JP4556393B2 - Fuel reformer - Google Patents

Fuel reformer Download PDF

Info

Publication number
JP4556393B2
JP4556393B2 JP2003293397A JP2003293397A JP4556393B2 JP 4556393 B2 JP4556393 B2 JP 4556393B2 JP 2003293397 A JP2003293397 A JP 2003293397A JP 2003293397 A JP2003293397 A JP 2003293397A JP 4556393 B2 JP4556393 B2 JP 4556393B2
Authority
JP
Japan
Prior art keywords
catalyst layer
steam
fuel reformer
supplied
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003293397A
Other languages
Japanese (ja)
Other versions
JP2005063847A (en
Inventor
透 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003293397A priority Critical patent/JP4556393B2/en
Publication of JP2005063847A publication Critical patent/JP2005063847A/en
Application granted granted Critical
Publication of JP4556393B2 publication Critical patent/JP4556393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、都市ガス、天然ガス、LPG等の炭化水素系燃料やアルコール類を水蒸気改質して水素リッチな改質ガスを生成する燃料改質器に関し、特には、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に寄与しない水蒸気までもが改質触媒層に供給されるのに伴って燃料改質器全体の圧力損失が上昇してしまうのを回避することができる燃料改質器に関する。   The present invention relates to a fuel reformer that generates a hydrogen-rich reformed gas by steam reforming a hydrocarbon-based fuel such as city gas, natural gas, LPG, or alcohol, and in particular, supplied to the fuel reformer. Among the generated steam, even the steam that does not contribute to the reforming catalyst reaction in the reforming catalyst layer is prevented from increasing the pressure loss of the entire fuel reformer as it is supplied to the reforming catalyst layer. The present invention relates to a fuel reformer that can be used.

従来、固体高分子形燃料電池発電装置用の水蒸気改質方式を用いた燃料改質器として、例えばWO00/63114に記載されたものが知られている。WO00/63114に記載された多重円筒構造の燃料改質器では、改質触媒層と、CO変成触媒層とが設けられている。詳細には、燃焼ガス流路(WO00/63114の図3の筒14と筒68との間)の外側に、水蒸気流路(詳細には、水蒸気流路の一部を構成する改質触媒層13)が配置され、水蒸気流路の外側にCO変成触媒層(11)が配置されている。   Conventionally, as a fuel reformer using a steam reforming system for a polymer electrolyte fuel cell power generator, for example, one described in WO00 / 63114 is known. In the fuel reformer having a multi-cylindrical structure described in WO00 / 63114, a reforming catalyst layer and a CO shift catalyst layer are provided. Specifically, a reforming catalyst layer constituting a part of the steam channel (specifically, a part of the steam channel) outside the combustion gas channel (between the cylinder 14 and the cylinder 68 in FIG. 3 of WO 00/63114). 13) is disposed, and the CO shift catalyst layer (11) is disposed outside the water vapor channel.

ところが、WO00/63114に記載された燃料改質器では、炭化水素系燃料等を改質触媒層およびCO変成触媒層で反応させるのに必要な水蒸気が、改質触媒層およびCO変成触媒層の上流で合流せしめられ、まず最初に改質触媒層に供給され、次いで、改質触媒層を通過した水蒸気がCO変成触媒層に供給されている。すなわち、WO00/63114に記載された燃料改質器では、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に寄与しない余分な水蒸気までもが改質触媒層に供給されてしまっている。そのため、余分な水蒸気が改質触媒層に供給されるのに伴って、燃料改質器全体の圧力損失が上昇してしまう。燃料改質器全体の圧力損失が上昇してしまうと、補機動力を増加させなければならなくてなってしまい、また、余分な水蒸気の温度を改質触媒反応温度まで上昇させなければならなくなってしまう。それにより、改質触媒層の熱流束負荷が増加してしまい、伝熱を促進するために改質触媒層の構造が複雑になってしまう。   However, in the fuel reformer described in WO00 / 63114, water vapor required for reacting hydrocarbon fuel or the like in the reforming catalyst layer and the CO shift catalyst layer is generated in the reforming catalyst layer and the CO shift catalyst layer. The water is combined at the upstream, first supplied to the reforming catalyst layer, and then the water vapor that has passed through the reforming catalyst layer is supplied to the CO shift catalyst layer. In other words, in the fuel reformer described in WO00 / 63114, excess steam that does not contribute to the reforming catalyst reaction in the reforming catalyst layer out of the steam supplied to the fuel reformer also forms the reforming catalyst layer. It has been supplied. For this reason, as excess steam is supplied to the reforming catalyst layer, the pressure loss of the entire fuel reformer increases. If the pressure loss of the entire fuel reformer increases, the auxiliary power must be increased, and the temperature of excess steam must be increased to the reforming catalyst reaction temperature. End up. As a result, the heat flux load of the reforming catalyst layer increases, and the structure of the reforming catalyst layer becomes complicated in order to promote heat transfer.

WO00/63114WO00 / 63114

前記問題点に鑑み、本発明は、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に寄与しない水蒸気までもが改質触媒層に供給されるのに伴って燃料改質器全体の圧力損失が上昇してしまうのを回避することができる燃料改質器を提供することを目的とする。   In view of the above-described problems, the present invention provides that steam, which does not contribute to the reforming catalyst reaction in the reforming catalyst layer, among the steam supplied to the fuel reformer is supplied to the reforming catalyst layer. An object of the present invention is to provide a fuel reformer that can avoid an increase in pressure loss of the entire fuel reformer.

請求項1に記載の発明によれば、改質触媒層と、CO変成触媒層とを具備し、
燃焼ガス流路の外側に水蒸気流路が配置され、前記水蒸気流路の外側にCO除去触媒層と前記CO変成触媒層とが配置された多重円筒型の燃料改質器において、
燃料改質器に供給された水蒸気を前記改質触媒層と前記CO変成触媒層とに分配するための分配手段を具備し、
前記水蒸気流路と前記CO除去触媒層との仕切り筒に複数のCO除去触媒用水蒸気投入穴を形成し、
前記水蒸気流路と前記CO変成触媒層との仕切り筒に複数のCO変成触媒用水蒸気投入穴を形成したことを特徴とする燃料改質器が提供される。
According to the invention described in claim 1, it comprises a reforming catalyst layer and a CO shift catalyst layer ,
In a multi-cylinder fuel reformer in which a steam channel is disposed outside a combustion gas channel, and a CO removal catalyst layer and the CO shift catalyst layer are disposed outside the steam channel ,
Distributing means for distributing the steam supplied to the fuel reformer to the reforming catalyst layer and the CO conversion catalyst layer ,
Forming a plurality of CO removal catalyst steam input holes in a partition tube between the steam flow path and the CO removal catalyst layer;
A fuel reformer is provided in which a plurality of steam inlet holes for a CO shift catalyst are formed in a partition tube between the steam flow path and the CO shift catalyst layer .

請求項2に記載の発明によれば、前記複数のCO除去触媒用水蒸気投入穴を燃料改質器の周方向および中心軸線方向に均等に配列し、
前記複数のCO変成触媒用水蒸気投入穴を燃料改質器の周方向および中心軸線方向に均等に配列したことを特徴とする請求項1に記載の燃料改質器が提供される。
According to the invention described in claim 2, the plurality of CO removal catalyst steam inlet holes are evenly arranged in the circumferential direction and the central axis direction of the fuel reformer,
2. The fuel reformer according to claim 1, wherein the plurality of CO conversion catalyst steam inlet holes are arranged uniformly in a circumferential direction and a central axis direction of the fuel reformer.

請求項に記載の燃料改質器では、燃料改質器に供給された水蒸気を改質触媒層とCO変成触媒層とに分配するための分配手段が設けられている。詳細には、例えば、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に必要な水蒸気が、分配手段によって改質触媒層に分配され、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に必要とされない水蒸気の少なくとも一部が、分配手段によってCO変成触媒層に分配される。そのため、燃料改質器に供給された水蒸気の全てが改質触媒層に供給されるのに伴って燃料改質器全体の圧力損失が上昇してしまうのを回避することができる。つまり、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に寄与しない水蒸気までもが改質触媒層に供給されるのに伴って燃料改質器全体の圧力損失が上昇してしまうのを回避することができる。 The fuel reformer according to claim 1 is provided with a distribution means for distributing the steam supplied to the fuel reformer to the reforming catalyst layer and the CO shift catalyst layer. Specifically, for example, of the steam supplied to the fuel reformer, the steam necessary for the reforming catalyst reaction in the reforming catalyst layer is distributed to the reforming catalyst layer by the distributing means and supplied to the fuel reformer. At least a portion of the steam that is not required for the reforming catalyst reaction in the reforming catalyst layer is distributed to the CO conversion catalyst layer by the distributing means. Therefore, it is possible to avoid an increase in the pressure loss of the entire fuel reformer as all the water vapor supplied to the fuel reformer is supplied to the reforming catalyst layer. In other words, of the steam supplied to the fuel reformer, even the steam that does not contribute to the reforming catalyst reaction in the reforming catalyst layer is supplied to the reforming catalyst layer, so that the pressure loss of the entire fuel reformer Can be prevented from rising.

請求項に記載の燃料改質器では、CO除去触媒層が更に設けられ、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に必要な水蒸気が、分配手段によって改質触媒層に分配され、燃料改質器に供給された水蒸気のうち、CO変成触媒層におけるCO変成触媒反応に必要な水蒸気が、分配手段によってCO変成触媒層に分配され、燃料改質器に供給された水蒸気のうち、CO除去触媒層におけるCO除去触媒反応に必要な水蒸気が、分配手段によってCO除去触媒層に分配される。そのため、燃料改質器に供給された水蒸気の全てが改質触媒層に供給されるのに伴って燃料改質器全体の圧力損失が上昇してしまうのを回避することができる。つまり、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に寄与しない水蒸気までもが改質触媒層に供給されるのに伴って燃料改質器全体の圧力損失が上昇してしまうのを回避することができる。 The fuel reformer according to claim 1 , further comprising a CO removal catalyst layer, wherein water vapor required for the reforming catalyst reaction in the reforming catalyst layer out of the water vapor supplied to the fuel reformer is a distributing means. Of the water vapor distributed to the reforming catalyst layer by the gas generator and supplied to the fuel reformer, the water vapor necessary for the CO shift catalytic reaction in the CO shift catalyst layer is distributed to the CO shift catalyst layer by the distributing means, and fuel reforming is performed. Of the water vapor supplied to the vessel, the water vapor required for the CO removal catalyst reaction in the CO removal catalyst layer is distributed to the CO removal catalyst layer by the distribution means. Therefore, it is possible to avoid an increase in the pressure loss of the entire fuel reformer as all the water vapor supplied to the fuel reformer is supplied to the reforming catalyst layer. In other words, of the steam supplied to the fuel reformer, even the steam that does not contribute to the reforming catalyst reaction in the reforming catalyst layer is supplied to the reforming catalyst layer and the pressure loss of the entire fuel reformer Can be prevented from rising.

請求項及びに記載の燃料改質器では、多重円筒構造の一体型燃料改質器として、内側から燃焼ガス流路、水蒸気流路、CO除去触媒層+CO変成触媒層(CO除去触媒層とCO変成触媒層とは燃料改質器の中心軸線方向に並べて配列され、CO除去触媒層がCO変成触媒層の上側に配置されるか、あるいは、下側に配置されるかは任意である。)の順にそれらが配列される。燃焼ガスの熱エネルギーが、水蒸気(水蒸気流路の入口部では、水蒸気ではなく、水の状態であってもよい。)に伝えられ、その過熱された水蒸気が原燃料と合流せしめられる。水蒸気流路とCO除去触媒層との仕切り筒に複数のCO除去触媒用水蒸気投入穴が形成され、その複数のCO除去触媒用水蒸気投入穴が燃料改質器の周方向および中心軸線方向均等に配列されている。また、水蒸気流路とCO変成触媒層との仕切り筒に複数のCO変成触媒用水蒸気投入穴が形成され、その複数のCO変成触媒用水蒸気投入穴が燃料改質器の周方向および中心軸線方向均等に配列されている。更に、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に必要な水蒸気が、改質触媒層に分配され、燃料改質器に供給された水蒸気のうち、CO除去触媒層におけるCO除去触媒反応に必要な水蒸気が、CO除去触媒用水蒸気投入穴を介してCO除去触媒層に分配され、燃料改質器に供給された水蒸気のうち、CO変成触媒層におけるCO変成触媒反応に必要な水蒸気が、CO変成触媒用水蒸気投入穴を介してCO変成触媒層に分配されるように、複数のCO除去触媒用水蒸気投入穴の合計面積と、複数のCO変成触媒用水蒸気投入穴の合計面積と、改質触媒層へ通ずる水蒸気流路面積とが設定されている。詳細には、改質触媒層へ導入される水蒸気流量は、改質反応に寄与する流量とされ、CO変成触媒層へ導入される水蒸気流量は、CO変成反応に寄与する流量とされ、CO除去触媒層へ導入される水蒸気流量は、改質ガス中の水蒸気分圧を上げることによって、CO選択酸化反応のCO選択性を向上させ、更に下流側に固体高分子形燃料電池が接続されている場合には、加湿効果をもたせ燃料電池の性能を向上させる流量とされる。 3. The fuel reformer according to claim 1 or 2 , wherein the multi-cylindrical integrated fuel reformer includes a combustion gas flow path, a water vapor flow path, a CO removal catalyst layer + a CO shift catalyst layer (CO removal catalyst layer) from the inside. And the CO shift catalyst layer are arranged side by side in the direction of the central axis of the fuel reformer, and it is optional whether the CO removal catalyst layer is positioned above or below the CO shift catalyst layer. .) Are arranged in this order. The thermal energy of the combustion gas is transmitted to water vapor (may be water instead of water vapor at the inlet of the water vapor flow path), and the superheated water vapor is combined with the raw fuel. A plurality of CO removal catalyst for steam charged holes are formed in the partition cylinder with vapor duct and the CO removal catalyst layer, even a plurality of CO removal catalyst for steam charged hole thereof in the circumferential direction and the central axis direction of the fuel reformer Is arranged. In addition, a plurality of steam inlet holes for the CO shift catalyst are formed in a partition tube between the steam flow path and the CO shift catalyst layer, and the plurality of steam shift holes for the CO shift catalyst are in the circumferential direction and the central axis direction of the fuel reformer. They are evenly arranged. Furthermore, of the steam supplied to the fuel reformer, the steam necessary for the reforming catalyst reaction in the reforming catalyst layer is distributed to the reforming catalyst layer, and of the steam supplied to the fuel reformer, CO The water vapor necessary for the CO removal catalyst reaction in the removal catalyst layer is distributed to the CO removal catalyst layer through the CO removal catalyst water vapor input hole, and of the water vapor supplied to the fuel reformer, the CO in the CO conversion catalyst layer. The total area of the plurality of CO removal catalyst steam injection holes and the plurality of CO conversion catalyst for the CO conversion catalyst so that the steam required for the conversion catalyst reaction is distributed to the CO conversion catalyst layer through the CO conversion catalyst steam injection hole The total area of the steam inlet holes and the area of the steam passage leading to the reforming catalyst layer are set. Specifically, the steam flow rate introduced into the reforming catalyst layer is a flow rate that contributes to the reforming reaction, and the steam flow rate introduced into the CO shift catalyst layer is a flow rate that contributes to the CO shift reaction, and CO removal. The flow rate of water vapor introduced into the catalyst layer improves the CO selectivity of the CO selective oxidation reaction by increasing the partial pressure of water vapor in the reformed gas, and a polymer electrolyte fuel cell is connected further downstream. In this case, the flow rate is set to have a humidifying effect and improve the performance of the fuel cell.

それにより、複雑な制御機器等の追加が不要で簡便な方法にて、改質触媒層で必要な水蒸気流量とCO変成触媒層で必要な水蒸気流量とCO除去触媒層で必要な水蒸気流量とを分配することが可能になる。その結果、燃料改質器全体の圧力損失を低減させ、補機動力の増加を防ぐと共に、改質触媒層の熱流束負荷を減少させ、改質触媒層部の伝熱構造を単純なものとすることができる。   Accordingly, the water vapor flow rate required for the reforming catalyst layer, the water vapor flow rate required for the CO shift catalyst layer, and the water vapor flow rate required for the CO removal catalyst layer can be obtained by a simple method that does not require addition of complicated control equipment. It becomes possible to distribute. As a result, the pressure loss of the entire fuel reformer is reduced, the increase in auxiliary power is prevented, the heat flux load of the reforming catalyst layer is reduced, and the heat transfer structure of the reforming catalyst layer is simplified. can do.

すなわち、請求項及びに記載の燃料改質器では、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に必要な水蒸気が、CO除去触媒用水蒸気投入穴およびCO変成触媒用水蒸気投入穴のいずれもを介することなく改質触媒層に分配され、燃料改質器に供給された水蒸気のうち、CO除去触媒層におけるCO除去触媒反応に必要な水蒸気が、CO除去触媒用水蒸気投入穴を介してCO除去触媒層に分配され、燃料改質器に供給された水蒸気のうち、CO変成触媒層におけるCO変成触媒反応に必要な水蒸気が、CO変成触媒用水蒸気投入穴を介してCO変成触媒層に分配される。そのため、燃料改質器に供給された水蒸気の全てが改質触媒層に供給されるのに伴って燃料改質器全体の圧力損失が上昇してしまうのを回避することができる。つまり、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に寄与しない水蒸気までもが改質触媒層に供給されるのに伴って燃料改質器全体の圧力損失が上昇してしまうのを回避することができる。 That is, in the fuel reformer according to claims 1 and 2 , of the steam supplied to the fuel reformer, the steam necessary for the reforming catalyst reaction in the reforming catalyst layer is converted into a steam removal hole for CO removal catalyst. Among the water vapor that is distributed to the reforming catalyst layer without passing through both the steam inlet holes for CO conversion catalyst and the CO conversion catalyst and is supplied to the fuel reformer, the water vapor necessary for the CO removal catalyst reaction in the CO removal catalyst layer is The steam required for the CO shift catalyst reaction in the CO shift catalyst layer out of the steam supplied to the CO reforming catalyst layer via the CO removal catalyst steam feed hole and supplied to the fuel reformer is the CO shift catalyst steam. It is distributed to the CO conversion catalyst layer through the charging hole. Therefore, it is possible to avoid an increase in the pressure loss of the entire fuel reformer as all the water vapor supplied to the fuel reformer is supplied to the reforming catalyst layer. In other words, of the steam supplied to the fuel reformer, even the steam that does not contribute to the reforming catalyst reaction in the reforming catalyst layer is supplied to the reforming catalyst layer and the pressure loss of the entire fuel reformer Can be prevented from rising.

図1は本発明の燃料改質器の一実施形態を模式的に表した概略構成図である。図1に示すように、本実施形態の燃料改質器では、バーナ1で燃焼されたガスは、先ずその熱エネルギーを改質触媒層9に徐々に与えながら、炉2内を下側に流れていく。次いで、燃焼ガスは、炉2の底部で折り返して外側に移動する。次いで、燃焼ガスは、その熱エネルギーを改質触媒層9の外側部分に与えながら、改質触媒層9と断熱材19との間を上側に流れていく。燃焼ガスが上側の折り返し部に到達した時には、燃焼ガス温度は約300℃になっている。   FIG. 1 is a schematic configuration diagram schematically showing one embodiment of a fuel reformer of the present invention. As shown in FIG. 1, in the fuel reformer of this embodiment, the gas burned in the burner 1 first flows downward in the furnace 2 while gradually giving the thermal energy to the reforming catalyst layer 9. To go. Next, the combustion gas turns back at the bottom of the furnace 2 and moves outward. Next, the combustion gas flows upward between the reforming catalyst layer 9 and the heat insulating material 19 while giving the thermal energy to the outer portion of the reforming catalyst layer 9. When the combustion gas reaches the upper folded portion, the combustion gas temperature is about 300 ° C.

その後、燃焼ガスは、燃焼ガス流路3を下側に流れていく間に、水蒸気流路6内の水または水蒸気に熱を与え、排ガスノズル4を介して系外に排出される。燃焼ガスが系外に排出される時の燃焼ガス温度は、燃料改質器に供給される水または水蒸気の温度に応じて異なるが、およそ90℃〜130℃程度になる。   Thereafter, while the combustion gas flows downward in the combustion gas flow path 3, the combustion gas gives heat to water or water vapor in the water vapor flow path 6 and is discharged out of the system via the exhaust gas nozzle 4. The combustion gas temperature when the combustion gas is discharged out of the system varies depending on the temperature of water or steam supplied to the fuel reformer, but is about 90 ° C to 130 ° C.

一方、燃料改質器に供給された水または水蒸気は、投入ノズル5を介して水蒸気流路6内に送り込まれ、水蒸気流路6内において、燃焼ガス流路3内の燃焼ガスから熱をもらい、約120℃の過熱水蒸気になる。   On the other hand, the water or steam supplied to the fuel reformer is fed into the steam channel 6 through the injection nozzle 5 and receives heat from the combustion gas in the combustion gas channel 3 in the steam channel 6. It becomes superheated steam at about 120 ° C.

水蒸気流路6の外側には、燃料改質器の中心軸線方向(図1の上下方向)の下側から順に、CO変成触媒層12、アルミナボール層13、CO除去触媒層14が配列されている。CO除去触媒層14におけるCO選択酸化反応には、空気投入ノズル15を介して供給された空気が用いられる。水蒸気流路6とCO変成触媒層12との仕切り筒には、複数の水蒸気投入穴17が形成されている。水蒸気投入穴17は、水蒸気がCO変成触媒層12に均一に供給されるように、燃料改質器の周方向および中心軸線方向(図1の上下方向)にほぼ均等に配列されている。また、複数の水蒸気投入穴17の合計面積は、CO変成触媒層12に導入される水蒸気流量と他の触媒層(改質触媒層9、CO除去触媒層14)に導入される水蒸気流量との分配を考慮した圧力損失となるように設定されている。   A CO shift catalyst layer 12, an alumina ball layer 13, and a CO removal catalyst layer 14 are arranged on the outer side of the water vapor channel 6 in order from the lower side in the central axis direction of the fuel reformer (the vertical direction in FIG. 1). Yes. For the CO selective oxidation reaction in the CO removal catalyst layer 14, air supplied through the air injection nozzle 15 is used. A plurality of water vapor input holes 17 are formed in the partition tube between the water vapor flow path 6 and the CO shift catalyst layer 12. The steam introduction holes 17 are arranged substantially evenly in the circumferential direction and the central axis direction (vertical direction in FIG. 1) of the fuel reformer so that the steam is uniformly supplied to the CO shift catalyst layer 12. In addition, the total area of the plurality of water vapor introduction holes 17 is the difference between the water vapor flow rate introduced into the CO shift catalyst layer 12 and the water vapor flow rate introduced into the other catalyst layers (reforming catalyst layer 9, CO removal catalyst layer 14). The pressure loss is set in consideration of distribution.

水蒸気流路6とCO除去触媒層14との仕切り筒には、複数の水蒸気投入穴18が形成されている。水蒸気投入穴18は、水蒸気がCO除去触媒層14に均一に供給されるように、燃料改質器の周方向および中心軸線方向(図1の上下方向)にほぼ均等に配列されている。また、複数の水蒸気投入穴18の合計面積は、CO除去触媒層14に導入される水蒸気流量と他の触媒層(改質触媒層9、CO変成触媒層12)に導入される水蒸気流量との分配を考慮した圧力損失となるように設定されている。   A plurality of steam inlet holes 18 are formed in the partition tube between the steam channel 6 and the CO removal catalyst layer 14. The steam introduction holes 18 are arranged substantially evenly in the circumferential direction and the central axis direction (vertical direction in FIG. 1) of the fuel reformer so that the steam is uniformly supplied to the CO removal catalyst layer 14. In addition, the total area of the plurality of water vapor introduction holes 18 is determined by the flow rate of water vapor introduced into the CO removal catalyst layer 14 and the flow rate of water vapor introduced into other catalyst layers (reforming catalyst layer 9 and CO shift catalyst layer 12). The pressure loss is set in consideration of distribution.

投入ノズル5を介して燃料改質器に供給された水蒸気のうち、CO変成触媒層12およびCO除去触媒層14に供給されなかった残りの水蒸気が、水蒸気出口ノズル7を介して改質触媒層9に供給される。詳細には、改質触媒層9の改質触媒反応に必要な水蒸気流量が改質触媒層9に供給されるように、水蒸気出口ノズル7の断面積が設定されている。   Of the steam supplied to the fuel reformer via the injection nozzle 5, the remaining steam that has not been supplied to the CO conversion catalyst layer 12 and the CO removal catalyst layer 14 passes through the steam outlet nozzle 7. 9 is supplied. Specifically, the cross-sectional area of the steam outlet nozzle 7 is set so that the steam flow rate necessary for the reforming catalyst reaction of the reforming catalyst layer 9 is supplied to the reforming catalyst layer 9.

水蒸気出口ノズル7を通過した水蒸気は、燃料ノズル8を介して供給された燃料と混合せしめられ、改質触媒層9に導入されて水蒸気改質される。改質触媒層9で改質された水素リッチな改質ガスは、改質触媒層改質ガス出口ノズル10を介して抽出され、次いで、CO変成触媒層改質ガス入口ノズル11を介してCO変成触媒層12に導入される。   The water vapor that has passed through the water vapor outlet nozzle 7 is mixed with the fuel supplied through the fuel nozzle 8 and introduced into the reforming catalyst layer 9 for steam reforming. The hydrogen-rich reformed gas reformed in the reforming catalyst layer 9 is extracted through the reforming catalyst layer reformed gas outlet nozzle 10, and then CO through the CO conversion catalyst layer reformed gas inlet nozzle 11. It is introduced into the shift catalyst layer 12.

CO変成触媒層改質ガス入口ノズル11を介してCO変成触媒層12に導入された改質ガスは、CO変成触媒用水蒸気投入穴17を介して供給された水蒸気と混合せしめられ、CO変成反応によって水素濃度を増加させる。次いで、アルミナボール層13に移動した改質ガスは、CO選択酸化反応用空気ノズル15を介して供給された空気と混合せしめられ、次いで、CO除去触媒層14に移動する。   The reformed gas introduced into the CO shift catalyst layer 12 through the CO shift catalyst layer reformed gas inlet nozzle 11 is mixed with the steam supplied through the CO shift catalyst steam feed hole 17 to produce a CO shift reaction. To increase the hydrogen concentration. Next, the reformed gas that has moved to the alumina ball layer 13 is mixed with the air supplied via the CO selective oxidation reaction air nozzle 15, and then moves to the CO removal catalyst layer 14.

CO除去触媒層14に移動した改質ガスは、CO除去触媒用水蒸気投入穴18を介して供給された水蒸気と混合せしめられ、それにより、CO選択酸化反応のCO選択性が向上せしめられ、水素消費量と投入空気流量とを減少させることによって燃料改質器の効率を向上させることが可能になる。また、加湿効果によって、燃料改質器の下流側の固体高分子形燃料電池の性能を向上させることが可能になる。   The reformed gas moved to the CO removal catalyst layer 14 is mixed with the steam supplied through the CO removal catalyst steam inlet hole 18, thereby improving the CO selectivity of the CO selective oxidation reaction, and hydrogen The efficiency of the fuel reformer can be improved by reducing the consumption and the input air flow rate. Further, the humidification effect makes it possible to improve the performance of the polymer electrolyte fuel cell on the downstream side of the fuel reformer.

次いで、改質ガスは、CO除去触媒層改質ガス出口ノズル16を介して系外に抽出される。   Next, the reformed gas is extracted out of the system through the CO removal catalyst layer reformed gas outlet nozzle 16.

図1に示したように、本実施形態の燃料改質器では、燃料改質器に供給された水蒸気を改質触媒層9とCO変成触媒層12とに分配するための分配手段として、水蒸気投入穴17と水蒸気出口ノズル7とが設けられている。詳細には、例えば、燃料改質器に供給された水蒸気のうち、改質触媒層9における改質触媒反応に必要な水蒸気が、分配手段の一部を構成する水蒸気出口ノズル7によって改質触媒層9に分配され、燃料改質器に供給された水蒸気のうち、改質触媒層9における改質触媒反応に必要とされない水蒸気の少なくとも一部が、分配手段の一部を構成する水蒸気投入穴17によってCO変成触媒層12に分配される。そのため、例えばWO00/63114に記載された燃料改質器のように、燃料改質器に供給された水蒸気の全てが改質触媒層に供給されるのに伴って燃料改質器全体の圧力損失が上昇してしまうのを回避することができる。つまり、燃料改質器に供給された水蒸気のうち、改質触媒層における改質触媒反応に寄与しない水蒸気までもが改質触媒層に供給されるのに伴って燃料改質器全体の圧力損失が上昇してしまうのを回避することができる。   As shown in FIG. 1, in the fuel reformer of this embodiment, steam is supplied as a distribution means for distributing the steam supplied to the fuel reformer to the reforming catalyst layer 9 and the CO shift catalyst layer 12. A charging hole 17 and a water vapor outlet nozzle 7 are provided. Specifically, for example, of the steam supplied to the fuel reformer, the steam necessary for the reforming catalyst reaction in the reforming catalyst layer 9 is reformed by the steam outlet nozzle 7 constituting a part of the distribution means. Among the water vapor distributed to the layer 9 and supplied to the fuel reformer, at least a part of the water vapor not required for the reforming catalyst reaction in the reforming catalyst layer 9 constitutes a water vapor charging hole constituting a part of the distribution means 17 is distributed to the CO shift catalyst layer 12. Therefore, for example, as in the fuel reformer described in WO00 / 63114, the pressure loss of the entire fuel reformer is reduced as all the steam supplied to the fuel reformer is supplied to the reforming catalyst layer. Can be prevented from rising. In other words, of the steam supplied to the fuel reformer, even the steam that does not contribute to the reforming catalyst reaction in the reforming catalyst layer is supplied to the reforming catalyst layer and the pressure loss of the entire fuel reformer Can be prevented from rising.

更に、本実施形態の燃料改質器では、図1に示したように、CO除去触媒層14が更に設けられ、燃料改質器に供給された水蒸気のうち、改質触媒層9における改質触媒反応に必要な水蒸気が、分配手段の一部を構成する水蒸気出口ノズル7によって改質触媒層9に分配され、燃料改質器に供給された水蒸気のうち、CO変成触媒層12におけるCO変成触媒反応に必要な水蒸気が、分配手段の一部を構成する水蒸気投入穴17によってCO変成触媒層12に分配され、燃料改質器に供給された水蒸気のうち、CO除去触媒層14におけるCO除去触媒反応に必要な水蒸気が、分配手段の一部を構成する水蒸気投入穴18によってCO除去触媒層14に分配される。   Furthermore, in the fuel reformer of this embodiment, as shown in FIG. 1, a CO removal catalyst layer 14 is further provided, and the reforming in the reforming catalyst layer 9 out of the steam supplied to the fuel reformer. Water vapor necessary for the catalytic reaction is distributed to the reforming catalyst layer 9 by the water vapor outlet nozzle 7 constituting a part of the distribution means, and CO conversion in the CO conversion catalyst layer 12 out of the water vapor supplied to the fuel reformer. The water vapor necessary for the catalytic reaction is distributed to the CO shift catalyst layer 12 through the water vapor introduction hole 17 constituting a part of the distribution means, and the CO removal in the CO removal catalyst layer 14 out of the water vapor supplied to the fuel reformer. The water vapor necessary for the catalytic reaction is distributed to the CO removal catalyst layer 14 by the water vapor introduction hole 18 constituting a part of the distribution means.

本発明の燃料改質器の一実施形態を模式的に表した概略構成図である。It is a schematic structure figure showing typically one embodiment of a fuel reformer of the present invention.

符号の説明Explanation of symbols

1 バーナ
2 炉
3 燃焼ガス流路
4 排ガスノズル
5 投入ノズル
6 水蒸気流路
7 水蒸気出口ノズル
8 燃料ノズル
9 改質触媒層
10 改質触媒層改質ガス出口ノズル
11 CO変成触媒層改質ガス入口ノズル
12 CO変成触媒層
13 アルミナボール層
14 CO除去触媒層
15 空気投入ノズル
16 CO除去触媒層改質ガス出口ノズル
17 水蒸気投入穴
18 水蒸気投入穴
19 断熱材
DESCRIPTION OF SYMBOLS 1 Burner 2 Furnace 3 Combustion gas flow path 4 Exhaust gas nozzle 5 Input nozzle 6 Steam flow path 7 Steam outlet nozzle 8 Fuel nozzle 9 Reforming catalyst layer 10 Reforming catalyst layer reformed gas outlet nozzle 11 CO shift catalyst layer reformed gas inlet Nozzle 12 CO shift catalyst layer 13 Alumina ball layer 14 CO removal catalyst layer 15 Air injection nozzle 16 CO removal catalyst layer reformed gas outlet nozzle 17 Water vapor input hole 18 Water vapor input hole 19 Heat insulation material

Claims (2)

改質触媒層と、CO変成触媒層とを具備し、
燃焼ガス流路の外側に水蒸気流路が配置され、前記水蒸気流路の外側にCO除去触媒層と前記CO変成触媒層とが配置された多重円筒型の燃料改質器において、
燃料改質器に供給された水蒸気を前記改質触媒層と前記CO変成触媒層とに分配するための分配手段を具備し、
前記水蒸気流路と前記CO除去触媒層との仕切り筒に複数のCO除去触媒用水蒸気投入穴を形成し、
前記水蒸気流路と前記CO変成触媒層との仕切り筒に複数のCO変成触媒用水蒸気投入穴を形成したことを特徴とする燃料改質器。
Comprising a reforming catalyst layer and a CO shift catalyst layer ;
In a multi-cylinder fuel reformer in which a steam channel is disposed outside a combustion gas channel, and a CO removal catalyst layer and the CO shift catalyst layer are disposed outside the steam channel ,
Distributing means for distributing the steam supplied to the fuel reformer to the reforming catalyst layer and the CO conversion catalyst layer ,
Forming a plurality of CO removal catalyst steam input holes in a partition tube between the steam flow path and the CO removal catalyst layer;
A fuel reformer , wherein a plurality of steam inlet holes for a CO shift catalyst are formed in a partition cylinder between the steam flow path and the CO shift catalyst layer .
前記複数のCO除去触媒用水蒸気投入穴を燃料改質器の周方向および中心軸線方向に均等に配列し、
前記複数のCO変成触媒用水蒸気投入穴を燃料改質器の周方向および中心軸線方向に均等に配列したことを特徴とする請求項1に記載の燃料改質器。
Arranging the plurality of CO removal catalyst steam introduction holes equally in the circumferential direction and the central axis direction of the fuel reformer;
2. The fuel reformer according to claim 1, wherein the plurality of steam inlet holes for the CO conversion catalyst are evenly arranged in a circumferential direction and a central axis direction of the fuel reformer.
JP2003293397A 2003-08-14 2003-08-14 Fuel reformer Expired - Fee Related JP4556393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293397A JP4556393B2 (en) 2003-08-14 2003-08-14 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293397A JP4556393B2 (en) 2003-08-14 2003-08-14 Fuel reformer

Publications (2)

Publication Number Publication Date
JP2005063847A JP2005063847A (en) 2005-03-10
JP4556393B2 true JP4556393B2 (en) 2010-10-06

Family

ID=34370365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293397A Expired - Fee Related JP4556393B2 (en) 2003-08-14 2003-08-14 Fuel reformer

Country Status (1)

Country Link
JP (1) JP4556393B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370934B2 (en) * 2020-06-08 2023-10-30 株式会社神戸製鋼所 Reforming unit and hydrogen production equipment
KR102701705B1 (en) * 2021-10-06 2024-09-03 두산에너빌리티 주식회사 Combined reformer
KR102602141B1 (en) * 2021-10-06 2023-11-14 두산에너빌리티 주식회사 Combined reformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303801A (en) * 1987-06-02 1988-12-12 Jgc Corp Apparatus for producing hydrogen to be used in fuel cell
JP2002083626A (en) * 2000-06-28 2002-03-22 Nippon Mitsubishi Oil Corp Fuel for fuel cell system
JP2002187705A (en) * 2000-10-10 2002-07-05 Tokyo Gas Co Ltd Single tube cylindrical reformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303801A (en) * 1987-06-02 1988-12-12 Jgc Corp Apparatus for producing hydrogen to be used in fuel cell
JP2002083626A (en) * 2000-06-28 2002-03-22 Nippon Mitsubishi Oil Corp Fuel for fuel cell system
JP2002187705A (en) * 2000-10-10 2002-07-05 Tokyo Gas Co Ltd Single tube cylindrical reformer

Also Published As

Publication number Publication date
JP2005063847A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US6932958B2 (en) Simplified three-stage fuel processor
US7503948B2 (en) Solid oxide fuel cell systems having temperature swing reforming
US6481207B2 (en) Single-pipe cylinder type reformer and method of operating the same
KR20030036155A (en) Integrated reactor
WO1998000361A1 (en) Modification apparatus
US7517372B2 (en) Integrated fuel processor subsystem with quasi-autothermal reforming
TW201530887A (en) Pre-reformer for selective reformation of higher hydrocarbons
US9941535B2 (en) Fuel cell module
JP6944349B2 (en) Hydrogen generator
JPWO2010010718A1 (en) Hydrogen generator and fuel cell system provided with the same
JP2009096705A (en) Reforming apparatus for fuel cell
JP2001155756A (en) Vapor-reforming reactor for fuel cell
KR20200116275A (en) Expandible Multi-Channel Cylindrical steam reforming reactor
WO2007077791A1 (en) Indirect internal reforming solid oxide fuel cell
JP4556393B2 (en) Fuel reformer
JP2006327904A (en) Hydrogen manufacturing apparatus and fuel cell system provided with the hydrogen manufacturing apparatus
US11063283B2 (en) Solid oxide fuel cell system configured for higher hydrocarbon fuels
JP2001342002A (en) Fuel reformer
WO2005077820A1 (en) Fuel reformer
JP2003187849A (en) Solid polymer fuel cell power generator
KR20160045738A (en) Multitube reformer for a hydrocarbon- and alcohol-reforming system and hydrocarbon- and alcohol-reforming system comprising same, and associated method
KR101316042B1 (en) Integrated Reformer System for a Fuel Cell
US9382114B2 (en) Heat exchange type prereformer
JP5307322B2 (en) Fuel reforming system for solid oxide fuel cell
JP5111040B2 (en) Fuel cell reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees