JP4557507B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4557507B2
JP4557507B2 JP2003168711A JP2003168711A JP4557507B2 JP 4557507 B2 JP4557507 B2 JP 4557507B2 JP 2003168711 A JP2003168711 A JP 2003168711A JP 2003168711 A JP2003168711 A JP 2003168711A JP 4557507 B2 JP4557507 B2 JP 4557507B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor elements
semiconductor device
segment
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003168711A
Other languages
Japanese (ja)
Other versions
JP2004289103A (en
Inventor
真 北畠
修 楠本
正雄 内田
邦方 高橋
賢哉 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003168711A priority Critical patent/JP4557507B2/en
Publication of JP2004289103A publication Critical patent/JP2004289103A/en
Application granted granted Critical
Publication of JP4557507B2 publication Critical patent/JP4557507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49524Additional leads the additional leads being a tape carrier or flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13062Junction field-effect transistor [JFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13063Metal-Semiconductor Field-Effect Transistor [MESFET]

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素(SiC),GaN,ダイヤモンド等のワイドバンドギャップ半導体により構成される半導体素子を多数備えた半導体デバイスに関する。
【0002】
【従来の技術】
従来より、半導体パワーデバイスは、大電流を制御し低損失を実現する必要から、広い面積を必要としていた。例えば、4インチ以上の大きさを有するSiウェハ全体に、多数の半導体素子である縦型MISFETを集積してなる単一のパワーデバイスが市販されている(例えば、非特許文献1参照)。多数の縦型MISFETを集積して1つのパワーデバイスを構成しているのは、電流が流れる領域を分散させて、発熱部の集中を回避するためである。
【0003】
一方、炭化珪素(SiC),GaN,AlN等のIII 族窒化物、ダイヤモンドなどのワイドバンドギャップ半導体を用いて構成されるワイドバンドギャップ半導体デバイスは、材料物性的に高速動作・高耐圧・低損失が期待されることから、実用化のための研究・開発が進んできている。
【0004】
なお、「SiC」で表わされる炭化珪素は、「Si:C」で表されるCを微量(数%以下)含んだシリコンとは、物理的,化学的性質が異なる材料である。
【0005】
【非特許文献1】
電気学会高性能高機能パワーデバイス・パワーIC調査専門委員会編、「パワーデバイス・パワーICハンドブック」、コロナ社、1996年7月30日、p.4
【0006】
【発明が解決しようとする課題】
しかしながら、上述のようなワイドバンドギャップ半導体材料は、欠陥の少ないウェハを得るのが困難であるという不具合がある。
【0007】
例えば炭化珪素(SiC)を用いる場合、炭化珪素ウェハ上にエピタキシャル成長させた薄膜をチャネル層として利用して縦型MISFETを形成するが、従来から用いられているSiCウェハは、結晶欠陥でもあるマイクロパイプと呼ばれる貫通欠陥を多く有している。エピタキシャル成長された薄膜中に、マイクロパイプから引き継がれる欠陥がMISFETやダイオードなどの半導体素子の重要な部分に存在していると、絶縁破壊の原因となり、絶縁耐圧などの仕様を満たすことができない。従来から用いられているSiCウェハのマイクロパイプ密度は、数十個/cm2 以上存在しているため、10mm2 以上の面積を有するパワーデバイスを作成した場合、1つのパワーデバイスに必ず数個以上のマイクロパイプを確率的に含むこととなる。したがって、10mm2 以上の面積を有するSiCデバイス、特に比較的大きな電流を扱うパワーデバイスをSiCウェハ上に作成したときには、マイクロパイプが存在している領域で絶縁破壊を起こすため、そのようなSiCデバイスの歩留まりが殆どゼロになるという不具合があった。
【0008】
また、SiC以外のGaN,AlN等のIII 族窒化物や、ダイヤモンドなどのワイドバンドギャップ半導体のウェハも、様々な結晶欠陥を高密度で含んでおり、上記SiCウェハの場合と同様に、結晶欠陥による歩留まり低下の不具合があった。
【0009】
本発明の目的は、ワイドバンドギャップ半導体を用いつつ、高い歩留まりを確保し、低コストで製造することが可能な半導体デバイス及びその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の半導体デバイスは、ワイドバンドギャップ半導体層を用い、互いに独立して動作することが可能な複数の半導体素子のうち,特定の半導体素子の各電極パッドと電極端子とを互いに電気的に接続して、特定の半導体素子が互いに並列に動作するものである。
【0011】
これにより、欠陥が多いワイドバンドギャップ半導体を用いつつ、全体として1つの機能を発揮する半導体デバイスを高い歩留まりで得ることができる。
【0012】
特に、複数の半導体素子を、共通の基板上に形成しておいて、特定の半導体素子以外の半導体素子は、動作させないでおくことにより、検査で良品となったものだけを使用することにより、欠陥によって不良と判定されたものを除いて半導体デバイスを構成することができるので、高い歩留まりを実現することができる。
【0013】
特定の半導体素子の個数を一定値に定めておくことが好ましい。
【0014】
複数の半導体素子同士の間を電気的に分離するためのショットキーダイオードとして機能する素子分離領域を備えることにより、半導体素子がMISFETである場合には、インバータを構成することができる。
【0015】
本発明の半導体デバイスの製造方法は、ワイドバンドギャップ半導体からなる活性領域を有し、互いに独立して動作することが可能な複数の半導体素子を形成しておいて、検査によって動作が良好であることが確認された特定の半導体素子の各電極パッドをそれぞれ電極端子に接続しておいて、特定の半導体素子を1つのパッケージに組み込む方法である。
【0016】
この方法により、欠陥率の高いワイドバンドギャップ半導体を用いつつ、パワーデバイスなどとして機能する半導体デバイスを現実的な歩留まりで製造することが可能である。
【0017】
【発明の実施の形態】
(第1の実施形態)
図1は、第1の実施形態に係る半導体モジュール(半導体デバイス)の要部を示す上面図である。図1に示すように、本実施形態の半導体モジュールは、SiC基板上にサイズが1.5mm×1.5mm(2.25mm2 )のセグメント1(半導体素子)を多数(本実施形態では9個)設けて形成されたチップ5を備えている。各セグメント1は、SiC基板の主面側に設けられたソース電極パッド2及びゲート電極パッド3と、SiC基板の裏面側に設けられたドレイン電極パッド(図示せず)とを備えている。
【0018】
各セグメント1は、電流容量2(A)を有しており、動作時に1セグメント当たりに流れる電流は、直流換算で2(A)である。後述する図2に示すように、相隣接するセグメント1同士間の素子分離は、SiC基板20の主面側においてセグメント1同士の境界領域をエッチングしてトレンチTreを形成し、各セグメントをメサ構造にすることにより行われている。相隣接するセグメント1同士間の間隔dを10μm以上にすることにより、耐圧600Vが確保され、個別に動作することが可能なセグメント1を共通のSiC基板20上に複数個設けることができた。
【0019】
図2は、相隣接するセグメントの一部の構造を示す断面図である。図3は、セグメントの一部におけるゲート電極,ソース電極,不純物拡散層などの平面形状を示す平面図である。
【0020】
図2に示すように、本実施形態の半導体モジュールは、高濃度のn型不純物を含む主面が( 0 0 0 1)オフ面であるSiC基板20(6H−SiC基板)と、SiC基板20の上に形成されたエピタキシャル層(活性領域)内に設けられた低濃度のn型不純物を含むn−SiC層23(ドリフト領域)と、エピタキシャル層の上に設けられたゲート絶縁膜26及びその上のゲート電極27と、エピタキシャル層の上にゲート電極27を囲むように設けられたソース電極28と、SiC基板20の下面に設けられたドレイン電極29と、エピタキシャル層のうちソース電極28の下方に位置する領域からゲート電極27の端部下方に位置する領域にp型不純物をドープして形成されたp−SiC層24と、エピタキシャル層のうちソース電極27の端部下方からゲート電極27の端部下方に亘る領域に高濃度のn型不純物をドープして形成されたソース領域25と、エピタキシャル層の表面部のうちゲート電極27の下方に位置する領域に低濃度のn型不純物を導入して形成されたチャネル領域21とを備えている。
【0021】
図3に示すように、ゲート電極27は、縦方向及び横方向に一定間隔に設けられた開口を有しつつ連続的につながる単一の部材である。一方、ソース電極28は、ゲート電極27の開口中に孤立して設けられた多数の部材である。そして、ソース領域25はソース電極28の周囲を平面的に囲んで、ゲート電極27の下方領域とオーバーラップしている。つまり、各ソース領域25からゲート電極27の一部に亘る領域にセルMISFETが形成される。1つのセルMISFETの大きさは、数十μm2 オーダーである。
【0022】
また、エピタキシャル層の上には、BPSG膜からなる第1層間絶縁膜33と、ソース配線30及びゲート配線31とが設けられている。ソース配線30は、第1層間絶縁膜33を貫通するプラグ30aを介して各ソース電極28と接続され、ゲート配線31は、第1層間絶縁膜33を貫通するプラグ31aを介してゲート電極27と接続されている。さらに、第1層間絶縁膜33の上には、BPSG膜からなる第2層間絶縁膜34が設けられている。そして、ソース電極パッド2とゲート電極パッド3とは第2層間絶縁膜34の上に形成されており、ソース電極パッド2は、第2層間絶縁膜34を貫通するプラグ2aを介してソース配線30に接続され、ゲート電極パッド3は、第2層間絶縁膜34を貫通するプラグ3aを介してゲート配線31に接続されている。プラグ2aは図1に示すソース電極パッド2の下方に位置する領域にのみ形成されているが、本実施形態では、全てのソース電極28に接続されるソース配線30が、プラグ2aを介してソース電極パッド2に接続されている。また、プラグ3aは図1に示すゲート電極パッド3の下方にのみ形成されているが、ゲート電極27は、全体が連続した1つの部材であるので、ゲート電極パッド3は全てのゲート配線31に接続されている必要はない。また、SiC基板20の裏面上には、SiC基板20にオーミック接触するドレイン電極パッド(ドレイン電極)29が設けられている。そして、チップ5の上面において、第2層間絶縁膜34のうちソース電極パッド2又はゲート電極パッド3によって覆われていない領域と、ソース電極パッド2及びゲート電極パッド3の端部とは、シリコン窒化膜からなるパッシベーション膜36によって覆われている。
【0023】
さらに、第2層間絶縁膜34,第2層間絶縁膜33,エピタキシャル層を順次貫通して、SiC基板20のある深さまで達するトレンチTreが設けられており、このトレンチTreによって、半導体モジュールが9個のセグメント1に区画されている。
【0024】
この半導体モジュールの各セグメント1をオンする時には、ゲート電極27に5V程度の電圧を印加して、ソース電極28を接地し、ドレイン電極パッド29に600V程度の電圧を印加する。そして、ソース電極28から供給されるキャリア(本実施形態においては、電子)がソース領域25からチャネル領域21を通って、n−SiC層23,SiC基板20に流れ、ドレイン電極パッド29に達する。
【0025】
本実施形態の半導体デバイス(半導体モジュール)においては、1つのセグメント1全体が共通のゲートバイアスとソース・ドレイン電極間の電圧とによって動作して、単一のDMOSデバイスとして機能する。そして、本実施形態の各セグメント1は、SiC基板の主面側から裏面側にキャリアが走行する縦型半導体素子であり、いわゆるACCUFET(Accumulation Mode FET)として機能する。
【0026】
そして、本実施形態の特徴は、半導体モジュール中の複数のセグメント(半導体素子)について、正常に動作するか否かの検査を行ない、正常に動作しないセグメントは使用せず、かつ、使用するセグメント(特定の半導体素子)の個数を一定値にする点にある。ただし、正常に動作するセグメントをすべて特定の半導体素子として用いて半導体デバイスを構成してもよい。図1に示す例では、特定の半導体素子であるセグメントを7つに限定し、正常に動作しないセグメント1’と、正常に動作しても余剰となるセグメント1”とは使用しない。したがって、図1に示すように、各セグメント1,1’,1”について共通のドレイン電極パッド29は、ドレイン電極端子42にダイボンドによって接続されているが、7つの正常に動作するセグメント1についてのみワイヤボンドを行ない、セグメント1’,1”にはワイヤボンドを行わない。つまり、セグメント1の各ソース電極パッド2のみが、0.3mmφのワイヤ6(アルミニウム製)によってソース電極端子41に接続され、セグメント1の各ゲート電極パッド3のみが、0.25mmφのワイヤ7(アルミニウム製)によってゲート電極端子43に接続されている。そして、各部材は、図中破線に示す封止樹脂内に封止されて、1つのパッケージに組み込まれている。
【0027】
ただし、特定の半導体素子以外の半導体素子(本実施形態におけるセグメント1’,1”)の電極パッド2,3,29のうち少なくとも1つの電極パッドが電極端子41,42,43と接続されていなければ、半導体素子(セグメント)は動作しないので、本発明の効果を発揮することができる。
【0028】
図4(a)〜(c)は、本実施形態の半導体モジュールの製造工程を示す平面図である。
【0029】
まず、図4(a)に示す工程で、2インチ径のSiCウェハ中の多数のモジュール用領域Modに、図2及び図3に示すような構造を有するセルMISFETを形成する。図4(a)には示されていないが、この時点で、モジュール用領域Modは、トレンチTreによって多数のセグメント1(本実施形態では、9個のセグメント)に区画されている。
【0030】
次に、図4(b)に示す工程で、ダイシングによって、SiCウェハから3×3=9個のセグメント1を含むモジュール用領域Modをチップ5として切り出す。そして、各チップ5について、各セグメント1の動作を確認する。その結果、9個のセグメント1中に、動作しないセグメントが1個含まれることが確認された。この動作不良は基板に含まれるマイクロパイプによるものと考えられる。
【0031】
次に、図4(c)に示す工程で、チップ5のドレイン電極パッド29をドレイン電極端子42上にダイボンディングを行い、正常に動作しないセグメント1’と、正常に動作するが余剰となるセグメント1”とにはワイヤボンドを行わず、結線されないまま残し、残りの7個のセグメント1についてのみ結線し、パワーデバイスとしてパッケージングした。このとき、各々のセグメント1に対して、0.3mmφのワイヤ6(アルミニウム製)を一本ずつ直接ソース電極パッド2とソース電極端子41間にボンディングする。また、0.25mmφのワイヤ7(アルミニウム製)を用い、同じ列に配置された複数のセグメント1のゲート電極パッド3を直列につなぎ、ゲート電極パッド3とゲート電極端子43間をボンディングする。
【0032】
その後、ソース電極端子41,ドレイン電極端子42及びゲート電極端子43の各端部を露出させた状態で、汎用の封止樹脂(図4(c)に示す破線参照)内に各部材を封止することにより、樹脂封止パッケージとしての半導体デバイス(半導体モジュール)が完成する。
【0033】
本実施形態の半導体モジュールは、電流定格15(A)を有し、耐圧600Vのパワーデバイスとして機能し、複数のMISFET(セグメント)が並列動作するようにして電流を流しているが、特定のMISFETに電流が集中することがなく、安定な動作が確認された。また、共通のSiC基板上に形成された複数のMISFETのうち、特性検査を行うことにより正常に動作したもののみを選択してワイヤボンディングを行っているので、ワイドバンドギャップ半導体を用いて、高い歩留まりを確保しつつ、低コストで製造することができる,半導体モジュールを得ることができる。
【0034】
また、ボンディングされた複数のセグメントのうちの一つが破壊した場合、30(A)を超える過電流が一時的に流れると、0.3mmφのワイヤ6がヒューズ部材として機能して溶断するので、過電流が流れ続けることはなかった。したがって、本実施形態の半導体モジュールがフェールセーフの信頼性を有することが確認できた。
【0035】
本実施形態によると、1つの樹脂封止パッケージとして設けられた半導体モジュール(半導体デバイス)において、複数のセグメント1,1’,1”(半導体素子)のうち、正常に動作しないセグメント1’は、ワイヤボンディングをせずに使用しないようにしているので、マイクロパイプなどの結晶欠陥がなく良好な電気的特性を有する複数のセグメント1(特定の半導体素子)だけを並列動作させて、半導体モジュールを1つのパワーデバイスとして機能させることができる。したがって、ワイドバンドギャップ半導体を用いて、大電流を制御し低損失を実現する半導体モジュールを、高い歩留まりを確保しつつ、低コストで製造することができる。
【0036】
例えば、ウェハのマイクロパイプ密度が10個/cm2 であると、面積が100mm2 程度の半導体デバイス(半導体モジュール)中には確率的に10個のマイクロパイプが含まれることとなり、高い歩留まりは期待できない。ところが同じマイクロパイプ密度であっても、半導体モジュールを複数の小面積のセグメントに区画して、個別に動作が可能な面積1mm2 のセグメント100個からなる半導体モジュールを設けると、100個中の10個がマイクロパイプを含むのみで、残りの90個は正常に動作することになる。したがって、半導体モジュールの歩留まりを高く維持することができる。
【0037】
さらに、実際に使用するセグメント(特定の半導体素子)の個数を90個よりも少ない一定の個数(たとえば85個)に決めておくことにより、つまり、経験的にわかっている欠陥の平均密度から予想されるセグメントの平均的な不良数よりも少ない個数のセグメントを使用することで、さらに歩留まりの向上を図ることができる。その場合には、良品でありながら使用しないセグメントが全体としての歩留まりを低下させることにもなるが、それも考慮した上で、経験的に最も歩留まりが高くなる個数のセグメントを使用するようにすればよい。
【0038】
本実施形態においては、エッチングによって形成されたトレンチTre(素子分離領域)によって、各セグメントがメサ構造を有していることで、互いに電気的干渉が阻止されて個別に動作が可能に構成されている場合を示したが、それに限定されず、イオン打ち込みにより形成されたp型領域から構成されたガードリング等によって、各セグメント1同士の電気的干渉を阻止する構造にしてもよい。
【0039】
また、本実施形態においては、各セグメント1は、共通のSiC基板20に形成されており、物理的には分離されていないが、図4(b)に示す工程で、SiCウェハをセグメント1ごとに分離しておいて、検査の結果、正常なセグメント1のみを選別しておいて、図4(c)に示す工程で共通のドレイン電極端子上にダイボンドするようにしてもよい。
【0040】
また、セグメントごとに検査する代わりに、個別のセルMISFETごとに正常に動作するか否かを検査して、正常に動作しないセルMISFETや余剰のソース配線をレーザ等によって切断する(ヒューズ配線)ような構成も可能である。たとえば、図2に示す第2層間絶縁膜34を形成する前に、ゲート配線28,ソース配線30及びドレイン電極パッド29から検査用電圧を印加して、各セルMISFETの動作を検査しておいて、正常に動作しないセルMISFET,余剰のセルMISFETのソース配線30をレーザによって切断することが可能である。この場合には、チップ5を複数のセグメントに区画する必要はないので、トレンチTreを形成する必要もない。したがって、トレンチTreが不要なので、本実施形態に比べて、チップ5全体を小型化することが可能である。その場合、ソース配線がソース電極パッドに接続されるセルMISFETが特定の半導体素子である。
【0041】
なお、本発明の半導体モジュールの各セグメントが、本実施形態のようなACCUFETとして機能するMISFETである必要はない。たとえば、国際出願PCT/JP01/07810号の図9(a),(b)や図10に示される構造を有するMISFETであってもよいし、エピタキシャル層に形成したトレンチにゲート絶縁膜やゲート電極を埋め込んだ構造を有するMISFETであってもよい。
【0042】
(第2の実施形態)
図5(a),(b)は、それぞれ順に、第2の実施形態に係る半導体モジュール(半導体デバイス)の要部を示す上面図、及び半導体モジュール中のショットキーダイオードの断面図である。
【0043】
図5(a),(b)に示すように、本実施形態の半導体モジュールは、SiC基板上にサイズが2mm×2mm(4mm2 )のMISFETとして機能する3つのセグメント1と、サイズが2mm×2mm(4mm2 )のショットキーダイオードとして機能する3つのセグメント8とを備えている。本実施形態においては、3つのセグメント1(MISFET)と、3つのショットキーダイオード(セグメント8)とが、全て特定の半導体素子である。MISFETとして機能するセグメント1は、SiC基板の主面側に設けられたソース電極パッド2及びゲート電極パッド3と、SiC基板の裏面側に設けられたドレイン電極パッド(図示せず)とを備えている。また、ショットキーダイオードとして機能するセグメント8は、図5(b)に示すように、SiC基板20上に設けられた低濃度のn型不純物を含むエピタキシャル層と、エピタキシャル層の上面にショットキー接触するショットキー電極パッド37と、SiC基板20の裏面にオーミック接触するオーミック電極パッド38とを備えている。MISFETとして機能するセグメント1の構造は、図2,図3に示す通りである。MISFETとして機能する1つのセグメント1は電流容量10(A)を有しており、1セグメントあたり動作時に流れる電流は、直流換算で10(A)であった。また、ショットキーダイオードとして機能する1つのセグメント8は、電流容量10(A)を有しており、1セグメントあたり動作時に流れる電流は、直流換算で10(A)であった。
【0044】
そして、本実施形態においては、1つのウェハにはMISFETとして機能するセグメント1のみを多数形成し、別のウェハにはショットキーダイオードとして機能するセグメント8のみを多数形成する。そして、ウェハの状態で各セグメント1,8の特性検査を行った後、ダイシングを行うことにより、各々のチップが1つのセグメント1又は8を含むように切り出し、正常に動作するセグメント1を含むチップ3個と、正常に動作するセグメント8を含むチップ3個とを、図5に示すように、ドレイン電極端子42上にダイボンディングにより搭載する。
そして、各セグメント1において、0.3mmφのワイヤ6(アルミニウム製)が一本ずつ直接ソース電極パッド2とソース電極端子41との間にボンディングされている。同様に、各セグメント8において、0.3mmφのワイヤ6(アルミニウム製)が一本ずつ直接ショットキー電極パッド37とソース電極端子41との間にボンディングされている。また、0.25mmφのワイヤ7(アルミニウム製)により、同じ列に配置された複数のセグメント1のゲート電極パッド3が直列に接続され、さらに、端部のセグメント1のゲート電極パッド3とゲート電極端子43との間がワイヤ7によって接続されている。さらに、ソース電極端子41,ドレイン電極端子42及びゲート電極端子43の各端部を露出させた状態で、汎用の封止樹脂(図5(a)に示す破線参照)内に各部材を封止することにより、樹脂封止パッケージとしての半導体モジュールが設けられている。
【0045】
本実施形態の半導体モジュール(パワーモジュール)は、電流定格30(A)を有し、耐圧600Vのパワーモジュールとして機能している。そして、複数のMISFET(セグメント1)及びショットキーダイオード(セグメント8)が並列動作するように電流が流されるが、特定のMISFET又はショットキーダイオードに電流が集中することがなく、安定な動作が確認されている。また、複数のMISFET及びショットキーダイオードのうち、特性検査を行うことにより正常に動作したチップのみを選択してダイボンディングを行っているので、SiC基板を用い、高い歩留まりを確保しつつ、低コストで製造することができる半導体モジュールを得ることができた。
【0046】
また、ボンディングされた複数のMISFET(セグメント1)及びショットキーダイオード(セグメント8)のうちの一つが破壊した場合、30(A)を超える過電流が一時的に流れると、0.3mmφのワイヤ6がヒューズ部材として機能して溶断するので、過電流が流れ続けることはなかった。したがって、本実施形態の半導体モジュールがフェールセーフの信頼性を有することが確認できた。
【0047】
本実施形態においては、MISFETを含むチップ3個とショットキーダイオードを含むチップ3個により構成される半導体モジュールを示したが、素子数に限定はなく、電流定格に合わせて適宜設定すればよい。
【0048】
また、第1の実施形態及び第2の実施形態において、複数のセグメント1又は8と、各電極端子41,42,43とが、一定値を越える電流が流れた場合に溶断する材料からなる接続部材(ワイヤなど)によって接続されていることが好ましい。この場合、複数のセグメント1又は8のうちの一つが絶縁破壊等によりショート状態になった場合でも、一定値を越える電流により、ショート状態のセグメントと電極端子とを接続する接続部材が溶断して電流が遮断されるので、この接続部材がヒューズとして機能し、ショート状態のセグメントはオープン状態となって流れる電流がゼロとなる。したがって、半導体モジュールに流れる過電流が押さえられるため、半導体モジュールにより制御されている機器本体に過電流が流れることを防止することができる。よって、過電流により機器本体に悪影響を及ぼすことがなく、フェイルセーフの要件を満たし、信頼性に優れた半導体モジュールを提供することができる。これは、例えば、数十(A)以上の大電流を制御する必要がある、電気自動車(HEV)のモータを駆動するインバータに用いる半導体モジュール等において有効である。
【0049】
一定値を越える電流が流れた場合に溶断する材料としては、金属、導電性高分子膜等が挙げられるが、この中では、金属であることが特に好ましい。用いることができる金属としては、Mg,Al,Au,Ag,Cu,Pb,Sn等が挙げられる。
【0050】
ここで、1つの半導体デバイスにおいて、各セグメント1,8が切断されずに共通のSiC基板20上に、互いに電気的に干渉しないように素子分離された状態でつながっていてもよい。このようにすると、第1の実施形態と同様に、各セグメント1,8のうち使用されないセグメントが存在することになるが、各セグメント1,8を1つのドレイン電極端子42にダイボンドする工程が簡略化されるという利点がある。
【0051】
(第3の実施形態)
図6は、第3の実施形態に係る半導体モジュール(半導体デバイス)の要部を示す上面図である。
【0052】
図6に示すように、本実施形態の半導体モジュールは、SiC基板上にサイズが2mm×2mm(4mm2 )のMISFETとして機能する3つのセグメント1と、サイズが2mm×2mm(4mm2 )のショットキーダイオードとして機能する3つのセグメント8とを備えている。MISFETとして機能するセグメント1は、SiC基板の主面側に設けられたソース電極パッド2及びゲート電極パッド3と、SiC基板の裏面側に設けられたドレイン電極パッド(図示せず)とを備えている。また、ショットキーダイオードとして機能するセグメント8は、エピタキシャル層の上面にショットキー接触するショットキー電極パッド37と、SiC基板の裏面にオーミック接触するオーミック電極パッド38とを備えている。MISFETとして機能するセグメント1の構造は、図2,図3に示す通りである。ショットキーダイオードとして機能するセグメント8の構造は、第2の実施形態における図5(b)に示す通りである。MISFETとして機能する1つのセグメント1と、ショットキーダイオードとして機能する1つのセグメント8との各電流容量や1セグメントあたり動作時に流れる電流は、第2の実施形態と同じである。
【0053】
本実施形態の半導体モジュールが第2の実施形態と異なる点は、ワイヤボンディングでなくボールボンディングを用いた点である。MISFETとして機能する各セグメント1のソース電極パッド2とソース電極端子41上に、0.3mmφのボール9(アルミニウム製)が設置され、これらのボール9に金属板10を押しつけ超音波接着することによりボンディングが行われている。同様に、ショットキーダイオードとして機能する各セグメント8のショットキー電極パッド37とソース電極端子41上に、0.3mmφのボール9(アルミニウム製)が設置され、これらのボール9に金属板10を押しつけ超音波接着することによりボンディングが行われている。また、各セグメント1のゲート電極パッド3とゲート電極端子43上に、0.25mmφのボール11(アルミニウム製)が設置され、これらのボール11に金属板12を押しつけ超音波接着することによりボンディングが行われている。その後、各部材が封止樹脂(図6に示す破線参照)内に封止されて、1つのパッケージに組み込まれている。
【0054】
本実施形態の半導体モジュールは、電流定格30(A)を有し、耐圧600Vのパワーモジュールとして機能し、複数のMISFET及びショットキーダイオードが並列動作するようにして電流が流される。このとき、特定のMISFET(セグメント1)及びショットキーダイオード(セグメント8)に電流が集中することがなく、安定な動作を行なうことが確認された。
【0055】
また、第2の実施形態と同様に、各々ウェハに形成された複数のMISFET(セグメント1)及びショットキーダイオード(セグメント2)のうち、特性検査を行うことにより正常に動作したものを含むチップのみを選択してダイボンディングを行っているので、SiC基板を用い、高い歩留まりを確保しつつ、低コストで製造することができる半導体モジュールを得ることができた。
【0056】
また、ボンディングされた複数のMISFET(セグメント1)及びショットキーダイオード(セグメント2)のうちの一つが破壊した場合、30(A)を超える過電流が一時的に流れると、0.3mmφのボール9がヒューズ部材として機能して溶断するので、過電流が流れ続けることはなかった。したがって、本実施形態の半導体モジュールがフェールセーフの信頼性を有することが確認できた。
【0057】
一定値を越える電流が流れた場合に溶断する材料としては、金属、導電性高分子膜等が挙げられるが、この中では、金属であることが特に好ましい。用いることができる金属としては、Mg,Al,Au,Ag,Cu,Pb,Sn等が挙げられる。
【0058】
なお、本実施形態においては、MISFETとして機能する3つのセグメント1と、ショットキーダイオードとして機能する3つのセグメント8とによって半導体モジュールを構成したが、半導体モジュール(半導体デバイス)中のセグメント数に限定はなく、電流定格に合わせて適宜設定することができる。
【0059】
(第4の実施形態)
図7は、第4の実施形態の半導体モジュール(半導体デバイス)における相隣接するセグメントの一部の構造を示す断面図である。本実施形態における平面構造は、基本的には図1と同じである。
【0060】
図2に示すように、本実施形態の半導体モジュールは、図2に示す第1の実施形態に係る半導体モジュールと同様の構造を有するセグメント1を有している。
【0061】
本実施形態の半導体モジュールの特徴は、第1の実施形態と異なり、素子分離領域がトレンチではなく、ショットキーダイオードによって構成されている点である。すなわち、本実施形態においては、相隣接するセグメント1同士の間の素子分離は、エッチングによりメサ構造を形成することに代えて、相隣接するセグメント1同士の間にショットキーダイオード45として機能する領域を形成することにより行われている。
【0062】
具体的には、SiC基板20の主面側において、セグメント1(MISFET)から間隔10μmを隔てて、100μm幅のNi膜を各セグメント1の境界部に沿って蒸着することにより、エピタキシャル層とショットキー接触するショットキー電極40が設けられている。つまり、このショットキー電極40は、各セグメント1(MISFET)を囲むように配置されており、ショットキーダイオード45により、相隣接するセグメント1同士が電気的に分離されている。また、エピタキシャル層内におけるショットキー電極40の両端部下方に位置する領域には、p型不純物を含む絶縁用拡散層42が設けられている。
【0063】
ここで、本実施形態においても、第1の実施形態と同様に、各セグメント1は、数μmから数十μm角程度の大きさのセルMISFETを数百個以上並列に配置することにより構成されている。数百個以上のセルMISFETのソース電極28は、ソース配線30,各プラグ30a,2a及びソース配線30を介してソース電極パッド2に接続され、数百個以上のセルMISFETのゲート電極27は各プラグ31a,3a及びゲート配線31を介してゲート電極パッド3に接続されている。
【0064】
そして、第1層間絶縁膜33の上には、ゲート配線41が設けられており、ゲート配線41はプラグ41aを介してショットキー電極40に接続されるとともに、プラグ2aを介してソース電極パッド2に接続されている。つまり、ショットキー電極40は、セグメント1(MISFET)の内部のソース電極28と電気的に接続されている。
【0065】
本実施形態の半導体モジュールは、基本的には、第1の実施形態と同様の効果を有する。しかも、MISFETとして機能するセグメント1の内部において、ショットキー電極40とソース電極28とが電気的に接続されているので、セグメント1(MISFET)とショットキーダイオード45とが半導体モジュール中で並列に接続されていることになり、インバータモジュールとして小型化・低コスト化を実現することができる。特に、ショットキー電極40のエッジ部下方に絶縁用拡散層42が形成されていると、絶縁耐圧がより高く設定でき、さらに好ましい。
【0066】
そして、以下の理由により、共通の基板(SiC基板20)に設けられた複数のセグメント1(MISFET)を備え、複数のセグメント1のうち一部のセグメント1’,1”(特定の半導体素子以外の半導体素子)が電極端子41,43と電気的に接続されていない場合(図1参照)、各セグメント1,1’,1”同士の間を電気的に分離している素子分離領域として、ショットキーダイオードとして機能する領域が設けられていることが好ましい。
【0067】
このようにすると、ショットキーダイオードとして機能する領域に逆バイアスを印加することにより空乏層が広がるので、この領域は複数のセグメント1(MISFET)同士の間の素子分離ガードリングとして機能する。さらに、高速動作が可能なショットキーダイオード45が、MISFET(セグメント1)と並列にオンチップで実装された半導体モジュールを実現することができる。したがって、素子分離領域としてMISFET(セグメント1)の耐圧を確保する機能を有するだけであった領域が、素子分離領域としての機能は損なわずに、さらに高速に動作するショットキーダイオードとしても機能することが可能となる。
【0068】
これにより、本実施形態の半導体モジュールによると、第1の実施形態におけるエッチングによって形成されたメサ構造に比べて、簡易なプロセスを用いた単純な構造により素子分離領域を形成することができる。
【0069】
また、従来、例えばインバータ等に用いられるSi半導体モジュールは、IGBTやMISFET等のパワースイッチング素子とダイオードとが並列に接続されたユニット6個により構成されており、それぞれのタイミングを合わせてスイッチングすることにより、モータを効率的に回転させていた。この場合、ダイオードは高速動作が必要であるため、ファーストリカバリダイオードと呼ばれる高速ダイオードが用いられていた。その場合、パワースイッチング素子に必要な半導体層の特性と、ファーストリカバリダイオードに必要な半導体層の特性とは、ライフタイム等の点で大きく異なるために、パワースイッチング素子とダイオードとをワンチップ化した小型のモジュールを実現することは困難であることから、異なるチップを実装することによりモジュールを構成していた。
【0070】
それに対して、本実施形態の半導体モジュールによると、スイッチング素子として機能する複数のMISFET(セグメント1)と高速ダイオードとして機能するショットキーダイオード45とがオンチップに一体化され、小型化・低コスト化を実現することができる。
【0071】
本実施形態の半導体モジュールにおいては、セグメントの電極パッドと電極端子との結線にワイヤボンディングを用いた場合について説明したが、第3の実施形態のごとく、金属ボールと金属ロッドによるボールボンディングを用いてもよい。
【0072】
ここで、上記各実施形態におけるセグメント個数の適正な数などについて、以下に説明する。
【0073】
互いに電気的に干渉しないように素子分離され、電気的に個別に動作することが可能なセグメント(半導体素子)の面積をCmm2 とし、基板に含まれる欠陥密度をn個/cm2 とすると、歩留まり、すなわちセグメント(半導体素子)中に欠陥が含まれていない割合は、下記式(1)
(100/C−n)/(100/C)=1−n・C/100 (1)
で表される。
【0074】
つまり、1cm2 あたり(100/C)個のセグメント(半導体素子)が形成されるが、その内のn個が確率的に欠陥を含むこととなり、不良となる。今後のワイドバンドギャップ半導体からなるウェハの基板品質の向上を考慮して、欠陥密度1個/cm2 程度が実現した場合、50%以上の歩留まりを確保するために、上記式(1)より、各々のセグメントの面積を50mm2 以下にすることが好ましい。同様に、欠陥密度が5個/cm2 程度である場合には、半導体素子の面積が10mm2 以下であることが好ましく、欠陥密度が10個/cm2 程度である場合には、半導体素子の面積が5mm2 以下であることが好ましい。
【0075】
また、セグメントの面積が0.1mm2 より小さくなると、電極パッドと電極端子とを電気的に接続するためのワイヤボンドなどの結線を施すことが困難になるので、セグメントの面積は0.1mm2 以上であることが好ましい。さらに、セグメントの面積が0.4mm2 以上であると、0.3mmφ以上の太さのワイヤをボンディングすることが可能となり、より大電流を流すことができるため好ましい。
【0076】
さらに、1つの半導体モジュール中のセグメントの数は、素子分離領域であるトレンチの面積やショットキーダイオードの面積をも考慮して、できるだけ最適なセグメント数に定めることができる。
【0077】
また、半導体モジュール中の各セグメント(半導体素子)において正常動作時に流れる電流が、直流換算で100(A)以下であることが好ましい。このようにすると、各セグメントの電極パッドと電極端子とを電気的に接続する接続部材として、1mmφのボンディングワイヤやボール等を用いることにより、ボンディングワイヤやボール等が溶融することなく、半導体モジュールを安定に動作させることができる。
【0078】
また、セグメントの絶縁破壊により100(A)を越える電流が流れた場合には、接続部材が溶断することにより、すでに説明したようなヒューズとして機能する。さらに、各セグメントにおいて、正常動作時に流れる電流が、直流換算で30(A)以下であると、0.3mmφのボンディングワイヤやボール等を使用することができるので、半導体モジュールを小型化できるという点で好ましい。
セグメントに流れる電流がパルス状である場合は、正常動作時に流れる電流が、直流換算で100(A)以下に保たれていることが好ましく、それ以上の電流が1秒以上連続して流れないことが好ましい。
【0079】
なお、本明細書において、「ワイドバンドギャップ半導体」とは、伝導帯の下端と価電子帯の上端とのエネルギー差、すなわちバンドギャップが2.0eV以上である半導体のことを意味し、そのようなワイドバンドギャップ半導体としては、SiC,GaNやAlN等のIII 族窒化物、ダイヤモンド等が挙げられる。
なかでも、電気的特性や製品化への進展度合いなどを総合的に考慮すると、現在のところ、ワイドバンドギャップ半導体がSiCであることが好ましい。
【0080】
本発明の半導体モジュールにおいて、セグメント(半導体素子)としては、公知のものを特に制限なく用いることができ、例えば、ショットキーダイオード、pnダイオード,MISFET,MESFET,J−FET,サイリスタ等が挙げられる。
【0081】
また、パッケージとしては公知のものを特に制限なく用いることができ、例えば、樹脂封止パッケージ,セラミックパッケージ,金属パッケージ,ガラスパッケージ等が挙げられる。
【0082】
従来の、主にSiにより構成されている半導体素子を用いた半導体モジュールにおいては、Siウェハがほぼ無欠陥であるため、大面積を有する素子により大電流の半導体素子を形成するのが通常であった。また、Si−IGBTのような低損失のパワー素子においては、p/n接合を電気伝導するため素子抵抗Ronの温度係数が負であり、並列使用した場合に電流集中が起こり特定の素子を破壊してしまう。そのため、従来の半導体モジュールにおいては、本発明の半導体モジュールのような、小面積の複数の半導体素子を並列動作させることにより大電流を流すことができるようにすることは考えられなかった。
【0083】
それに対し、本発明の半導体デバイス(半導体モジュール)によると、例えば、MISFET,JFETなどのユニポーラ素子においても、高耐圧かつ十分に小さいオン抵抗を実現することができ、特別な制御を加えなくとも、縦型半導体素子(セグメント)の並列接続が可能となる。
【0084】
【発明の効果】
本発明によれば、ワイドバンドギャップ半導体を用い、高い歩留まりを確保しつつ、低コストで製造することが可能な半導体デバイスの提供を図ることができる。
【図面の簡単な説明】
【図1】第1の実施形態に係る半導体モジュールの要部を示す上面図である。
【図2】第1の実施形態の半導体モジュールにおける相隣接するセグメントの一部の構造を示す断面図である。
【図3】第1の実施形態の半導体モジュールにおけるセグメントの一部におけるゲート電極,ソース電極,不純物拡散層などの平面形状を示す平面図である。
【図4】(a)〜(c)は、第1の実施形態の半導体モジュールの製造工程を示す平面図である。
【図5】(a),(b)は、それぞれ順に、第2の実施形態に係る半導体モジュールの要部を示す上面図、及び半導体モジュール中のショットキーダイオードの断面図である。
【図6】第3の実施形態に係る半導体モジュールの要部を示す上面図である。
【図7】第4の実施形態の半導体モジュールにおける相隣接するセグメントの一部の構造を示す断面図である。
【符号の説明】
1,1’,1” セグメント
2 ソース電極パッド
2a プラグ
3 ゲート電極パッド
3a プラグ
5 チップ
6 ワイヤ
7 ワイヤ
8 セグメント
9 ボール
10 金属板
11 ボール
12 金属板
20 SiC基板
21 チャネル領域
23 n−SiC層
24 p−SiC層
25 ソース領域
26 ゲート絶縁膜
27 ゲート電極
28 ソース電極
29 ドレイン電極パッド
30 ソース配線
30a プラグ
31 ゲート配線
31a プラグ
33 第1層間絶縁膜
34 第2層間絶縁膜
