply / exhaust fans 25 and 26 are simultaneously turned on, the supply / exhaust fans 25 and 26 can be started separately. .
[0033]
The above control for the air supply / exhaust fan is performed by adjusting the settings of the inverter 31 and the timer 33 in the control panel 32, thereby achieving the ideal operation when the BH facility 20 is started as follows. .
[0034]
FIG. 2 is a flowchart showing an embodiment of the room pressure control method according to the present invention. From the start of adjustment to the continuation of steady operation, in the illustrated flowchart developed in the following order, air supply / exhaust is used as the start. The settings before starting the fan are made.
[0035]
(101) Setting the rated rotational speed of the supply / exhaust fan. The rated rotational speed (Rs) of the air supply fan 25 and the rated rotational speed (Re) of the exhaust fan 26 are set to Re> Rs.
[0036]
(102) Setting of the starting time until the rated rotational speed of the supply / exhaust fan is reached. The start time (Ts) of the air supply fan 25 and the start time (Te) of the exhaust fan 26 are set to Ts = Te.
[0037]
(103) Setting of a timer for the supply / exhaust fan. The operating time of the air supply fan 25 = T and the operating time of the exhaust fan 26 = 0 are set. (104) The supply / exhaust fan is switched on.
[0038]
(105) The exhaust fan is turned on. The exhaust fan 26 starts immediately when the operation time = 0, and negative pressure is generated in the room.
[0039]
(106) The power supply fan is turned on. The supply fan 25 starts after the operation time = T, and the negative pressure is maximized without being extremely reduced.
[0040]
(107) Rated operation of the exhaust fan 26 after Te time. Negative pressure is reduced by increasing the rotation speed of the air supply fan.
[0041]
(108) Rated operation of the air supply fan 25 after Ts + T time. It converges to the desired negative pressure due to the difference in the rotation speed of the supply and exhaust fans. (109) Continuous operation is continued.
[0042]
The supply / exhaust fan operated according to the above flowchart forms a transition state of absolute pressure as shown in FIG. 3 in the front chamber.
[0043]
As shown in the figure, the exhaust fan 26 is activated at the same time as the switch is turned on, so that negative pressure is generated in the room against the outside air. The negative pressure continues to increase until the air supply fan 25 starts after time T, but when the air supply fan 25 starts, the negative pressure stops increasing, and the negative pressure increases as the number of rotations of the air supply fan 25 increases. Reduced.
[0044]
In the present embodiment, exhaust is continued by the operation of the exhaust fan 26 until the supply fan 25 starts up after time T, and the negative pressure continues to increase. During this time, the pressure difference formed between the exhaust fan and the air supply fan 25 increases from zero to about 120 (Pa) where the air supply fan 25 starts up. Is the same (Ts = Te), the pressure difference is maintained until the exhaust fan 26 reaches the rated operation.
[0045]
Although the absolute pressure in the front chamber is reduced by this operation control, since the increase in the pressure difference is stopped by the operation of the air supply fan 25, it is held at a constant value. It stops without being lowered to an extreme value, draws a gentle curve as shown in the figure, reduces the negative pressure, reaches the rated operation of the air supply fan 25 and converges to a predetermined negative pressure. Yes.
[0046]
As described above, in this embodiment, an exhaust fan and an air supply fan having the same starting characteristics are started with a difference in start time, so that a predetermined amount is set between the air supply amount and the exhaust amount. By maintaining the difference, a stable differential pressure is maintained without causing an excessive decrease in the room pressure when the BH facility is activated.
[0047]
In addition, the above operating state is similarly implemented in the breeding room. For this reason, the breeding room 21 and the front room 22 are each configured to maintain a negative pressure due to a flow rate difference while adjusting the exhaust flow rate by the variable air volume device 29. It is maintained in a very stable state.
[0048]
Accordingly, the differential pressure between the chambers, which are installed between the breeding room 21 and the front chamber 22 and are mutually adjusted by the differential pressure signal of the differential pressure gauge 30, is also because the chamber pressure of each chamber is stable. It will be held in a stable state, without causing mutual interference in the control system, and the air flow from the front chamber 22 to the breeding room 21 can be formed with little disturbance.
[0049]
In the above embodiment, as a means for maintaining a predetermined amount difference between the air supply amount and the exhaust amount, the exhaust fan and the air supply fan having the same start characteristics are started with a difference in start time. However, in the room pressure control method in the highly clean facility according to the present invention, the same function can be established in other means.
[0050]
The first of other embodiments is a means for forming a predetermined amount difference in the BH facility by providing a difference in the rotational speed between the exhaust fan and the supply fan.
[0051]
In the present embodiment, as clearly shown by the fan rotation speed displayed in FIG. 3, the rotation speed of the exhaust fan is set to be larger than the rotation speed of the air supply fan by a predetermined value by setting the inverter. By controlling and maintaining the difference in the supply air volume due to the difference in the rotational speed at a predetermined value, a predetermined negative pressure is formed in the BH facility against the outside air.
[0052]
At this time, the starting characteristics (setting of the time from starting to reaching the rated rotational speed) formed in the supply / exhaust fan are the same. However, starting the exhaust fan first may cause the BH facility to be exposed to the outside air. Since the pressure is preliminarily formed and determined, it is determined by what kind of negative pressure is generated against the outside air at the initial stage in the BH facility.
[0053]
As described above, the room pressure control method in an advanced clean facility according to the present invention is an air supply fan having the same starting characteristics so that the air supply amount maintains a predetermined amount difference with respect to the exhaust amount in the advanced clean facility. And the exhaust fan, the time difference for starting the exhaust fan first and starting the air supply fan after the start is provided by a timer, and the rotational speed of the exhaust fan and the air supply fan is made different, and When the BH facility is activated, the exhaust flow rate of the front chamber and the working chamber is adjusted by the variable air flow rate device so that the difference in the amount of the front chamber is maintained at a predetermined pressure difference from the amount of the work chamber. In addition, the room pressure of the facility is stabilized without causing an excessive decrease in the room pressure, and the room pressure is maintained so that the air flow between the facilities is always in one direction.
[0054]
As described above, the present invention has been described in detail based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention. It is natural.
[0055]
【The invention's effect】
According to a first aspect of the present invention, the room pressure control method in the highly clean facility maintains a predetermined room pressure by mutually controlling an air supply fan that supplies air to the facility and an exhaust fan that exhausts air from the facility. A room pressure control method in an advanced clean facility using an air supply fan and an exhaust fan having the same starting characteristics so that the air supply amount maintains a predetermined amount difference with respect to the exhaust amount. The time difference between starting the exhaust fan first and starting the air supply fan after the start is provided by a timer, and the difference between the rotation speeds of the exhaust fan and the air supply fan is characteristic. In this case, it is possible to maintain a stable differential pressure without causing an excessive decrease in the chamber pressure. There is an effect that it can be easily adjusted by changing the start time setting of the supply / exhaust fan and changing the setting of the rotation speed of the supply / exhaust fan. Specifically, since the exhaust fan is activated first, negative pressure is generated in the facility against the outside air, and this negative pressure continues to increase until the air supply fan is subsequently activated, but the air supply fan is activated. Then, the increase in negative pressure stops and the negative pressure is reduced as the rotation speed of the supply air fan increases, and this operation control reduces the absolute pressure of the facility, but the increase in the pressure difference occurs during operation of the supply air fan. Since it is held at a constant value after being stopped, the maximum value of the absolute pressure that decreases is stopped without being reduced to an extreme value as in the past, and the negative pressure is gently reduced to supply The rated operation of the air fan can be reached and converged to a predetermined negative pressure, and a stable differential pressure can be maintained without causing an excessive decrease in the room pressure when the facility is started.
[0056]
The room pressure control method in an advanced clean facility according to claim 2 communicates via a door by mutually controlling an air supply fan that supplies air to the facility and an exhaust fan that exhausts air from the facility. A chamber pressure control method in an advanced clean facility in which the front chamber and the working chamber are maintained at a predetermined chamber pressure so that the air supply amount in each chamber maintains a predetermined amount difference with respect to the exhaust amount Using an air supply fan and an exhaust fan with the same starting characteristics, a timer is used to set a time difference between starting the exhaust fan first before starting and then starting the air supply fan, and rotation of the exhaust fan and air supply fan. The exhaust flow rate of each of the front chamber and the work chamber should be adjusted with a variable air flow rate device so that the difference in the number of the front chamber and the volume difference in the front chamber maintains a predetermined chamber pressure difference with respect to the volume difference in the work chamber. Because it is characterized by, to activate the BH facility It holds the differential pressure is stabilized without generating an excessive decrease of the room pressure even when, and the flow of air between the front chamber and the working chamber always provide an advantage that in one direction. There is an effect that it can be easily adjusted by changing the start time setting of the supply / exhaust fan and changing the setting of the rotation speed of the supply / exhaust fan. Specifically, since the exhaust fan is activated first, negative pressure is generated in the facility against the outside air, and this negative pressure continues to increase until the air supply fan is subsequently activated, but the air supply fan is activated. Then, the increase in negative pressure stops and the negative pressure is reduced as the rotation speed of the supply air fan increases, and this operation control reduces the absolute pressure of the facility, but the increase in the pressure difference occurs during operation of the supply air fan. Since it is held at a constant value after being stopped, the maximum value of the absolute pressure that decreases is stopped without being reduced to an extreme value as in the past, and the negative pressure is gently reduced to supply It can reach the rated operation of the air fan, can be converged to a predetermined negative pressure, can maintain a stable differential pressure without causing an excessive decrease in the room pressure when starting the facility, and This operating state is also the same in the work room. The front chamber, while adjusting the flow rate of the exhaust gas by Henfu weight unit, respectively, be configured so as to maintain the negative pressure by the flow rate difference, it is possible to maintain a very stable state at the time of startup of each chamber.
[Brief description of the drawings]
FIG. 1 is a control circuit diagram of a room pressure control method for an advanced clean facility according to the present invention. FIG. 2 is a flowchart of a room pressure control method for an advanced clean facility according to the present invention. FIG. 4 is a control circuit diagram of a conventional room pressure control method for a highly clean facility. FIG. 5 is a flowchart of a conventional room pressure control method for a highly clean facility. Room pressure status by clean room pressure control method 【Explanation of symbols】
20BH facility, 21 rearing room, 22 front room, 23 door, 24 safety cabinet, 25 air supply fan, 26 exhaust fan, 27 constant air volume device, 28 high performance filter, 29 variable air volume device, 30 differential pressure gauge, 31 inverter, 32 Control panel, 33 timer,

Claims (2)

施設に給気する給気ファンと施設から排気する排気ファンとを相互に制御することで所定の室圧を維持している高度清浄施設における室圧制御方法であって、給気量が排気量に対して所定の量差を維持するように、起動特性が同一の給気ファンと排気ファンとを用いて、始動に排気ファンを先に起動しその後で給気ファンを起動する時間差をタイマーにより設けると共に、これら排気ファンと給気ファンの回転数に差を持たせることを特徴とする高度清浄施設における室圧制御方法。A room pressure control method in an advanced clean facility that maintains a predetermined room pressure by mutually controlling an air supply fan that supplies air to the facility and an exhaust fan that exhausts air from the facility. In order to maintain a predetermined difference with respect to the air flow, using a supply air fan and an exhaust fan with the same starting characteristics, the time difference between starting the exhaust fan first and starting the air supply fan is started by a timer. A room pressure control method in an advanced clean facility characterized by providing a difference in rotational speed between the exhaust fan and the air supply fan. 施設に給気する給気ファンと施設から排気する排気ファンとを相互に制御することで、扉を介して連絡する前室と作業室とを所定の室圧に維持している高度清浄施設における室圧制御方法であって、各室における給気量が排気量に対して所定の量差を維持するように、起動特性が同一の給気ファンと排気ファンとを用いて、始動に排気ファンを先に起動しその後で給気ファンを起動する時間差をタイマーにより設けると共に、これら排気ファンと給気ファンの回転数に差を持たせ、かつ、前室の量差が作業室の量差に対して所定の室圧差を維持するように、前室と作業室それぞれの排気流量を変風量装置で調整することを特徴とする高度清浄施設における室圧制御方法。In an advanced clean facility where the air supply fan that supplies air to the facility and the exhaust fan that exhausts air from the facility are mutually controlled to maintain the front room and work room communicated via the door at a predetermined room pressure. a chamber pressure control method, so that the amount of supply air in each chamber to maintain a predetermined amount difference with respect to emissions, starting characteristics by using the exhaust fan and the same air supply fan, exhaust fan to the starting The time difference between starting the air supply fan and starting the air supply fan after that is provided by a timer , and the rotational speed of the exhaust fan and air supply fan is varied, and the amount difference in the front chamber is the amount difference in the work room. A room pressure control method in an advanced clean facility, characterized in that the exhaust flow rate in each of the front chamber and the working chamber is adjusted by a variable air flow device so as to maintain a predetermined chamber pressure difference.
JP2000226476A 2000-07-27 2000-07-27 Room pressure control method in advanced clean facility Expired - Lifetime JP4558152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226476A JP4558152B2 (en) 2000-07-27 2000-07-27 Room pressure control method in advanced clean facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226476A JP4558152B2 (en) 2000-07-27 2000-07-27 Room pressure control method in advanced clean facility

Publications (2)

Publication Number Publication Date
JP2002039580A JP2002039580A (en) 2002-02-06
JP4558152B2 true JP4558152B2 (en) 2010-10-06

Family

ID=18720086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226476A Expired - Lifetime JP4558152B2 (en) 2000-07-27 2000-07-27 Room pressure control method in advanced clean facility

Country Status (1)

Country Link
JP (1) JP4558152B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765311A (en) * 2013-11-26 2016-07-13 松下知识产权经营株式会社 Supply and exhaust ventilation device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632806B2 (en) * 2005-02-18 2011-02-16 三洋電機株式会社 Cell culture facility
JP4904014B2 (en) * 2005-04-11 2012-03-28 ダイダン株式会社 Air conditioning system
JP4714517B2 (en) * 2005-07-12 2011-06-29 ダイダン株式会社 Air conditioning system
JP4805013B2 (en) * 2006-05-16 2011-11-02 エーザイ・アール・アンド・ディー・マネジメント株式会社 Supply / exhaust management control device for clean room
JP4923791B2 (en) * 2006-07-03 2012-04-25 ダイキン工業株式会社 Air conditioning system
JP5082775B2 (en) * 2007-10-31 2012-11-28 ダイキン工業株式会社 Ventilation equipment
JP5190764B2 (en) * 2008-01-24 2013-04-24 株式会社日立プラントテクノロジー Ventilation air volume control method and apparatus
JP5203768B2 (en) 2008-03-28 2013-06-05 アズビル株式会社 Ventilation system and method for controlling ventilation system
JP2010190458A (en) * 2009-02-17 2010-09-02 Toto Ltd Exhaust air blowing system
JP5150741B2 (en) * 2011-02-09 2013-02-27 ダイダン株式会社 Air conditioning system
JP6286665B2 (en) * 2014-02-19 2018-03-07 パナソニックIpマネジメント株式会社 Supply / exhaust ventilator
JP7444654B2 (en) * 2020-03-17 2024-03-06 鹿島建設株式会社 Air conditioning system and target person identification system
JP7453028B2 (en) 2020-03-19 2024-03-19 東芝キヤリア株式会社 Outside air processing equipment and air conditioning system
CN113757917B (en) * 2021-09-06 2022-12-23 江苏苏净工程建设有限公司 Method and system for detecting and controlling air feeder faults of three-level or above biosafety laboratory

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205539A (en) * 1983-05-07 1984-11-21 Fujitsu Ltd Air supply and exhaustion control system for air condition system
JPS613933A (en) * 1984-06-18 1986-01-09 Kajima Corp Controlling system of air conditioning of special working room
JPS6273025A (en) * 1985-09-26 1987-04-03 Sanki Eng Co Ltd Method for controlling indoor pressure
JPS62200122A (en) * 1986-02-27 1987-09-03 Taikisha Ltd Air conditioner
JPH0460331A (en) * 1990-06-29 1992-02-26 Toshiba Corp Air conditioner with ventilating function
JPH0783476A (en) * 1993-09-09 1995-03-28 Sanki Eng Co Ltd Room pressure controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205539A (en) * 1983-05-07 1984-11-21 Fujitsu Ltd Air supply and exhaustion control system for air condition system
JPS613933A (en) * 1984-06-18 1986-01-09 Kajima Corp Controlling system of air conditioning of special working room
JPS6273025A (en) * 1985-09-26 1987-04-03 Sanki Eng Co Ltd Method for controlling indoor pressure
JPS62200122A (en) * 1986-02-27 1987-09-03 Taikisha Ltd Air conditioner
JPH0460331A (en) * 1990-06-29 1992-02-26 Toshiba Corp Air conditioner with ventilating function
JPH0783476A (en) * 1993-09-09 1995-03-28 Sanki Eng Co Ltd Room pressure controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765311A (en) * 2013-11-26 2016-07-13 松下知识产权经营株式会社 Supply and exhaust ventilation device

Also Published As

Publication number Publication date
JP2002039580A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
JP4558152B2 (en) Room pressure control method in advanced clean facility
JP4134393B2 (en) Control method of air conditioner
JP5725385B2 (en) Air purifier and fan control method for air purifier
JP3713223B2 (en) Hot water heater
JP2012041905A (en) Fan motor
JP3571425B2 (en) Ventilation fan control device
JP3523963B2 (en) Control method of air conditioner
JP2004232976A (en) Room pressure control device
JP2000088299A (en) Ventilation fan
JP2005249243A (en) Air conditioning system
JP3840362B2 (en) Sintered exhaust gas treatment equipment
JP2001065947A (en) Control method of air conditioner
JP2002130185A (en) Control method for blower
JP4574076B2 (en) Advanced safety facility and its control method
JPH0351645A (en) Operation control method for moistening device
JP2002061934A (en) Air cnoditioner
JP3869563B2 (en) Air conditioning system
JPS61223448A (en) Air-conditioning machine
JPH05215378A (en) Separate type air conditioner
JPH0428949A (en) Operation control device
JPH05256293A (en) Control device for air conditioner
JPH0688640A (en) Controller for air conditioner
JPH01244245A (en) Refrigerating plant
JP2553438B2 (en) Greenhouse heating operation management method and greenhouse heating device
JPH0278796A (en) Control method of blower motor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Ref document number: 4558152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term