JP4556181B2 - Method for producing fermented milk powder by vacuum spray drying - Google Patents

Method for producing fermented milk powder by vacuum spray drying Download PDF

Info

Publication number
JP4556181B2
JP4556181B2 JP2005165537A JP2005165537A JP4556181B2 JP 4556181 B2 JP4556181 B2 JP 4556181B2 JP 2005165537 A JP2005165537 A JP 2005165537A JP 2005165537 A JP2005165537 A JP 2005165537A JP 4556181 B2 JP4556181 B2 JP 4556181B2
Authority
JP
Japan
Prior art keywords
fermented milk
drying
lactic acid
acid bacteria
milk powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005165537A
Other languages
Japanese (ja)
Other versions
JP2006333838A (en
Inventor
豊 北村
裕之 伊藤
浩 越膳
Original Assignee
国立大学法人 筑波大学
財団法人糧食研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 筑波大学, 財団法人糧食研究会 filed Critical 国立大学法人 筑波大学
Priority to JP2005165537A priority Critical patent/JP4556181B2/en
Publication of JP2006333838A publication Critical patent/JP2006333838A/en
Application granted granted Critical
Publication of JP4556181B2 publication Critical patent/JP4556181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dairy Products (AREA)

Description

この発明は、発酵乳(例えば、無糖ドリンクヨーグルトのような発酵乳飲料や、ヨーグルトなど)を減圧下で噴霧乾燥して発酵乳粉末を製造する方法に関し、特に、生きた乳酸菌を含んだ発酵乳粉末を製造することに適した発酵乳粉末の製造方法に関する。   The present invention relates to a method for producing fermented milk powder by spray-drying fermented milk (for example, fermented milk beverages such as sugar-free drink yogurt and yogurt) under reduced pressure, and in particular, fermenting containing live lactic acid bacteria The present invention relates to a method for producing fermented milk powder suitable for producing milk powder.

食品中の成分を長期間保持させる方法の一つに、古くから用いられている方法として乾燥技術がある。乾燥により、食品中の水分を減らし、食品の腐敗や成分変化を抑制することができる。また、乾燥することにより軽量化がなされ流通面での低コスト化が図れる。したがって、この乾燥技術をうまく利用すれば、食品中の有効成分をより長期間にわたり保持できる可能性がある。  One of the methods for keeping ingredients in food for a long period of time is a drying technique. By drying, the water content in the food can be reduced, and the food can be prevented from being spoiled or changed. Moreover, weight reduction is achieved by drying, and the cost in terms of distribution can be reduced. Therefore, if this drying technique is successfully utilized, there is a possibility that the active ingredients in the food can be retained for a longer period of time.

食品の中でも特に液体食品を乾燥する技術として噴霧乾燥法、凍結乾燥法、減圧噴霧乾燥法がある。  Among the foods, there are spray drying, freeze drying, and vacuum spray drying as techniques for drying liquid foods.

噴霧乾燥法(Spray Dry)(以下「SD法」と表すことがある。)は、常圧(1.0×10Pa程度)の下で原料をノズルより噴霧して微粒化し、そこに120℃〜200℃の熱風をあてて、直接乾燥粉末を得る方法である。 Spray drying (hereinafter sometimes referred to as “SD method”) is a method in which a raw material is sprayed from a nozzle under a normal pressure (about 1.0 × 10 5 Pa) to be atomized. This is a method of directly obtaining a dry powder by applying hot air of from ℃ to 200 ℃.

凍結乾燥法(Freeze Dry)(以下「FD法」と表すことがある。)は、昇華作用により真空条件で液体材料から脱水し、粉体を得るものであり、原料を急速冷凍して凍結させたのち、乾燥室内を減圧して水分を昇華させることにより乾燥を行う方法である。  The freeze drying method (hereinafter sometimes referred to as “FD method”) is a method of dehydrating a liquid material under vacuum conditions by sublimation to obtain a powder. The raw material is rapidly frozen and frozen. After that, drying is performed by reducing the pressure in the drying chamber to sublimate moisture.

FD法は低温での乾燥が可能であるため、熱に弱い有用成分の活性を維持しやすく、食品中の成分変化が少なくて済むが、製造費が高く、短時間で水分を蒸発できないため、乾燥までに長時間を要し、連続式ではなく、回分式でしか粉体を得ることができないという欠点がある。  Since the FD method can be dried at a low temperature, it is easy to maintain the activity of useful components that are vulnerable to heat, and there is little change in the components in the food, but the manufacturing cost is high and moisture cannot be evaporated in a short time. There is a disadvantage that it takes a long time to dry, and the powder can be obtained only in a batch system rather than a continuous system.

これに対しSD法は瞬間的に乾燥が行われるので成分変化が少ないと言われているが、熱風(120℃〜200℃)を用いるために熱に非常に弱い成分(ビタミン、有用微生物、酵素など)は失われる可能性が否定できない。しかし、SD法の方が、より短時間で水分を蒸発でき、連続式で粉体を得ることができて、低コストでの乾燥が可能である。  On the other hand, the SD method is said to have little component change because it is dried instantaneously, but because it uses hot air (120 ° C to 200 ° C), it is very sensitive to heat (vitamins, useful microorganisms, enzymes Etc.) cannot be denied. However, in the SD method, moisture can be evaporated in a shorter time, powder can be obtained continuously, and drying at low cost is possible.

減圧噴霧乾燥法(Vacuum Spray Drying)(以下「VSD法」と表すことがある。)は、減圧条件にある温風(40℃程度)へ、液体材料を霧状に噴射することにより粉体を得るものである。このVSD法は40℃程度の温風を用いているので、熱に弱い有用成分の活性を維持しつつ、連続式で粉体を得ることが可能である。すなわち、VSD法は前記した2つの乾燥法の長所を兼ね備えていることになる。   Vacuum spray drying (hereinafter sometimes referred to as “VSD method”) is a method of spraying a liquid material in the form of a mist into warm air (approximately 40 ° C.) under reduced pressure conditions. To get. Since this VSD method uses hot air of about 40 ° C., it is possible to obtain a powder in a continuous manner while maintaining the activity of useful components that are weak against heat. That is, the VSD method has the advantages of the two drying methods described above.

このVSD法において、蒸発の際の潜熱を供給する熱源として噴霧乾燥装置の蒸発室(乾燥室)の周壁の少なくとも一部を遠赤外線放射面とし、減圧下において、牛乳のような熱によって変質しやすい溶液や懸濁液を乾燥し、粉体を得る提案もされている(特許文献1)。
特開平10−28568号公報
In this VSD method, at least a part of the peripheral wall of the evaporation chamber (drying chamber) of the spray drying device is a far infrared radiation surface as a heat source for supplying latent heat at the time of evaporation, and it is altered by heat like milk under reduced pressure. There has also been a proposal of obtaining a powder by drying an easy solution or suspension (Patent Document 1).
JP-A-10-28568

食品中の有効成分の中で熱に弱いものとして、整腸作用などがあるとされる乳酸菌がある。乳酸菌は一般的に無胞子で、最適成育温度37〜38℃付近であることから熱に非常に弱く、前述した従来のVSD法においても、乳酸菌を含有する食品についての粉末化方法は提案されていなかった。また、FD法によって乳酸菌の生菌末を製造することは従来から提案されているが、前述したように製造コストが高いという問題があった。   Among active ingredients in foods, there is a lactic acid bacterium that is considered to have an intestinal regulating action and the like as being weak against heat. Lactic acid bacteria are generally non-spores and are very susceptible to heat because they have an optimum growth temperature of around 37-38 ° C. Even in the conventional VSD method described above, a method for pulverizing foods containing lactic acid bacteria has been proposed. There wasn't. In addition, it has been conventionally proposed to produce live bacterial powder of lactic acid bacteria by the FD method, but there is a problem that the production cost is high as described above.

なお、本明細書、特許請求の範囲、図面において、乳酸菌とは、乳酸菌そのものの他に、ビフィズス菌なども含まれるものとする。   In the present specification, claims and drawings, lactic acid bacteria include bifidobacteria and the like in addition to lactic acid bacteria themselves.

乳酸菌を含有する食品はプロバイオティクス食品(例えば、乳酸菌飲料や、プレーンヨーグルト)と呼ばれるが、プロバイオティクスとは腸内フローラ(菌叢)のバランスを改善する効果を持った「生きた微生物」と評されるもので、プロバイオティクス食品は整腸効果の他に様々な効果があるとされている。   Foods containing lactic acid bacteria are called probiotic foods (for example, lactic acid bacteria beverages and plain yogurt), but probiotics are "living microorganisms" that have the effect of improving the balance of the intestinal flora (bacteria flora). It is said that probiotic foods have various effects in addition to the intestinal regulating effect.

このプロバイオティクス食品(例えば、乳酸菌飲料や、プレーンヨーグルト)を、低コストで大量に、粉末化できるようになれば、乳酸菌をプロバイオティクスとして含んだ錠剤や顆粒剤の商品化が可能となる。また、工場で使用する乳酸菌の常温輸送や常温管理が可能となる。   If this probiotic food (for example, lactic acid bacteria beverage or plain yogurt) can be powdered at low cost and in large quantities, it will be possible to commercialize tablets and granules containing lactic acid bacteria as probiotics. . Moreover, room temperature transportation and room temperature control of lactic acid bacteria used in the factory are possible.

本発明は、乳酸菌をプロバイオティクスなどとして含有する食品(例えば、発酵乳)を乾燥、粉末化することに適した、発酵乳粉末の製造方法、特に、生きた乳酸菌を含んだ発酵乳粉末を製造することに適した発酵乳の粉末化方法を提案することを目的にしている。   The present invention relates to a method for producing a fermented milk powder suitable for drying and pulverizing a food (for example, fermented milk) containing lactic acid bacteria as probiotics, in particular, fermented milk powder containing live lactic acid bacteria. It aims at proposing the powdering method of fermented milk suitable for manufacturing.

前記目的を達成するため、本発明が提案する減圧噴霧乾燥法による発酵乳粉末の製造方法は、減圧下にある乾燥塔内に粉末化処理が行われる発酵乳を噴霧し、乾燥温度35〜38℃で減圧噴霧乾燥することにより、生きた乳酸菌を含む発酵乳粉末を製造する減圧噴霧乾燥法による発酵乳粉末の製造方法であって、前記乾燥塔内の温度に対応する温度に調整されている発酵乳を前記乾燥塔内に噴霧し、前記噴霧された発酵乳を蒸発させるための潜熱を供給する手段として前記乾燥塔の内部空間に配置されている乾燥用の熱源から発生される遠赤外線が用いられるものである。また、この場合、発酵乳粉末中の生きた乳酸菌の数が減圧噴霧乾燥処理を行う前の発酵乳中の乳酸菌の数の70%乃至80%であるIn order to achieve the above object, the method for producing fermented milk powder by the reduced-pressure spray drying method proposed by the present invention sprays fermented milk to be powdered into a drying tower under reduced pressure , and has a drying temperature of 35 to 38. by vacuum spray drying at ° C., living lactic acid bacteria to a method for producing a fermented milk powder by fermented milk powder you produce vacuum spray drying method comprising, it is adjusted to a temperature corresponding to the temperature in the drying tower Far-infrared rays generated from a heat source for drying disposed in the internal space of the drying tower as means for supplying latent heat for spraying the fermented milk in the drying tower and evaporating the sprayed fermented milk it is shall be used. Further, this case is 70% to 80% of the number of lactic acid bacteria in fermented milk before the number of live lactic acid bacteria of fermented milk powder is carried out under reduced pressure spray drying process.

本発明によれば、乳酸菌をプロバイオティクスなどとして含有する食品(例えば、発酵乳)から、生きた乳酸菌を含む発酵乳粉末を製造することができる。   According to the present invention, fermented milk powder containing live lactic acid bacteria can be produced from a food (for example, fermented milk) containing lactic acid bacteria as probiotics.

この発明によれば、乳酸菌をプロバイオティクスなどとして含有する食品(例えば、発酵乳)を低コストで、大量に、乾燥、粉末化することができる。   According to this invention, food (for example, fermented milk) containing lactic acid bacteria as probiotics can be dried and powdered in large quantities at low cost.

また、この発明によれば、減圧噴霧乾燥処理を行う前の発酵乳中の乳酸菌の数の70%乃至80%を発酵乳粉末中に維持することができる。   Moreover, according to this invention, 70 to 80% of the number of lactic acid bacteria in fermented milk before performing a reduced pressure spray-drying process can be maintained in fermented milk powder.

本発明により、安価で大量に、発酵乳を粉末化することができ、乳酸菌をプロバイオティクスなどとして含んだ錠剤や顆粒剤の商品化が可能となる。また、工場で使用する乳酸菌の常温輸送や常温管理が可能となる。   According to the present invention, fermented milk can be powdered in a large amount at low cost, and tablets and granules containing lactic acid bacteria as probiotics can be commercialized. Moreover, room temperature transportation and room temperature control of lactic acid bacteria used in the factory are possible.

本発明は、発酵乳を減圧噴霧乾燥することにより、生きた乳酸菌を含む発酵乳粉末を製造する減圧噴霧乾燥法による発酵乳粉末の製造方法である。   The present invention is a method for producing fermented milk powder by a reduced pressure spray drying method for producing fermented milk powder containing live lactic acid bacteria by subjecting fermented milk to spray drying under reduced pressure.

すなわち、本願の発明者等は、乳酸菌をプロバイオティクスなどとして含有する食品(例えば、発酵乳)を減圧噴霧乾燥法によって粉末化することにより、生きた乳酸菌を含む発酵乳粉末を製造することが可能であることを見出して本願発明を完成させたものである。   That is, the inventors of the present application can produce a fermented milk powder containing live lactic acid bacteria by pulverizing food (eg, fermented milk) containing lactic acid bacteria as probiotics by a reduced pressure spray drying method. It has been found that this is possible, and the present invention has been completed.

前記において、発酵乳(例えば、無糖ドリンクヨーグルトのような発酵乳飲料や、ヨーグルトなど)を減圧噴霧乾燥する際の乾燥用の熱源として遠赤外線を用いることができる。   In the above, far-infrared rays can be used as a heat source for drying when fermented milk (for example, fermented milk drink such as sugar-free drink yogurt or yogurt) is spray-dried under reduced pressure.

発明者等の実験によれば、減圧下にある乾燥塔(乾燥室)内においても、乾燥用の熱源として遠赤外線を用いれば、効果的に熱を伝達することが可能であり、生存する乳酸菌の数を高い状態で維持しつつ、減圧噴霧乾燥によって生きた乳酸菌を含んだ発酵乳粉末を製造することができた。   According to the inventors' experiments, even in a drying tower (drying chamber) under reduced pressure, if far infrared rays are used as a heat source for drying, heat can be effectively transferred, and living lactic acid bacteria The fermented milk powder containing live lactic acid bacteria could be produced by vacuum spray drying.

すなわち、本発明の減圧噴霧乾燥法による発酵乳粉末の製造方法は、発酵乳粉末中の生きた乳酸菌の数が減圧噴霧乾燥処理を行う前の発酵乳中の乳酸菌の数の70%乃至80%であることを特徴とするものである。   That is, in the method for producing fermented milk powder by the reduced pressure spray drying method of the present invention, the number of live lactic acid bacteria in the fermented milk powder is 70% to 80% of the number of lactic acid bacteria in the fermented milk before performing the reduced pressure spray drying treatment. It is characterized by being.

このように、乾燥用の熱源として遠赤外線を用い、生存する乳酸菌の数を高い状態で維持して発酵乳粉末を製造する本発明の減圧噴霧乾燥法による発酵乳粉末の製造方法においては、発酵乳を減圧噴霧乾燥する際の乾燥温度を50℃以下、より好ましくは35℃〜38℃とすることが望ましい。   Thus, in the method for producing fermented milk powder by the reduced pressure spray drying method of the present invention, which uses far infrared rays as a heat source for drying and maintains the number of living lactic acid bacteria in a high state to produce fermented milk powder, It is desirable that the drying temperature when milk is spray-dried under reduced pressure is 50 ° C. or lower, more preferably 35 ° C. to 38 ° C.

すなわち、乾燥温度を50℃以下とする(具体的には、減圧噴霧乾燥が行われる乾燥室内の温度を50℃以下にする)と、より好ましくは35℃〜38℃にすると、製造された発酵乳粉末における乳酸菌の生存確率が高くなる。   That is, when the drying temperature is set to 50 ° C. or less (specifically, the temperature in the drying chamber in which the reduced pressure spray drying is performed is set to 50 ° C. or less), and more preferably 35 ° C. to 38 ° C., the produced fermentation The survival probability of lactic acid bacteria in milk powder is increased.

発明者等の実験によれば、減圧噴霧乾燥が行われる乾燥室内の温度を50℃以下にして本発明の方法を実施すると、粉末化処理前の発酵乳に生存していた乳酸菌の40%以上が粉末化後も生存し続けていた。   According to the experiments by the inventors, when the method of the present invention is carried out with the temperature in the drying chamber where the reduced-pressure spray drying is performed being 50 ° C. or less, 40% or more of the lactic acid bacteria that survived the fermented milk before powdering treatment Remained alive after powdering.

また、乾燥温度を35℃にした場合には、粉末化処理前の発酵乳に生存していた乳酸菌の80%以上が粉末化後も生存していた。乳酸菌の最適成育温度は37〜38℃付近であるので、乾燥温度を35℃〜38℃にして本発明の方法を使用した場合には、非常に高い確率で乳酸菌を乳酸菌粉末中に生存させ続けることができる。   In addition, when the drying temperature was set to 35 ° C., 80% or more of the lactic acid bacteria that were alive in the fermented milk before the pulverization treatment were alive after the pulverization. Since the optimal growth temperature of lactic acid bacteria is around 37-38 ° C., when the method of the present invention is used at a drying temperature of 35 ° C.-38 ° C., the lactic acid bacteria continue to survive in the lactic acid bacteria powder with a very high probability. be able to.

なお、前記のように、乾燥用の熱源として遠赤外線を用い、生存する乳酸菌の数を高い状態で維持して発酵乳粉末を製造する本発明の減圧噴霧乾燥法による発酵乳粉末の製造方法において、発酵乳を減圧噴霧乾燥する際の乾燥温度を50℃以下、より好ましくは35℃〜38℃に維持して減圧噴霧乾燥する際の乾燥塔(乾燥室)内の圧力は、例えば、8〜11kPaに減圧した状態にしておくことができる。   As described above, in the method for producing fermented milk powder by the reduced pressure spray drying method of the present invention, which uses far infrared rays as a heat source for drying, and maintains the number of living lactic acid bacteria in a high state to produce fermented milk powder. The pressure in the drying tower (drying chamber) when the dried milk is dried under reduced pressure spray drying while maintaining the drying temperature at 50 ° C. or lower, more preferably 35 ° C. to 38 ° C. under reduced pressure spray drying is, for example, 8 to The pressure can be reduced to 11 kPa.

以下、添付図面を参照して本発明の好ましい実施例を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の減圧噴霧乾燥法による発酵乳粉末の製造方法の実施に適用できる発酵乳粉末化装置の好ましい一実施例を説明するものである。   FIG. 1 illustrates a preferred embodiment of a fermented milk powdering apparatus that can be applied to the implementation of the method for producing fermented milk powder by the reduced pressure spray drying method of the present invention.

図示のように、外部から密閉されている乾燥塔1の上部内側に吹出ノズル2を臨ませてある。吹出ノズル2には、粉末化処理が行われる発酵乳が投入されている原料タンク3が送液ポンプ5を介して接続されていると共に、圧縮空気供給タンク4が接続されている。   As shown in the figure, a blowout nozzle 2 is faced inside the upper part of the drying tower 1 sealed from the outside. A raw material tank 3 into which fermented milk to be pulverized is charged is connected to the blow-out nozzle 2 via a liquid feed pump 5 and a compressed air supply tank 4 is connected.

原料タンク3には加熱攪拌機6が付設されており、吹出ノズル2に送液ポンプ5を介して供給される発酵乳の温度が乾燥塔1内の所定の温度に対応するように調整している。   The raw material tank 3 is provided with a heating stirrer 6 and is adjusted so that the temperature of the fermented milk supplied to the blowing nozzle 2 via the liquid feed pump 5 corresponds to a predetermined temperature in the drying tower 1. .

乾燥塔1の下部には、排気パイプを介して排気機構が接続されており、これによって、乾燥塔1内の圧力が所定の低圧に保たれる。排気機構は真空ポンプ13からなり、真空ポンプ13が、メインバルブ15aと、乾燥塔1内からの排気から水蒸気を凝縮させるためのコールドトラップ14とを介して乾燥塔1に接続されている。   An exhaust mechanism is connected to the lower part of the drying tower 1 via an exhaust pipe, whereby the pressure in the drying tower 1 is maintained at a predetermined low pressure. The exhaust mechanism comprises a vacuum pump 13, and the vacuum pump 13 is connected to the drying tower 1 via a main valve 15 a and a cold trap 14 for condensing water vapor from the exhaust from the drying tower 1.

なお、乾燥塔1から排気機構に接続される部分には邪魔板17を配置し、乾燥塔1内の発酵乳粉末などが排気機構側に流入しないようにして、連続的な粉末化処理を可能にしている。   In addition, a baffle plate 17 is disposed at a portion connected to the exhaust mechanism from the drying tower 1 so that fermented milk powder or the like in the drying tower 1 does not flow into the exhaust mechanism side, and continuous powdering processing is possible. I have to.

所定の低圧に維持されている乾燥塔1内において吹出ノズル2から噴霧された発酵乳を蒸発させるための潜熱を供給する加熱手段として、この実施形態では、吹出ノズル2が配備されている位置の近傍、すなわち、乾燥塔1内の上部空間に遠赤外線ヒーター9を配置すると共に、乾燥塔1の下部の外周に温水チューブ10を巻き付けている。温水チューブ10には、恒温水槽11から温水循環ポンプ12を介して温水が供給される。   In this embodiment, as a heating means for supplying latent heat for evaporating the fermented milk sprayed from the blowing nozzle 2 in the drying tower 1 maintained at a predetermined low pressure, at the position where the blowing nozzle 2 is disposed. A far-infrared heater 9 is disposed in the vicinity, that is, in the upper space in the drying tower 1, and a hot water tube 10 is wound around the outer periphery of the lower part of the drying tower 1. Hot water is supplied to the hot water tube 10 from a constant temperature water tank 11 via a hot water circulation pump 12.

図1図示のように、遠赤外線ヒーター9が配置されている乾燥塔1の上部には上部温度センサ8aが配備されており、上部温度センサ8aで検知した温度に応じて、乾燥塔1の上部空間が所定の温度(例えば、50℃以下や、35℃〜38℃)に保たれるように、温度制御器7aにより遠赤外線ヒーター9の出力が制御される。例えば、上部温度センサ8aで検知した温度が所定の温度、例えば、50℃を越えたときに遠赤外線ヒーター9をOFFにするように制御する。   As shown in FIG. 1, an upper temperature sensor 8a is provided at the upper part of the drying tower 1 where the far infrared heater 9 is arranged, and the upper part of the drying tower 1 according to the temperature detected by the upper temperature sensor 8a. The output of the far-infrared heater 9 is controlled by the temperature controller 7a so that the space is maintained at a predetermined temperature (for example, 50 ° C. or lower or 35 ° C. to 38 ° C.). For example, the far infrared heater 9 is controlled to be turned off when the temperature detected by the upper temperature sensor 8a exceeds a predetermined temperature, for example, 50 ° C.

また、外周に温水チューブ10が巻き付けられている乾燥塔1の領域には、中間部温度センサ8c、下部温度センサ8bが配備されており、これらで検知した温度に応じて、乾燥塔1内の下部空間が所定の温度(例えば、35℃〜38℃)に保たれるように、温度制御器7bにより温水循環ポンプ12による温水チューブ10への温水の供給量が制御される。例えば、中間部温度センサ8c、下部温度センサ8bで検知した温度が所定の温度、例えば、50℃を越えたときに温水循環ポンプ12による温水チューブ10への温水の供給を停止するように制御する。   Moreover, the intermediate part temperature sensor 8c and the lower part temperature sensor 8b are arranged in the area | region of the drying tower 1 by which the hot water tube 10 is wound by the outer periphery, According to the temperature detected by these, in the drying tower 1 The temperature controller 7b controls the amount of hot water supplied to the hot water tube 10 by the temperature controller 7b so that the lower space is maintained at a predetermined temperature (for example, 35 ° C. to 38 ° C.). For example, when the temperature detected by the intermediate temperature sensor 8c and the lower temperature sensor 8b exceeds a predetermined temperature, for example, 50 ° C., the supply of hot water to the hot water tube 10 by the hot water circulation pump 12 is stopped. .

なお、この実施形態では、排気機構への接続部に出口部温度センサ8dを設け、排気部の温度も検知可能にしている。   In this embodiment, an outlet temperature sensor 8d is provided at the connection to the exhaust mechanism so that the temperature of the exhaust can be detected.

次に、図1図示の発酵乳粉末化装置を用いた本発明の粉末化方法の一例を説明する。   Next, an example of the powdering method of the present invention using the fermented milk powdering apparatus shown in FIG. 1 will be described.

原料タンク3内に、固形分濃度11%に調整したプレーンヨーグルト(明治乳業株式会社製)を入れ、加熱攪拌機を作動させて36℃前後の温度に維持する。   A plain yogurt (manufactured by Meiji Dairies Co., Ltd.) adjusted to a solid content concentration of 11% is placed in the raw material tank 3, and the heating stirrer is operated to maintain the temperature at around 36 ° C.

遠赤外線ヒーター9を作動させると共に、温水循環ポンプ12を作動させて、恒温水槽11内で40℃前後の温度に維持されている温水を温水チューブ10に送り、乾燥塔1内の温度を37℃にまで加熱する。   While operating the far-infrared heater 9 and operating the hot water circulation pump 12, hot water maintained at a temperature of about 40 ° C. in the constant temperature water tank 11 is sent to the hot water tube 10, and the temperature in the drying tower 1 is set to 37 ° C. Heat to.

一方、コールドトラップ14に付けられているリークバルブ15bは閉じたまま、メインバルブ15aを開いて真空ポンプ13を作動させ、乾燥塔1内を減圧する(3.5kPa〜4.5kPaの圧力に減圧した)。   On the other hand, with the leak valve 15b attached to the cold trap 14 closed, the main valve 15a is opened and the vacuum pump 13 is operated to depressurize the interior of the drying tower 1 (depressurize to a pressure of 3.5 kPa to 4.5 kPa). did).

ここで、不図示の制御装置により、送液ポンプ5を作動させると共に、圧縮空気タンク4からの圧縮空気の供給を開始し、乾燥塔1内への発酵乳の噴霧を開始する。   Here, the liquid feed pump 5 is operated by a control device (not shown), supply of compressed air from the compressed air tank 4 is started, and spraying of fermented milk into the drying tower 1 is started.

圧縮空気及び発酵乳が乾燥塔1内に噴霧されることにより乾燥塔1内の圧力が高くなるが、圧力計(デジタルマノメーター)16で乾燥塔1内の圧力を把握して、乾燥塔1内の圧力が8〜11kPaに維持されるようにした。   The pressure in the drying tower 1 is increased by spraying the compressed air and fermented milk into the drying tower 1. The pressure gauge (digital manometer) 16 grasps the pressure in the drying tower 1, and the inside of the drying tower 1. The pressure was maintained at 8 to 11 kPa.

乾燥塔1内の温度は、上部温度センサ8a、中部温度センサ8c、下部温度センサ8bで検知しながら、遠赤外線ヒーター9の出力、温水循環ポンプ12による温水の送水量を制御して36℃前後に維持した。   While the temperature in the drying tower 1 is detected by the upper temperature sensor 8a, the middle temperature sensor 8c, and the lower temperature sensor 8b, the output of the far-infrared heater 9 and the amount of warm water fed by the hot water circulation pump 12 are controlled to around 36 ° C. Maintained.

粉末化工程が完了した後、不図示の制御装置による制御によって、送液ポンプ5の作動を停止すると共に、圧縮空気タンク4からの圧縮空気の供給を停止し、乾燥塔1内への発酵乳の噴霧を終了する。   After the pulverization step is completed, the operation of the liquid feed pump 5 is stopped and the supply of compressed air from the compressed air tank 4 is stopped by control by a control device (not shown), and fermented milk into the drying tower 1 is stopped. End spraying.

ノズル2からの噴霧が終了した後、メインバルブ15aを閉じ、真空ポンプ13を停止する。次いで、コールドトラップ14に付設されているリークバルブを開放して乾燥塔1内を大気圧に戻し、乾燥塔1の下部を空けて、製品(乾燥粉末)を回収する。   After spraying from the nozzle 2 is completed, the main valve 15a is closed and the vacuum pump 13 is stopped. Next, the leak valve attached to the cold trap 14 is opened to return the inside of the drying tower 1 to atmospheric pressure, and the lower part of the drying tower 1 is opened to collect the product (dry powder).

(乳酸菌生存数の確認試験)
原料の有効成分である乳酸菌数を測定する手法として、微生物に含まれるATPの濃度を測定して生菌数を推算するATP法(バイオルミネッセンス法)を採用した。
(Confirmation test of lactic acid bacteria survival number)
As a method for measuring the number of lactic acid bacteria, which is an active ingredient of the raw material, an ATP method (bioluminescence method) that measures the concentration of ATP contained in the microorganism and estimates the number of living bacteria was adopted.

そこで、前記の実施例で使用した原料(プレーンヨーグルト)について、減圧噴霧乾燥による粉末化処理を行う前の初期ATP濃度及び、減圧噴霧処理時の乾燥塔1内の温度を35℃、50℃、80℃、120℃に変更した以外の条件を同一にして前記の実施例の方法で減圧噴霧乾燥処理して製造した発酵乳粉末におけるATP濃度の測定を行った。   Therefore, for the raw material (plain yogurt) used in the above examples, the initial ATP concentration before performing the pulverization treatment by reduced pressure spray drying and the temperature in the drying tower 1 during the reduced pressure spray treatment are 35 ° C., 50 ° C., The ATP concentration was measured in fermented milk powder produced by subjecting to the same conditions as in the above Examples except that the conditions were changed to 80 ° C. and 120 ° C. under reduced pressure spray drying.

初期ATP濃度の測定方法
初期ATP濃度はATPアナライザ(東亜DKK AF-100)を用いて行った。本装置はルシフェリン-ルシフェラーゼ反応により発光現象を起こし、相対発光量(RLU:Relative Light Unit)を測定することによりATP濃度を分析し、微生物数の推算を行う装置である。
Method for Measuring Initial ATP Concentration The initial ATP concentration was measured using an ATP analyzer (Toa DKK AF-100). This device is a device that causes a luminescence phenomenon by the luciferin-luciferase reaction, analyzes the ATP concentration by measuring the relative light emission amount (RLU: Relative Light Unit), and estimates the number of microorganisms.

なお、試料が着色していると発光が阻害され精度が落ちるので、純水で150倍に希釈して測定した。  When the sample is colored, light emission is hindered and accuracy is lowered. Therefore, the sample was diluted 150 times with pure water and measured.

実際の測定手順を以下に述べる。まず、ATPを全く含まないゼロ校正液、100nmol/LのATP標準試薬、微生物を分解する微生物抽出試薬、ルシフェリンおよびルシフェラーゼを含む発光試薬を用いてゼロ校正(キャリブレーション)を行う。   The actual measurement procedure is described below. First, zero calibration (calibration) is performed using a zero calibration solution containing no ATP, a 100 nmol / L ATP standard reagent, a microorganism extraction reagent that decomposes microorganisms, and a luminescence reagent containing luciferin and luciferase.

その後、希釈試料と微生物抽出試薬を測定容器にいれ20秒間攪拌する。最後に発光試薬を入れ、容器を装置に入れると測定が始まり、結果を求めることができる。各試薬および希釈試料はすべて100μlずつ用いる。なお、測定およびゼロ校正の際には装置メーカーの純正試薬(東亜DKK AF-2A1、AF-2L1、AF-2K1)を用いた。   Thereafter, the diluted sample and the microorganism extraction reagent are placed in a measurement container and stirred for 20 seconds. Finally, when the luminescent reagent is put and the container is put into the apparatus, the measurement starts and the result can be obtained. Use 100 μl of each reagent and diluted sample. In addition, genuine reagents (Toa DKK AF-2A1, AF-2L1, AF-2K1) from the equipment manufacturer were used for measurement and zero calibration.

ATP濃度の経時変化
各温度条件での処理後、得られた粉体に純水を加え還元し、初期ATP濃度の測定の時と同様150倍に希釈してATPアナライザ(東亜DKK AF-100)でATP濃度を測定した。その結果、還元直後は高温乾燥の場合でも測定値が高く、時間経過により減少していくことがわかった。これは、還元直後は減圧噴霧乾燥処理により生じた死菌のATPも測定しているためだと考えられる。このため、微生物活性の保持を考察するためには還元後のATP濃度の経時変化を測定する必要があると考えられた。そこで、還元後ATP濃度を直ちに測定して、これを0分とし、その後30℃の恒温水槽に浸して30分ごとにATP濃度の経時変化を測定した。
Change in ATP concentration with time After treatment under various temperature conditions, pure water is added to the obtained powder to reduce it, and it is diluted 150 times as in the case of measuring the initial ATP concentration. ATP analyzer (Toa DKK AF-100) To measure the ATP concentration. As a result, it was found that immediately after the reduction, the measured value was high even in the case of high-temperature drying and decreased with time. This is considered to be because ATP of dead bacteria produced by the reduced pressure spray drying treatment was measured immediately after the reduction. For this reason, in order to consider the retention of microbial activity, it was considered necessary to measure the change with time in the ATP concentration after reduction. Therefore, the ATP concentration after the reduction was measured immediately, and this was set to 0 minute, and then immersed in a constant temperature water bath at 30 ° C., and the change with time of the ATP concentration was measured every 30 minutes.

乾燥後に純水で還元した場合、死菌の影響で還元後30分の間は急激にATPが減少したが、30分経過後、60分以降は数値が安定したので、30経過時、60経過時のATP濃度を測定した。 If it reduced with pure water after drying, for 30 minutes after the reduction in the influence of dead bacteria rapidly ATP is reduced, after 30 minutes, since 60 minutes later figures stabilized, after a lapse of 30 minutes, 60 The ATP concentration was measured when minutes passed.

一方、前記の実施例で使用した原料(プレーンヨーグルト)について、乳酸菌の数と、ATP濃度との関係を確認したところ、図2図示のように、直線的な比例関係を有することが把握できた。  On the other hand, when the relationship between the number of lactic acid bacteria and the ATP concentration was confirmed for the raw material (plain yogurt) used in the above example, it was understood that the raw material had a linear proportional relationship as shown in FIG. .

これを参考にして、減圧噴霧処理時の乾燥塔1内の温度を35℃、50℃、80℃、120℃に変更した以外の条件を前記の実施例の方法と同一にして減圧噴霧乾燥処理して製造した発酵乳粉末における乳酸菌の生存数を確認したところ、粉末乾燥後30分、60経過時では、減圧噴霧乾燥処理前における発酵乳の固形分当たりに含まれる乳酸菌個数を10億個として、図3図示のようになった。 With reference to this, the reduced-pressure spray-drying treatment was carried out under the same conditions as in the above-described embodiment except that the temperature in the drying tower 1 during the reduced-pressure spraying treatment was changed to 35 ° C., 50 ° C., 80 ° C., and 120 ° C. As a result of confirming the number of surviving lactic acid bacteria in the fermented milk powder produced, the number of lactic acid bacteria included in the solid content of fermented milk before 30 minutes and 60 minutes after drying the powder was 1 billion. As shown in FIG.

すなわち、乾燥塔1内の温度を35℃にして本発明の減圧噴霧乾燥方法によって製造した乳酸菌粉末の場合、製造後60分が経過しても、処理前の80%を越える数の乳酸菌が生存していた。  That is, in the case of the lactic acid bacteria powder produced by the reduced pressure spray drying method of the present invention with the temperature in the drying tower 1 being 35 ° C., the number of lactic acid bacteria exceeding 80% before the treatment survives even after 60 minutes have passed since the production. Was.

また、乾燥温度50℃の場合も、30経過時で50%以上、60経過時で40%以上の乳酸菌が生存していた。 Even when the drying temperature was 50 ° C., 50% or more of lactic acid bacteria survived after 30 minutes and 40% or more after 60 minutes .

更に、乳酸菌の最適成育温度は37〜38℃付近であるにもかかわらず、80℃の乾燥温度でも16%、120℃の乾燥温度でも6%の乳酸菌が生存していた。  Furthermore, despite the optimal growth temperature of lactic acid bacteria being around 37-38 ° C., 16% of lactic acid bacteria survived even at a drying temperature of 80 ° C. and 6% even at a drying temperature of 120 ° C.

そこで本発明の減圧噴霧乾燥法はプロバイオティクス食品の乾燥・粉末化に有効な手法であると考えられ、特に、乾燥温度を50℃以下、より好ましくは、乳酸菌の最適成育温度を考慮した35℃〜38℃の乾燥温度で本発明の減圧噴霧乾燥法を使用すれば、乳酸菌をプロバイオティクスなどとして含有する食品(例えば、発酵乳)を低コストで、大量に、乾燥、粉末化することが可能になる。   Therefore, the reduced-pressure spray drying method of the present invention is considered to be an effective technique for drying and powdering probiotic foods, and in particular, the drying temperature is 50 ° C. or less, more preferably, considering the optimal growth temperature of lactic acid bacteria. When the reduced pressure spray drying method of the present invention is used at a drying temperature of from ℃ to 38 ℃, food containing lactic acid bacteria as probiotics (for example, fermented milk) is dried and powdered in large quantities at low cost. Is possible.

以上、添付図面を参照して本発明の好ましい実施例を説明したが、本発明はかかる実施形態に限られるものではない。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such embodiments.

例えば、前記の実施例では、原料である発酵乳と、圧縮空気とを同時に送ることによって微粒子化を行う二流体ノズル式の噴霧を行ったが、加圧タイプでの噴霧にすることもできる。   For example, in the above-described embodiment, the two-fluid nozzle type spray is performed in which the fermented milk that is the raw material and the compressed air are simultaneously sent to make the particles fine. However, a spray of a pressurized type can also be used.

また、減圧噴霧乾燥処理時における乾燥温度を供給するための熱は、前記の実施例では、発酵乳が噴霧される近傍のみに遠赤外線ヒーターを配備し、遠赤外線ヒーターによる熱の供給が少なくなる乾燥塔1の下部では、乾燥塔の壁に加熱手段(乾燥塔の壁の外周に巻き付けられた、内部に温水が流れる温水ヒーター)を配備する形態としたが、これ以外の形態も採用可能である。   In addition, in the above embodiment, the heat for supplying the drying temperature during the reduced pressure spray drying process is provided with a far infrared heater only in the vicinity where the fermented milk is sprayed, and the supply of heat by the far infrared heater is reduced. In the lower part of the drying tower 1, heating means (a hot water heater that is wound around the outer periphery of the drying tower wall and in which hot water flows inside) is arranged on the wall of the drying tower, but other forms can also be adopted. is there.

遠赤外線による加熱は、加熱の際に熱媒体を必要とせず、減圧下でも効率よく熱供給できる点で有利なので、遠赤外線ヒーターのみによって乾燥用の熱を供給することも可能である。例えば、発酵乳が噴霧される近傍のみだけでなく、乾燥搭内において発酵乳が噴霧される位置から離れている位置にも遠赤外線ヒーターを配備したり、乾燥搭内において発酵乳が噴霧される位置の近傍から、乾燥搭内において発酵乳が噴霧される位置から離れている位置にまで連続的に遠赤外線ヒーターが配備されている形態にすることもできる。   Heating by far infrared rays is advantageous in that it does not require a heat medium during heating and can efficiently supply heat even under reduced pressure. Therefore, it is possible to supply heat for drying only by a far infrared heater. For example, far-infrared heaters are provided not only in the vicinity where fermented milk is sprayed, but also in positions away from the position where fermented milk is sprayed in the drying tower, or fermented milk is sprayed in the drying tower It can also be set as the form by which the far-infrared heater is continuously arranged from the vicinity of a position to the position away from the position where fermented milk is sprayed in a drying tower.

このように、乾燥搭(あるいは、乾燥室)内において発酵乳が噴霧される位置の近傍のみに遠赤外線ヒーターが配備されている形態、乾燥搭内において発酵乳が噴霧される位置の近傍と、乾燥搭内において発酵乳が噴霧される位置から離れている位置との双方に遠赤外線ヒーターが配備されている形態、あるいは、乾燥搭内において発酵乳が噴霧される位置の近傍から、乾燥搭内において発酵乳が噴霧される位置から離れている位置にまで連続的に遠赤外線ヒーターが配備されている形態などのように、加熱手段が乾燥搭の壁に配備されていない形態にすると、減圧噴霧乾燥処理によって製造される粉体が乾燥搭の内壁に付着して粉体の回収率が低下することを防止できるので有利である。  Thus, the form in which the far infrared heater is arranged only in the vicinity of the position where the fermented milk is sprayed in the drying tower (or drying chamber), the vicinity of the position where the fermented milk is sprayed in the drying tower, In the drying tower, a far infrared heater is arranged in both the position away from the position where the fermented milk is sprayed in the drying tower, or from the vicinity of the position where the fermented milk is sprayed in the drying tower. If the heating means is not arranged on the wall of the drying tower, such as the form in which the far-infrared heater is arranged continuously from the position where the fermented milk is sprayed in This is advantageous because the powder produced by the drying process can be prevented from adhering to the inner wall of the drying tower and reducing the powder recovery rate.

ただし、乾燥塔の壁のみに加熱手段を配備しておくこともできる。例えば、前記の実施例で説明したように、乾燥塔の壁の外周に巻き付けられた、内部に温水が流れる温水ヒーターを乾燥塔の全長にわたって設けることや、乾燥塔の全長において、その壁の内部に、加熱流体が通過する流路を設ける、等々の形態を採用することができる。   However, heating means may be provided only on the walls of the drying tower. For example, as described in the above embodiment, a hot water heater that is wound around the outer periphery of the drying tower wall and in which hot water flows inside is provided over the entire length of the drying tower. In addition, it is possible to adopt a form such as providing a flow path through which the heated fluid passes.

なお、乾燥塔の壁に加熱手段を配備する場合、減圧噴霧乾燥処理によって製造される粉体が乾燥塔の内壁に付着してしまうので、乾燥塔の壁に加熱手段を配備する場合には、前述の実施例のように、乾燥搭内において発酵乳が噴霧される位置の近傍には遠赤外線ヒーターを配備し、遠赤外線ヒーターによる熱の供給が少なくなる乾燥搭内において発酵乳が噴霧される位置から離れている位置における乾燥塔の壁に加熱手段を配備するようにすることが望ましい。   In addition, when deploying the heating means on the wall of the drying tower, the powder produced by the vacuum spray drying process adheres to the inner wall of the drying tower, so when deploying the heating means on the wall of the drying tower, As in the previous embodiment, a far infrared heater is provided in the vicinity of the position where the fermented milk is sprayed in the drying tower, and the fermented milk is sprayed in the drying tower where the supply of heat by the far infrared heater is reduced. It is desirable to provide heating means on the walls of the drying tower at a location remote from the location.

本発明の減圧噴霧乾燥法による発酵乳粉末の製造方法の実施に適用できる発酵乳粉末化装置の好ましい一実施例を説明する図。The figure explaining one preferable Example of the fermented milk powdering apparatus applicable to implementation of the manufacturing method of the fermented milk powder by the vacuum spray-drying method of this invention. 発酵乳(プレーンヨーグルト)における乳酸菌の数とATP濃度との関係を表す図。The figure showing the relationship between the number of lactic acid bacteria in fermented milk (plain yogurt), and ATP density | concentration. 減圧噴霧処理時の乾燥温度を変化させて本発明の減圧噴霧乾燥法によって製造した発酵乳粉末中の乳酸菌の数を表す図。The figure showing the number of lactic acid bacteria in the fermented milk powder manufactured by changing the drying temperature at the time of reduced pressure spraying processing by the reduced pressure spray drying method of the present invention.

符号の説明Explanation of symbols

1 乾燥塔
2 吹出ノズル
3 原料タンク
4 圧縮空気供給タンク
5 送液ポンプ
6 加熱攪拌機
7a、7b 温度制御器
8a 上部温度センサ
8b 下部温度センサ
8c 中間部温度センサ
8d 出口部温度センサ
9 遠赤外線ヒーター
10 温水チューブ
11 恒温水槽
12 温水循環ポンプ
13 真空ポンプ
14 コールドトラップ
15a メインバルブ
15b リークバルブ
16 圧力計(デジタルマノメーター)
17 邪魔板
DESCRIPTION OF SYMBOLS 1 Drying tower 2 Outlet nozzle 3 Raw material tank 4 Compressed air supply tank 5 Liquid feed pump 6 Heating stirrer 7a, 7b Temperature controller 8a Upper part temperature sensor 8b Lower part temperature sensor 8c Middle part temperature sensor 8d Outlet part temperature sensor 9 Far infrared heater 10 Hot water tube 11 Constant temperature water tank 12 Hot water circulation pump 13 Vacuum pump 14 Cold trap 15a Main valve 15b Leak valve 16 Pressure gauge (digital manometer)
17 Baffle plate

Claims (4)

減圧下にある乾燥塔内に粉末化処理が行われる発酵乳を噴霧し、乾燥温度35〜38℃で減圧噴霧乾燥することにより、生きた乳酸菌を含む発酵乳粉末を製造する減圧噴霧乾燥法による発酵乳粉末の製造方法であって、
前記乾燥塔内の温度に対応する温度に調整されている発酵乳を前記乾燥塔内に噴霧し、
前記噴霧された発酵乳を蒸発させるための潜熱を供給する手段として前記乾燥塔の内部空間に配置されている乾燥用の熱源から発生される遠赤外線が用いられる
ことを特徴とする減圧噴霧乾燥法による発酵乳粉末の製造方法
Spraying the fermented milk powder process is performed in the drying tower under reduced pressure and vacuum spray drying at a drying temperature of 35 to 38 ° C., live fermented milk powder to that reduced atomizer dried product containing lactic acid bacteria A method for producing fermented milk powder by the method ,
Spraying the fermented milk adjusted to a temperature corresponding to the temperature in the drying tower into the drying tower,
Far-infrared rays generated from a heat source for drying disposed in the internal space of the drying tower are used as means for supplying latent heat for evaporating the sprayed fermented milk.
A method for producing fermented milk powder by a reduced pressure spray drying method .
発酵乳粉末中の生きた乳酸菌の数が減圧噴霧乾燥処理を行う前の発酵乳中の乳酸菌の数の70%乃至80%であることを特徴とする請求項1記載の減圧噴霧乾燥法による発酵乳粉末の製造方法。   The fermentation by the vacuum spray drying method according to claim 1, wherein the number of living lactic acid bacteria in the fermented milk powder is 70% to 80% of the number of lactic acid bacteria in the fermented milk before the vacuum spray drying treatment is performed. A method for producing milk powder. 粉末乾燥後30分経過した時点の発酵乳粉末中の生きた乳酸菌の数が減圧噴霧乾燥処理を行う前の発酵乳中の乳酸菌の数の50%以上であることを特徴とする請求項1記載の減圧噴霧乾燥法による発酵乳粉末の製造方法。 The number of living lactic acid bacteria in the fermented milk powder at the time when 30 minutes have elapsed after the powder drying is 50% or more of the number of lactic acid bacteria in the fermented milk before performing the vacuum spray drying treatment. A method for producing fermented milk powder by the reduced pressure spray drying method. 粉末乾燥後30分経過した時点の発酵乳粉末中の生きた乳酸菌の数が減圧噴霧乾燥処理を行う前の発酵乳中の乳酸菌の数の50%以上で、粉末乾燥後60分経過した時点の発酵乳粉末中の生きた乳酸菌の数が減圧噴霧乾燥処理を行う前の発酵乳中の乳酸菌の数の40%以上であることを特徴とする請求項1記載の減圧噴霧乾燥法による発酵乳粉末の製造方法。The number of live lactic acid bacteria in the fermented milk powder at the time when 30 minutes have passed after the powder drying is 50% or more of the number of lactic acid bacteria in the fermented milk before the vacuum spray drying treatment, and the time at which 60 minutes have passed after the powder drying. The number of living lactic acid bacteria in the fermented milk powder is 40% or more of the number of lactic acid bacteria in the fermented milk before performing the reduced pressure spray drying treatment. Manufacturing method.
JP2005165537A 2005-06-06 2005-06-06 Method for producing fermented milk powder by vacuum spray drying Active JP4556181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165537A JP4556181B2 (en) 2005-06-06 2005-06-06 Method for producing fermented milk powder by vacuum spray drying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165537A JP4556181B2 (en) 2005-06-06 2005-06-06 Method for producing fermented milk powder by vacuum spray drying

Publications (2)

Publication Number Publication Date
JP2006333838A JP2006333838A (en) 2006-12-14
JP4556181B2 true JP4556181B2 (en) 2010-10-06

Family

ID=37554919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165537A Active JP4556181B2 (en) 2005-06-06 2005-06-06 Method for producing fermented milk powder by vacuum spray drying

Country Status (1)

Country Link
JP (1) JP4556181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108094545A (en) * 2017-12-27 2018-06-01 内蒙古蒙牛乳业(集团)股份有限公司 Solid-state dairy products and the method for preparing solid-state dairy products

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805923B2 (en) * 2009-06-05 2015-11-10 国立大学法人 筑波大学 Powder manufacturing method, powder manufacturing equipment
WO2011075138A1 (en) * 2009-12-18 2011-06-23 Hill's Pet Nutrition, Inc. Pet food compositions including probiotics and methods of manufacture and use thereof
WO2012014923A1 (en) 2010-07-29 2012-02-02 田辺工業株式会社 Reduced-pressure spray-drying method and reduced-pressure spray-drying device
KR102333706B1 (en) * 2013-10-28 2021-12-01 시에이치알. 한센 에이/에스 Drying of microorganisms
JP6510809B2 (en) * 2014-12-26 2019-05-08 ナチュラルプロセスファクトリー株式会社 Method for drying lactic acid bacteria food, drying apparatus for lactic acid bacteria food, and dried lactic acid bacteria food
JP2017051173A (en) * 2015-09-09 2017-03-16 徳永 貞喜 Raw bacterium powder yogurt of seal adhesive package, and combined food products thereof
KR101827701B1 (en) * 2016-03-08 2018-02-09 롯데푸드 주식회사 functional fermented milk with emission of cholesterol and bile acid, and method for manufacturing the same
CN109557014B (en) * 2019-01-24 2021-08-27 广东产品质量监督检验研究院(国家质量技术监督局广州电气安全检验所、广东省试验认证研究院、华安实验室) Method for rapidly detecting number of lactic acid bacteria in fermented milk
CN113776288B (en) * 2020-06-10 2024-07-05 无锡市力胜粉体科技有限公司 Automatic stabilizing device for outlet temperature of drying tower before spraying of spray dryer
CN112931677B (en) * 2021-03-09 2024-02-06 江南大学 High-activity whey protein and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158476A (en) * 1985-12-30 1987-07-14 Nobuhide Maeda Vacuum dryer
JPH1028568A (en) * 1996-07-16 1998-02-03 Susumu Kiyokawa Spray drying using farinfrared ray
JP2002191287A (en) * 2000-12-26 2002-07-09 Ogawa & Co Ltd Method for disinfecting milk containing antibody and food, etc., containing disinfected antibody-containing milk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158476A (en) * 1985-12-30 1987-07-14 Nobuhide Maeda Vacuum dryer
JPH1028568A (en) * 1996-07-16 1998-02-03 Susumu Kiyokawa Spray drying using farinfrared ray
JP2002191287A (en) * 2000-12-26 2002-07-09 Ogawa & Co Ltd Method for disinfecting milk containing antibody and food, etc., containing disinfected antibody-containing milk

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108094545A (en) * 2017-12-27 2018-06-01 内蒙古蒙牛乳业(集团)股份有限公司 Solid-state dairy products and the method for preparing solid-state dairy products
CN108094545B (en) * 2017-12-27 2021-02-19 内蒙古蒙牛乳业(集团)股份有限公司 Solid dairy product and method for preparing solid dairy product

Also Published As

Publication number Publication date
JP2006333838A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4556181B2 (en) Method for producing fermented milk powder by vacuum spray drying
Johnson et al. Properties of Lactobacillus helveticus CNRZ-32 attenuated by spray-drying, freeze-drying, or freezing
FU et al. Spray drying of Lactococcus lactis ssp. lactis C2 and cellular injury
JPWO2006009150A1 (en) Innovative sterilization method and its use and equipment
CN102365030A (en) Food compositions compromising dried probiotics, methods of manufacture and uses thereof
JP2008249256A (en) Food machinery with vacuum cooling function and its operating method
JPS5836342A (en) Mechanical and thermal treatment method and apparatus including sterilization or low temperature sterilization of flowable substance
US20140348988A1 (en) Method and Device for the Pasteurization and/or Sterilization of a Food
Kitamura et al. Experimental vacuum spray drying of probiotic foods included with lactic acid bacteria
CN108464131A (en) A kind of grain mold proof storage facilities
JP5138664B2 (en) Sprout training system
CN102036567B (en) Device for continuous thermal pasteurisation of products in form of divided solids
WO2000064287A1 (en) Method for killing insects
JPS63152526A (en) Method of sterilizing packaging material
JP4300075B2 (en) Method for producing functional food
CN103160490A (en) Preparation method of lactobacillus johnsonii microcapsule, microcapsule and application of additive
CN208552555U (en) Disinfection cabinet
CN113951421B (en) Bioactive ceramic anti-browning apple juice enzyme-killing device
US4098573A (en) Portable moisturization and sterilization
AU2015208412A1 (en) Method and device for reducing the growth of thermophilic bacteria in heat exchangers of dairy processing plants
KR102503771B1 (en) Smart system for optimal fermentation of IoT and AI based fermented foods
CN107668470A (en) A kind of soybean protein steam sterilization system and process for sterilizing
JPS5945829A (en) Apparatus for sterilization and deodorization of emulsion drink
CN207958353U (en) A kind of fermenting corn steep liquor system
CN107449634A (en) The device and sampling method of sampling in a kind of spray drying tower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Ref document number: 4556181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250