36 パッシベーション膜
41 ソース電極端子
42 ドレイン電極端子
43 ゲート電極端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device including a large number of semiconductor elements composed of wide band gap semiconductors such as silicon carbide (SiC), GaN, and diamond.
[0002]
[Prior art]
Conventionally, a semiconductor power device requires a large area because it needs to control a large current and realize a low loss. For example, a single power device in which a vertical MISFET, which is a large number of semiconductor elements, is integrated on an entire Si wafer having a size of 4 inches or more is commercially available (see, for example, Non-Patent Document 1). The reason why a number of vertical MISFETs are integrated to form one power device is to avoid the concentration of heat generating parts by dispersing the current flowing region.
[0003]
On the other hand, wide bandgap semiconductor devices composed of wide bandgap semiconductors such as silicon carbide (SiC), group III nitrides such as GaN and AlN, diamond, etc., have high physical properties, high breakdown voltage, and low loss. Therefore, research and development for practical use is progressing.
[0004]
Silicon carbide represented by “SiC” is a material having different physical and chemical properties from silicon containing a small amount (several percent or less) of C represented by “Si: C”.
[0005]
[Non-Patent Document 1]
The Institute of Electrical Engineers, High Performance and High Functionality Power Device / Power IC Research Special Edition, “Power Device / Power IC Handbook”, Corona, July 30, 1996, p. 4
[0006]
[Problems to be solved by the invention]
However, the wide band gap semiconductor material as described above has a problem that it is difficult to obtain a wafer with few defects.
[0007]
For example, when silicon carbide (SiC) is used, a vertical MISFET is formed using a thin film epitaxially grown on a silicon carbide wafer as a channel layer. Conventionally, SiC wafers are micropipes that are also crystal defects. It has many penetration defects called. If a defect inherited from a micropipe is present in an important part of a semiconductor element such as a MISFET or a diode in an epitaxially grown thin film, it causes dielectric breakdown and cannot satisfy specifications such as dielectric strength voltage. The micropipe density of conventionally used SiC wafers is several tens / cm. 2 Because it exists more than 10mm 2 When a power device having the above area is created, one power device always includes several micropipes probabilistically. Therefore, 10mm 2 When a SiC device having the above area, particularly a power device that handles a relatively large current, is produced on a SiC wafer, dielectric breakdown occurs in the region where the micropipes are present, so that the yield of such a SiC device is almost not. There was a problem of zero.
[0008]
In addition, group III nitrides such as GaN and AlN other than SiC and wide band gap semiconductor wafers such as diamond also contain various crystal defects at high density. As in the case of the SiC wafer, the crystal defects There was a defect in yield reduction.
[0009]
An object of the present invention is to provide a semiconductor device that can ensure a high yield and can be manufactured at low cost while using a wide bandgap semiconductor, and a manufacturing method thereof.
[0010]
[Means for Solving the Problems]
The semiconductor device of the present invention uses a wide band gap semiconductor layer and electrically connects each electrode pad and electrode terminal of a specific semiconductor element among a plurality of semiconductor elements that can operate independently of each other. Thus, specific semiconductor elements operate in parallel with each other.
[0011]
As a result, a semiconductor device that exhibits one function as a whole can be obtained with a high yield while using a wide band gap semiconductor with many defects.
[0012]
In particular, by forming a plurality of semiconductor elements on a common substrate and not operating semiconductor elements other than a specific semiconductor element, by using only those that are non-defective in the inspection, Since semiconductor devices can be configured except for those determined to be defective due to defects, a high yield can be realized.
[0013]
The number of specific semiconductor elements is preferably set to a constant value.
[0014]
By providing an element isolation region that functions as a Schottky diode for electrically isolating a plurality of semiconductor elements, an inverter can be configured when the semiconductor element is a MISFET.
[0015]
The semiconductor device manufacturing method of the present invention has an active region made of a wide band gap semiconductor, and a plurality of semiconductor elements that can operate independently from each other are formed, and the operation is good by inspection. In this method, each electrode pad of a specific semiconductor element that has been confirmed to be connected is connected to an electrode terminal, and the specific semiconductor element is incorporated into one package.
[0016]
By this method, it is possible to manufacture a semiconductor device functioning as a power device or the like with a realistic yield while using a wide band gap semiconductor having a high defect rate.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 is a top view showing a main part of the semiconductor module (semiconductor device) according to the first embodiment. As shown in FIG. 1, the semiconductor module of this embodiment has a size of 1.5 mm × 1.5 mm (2.25 mm) on a SiC substrate. 2 ) And a chip 5 formed by providing a large number (9 in this embodiment) of segment 1 (semiconductor elements). Each segment 1 includes a source electrode pad 2 and a gate electrode pad 3 provided on the main surface side of the SiC substrate, and a drain electrode pad (not shown) provided on the back surface side of the SiC substrate.
[0018]
Each segment 1 has a current capacity 2 (A), and the current flowing per segment during operation is 2 (A) in terms of DC. As shown in FIG. 2 described later, element isolation between adjacent segments 1 is performed by etching a boundary region between the segments 1 on the main surface side of the SiC substrate 20 to form a trench Tre, and each segment has a mesa structure. It is done by By setting the interval d between adjacent segments 1 to 10 μm or more, a withstand voltage of 600 V was secured, and a plurality of segments 1 that can be individually operated could be provided on the common SiC substrate 20.
[0019]
FIG. 2 is a cross-sectional view showing the structure of a part of adjacent segments. FIG. 3 is a plan view showing a planar shape of a gate electrode, a source electrode, an impurity diffusion layer, etc. in a part of the segment.
[0020]
As shown in FIG. 2, the semiconductor module of this embodiment includes an SiC substrate 20 (6H—SiC substrate) whose main surface containing a high concentration of n-type impurities is a (0 0 0 1) off-surface, and an SiC substrate 20. An n-SiC layer 23 (drift region) containing a low-concentration n-type impurity provided in an epitaxial layer (active region) formed thereon, a gate insulating film 26 provided on the epitaxial layer, and its The upper gate electrode 27, the source electrode 28 provided on the epitaxial layer so as to surround the gate electrode 27, the drain electrode 29 provided on the lower surface of the SiC substrate 20, and the source layer 28 below the epitaxial layer. A p-SiC layer 24 formed by doping a p-type impurity in a region located below the edge of the gate electrode 27 from a region located in the source electrode 27 and the source electrode 27 in the epitaxial layer A source region 25 formed by doping a high concentration n-type impurity in a region extending from below the end portion to below the end portion of the gate electrode 27, and a region located below the gate electrode 27 in the surface portion of the epitaxial layer And a channel region 21 formed by introducing a low concentration n-type impurity.
[0021]
As shown in FIG. 3, the gate electrode 27 is a single member that is continuously connected while having openings provided at regular intervals in the vertical and horizontal directions. On the other hand, the source electrode 28 is a number of members provided in isolation in the opening of the gate electrode 27. The source region 25 surrounds the source electrode 28 in a plan view and overlaps with the lower region of the gate electrode 27. That is, the cell MISFET is formed in a region extending from each source region 25 to a part of the gate electrode 27. The size of one cell MISFET is several tens of μm. 2 It is an order.
[0022]
A first interlayer insulating film 33 made of a BPSG film, a source wiring 30 and a gate wiring 31 are provided on the epitaxial layer. The source wiring 30 is connected to each source electrode 28 through a plug 30 a penetrating the first interlayer insulating film 33, and the gate wiring 31 is connected to the gate electrode 27 via a plug 31 a penetrating the first interlayer insulating film 33. It is connected. Further, a second interlayer insulating film 34 made of a BPSG film is provided on the first interlayer insulating film 33. The source electrode pad 2 and the gate electrode pad 3 are formed on the second interlayer insulating film 34, and the source electrode pad 2 is connected to the source wiring 30 through the plug 2 a penetrating the second interlayer insulating film 34. The gate electrode pad 3 is connected to the gate wiring 31 through the plug 3 a penetrating the second interlayer insulating film 34. The plug 2a is formed only in a region located below the source electrode pad 2 shown in FIG. 1, but in this embodiment, the source wiring 30 connected to all the source electrodes 28 is connected to the source via the plug 2a. It is connected to the electrode pad 2. Further, although the plug 3a is formed only below the gate electrode pad 3 shown in FIG. 1, the gate electrode 27 is a single continuous member, so that the gate electrode pad 3 is connected to all the gate wirings 31. There is no need to be connected. A drain electrode pad (drain electrode) 29 that is in ohmic contact with the SiC substrate 20 is provided on the back surface of the SiC substrate 20. On the upper surface of the chip 5, the region of the second interlayer insulating film 34 that is not covered with the source electrode pad 2 or the gate electrode pad 3 and the end portions of the source electrode pad 2 and the gate electrode pad 3 are made of silicon nitride. The film is covered with a passivation film 36 made of a film.
[0023]
Further, a trench Tre is provided which sequentially passes through the second interlayer insulating film 34, the second interlayer insulating film 33, and the epitaxial layer and reaches a certain depth of the SiC substrate 20, and nine semiconductor modules are formed by the trench Tre. Segment 1.
[0024]
When each segment 1 of the semiconductor module is turned on, a voltage of about 5V is applied to the gate electrode 27, the source electrode 28 is grounded, and a voltage of about 600V is applied to the drain electrode pad 29. Then, carriers (electrons in the present embodiment) supplied from the source electrode 28 flow from the source region 25 through the channel region 21 to the n-SiC layer 23 and the SiC substrate 20 and reach the drain electrode pad 29.
[0025]
In the semiconductor device (semiconductor module) of this embodiment, one segment 1 as a whole operates by a common gate bias and a voltage between the source and drain electrodes and functions as a single DMOS device. Each segment 1 of the present embodiment is a vertical semiconductor element in which carriers run from the main surface side to the back surface side of the SiC substrate, and functions as a so-called ACCUFET (Accumulation Mode FET).
[0026]
The feature of the present embodiment is that a plurality of segments (semiconductor elements) in the semiconductor module are inspected to determine whether or not they normally operate, the segments that do not operate normally are not used, and the segments ( The number of specific semiconductor elements) is set to a constant value. However, a semiconductor device may be configured by using all segments that operate normally as specific semiconductor elements. In the example shown in FIG. 1, the number of segments that are specific semiconductor elements is limited to seven, and the segment 1 ′ that does not operate normally and the segment 1 ″ that becomes redundant even if it operates normally are not used. As shown in FIG. 1, the common drain electrode pad 29 for each segment 1, 1 ′, 1 ″ is connected to the drain electrode terminal 42 by a die bond, but only the seven normally operating segments 1 have wire bonds. No, no wire bonding is performed on the segments 1 ′ and 1 ″. That is, only the source electrode pads 2 of the segment 1 are connected to the source electrode terminal 41 by the 0.3 mmφ wire 6 (made of aluminum). Each of the gate electrode pads 3 is connected to the gate electrode terminal 43 by a 0.25 mmφ wire 7 (made of aluminum). Each member is sealed in a sealing resin indicated by a broken line in the drawing and is incorporated in one package.
[0027]
However, at least one of the electrode pads 2, 3 and 29 of the semiconductor element (segment 1 ′, 1 ″ in this embodiment) other than the specific semiconductor element must be connected to the electrode terminals 41, 42 and 43. In this case, since the semiconductor element (segment) does not operate, the effect of the present invention can be exhibited.
[0028]
4A to 4C are plan views showing the manufacturing process of the semiconductor module of this embodiment.
[0029]
First, in the step shown in FIG. 4A, a cell MISFET having a structure as shown in FIGS. 2 and 3 is formed in a large number of module regions Mod in a 2-inch diameter SiC wafer. Although not shown in FIG. 4A, at this time, the module region Mod is divided into a large number of segments 1 (9 segments in the present embodiment) by the trench Tre.
[0030]
Next, in the step shown in FIG. 4B, the module region Mod including 3 × 3 = 9 segments 1 is cut out as chips 5 from the SiC wafer by dicing. Then, the operation of each segment 1 is confirmed for each chip 5. As a result, it was confirmed that one segment that does not operate is included in the nine segments 1. This malfunction is considered to be caused by micropipes included in the substrate.
[0031]
Next, in the step shown in FIG. 4C, the drain electrode pad 29 of the chip 5 is die-bonded on the drain electrode terminal 42, and the segment 1 ′ that does not operate normally and the segment that operates normally but is redundant. No wire bonding is performed on 1 ″, leaving the wires unconnected, and only the remaining seven segments 1 are connected and packaged as a power device. At this time, each segment 1 has a 0.3 mmφ diameter. The wires 6 (made of aluminum) are directly bonded one by one between the source electrode pad 2 and the source electrode terminal 41. Also, a plurality of segments 1 arranged in the same row using 0.25 mmφ wire 7 (made of aluminum). The gate electrode pads 3 are connected in series, and the gate electrode pad 3 and the gate electrode terminal 43 are bonded.
[0032]
Thereafter, each member is sealed in a general-purpose sealing resin (see the broken line shown in FIG. 4C) with the ends of the source electrode terminal 41, the drain electrode terminal 42, and the gate electrode terminal 43 exposed. Thus, a semiconductor device (semiconductor module) as a resin-sealed package is completed.
[0033]
The semiconductor module of the present embodiment has a current rating of 15 (A), functions as a power device with a withstand voltage of 600 V, and allows a plurality of MISFETs (segments) to operate in parallel. As a result, stable operation was confirmed without current concentration. In addition, since a plurality of MISFETs formed on a common SiC substrate are selected by selecting only those that have been operated normally by performing characteristic inspection, wire bonding is performed. A semiconductor module that can be manufactured at a low cost while ensuring a yield can be obtained.
[0034]
In addition, when one of the plurality of bonded segments breaks, if an overcurrent exceeding 30 (A) temporarily flows, the 0.3 mmφ wire 6 functions as a fuse member and melts. Current did not continue to flow. Therefore, it was confirmed that the semiconductor module of this embodiment has fail-safe reliability.
[0035]
According to the present embodiment, in a semiconductor module (semiconductor device) provided as one resin-encapsulated package, among the plurality of segments 1, 1 ′, 1 ″ (semiconductor elements), the segment 1 ′ that does not operate normally is Since the wire module is not used without wire bonding, only a plurality of segments 1 (specific semiconductor elements) having good electrical characteristics without crystal defects such as micropipes are operated in parallel, and the semiconductor module 1 Therefore, a semiconductor module that controls a large current and realizes a low loss by using a wide band gap semiconductor can be manufactured at a low cost while ensuring a high yield.
[0036]
For example, the micropipe density of the wafer is 10 pieces / cm 2 The area is 100mm 2 A semiconductor device (semiconductor module) of about a degree includes 10 micropipes stochastically, and a high yield cannot be expected. However, even with the same micropipe density, the semiconductor module is divided into a plurality of small area segments, and the area that can be individually operated is 1 mm. 2 When the semiconductor module composed of 100 segments is provided, only 10 out of 100 include micropipes, and the remaining 90 operate normally. Therefore, the yield of the semiconductor module can be maintained high.
[0037]
Further, the number of segments (specific semiconductor elements) to be actually used is determined to be a certain number (for example, 85) less than 90, that is, predicted from the empirically known average density of defects. The yield can be further improved by using a smaller number of segments than the average number of defective segments. In that case, although it is a non-defective product, the unused segment may decrease the overall yield, but considering this, it is recommended that the number of segments with the highest yield is empirically used. That's fine.
[0038]
In the present embodiment, each segment has a mesa structure by the trench Tre (element isolation region) formed by etching, thereby preventing electrical interference with each other and enabling individual operation. However, the present invention is not limited to this, and a structure that prevents electrical interference between the segments 1 may be provided by a guard ring or the like formed of a p-type region formed by ion implantation.
[0039]
In the present embodiment, each segment 1 is formed on a common SiC substrate 20 and is not physically separated. However, in the step shown in FIG. As a result of the inspection, only the normal segment 1 may be selected and die-bonded on the common drain electrode terminal in the step shown in FIG. 4C.
[0040]
Also, instead of inspecting each segment, it is inspected whether each individual cell MISFET operates normally, and the cell MISFET that does not operate normally and the surplus source wiring are disconnected by a laser or the like (fuse wiring). A simple configuration is also possible. For example, before the second interlayer insulating film 34 shown in FIG. 2 is formed, an inspection voltage is applied from the gate wiring 28, the source wiring 30 and the drain electrode pad 29 to inspect the operation of each cell MISFET. The source wiring 30 of the cell MISFET and the surplus cell MISFET that do not operate normally can be cut by a laser. In this case, since it is not necessary to partition the chip 5 into a plurality of segments, it is not necessary to form the trench Tre. Therefore, since the trench Tre is unnecessary, the entire chip 5 can be downsized as compared with the present embodiment. In that case, the cell MISFET in which the source wiring is connected to the source electrode pad is a specific semiconductor element.
[0041]
Each segment of the semiconductor module of the present invention does not have to be a MISFET functioning as an ACCUFET as in the present embodiment. For example, it may be a MISFET having the structure shown in FIGS. 9A and 9B of International Application PCT / JP01 / 07810 and FIG. 10, or a gate insulating film or a gate electrode in a trench formed in an epitaxial layer. It may be a MISFET having a structure in which is embedded.
[0042]
(Second Embodiment)
FIGS. 5A and 5B are a top view and a cross-sectional view of a Schottky diode in the semiconductor module, respectively, showing the main part of the semiconductor module (semiconductor device) according to the second embodiment.
[0043]
As shown in FIGS. 5A and 5B, the semiconductor module of this embodiment has a size of 2 mm × 2 mm (4 mm) on a SiC substrate. 2 ) 3 segments 1 functioning as MISFET, and the size is 2mm x 2mm (4mm) 2 ) And three segments 8 functioning as Schottky diodes. In the present embodiment, the three segments 1 (MISFET) and the three Schottky diodes (segment 8) are all specific semiconductor elements. The segment 1 functioning as a MISFET includes a source electrode pad 2 and a gate electrode pad 3 provided on the main surface side of the SiC substrate, and a drain electrode pad (not shown) provided on the back surface side of the SiC substrate. Yes. In addition, as shown in FIG. 5B, the segment 8 functioning as a Schottky diode has a Schottky contact with an epitaxial layer including a low-concentration n-type impurity provided on the SiC substrate 20 and an upper surface of the epitaxial layer. And an ohmic electrode pad 38 that is in ohmic contact with the back surface of the SiC substrate 20. The structure of segment 1 functioning as a MISFET is as shown in FIGS. One segment 1 functioning as a MISFET has a current capacity of 10 (A), and the current flowing during operation per segment was 10 (A) in terms of DC. One segment 8 functioning as a Schottky diode has a current capacity of 10 (A), and the current flowing during operation per segment is 10 (A) in terms of DC.
[0044]
In this embodiment, a large number of segments 1 that function as MISFETs are formed on one wafer, and a large number of segments 8 that function as Schottky diodes are formed on another wafer. Then, after performing the characteristic inspection of each segment 1 and 8 in a wafer state, each chip is cut out so as to include one segment 1 or 8 by dicing, and the chip including segment 1 that operates normally As shown in FIG. 5, three chips and three chips including the segment 8 that operates normally are mounted on the drain electrode terminal 42 by die bonding.
In each segment 1, 0.3 mmφ wire 6 (made of aluminum) is directly bonded between the source electrode pad 2 and the source electrode terminal 41 one by one. Similarly, in each segment 8, 0.3 mmφ wire 6 (made of aluminum) is directly bonded between the Schottky electrode pad 37 and the source electrode terminal 41 one by one. Further, the gate electrode pads 3 of the plurality of segments 1 arranged in the same row are connected in series by a wire 7 (made of aluminum) of 0.25 mmφ, and further, the gate electrode pad 3 and the gate electrode of the segment 1 at the end portion are connected. The terminal 43 is connected by a wire 7. Further, each member is sealed in a general-purpose sealing resin (see the broken line shown in FIG. 5A) with the ends of the source electrode terminal 41, the drain electrode terminal 42, and the gate electrode terminal 43 exposed. Thus, a semiconductor module as a resin-sealed package is provided.
[0045]
The semiconductor module (power module) of this embodiment has a current rating of 30 (A) and functions as a power module with a withstand voltage of 600V. A current flows so that a plurality of MISFETs (segment 1) and a Schottky diode (segment 8) operate in parallel, but the current does not concentrate on a specific MISFET or Schottky diode, and stable operation is confirmed. Has been. Moreover, since die bonding is performed by selecting only a chip that has normally operated by performing characteristic inspection among a plurality of MISFETs and Schottky diodes, a SiC substrate is used to ensure high yield and low cost. The semiconductor module which can be manufactured by was able to be obtained.
[0046]
Further, when one of a plurality of bonded MISFETs (segment 1) and Schottky diode (segment 8) breaks down, when an overcurrent exceeding 30 (A) temporarily flows, a 0.3 mmφ wire 6 Functioned as a fuse member and fusing, so no overcurrent continued to flow. Therefore, it was confirmed that the semiconductor module of this embodiment has fail-safe reliability.
[0047]
In the present embodiment, a semiconductor module constituted by three chips including MISFETs and three chips including Schottky diodes is shown, but the number of elements is not limited and may be set as appropriate according to the current rating.
[0048]
In the first embodiment and the second embodiment, the plurality of segments 1 or 8 and the electrode terminals 41, 42, 43 are made of a material that melts when a current exceeding a certain value flows. It is preferable that they are connected by a member (such as a wire). In this case, even when one of the plurality of segments 1 or 8 becomes short-circuited due to dielectric breakdown or the like, the connecting member that connects the short-circuited segment and the electrode terminal is blown by a current exceeding a certain value. Since the current is cut off, this connecting member functions as a fuse, and the shorted segment is opened and the flowing current becomes zero. Therefore, since the overcurrent flowing through the semiconductor module is suppressed, it is possible to prevent the overcurrent from flowing through the device main body controlled by the semiconductor module. Therefore, it is possible to provide a semiconductor module that satisfies the fail-safe requirement and has excellent reliability without adversely affecting the device body due to overcurrent. This is effective in, for example, a semiconductor module used for an inverter that drives a motor of an electric vehicle (HEV) that needs to control a large current of several tens (A) or more.
[0049]
Examples of the material that melts when a current exceeding a certain value flows include metals and conductive polymer films. Among these, metals are particularly preferable. Examples of metals that can be used include Mg, Al, Au, Ag, Cu, Pb, and Sn.
[0050]
Here, in one semiconductor device, the segments 1 and 8 may be connected to the common SiC substrate 20 without being cut, in an element-separated state so as not to electrically interfere with each other. In this way, as in the first embodiment, there is an unused segment among the segments 1 and 8, but the process of die-bonding each segment 1 and 8 to one drain electrode terminal 42 is simplified. There is an advantage that
[0051]
(Third embodiment)
FIG. 6 is a top view showing a main part of a semiconductor module (semiconductor device) according to the third embodiment.
[0052]
As shown in FIG. 6, the semiconductor module of this embodiment has a size of 2 mm × 2 mm (4 mm) on a SiC substrate. 2 ) 3 segments 1 functioning as MISFET, and the size is 2mm x 2mm (4mm) 2 ) And three segments 8 functioning as Schottky diodes. The segment 1 functioning as a MISFET includes a source electrode pad 2 and a gate electrode pad 3 provided on the main surface side of the SiC substrate, and a drain electrode pad (not shown) provided on the back surface side of the SiC substrate. Yes. The segment 8 functioning as a Schottky diode includes a Schottky electrode pad 37 that makes Schottky contact with the upper surface of the epitaxial layer, and an ohmic electrode pad 38 that makes ohmic contact with the back surface of the SiC substrate. The structure of segment 1 functioning as a MISFET is as shown in FIGS. The structure of the segment 8 functioning as a Schottky diode is as shown in FIG. 5B in the second embodiment. The current capacities of one segment 1 functioning as a MISFET and one segment 8 functioning as a Schottky diode and the current flowing during operation per segment are the same as in the second embodiment.
[0053]
The semiconductor module of this embodiment is different from the second embodiment in that ball bonding is used instead of wire bonding. A 0.3 mmφ ball 9 (made of aluminum) is placed on the source electrode pad 2 and the source electrode terminal 41 of each segment 1 functioning as a MISFET, and the metal plate 10 is pressed against these balls 9 and ultrasonically bonded. Bonding is taking place. Similarly, a 0.3 mmφ ball 9 (made of aluminum) is installed on the Schottky electrode pad 37 and the source electrode terminal 41 of each segment 8 functioning as a Schottky diode, and the metal plate 10 is pressed against these balls 9. Bonding is performed by ultrasonic bonding. Also, 0.25 mmφ balls 11 (made of aluminum) are placed on the gate electrode pads 3 and the gate electrode terminals 43 of each segment 1, and bonding is performed by pressing the metal plate 12 against these balls 11 and ultrasonically bonding them. Has been done. Thereafter, each member is sealed in a sealing resin (see the broken line shown in FIG. 6) and incorporated in one package.
[0054]
The semiconductor module of the present embodiment has a current rating of 30 (A), functions as a power module with a withstand voltage of 600 V, and a current flows so that a plurality of MISFETs and Schottky diodes operate in parallel. At this time, it was confirmed that the current does not concentrate on the specific MISFET (segment 1) and the Schottky diode (segment 8), and a stable operation is performed.
[0055]
Similarly to the second embodiment, only a chip including a plurality of MISFETs (Segment 1) and Schottky diodes (Segment 2) formed on the wafer, each of which operates normally by performing a characteristic inspection. Therefore, a semiconductor module that can be manufactured at low cost while using a SiC substrate and securing a high yield could be obtained.
[0056]
Further, when one of a plurality of bonded MISFETs (segment 1) and Schottky diodes (segment 2) breaks down, if an overcurrent exceeding 30 (A) temporarily flows, a 0.3 mmφ ball 9 Functioned as a fuse member and fusing, so no overcurrent continued to flow. Therefore, it was confirmed that the semiconductor module of this embodiment has fail-safe reliability.
[0057]
Examples of the material that melts when a current exceeding a certain value flows include metals and conductive polymer films. Among these, metals are particularly preferable. Examples of metals that can be used include Mg, Al, Au, Ag, Cu, Pb, and Sn.
[0058]
In the present embodiment, the semiconductor module is configured by the three segments 1 functioning as MISFETs and the three segments 8 functioning as Schottky diodes. However, the number of segments in the semiconductor module (semiconductor device) is not limited. And can be set appropriately according to the current rating.
[0059]
(Fourth embodiment)
FIG. 7 is a cross-sectional view showing a partial structure of adjacent segments in the semiconductor module (semiconductor device) of the fourth embodiment. The planar structure in the present embodiment is basically the same as FIG.
[0060]
As shown in FIG. 2, the semiconductor module of this embodiment has a segment 1 having the same structure as the semiconductor module according to the first embodiment shown in FIG.
[0061]
The feature of the semiconductor module of the present embodiment is that, unlike the first embodiment, the element isolation region is not a trench but a Schottky diode. That is, in this embodiment, element isolation between adjacent segments 1 is a region functioning as a Schottky diode 45 between adjacent segments 1 instead of forming a mesa structure by etching. Is done by forming.
[0062]
Specifically, on the main surface side of the SiC substrate 20, a 100 μm-wide Ni film is deposited along the boundary portion of each segment 1 at a distance of 10 μm from the segment 1 (MISFET), thereby forming an epitaxial layer and a shot. A Schottky electrode 40 that makes key contact is provided. That is, the Schottky electrode 40 is disposed so as to surround each segment 1 (MISFET), and the adjacent segments 1 are electrically separated by the Schottky diode 45. In addition, an insulating diffusion layer 42 containing a p-type impurity is provided in a region located below both ends of the Schottky electrode 40 in the epitaxial layer.
[0063]
Here, also in the present embodiment, as in the first embodiment, each segment 1 is configured by arranging several hundred or more cell MISFETs having a size of about several μm to several tens of μm square in parallel. ing. The source electrode 28 of several hundred or more cell MISFETs is connected to the source electrode pad 2 via the source wiring 30, the plugs 30a and 2a and the source wiring 30, and the gate electrode 27 of several hundred or more cell MISFETs It is connected to the gate electrode pad 3 through plugs 31 a and 3 a and a gate wiring 31.
[0064]
A gate wiring 41 is provided on the first interlayer insulating film 33. The gate wiring 41 is connected to the Schottky electrode 40 via a plug 41a and the source electrode pad 2 via a plug 2a. It is connected to the. That is, the Schottky electrode 40 is electrically connected to the source electrode 28 inside the segment 1 (MISFET).
[0065]
The semiconductor module of this embodiment basically has the same effect as that of the first embodiment. Moreover, since the Schottky electrode 40 and the source electrode 28 are electrically connected inside the segment 1 functioning as the MISFET, the segment 1 (MISFET) and the Schottky diode 45 are connected in parallel in the semiconductor module. As a result, the inverter module can be reduced in size and cost. In particular, when the insulating diffusion layer 42 is formed below the edge portion of the Schottky electrode 40, the withstand voltage can be set higher, which is more preferable.
[0066]
For the following reason, a plurality of segments 1 (MISFETs) provided on a common substrate (SiC substrate 20) are provided, and some of the segments 1 ′, 1 ″ out of the plurality of segments 1 (other than specific semiconductor elements) In the case where the semiconductor element) is not electrically connected to the electrode terminals 41 and 43 (see FIG. 1), as the element isolation region that electrically isolates the segments 1, 1 ′, and 1 ″ from each other, It is preferable that a region functioning as a Schottky diode is provided.
[0067]
In this case, a depletion layer is expanded by applying a reverse bias to a region functioning as a Schottky diode, and this region functions as an element isolation guard ring between a plurality of segments 1 (MISFETs). Furthermore, it is possible to realize a semiconductor module in which the Schottky diode 45 capable of high-speed operation is mounted on-chip in parallel with the MISFET (segment 1). Therefore, the region that has only the function of securing the breakdown voltage of the MISFET (segment 1) as the element isolation region functions as a Schottky diode that operates at higher speed without impairing the function as the element isolation region. Is possible.
[0068]
Thereby, according to the semiconductor module of this embodiment, the element isolation region can be formed by a simple structure using a simple process as compared with the mesa structure formed by etching in the first embodiment.
[0069]
Conventionally, for example, an Si semiconductor module used for an inverter or the like is composed of six units in which power switching elements such as IGBTs and MISFETs and diodes are connected in parallel, and switching is performed at the same timing. As a result, the motor was rotated efficiently. In this case, since the diode needs to operate at high speed, a high-speed diode called a fast recovery diode has been used. In that case, the characteristics of the semiconductor layer required for the power switching element and the characteristics of the semiconductor layer required for the fast recovery diode are greatly different in terms of lifetime, etc., so the power switching element and the diode are integrated into one chip. Since it is difficult to realize a small module, the module is configured by mounting different chips.
[0070]
On the other hand, according to the semiconductor module of this embodiment, a plurality of MISFETs (segment 1) functioning as switching elements and a Schottky diode 45 functioning as a high-speed diode are integrated on-chip, thereby reducing size and cost. Can be realized.
[0071]
In the semiconductor module of the present embodiment, the case where wire bonding is used for the connection between the electrode pad and the electrode terminal of the segment has been described. However, as in the third embodiment, ball bonding using a metal ball and a metal rod is used. Also good.
[0072]
Here, an appropriate number of segments in each of the above embodiments will be described below.
[0073]
The area of the segment (semiconductor element) that can be electrically operated individually is separated from the element so as not to electrically interfere with each other. 2 And the defect density contained in the substrate is n / cm 2 Then, the yield, that is, the ratio that no defect is included in the segment (semiconductor element) is expressed by the following formula (1).
(100 / Cn) / (100 / C) = 1-n · C / 100 (1)
It is represented by
[0074]
In other words, 1cm 2 Around (100 / C) segments (semiconductor elements) are formed, but n of them will probabilistically contain defects and become defective. Defect density of 1 piece / cm in consideration of future substrate quality improvement of wide band gap semiconductor wafers 2 In order to secure a yield of 50% or more when the degree is realized, the area of each segment is 50 mm from the above formula (1). 2 The following is preferable. Similarly, the defect density is 5 / cm. 2 The area of the semiconductor element is 10 mm. 2 The defect density is preferably 10 / cm 2 or less. 2 If it is, the area of the semiconductor element is 5 mm. 2 The following is preferable.
[0075]
The segment area is 0.1mm 2 If it becomes smaller, it becomes difficult to perform connection such as wire bonding for electrically connecting the electrode pad and the electrode terminal, so the area of the segment is 0.1 mm. 2 The above is preferable. Furthermore, the area of the segment is 0.4mm 2 The above is preferable because a wire having a thickness of 0.3 mmφ or more can be bonded, and a larger current can flow.
[0076]
Furthermore, the number of segments in one semiconductor module can be determined to the optimum number of segments as much as possible in consideration of the area of the trench as the element isolation region and the area of the Schottky diode.
[0077]
Moreover, it is preferable that the electric current which flows at the time of normal operation in each segment (semiconductor element) in a semiconductor module is 100 (A) or less in terms of direct current. In this way, by using a 1 mmφ bonding wire or ball as a connecting member for electrically connecting the electrode pad and electrode terminal of each segment, the semiconductor module can be manufactured without melting the bonding wire or ball. It can be operated stably.
[0078]
Further, when a current exceeding 100 (A) flows due to the dielectric breakdown of the segment, the connecting member is blown to function as a fuse as described above. Further, in each segment, when the current flowing during normal operation is 30 (A) or less in terms of direct current, a 0.3 mmφ bonding wire, a ball, or the like can be used, so that the semiconductor module can be reduced in size. Is preferable.
When the current flowing in the segment is pulsed, it is preferable that the current flowing during normal operation is kept at 100 (A) or less in terms of DC, and no more current flows continuously for more than 1 second. Is preferred.
[0079]
In this specification, the term “wide band gap semiconductor” means a semiconductor having an energy difference between the lower end of the conduction band and the upper end of the valence band, that is, a band gap of 2.0 eV or more. Examples of such wide band gap semiconductors include group III nitrides such as SiC, GaN, and AlN, diamond, and the like.
In particular, considering the electrical characteristics and the degree of progress toward commercialization, it is preferable that the wide band gap semiconductor is SiC at present.
[0080]
In the semiconductor module of the present invention, any known segment (semiconductor element) can be used without particular limitation, and examples include a Schottky diode, a pn diode, a MISFET, a MESFET, a J-FET, and a thyristor.
[0081]
Moreover, a well-known thing can be especially used as a package without a restriction | limiting, For example, a resin sealing package, a ceramic package, a metal package, a glass package etc. are mentioned.
[0082]
In a conventional semiconductor module using a semiconductor element mainly composed of Si, since a Si wafer is almost defect-free, it is usual to form a semiconductor element having a large current with an element having a large area. It was. In addition, in a low-loss power element such as Si-IGBT, the temperature coefficient of the element resistance Ron is negative because the p / n junction is electrically conducted, and when used in parallel, current concentration occurs and destroys a specific element. Resulting in. For this reason, in the conventional semiconductor module, it has not been considered to allow a large current to flow by operating a plurality of semiconductor elements having a small area in parallel as in the semiconductor module of the present invention.
[0083]
On the other hand, according to the semiconductor device (semiconductor module) of the present invention, for example, even in a unipolar element such as MISFET and JFET, a high breakdown voltage and a sufficiently small on-resistance can be realized, and even without special control, Vertical semiconductor elements (segments) can be connected in parallel.
[0084]
【The invention's effect】
According to the present invention, it is possible to provide a semiconductor device that uses a wide band gap semiconductor and can be manufactured at low cost while ensuring a high yield.
[Brief description of the drawings]
FIG. 1 is a top view showing a main part of a semiconductor module according to a first embodiment.
FIG. 2 is a cross-sectional view showing a partial structure of adjacent segments in the semiconductor module of the first embodiment.
FIG. 3 is a plan view showing a planar shape of a gate electrode, a source electrode, an impurity diffusion layer, and the like in a part of a segment in the semiconductor module of the first embodiment.
FIGS. 4A to 4C are plan views showing manufacturing steps of the semiconductor module of the first embodiment. FIGS.
FIGS. 5A and 5B are a top view and a cross-sectional view of a Schottky diode in the semiconductor module, respectively, showing a main part of the semiconductor module according to the second embodiment in order.
FIG. 6 is a top view showing a main part of a semiconductor module according to a third embodiment.
FIG. 7 is a cross-sectional view showing a partial structure of adjacent segments in a semiconductor module according to a fourth embodiment.
[Explanation of symbols]
1,1 ', 1 "segment
2 Source electrode pad
2a plug
3 Gate electrode pad
3a plug
5 chips
6 wires
7 wire
8 segments
9 balls
10 Metal plate
11 balls
12 Metal plate
20 SiC substrate
21 channel region
23 n-SiC layer
24 p-SiC layer
25 Source area
26 Gate insulation film
27 Gate electrode
28 Source electrode
29 Drain electrode pad
30 Source wiring
30a plug
31 Gate wiring
31a plug
33 First interlayer insulating film
34 Second interlayer insulating film
36 Passivation film
41 Source electrode terminal
42 Drain electrode terminal
43 Gate electrode terminal

Claims (10)

共通の基板上に形成され、ワイドバンドギャップ半導体からなる活性領域と、動作用電圧が印加される少なくとも2つの電極パッドとを有し、互いに独立して動作することが可能な複数の半導体素子と、
複数の電極端子と、
上記複数の半導体素子のうちの少なくとも一部である特定の複数の半導体素子の各電極パッドと、上記複数の電極端子とを互いに電気的に接続するための複数の接続部材と、
上記複数の半導体素子同士の間を電気的に分離するためのショットキーダイオードとして機能する素子分離領域とを備え、
上記複数の半導体素子のうち上記特定の半導体素子以外の半導体素子は、検査によって動作不良が確認されたものを含み、
上記複数の半導体素子のうち上記特定の半導体素子以外の半導体素子の少なくとも1つの電極パッドは、上記複数の電極端子のいずれにも電気的に接続されておらず、
上記特定の複数の半導体素子は互いに並列に動作する,半導体デバイス。
A plurality of semiconductor elements formed on a common substrate and having an active region made of a wide bandgap semiconductor and at least two electrode pads to which an operating voltage is applied, and capable of operating independently of each other; ,
A plurality of electrode terminals;
A plurality of connection members for electrically connecting each electrode pad of the plurality of specific semiconductor elements that are at least a part of the plurality of semiconductor elements and the plurality of electrode terminals;
An element isolation region that functions as a Schottky diode for electrically isolating the semiconductor elements from each other;
Among the plurality of semiconductor elements, semiconductor elements other than the specific semiconductor element include those whose operation failure has been confirmed by inspection,
At least one electrode pad of a semiconductor element other than the specific semiconductor element among the plurality of semiconductor elements is not electrically connected to any of the plurality of electrode terminals,
A semiconductor device in which the plurality of specific semiconductor elements operate in parallel with each other.
請求項1記載の半導体デバイスにおいて、
上記複数の接続部材は、一定値を越える電流が流れた場合に溶断する材料によって構成されている,半導体デバイス。
The semiconductor device of claim 1.
The plurality of connecting members are made of a material that melts when a current exceeding a certain value flows.
請求項2記載の半導体デバイスにおいて、
上記複数の接続部材は、金属によって構成されている,半導体デバイス。
The semiconductor device according to claim 2, wherein
The plurality of connecting members are semiconductor devices made of metal.
請求項記載の半導体デバイスにおいて、
上記複数の半導体素子のうち上記特定の半導体素子以外の半導体素子は、検査によって動作の良好性が確認されたものを含み、上記特定の半導体素子の個数は、一定値に定められている,半導体デバイス。
The semiconductor device of claim 1 .
Among the plurality of semiconductor elements, semiconductor elements other than the specific semiconductor element include elements whose operation is confirmed by inspection, and the number of the specific semiconductor elements is determined to be a constant value. device.
請求項1〜のうちいずれか1つに記載の半導体デバイスにおいて、
上記各半導体素子の面積は、0.1mm 〜50mm の範囲にある,半導体デバイス。
In the semiconductor device according to any one of claims 1 to 4 ,
Area of the semiconductor elements is in the range of 0.1mm 2 ~50mm 2, the semiconductor device.
請求項1〜のうちいずれか1つに記載の半導体デバイスにおいて、
上記半導体素子は、MISFET又はショットキーダイオードのうちの少なくとも一方の素子である,半導体デバイス。
In the semiconductor device according to any one of claims 1 to 5 ,
The semiconductor device is a semiconductor device that is at least one of a MISFET and a Schottky diode.
請求項1〜のうちいずれか1つに記載の半導体デバイスにおいて、
上記ワイドバンドギャップ半導体が炭化珪素である,半導体デバイス。
In the semiconductor device according to any one of claims 1 to 6 ,
A semiconductor device, wherein the wide band gap semiconductor is silicon carbide.
ワイドバンドギャップ半導体からなる活性領域と、動作用電圧が印加される少なくとも2つの電極パッドとを有し、互いに独立して動作することが可能な複数の半導体素子を共通の基板上に形成する工程(a)と、
上記複数の半導体素子同士の間を電気的に分離するためのショットキーダイオードとして機能する素子分離領域を形成する工程(b)と、
上記工程(b)の後に、上記複数の半導体素子の動作の良否を判定する工程(e)と、
上記工程()の後に、該工程(e)において動作が良好であることが確認された複数の半導体素子のうち、少なくとも一部である特定の複数の半導体素子の各電極パッドをそれぞれ電極端子に接続する工程(c)と、
上記工程(c)の後、少なくとも上記特定の複数の半導体素子を1つのパッケージに組み込む工程(d)と
を含む半導体デバイスの製造方法。
Forming a plurality of semiconductor elements on a common substrate having an active region made of a wide band gap semiconductor and at least two electrode pads to which an operating voltage is applied, and capable of operating independently of each other; (A) and
Forming an element isolation region functioning as a Schottky diode for electrically isolating the semiconductor elements from each other;
After the step (b), a step (e) of determining whether the operations of the plurality of semiconductor elements are good,
After said step (e), of the plurality of semiconductor elements that operate is good was confirmed in the step (e), respectively the electrode terminals of each electrode pad of a particular plurality of semiconductor elements is at least a portion Connecting to (c),
After the step (c), at least a step (d) of incorporating the specific semiconductor elements into one package.
請求項記載の半導体デバイスの製造方法において
記工程(c)では、上記複数の半導体素子のうち上記特定の半導体素子以外の半導体素子の少なくとも1つの電極パッドを、上記複数の電極端子のいずれにも電気的に接続せず、
上記工程(d)では、上記複数の半導体素子のすべてを1つのパッケージに組み込む,半導体デバイスの製造方法。
The method of manufacturing a semiconductor device according to claim 8 .
In the upper Symbol step (c), at least one electrode pads of the semiconductor element other than the above specific semiconductor device of the plurality of semiconductor elements, in any of said plurality of electrode terminals without electrical connection,
In the step (d), a semiconductor device manufacturing method in which all of the plurality of semiconductor elements are incorporated into one package.
請求項記載の半導体デバイスの製造方法において、
上記工程(d)では、上記特定の半導体素子の個数は一定に定められている,半導体デバイスの製造方法。
The method of manufacturing a semiconductor device according to claim 8 .
In the step (d), the number of the specific semiconductor elements is determined to be constant.
JP2003168711A 2002-06-13 2003-06-13 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4557507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168711A JP4557507B2 (en) 2002-06-13 2003-06-13 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002172317 2002-06-13
JP2003017391 2003-01-27
JP2003168711A JP4557507B2 (en) 2002-06-13 2003-06-13 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010128059A Division JP5366886B2 (en) 2002-06-13 2010-06-03 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004289103A JP2004289103A (en) 2004-10-14
JP4557507B2 true JP4557507B2 (en) 2010-10-06

Family

ID=33303627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168711A Expired - Fee Related JP4557507B2 (en) 2002-06-13 2003-06-13 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4557507B2 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400441B2 (en) 2004-12-14 2010-01-20 三菱電機株式会社 Semiconductor device
JP4744884B2 (en) * 2005-01-11 2011-08-10 ルネサスエレクトロニクス株式会社 Wafer inspection apparatus and wafer inspection method
WO2007007670A1 (en) 2005-07-08 2007-01-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device and electric device
JP4185157B2 (en) 2005-07-25 2008-11-26 松下電器産業株式会社 Semiconductor elements and electrical equipment
CN101233616B (en) 2005-07-26 2010-04-14 松下电器产业株式会社 Semiconductor element and electric device
JP5061473B2 (en) * 2006-02-24 2012-10-31 住友電気工業株式会社 Nitride semiconductor devices
JP2009141083A (en) * 2007-12-05 2009-06-25 Denso Corp Semiconductor apparatus
US10600902B2 (en) * 2008-02-13 2020-03-24 Vishay SIliconix, LLC Self-repairing field effect transisitor
JP2010087126A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP5432492B2 (en) * 2008-09-30 2014-03-05 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Insulated gate semiconductor device
JP2010087127A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP2010087124A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Insulated-gate semiconductor device
JP5443837B2 (en) * 2009-06-05 2014-03-19 ルネサスエレクトロニクス株式会社 Semiconductor device
US8410600B2 (en) * 2009-10-02 2013-04-02 Arkansas Power Electronics International, Inc. Semiconductor device with protecting film and method of fabricating the semiconductor device with protecting film
JP5258825B2 (en) * 2010-03-23 2013-08-07 三菱電機株式会社 Power semiconductor device and manufacturing method thereof
JP2012069884A (en) * 2010-09-27 2012-04-05 Sanken Electric Co Ltd Semiconductor module design method and semiconductor module
JP5532248B2 (en) * 2010-10-13 2014-06-25 独立行政法人産業技術総合研究所 Diamond electronic device and manufacturing method thereof
JP5540296B2 (en) * 2010-10-13 2014-07-02 独立行政法人産業技術総合研究所 Diamond electronic device and manufacturing method thereof
CN102569387B (en) * 2010-12-22 2014-08-27 无锡华润上华半导体有限公司 Double diffusion metal-oxide-semiconductor (DMOS) device
JP2013038351A (en) * 2011-08-11 2013-02-21 Sumitomo Electric Ind Ltd Power semiconductor device
JP5811803B2 (en) * 2011-11-22 2015-11-11 住友電気工業株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2013197331A (en) * 2012-03-21 2013-09-30 Sumitomo Electric Ind Ltd Semiconductor device
CN104170085B (en) 2012-03-28 2017-05-10 富士电机株式会社 Semiconductor device
EP2833405A4 (en) 2012-03-28 2016-01-13 Fuji Electric Co Ltd Semiconductor device, and method for manufacturing semiconductor device
JP5831626B2 (en) 2012-03-28 2015-12-09 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2013254828A (en) * 2012-06-06 2013-12-19 Honda Motor Co Ltd Semiconductor device
JP2014179547A (en) 2013-03-15 2014-09-25 Toshiba Corp Semiconductor module and method of manufacturing the same
JP6171586B2 (en) 2013-06-04 2017-08-02 富士電機株式会社 Semiconductor device
EP3100301B1 (en) * 2014-01-30 2019-11-06 Cree Fayetteville, Inc. Low profile, highly configurable, current sharing paralleled wide band gap power device power module
JP2016025124A (en) * 2014-07-16 2016-02-08 株式会社デンソー Semiconductor device and method of manufacturing the same
JP2017045901A (en) * 2015-08-27 2017-03-02 トヨタ自動車株式会社 Reflux diode and on-vehicle power supply device
WO2017203623A1 (en) * 2016-05-25 2017-11-30 株式会社日立製作所 Power module, power module manufacturing method, and method for manufacturing electric power conversion device
JP6745737B2 (en) * 2017-02-17 2020-08-26 三菱電機株式会社 Schottky barrier diode manufacturing method
JP7198168B2 (en) 2019-07-19 2022-12-28 株式会社 日立パワーデバイス power semiconductor module
TWI717072B (en) 2019-10-28 2021-01-21 聚積科技股份有限公司 Metal oxide semiconductor module and light emitting diode element display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210866A (en) * 1989-02-10 1990-08-22 Hitachi Ltd Compound semiconductor device
JP2001053275A (en) * 1999-08-17 2001-02-23 Denso Corp Semiconductor device and manufacture thereof
JP2001111048A (en) * 1999-10-08 2001-04-20 Denso Corp Semiconductor device and insulated gate type bipolar transistor
JP2001135820A (en) * 1999-11-09 2001-05-18 Denso Corp Method for manufacturing insulation gate type power ic, apparatus for manufacturing insulation gate type power ic, and insulation gate type power ic module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210866A (en) * 1989-02-10 1990-08-22 Hitachi Ltd Compound semiconductor device
JP2001053275A (en) * 1999-08-17 2001-02-23 Denso Corp Semiconductor device and manufacture thereof
JP2001111048A (en) * 1999-10-08 2001-04-20 Denso Corp Semiconductor device and insulated gate type bipolar transistor
JP2001135820A (en) * 1999-11-09 2001-05-18 Denso Corp Method for manufacturing insulation gate type power ic, apparatus for manufacturing insulation gate type power ic, and insulation gate type power ic module

Also Published As

Publication number Publication date
JP2004289103A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4557507B2 (en) Semiconductor device and manufacturing method thereof
JP5366886B2 (en) Semiconductor device and manufacturing method thereof
US10784256B2 (en) Semiconductor device and method of manufacturing semiconductor device
US8294244B2 (en) Semiconductor device having an enlarged emitter electrode
US20060081897A1 (en) GaN-based semiconductor integrated circuit
KR20040052234A (en) Large area silicon carbide devices and manufacturing methods therefor
US20170213766A1 (en) Semiconductor device and manufacturing method of the same
CN110622320A (en) Semiconductor device with a plurality of semiconductor chips
US11410892B2 (en) Semiconductor device and method of inspecting semiconductor device
US11916112B2 (en) SiC semiconductor device
US20230395539A1 (en) Semiconductor Device Including Bonding Pad Metal Layer Structure
US11133385B2 (en) Semiconductor device
US20230223433A1 (en) SiC SEMICONDUCTOR DEVICE
JP6664446B2 (en) SiC semiconductor device
JP2020150137A (en) Semiconductor device
US20220069072A1 (en) Semiconductor device
JP7422166B2 (en) Transistor semiconductor die with increased active area
US10727228B2 (en) Stacked integrated circuit
JP7192683B2 (en) Method for sorting silicon carbide semiconductor device
US11121221B2 (en) Semiconductor device
US20220157778A1 (en) Semiconductor circuit device
US20210066495A1 (en) Power Semiconductor Device and Method
JP2024034977A (en) Manufacturing method of semiconductor device
JP2020027854A (en) SiC semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Ref document number: 4557507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees