JP4555498B2 - Hot-dip zinc-aluminum alloy plated steel sheet with excellent spot weldability and manufacturing method thereof - Google Patents
Hot-dip zinc-aluminum alloy plated steel sheet with excellent spot weldability and manufacturing method thereof Download PDFInfo
- Publication number
- JP4555498B2 JP4555498B2 JP2001111341A JP2001111341A JP4555498B2 JP 4555498 B2 JP4555498 B2 JP 4555498B2 JP 2001111341 A JP2001111341 A JP 2001111341A JP 2001111341 A JP2001111341 A JP 2001111341A JP 4555498 B2 JP4555498 B2 JP 4555498B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- plated steel
- plating
- hot
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、スポット溶接性に優れた溶融亜鉛−アルミニウム合金めっき鋼板とその製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車、家庭電気製品、建材等の耐用年数の長期化に対応するため、表面処理鋼板の使用が拡大している。特にZn−5%Al溶融めっき鋼板は、今までの溶融亜鉛めっきに比較して耐食性が優れていることから、建材などを中心に使用されている。また、最近ではZn−Al−Mg系めっき鋼板が開発されてきており、さらなる耐食性の向上が図られてきている。
【0003】
しかしこのようなZn−高Al系合金めっき鋼板には溶接性が劣っているという欠点がある。これは溶融亜鉛めっきの融点が約419℃であるのに対し、高Al系合金めっき鋼板の融点が一般に低くスポット溶接時にめっき層が容易に溶解して溶接部の接触面積が大きくなり電流密度が低下し、ナゲット径が小さくなると共にCu−Zn合金が生成し電極が損耗するのである。このため溶接チップ表面の加熱が過大となり電極チップ表面に脆い合金層が堆積しチップ損耗が激しくなるという欠点もあり改善が求められている。
【0004】
合金化溶融亜鉛めっき鋼板における溶接性を向上させる方法として特開平2-4983号公報にZnOを主成分とする酸化皮膜を形成させる技術が開示されているが、工業的にZnO皮膜を容易に形成させることが困難であり、実用化に至っていない。また、特開平5−263210号公報にはZn−5%Al系合金めっき鋼板にFeの合金化を促進するTiを添加し、めっき後に合金化炉を使用してFeを合金化させ、スポット溶接性を改善させる技術が記載されている。しかし、これは合金化炉が必須であり高コストとなるという問題がある。また、特開平6−336664号公報には亜鉛−アルミニウム系溶融めっき浴に鋼板を浸漬後珪素含有水溶液を噴霧してめっき表面にシリカ被膜を形成しスポット溶接性を改善する技術が記載されているが、これはシリカ被膜を鋼板上に密着性良く一様に形成することが困難であり、現状ではあまり効果がないという問題がある。
【0005】
【発明が解決しようとする課題】
このような状況に鑑み、従来の亜鉛−アルミニウム系合金めっき鋼板のスポット溶接性を改善した溶融亜鉛-アルミニウム系合金めっき鋼板およびその製造方法を提供することが本発明の目的である。
【0006】
【課題を解決するための手段】
スポット溶接性の劣化はめっき合金の融点低下と電極上でのCu−Zn合金生成による電極の損耗で起こること、めっき後の後処理によるめっき浴表層のみの改質では溶接性能のばらつきが大きいとの認識に基づき、本発明者らは、めっき合金の組成及び構造を変えることを指向した。そして鋭意検討の結果、めっき浴中にSiを添加することが有効あることを突き止めた。この理由は明らかではないが、▲1▼SiがCu−Zn合金生成を抑制すること、▲2▼SiがAl系酸化物の生成を抑制することが影響しているものと考えられる。また、本発明者らはめっき層中のSiの存在状態を調査したところ、金属Si、SiO2、Mg2Si等多岐にわたり、必ずしもシリカの存在によらないことを知見した。さらに詳細な調査を行ったところ、めっき層中のSi系物質のサイズが大きい場合、スポット溶接性が劣化し、その数が多くなると顕著に劣化してくることを突き止めた。本発明はこれらの知見に基づきなされたもので、その要旨とするところは、以下に示す通りである。
【0007】
(1) 鋼板の表面に質量%でAl:3〜19.5%、Si:0.01〜2%を含み、残部Zn及び不可避的不純物とからなるめっき層を有し、100μm2以上の面積のSi系物質をめっき層の単位断面積(mm 2 )当たり6×103個以下含有することを特徴とする、表面がめっき層であるスポット溶接性に優れた溶融亜鉛−アルミニウム合金めっき鋼板。
【0008】
(2) 上記(1)に記載のめっき鋼板のめっき層中にさらに、Mg:0.1〜10%を含有することを特徴とする、表面がめっき層であるスポット溶接性に優れた溶融亜鉛−アルミニウム合金めっき鋼板。
【0009】
(3) 上記(1)または(2)記載のめっき鋼板のめっき層中にさらに、Ti、Cr、Ni、Snの1種以上を質量%で0.01〜2%含有することを特徴とする、表面がめっき層であるスポット溶接性に優れた溶融亜鉛−アルミニウム合金めっき鋼板。
【0010】
(4) 上記(1)乃至(3)のいずれかに記載のめっき鋼板のめっき層の上に、無機酸化物皮膜を70mg/m2〜2g/m2有することを特徴とするスポット溶接性に優れた溶融亜鉛−アルミニウム合金めっき鋼板。
【0011】
(5)上記(1)乃至(3)のいずれかに記載のめっき鋼板のめっき層の上に、有機樹脂皮膜を100mg/m2〜2g/m2有することを特徴とするスポット溶接性に優れた溶融亜鉛−アルミニウム合金めっき鋼板。
【0012】
(6) 溶融亜鉛−アルミニウム合金めっき鋼板を製造するに際し、めっき浴温を400℃以上とすることにより、めっき層中に100μm2以上の面積のSi系物質をめっき層の単位断面積当たり6×103個以下含有させることを特徴とする上記(1)乃至(3)のいずれかに記載の、表面がめっき層であるスポット溶接性に優れた溶融亜鉛−アルミニウム合金めっき鋼板の製造方法。
【0013】
【発明の実施の形態】
以下、本発明を詳細に説明する。まずめっき層中に含有させる元素について説明する。
【0014】
めっき層中のAlは耐食性の向上のために添加される。3%未満では耐食性が劣り、多くなると耐食性向上効果が飽和すると共にスポット溶接性が劣化するため3%以上で実施例(本発明例)に示す上限の19.5%以下とした。
【0015】
Siは本発明にとり重要な元素であり、スポット溶接性の向上のために添加する。0.01%未満では、スポット溶接性の向上が見られず2%を超えるとスポット溶接性が劣化するため0.01〜2%とする。
【0016】
Si系物質(金属Si、SiO2、Mg2Si等)のめっき層中のサイズについては、100μm2を超えるものがある場合にはミクロ的に抵抗に差異が生じスポット溶接時に爆飛が発生し易くなり、スポット溶接性が劣化する傾向にある。そして、このサイズ以上のSi系物質がめっき層の単位断面積(mm 2 )当たり6×103個を超えると、スポット溶接性が顕著に劣化するため、100μm2以上の面積のSi系物質の個数をめっき層の単位断面積(mm 2 )当たり6×103個以下とした。
【0017】
Mgは一般には耐食性向上効果があることから添加されることが多いが本発明ではMg添加により溶接性に悪影響を及ぼすAl2O3の生成を抑制することで溶接性の劣化を抑制する。0.1%未満では添加効果がなく、10%を超えると浴ドロスの発生が多く、めっきが困難になるため0.1〜10%としたが、好ましくは0.5〜10%である。
【0018】
Ti、Cr、Ni及びSnは溶接性の安定化のために必要に応じて添加される。0.01%未満では添加効果がなく、2%を超えると溶接性向上効果が飽和するため0.01〜2%とする。
【0019】
使用するめっき原板には特に限定はなく、製鋼方法や鋼の強度、熱延PO材、冷延材等製品によらず使用可能である。めっきは、ゼンジミアタイプ、フラックスタイプ、または、プレめっきタイプ等の製造方法によらず、本技術は適用可能である。
【0020】
めっき浴温は浴へのSiの均一分散性に影響を与え、400℃未満ではSiの析出が起こり、Si系物質が粗大になり過ぎ、溶接性を阻害するようになる。また、めっき浴がドロスアウトし易くなり釜歩留りの低下につながるため400℃以上とする。
【0021】
また、耐黒変性、耐食性向上のためにめっき後に水系、有機系後処理を施しても特に問題なく、調質圧延を行ってもかまわない。
【0022】
めっき後のめっき層上に、更にSi、Mg、Zr、Mo、Ce、Caの酸化物から選ばれる少なくとも1種以上の無機酸化物を被覆させると本発明の効果をより一層向上させることができる。この場合、例えばりん酸塩等の複合酸化物とすることも何等問題はない。この無機酸化物皮膜の被覆量が70mg/m2未満では溶接性の向上効果が十分ではなく、また、2g/m2を超えると不通電し易くなり溶接性が劣化するため、無機酸化物皮膜の被覆量は70mg/m2〜2g/m2とした。
【0023】
また、この無機酸化物皮膜の代わりに有機樹脂皮膜を被覆させても、無機酸化物皮膜と同様に本発明の効果をより一層向上させることができる。100mg/m2未満では溶接性の向上効果が十分ではなく、2g/m2を超えると不通電し易くなり溶接性が劣化するため、有機樹脂皮膜の被覆量は100mg/m2〜2g/m2とした。有機樹脂としては、水系樹脂、溶剤系樹脂、粉体系樹脂、無溶剤系樹脂のどのような形態でも良い。ここでいう水系樹脂とは水溶性樹脂の他、本来水不溶性でありながらエマルジョンやサスペンジョンのように水不溶性樹脂が水中に微分散された状態になり得るもの(水分散性樹脂)を含めていう。
【0024】
有機樹脂として使用できる樹脂は、特に限定しないが、ポリオレフィン系樹脂、アクリルオレフィン系樹脂、ポリウレタン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエステル系樹脂、アルキド系樹脂、フェノール系樹脂、その他の加熱硬化型の樹脂などが挙げられ、架橋可能なものがより好ましい。有機樹脂は2種類以上を混合して使用しても良いし、或いは共重合させて使用しても良い。また、必要に応じて各種メラミン樹脂、アミノ樹脂等の架橋剤を添加しても良い。これらの中で特に、性能面とコスト面の両立を考慮する場合はアクリルオレフィン系樹脂、アクリル系樹脂を用いるのが望ましい。さらに、有機樹脂に加えて微粒シリカや潤滑剤を少量添加しても本発明の効果を損なうことはない。
【0025】
無機酸化物皮膜或いは有機樹脂皮膜を形成させるための塗布方法としては、スプレー、カーテンコート、フローコーター、ロールコーター、バーコーター、刷毛塗り、浸漬及びエアナイフ絞り等のいずれの方法も適用できる。また到達焼付け温度は80〜250℃とするのが望ましい。80℃未満では塗料中の水が完全に揮発しづらいため耐食性が低下するなどの悪影響を及ぼす。250℃を超えると有機物である樹脂のアルキル部分が熱分解等の変性を起こしたり、皮膜の硬化が進みすぎて耐食性や加工性が低下したりするため好ましくない。より好ましくは80〜160℃である。また、乾燥設備については特に限定しないが、熱風吹き付けによる方法や、ヒーターによる間接加熱方法、赤外線による方法、誘導加熱による方法、並びにこれらを併用する方法も採用できる。また、使用する有機樹脂の種類によっては、紫外線や電子線などのエネルギー線によって硬化させることもできる。
【0026】
【実施例】
(実施例1)鋼スラブを溶製して通常の方法で薄鋼板を製造した板厚0.8mmのSPCC板をめっき原板とした。めっきはゼンジミアタイプの連続溶融亜鉛めっきラインにて加熱、焼鈍、めっきを行った。焼鈍雰囲気は、10%水素、残90%窒素ガス雰囲気であり、露点を−30度とした。焼鈍温度は730℃、焼鈍時間は3分である。めっき浴はAl:3.5〜21%、Mg:0〜10.5%、Si:0〜2.2%、Ti:0〜1.8%、Cr:0〜1.7%、Ni:0〜1.7%、Sn:0.4〜1.8%、残部Zn及び不可避的不純物に調整しためっき浴を使用した。得られためっき鋼板の組成を表1に示す。めっき浴温は420〜500℃で行い、めっき後は通常のワイピングによりめっき付着量を片面当たり90g/m2に調整した。めっき後、調質圧延を1%行った。このように製造されためっき鋼板のSi系物質については、めっき断面のEPMA観察を実施し、任意の100μm平方の視野毎に観察し、100μm2以上のものの個数を数え、めっき層断面の単位断面積当たりの個数として表した。結果を表1に示す。
【0027】
得られためっき鋼板の溶接性の評価は、連続打点性試験による評価と溶接安定性による評価で行った。
【0028】
(連続打点性試験)
めっき鋼板を2枚重ね併せてスポット溶接の連続打点性試験を実施した。
【0029】
試験条件は、電極形状:先端ドーム径12φ、加圧力:220kgf、溶接時間:12サイクル(AC 50サイクル)、溶接電流:12kAで行い、剪断引張後のナゲット径を測定して、その値が4.5mmになった時を電極寿命とした。電極寿命が2000点以上のものを○、1000〜2000点を△、1000点未満を×とし、△と×を不合格とした。
【0030】
(溶接安定性)
電極寿命が2000点以上のものについて、2000点から2010点までのナゲット径サイズのばらつきで表し、最大と最小のナゲットサイズの差が0.3mm以下のものを◎、0.5mm以下のものを○とし、それぞれ合格とした。
【0031】
評価結果を表1に示す。No.1からNo.36は本発明例であり、溶接性は良好である。特に、No.21〜No.36はめっき層中に、さらにTi、Cr、Ni、或いはSnを含有させた例で、連続打点性の他に溶接安定性にも優れたものとなっている。一方、No.37からNo.45は比較例であり、No.44はAlが高すぎるため溶接性に劣り、No.37、No.38、No.40、No.41、No.42はSi量が低すぎるため、またNo.45はSiが高すぎるため、さらにNo.43はMgが高すぎるため、No.39は浴温が低すぎるためいずれも溶接性に劣る結果となっている。
【0032】
【表1】
【0033】
(実施例2)鋼スラブを溶製して通常の方法で薄鋼板を製造した板厚0.8mmのSPCC板をめっき原板とした。めっきはゼンジミアタイプの連続溶融亜鉛めっきラインにて加熱、焼鈍、めっきを行った。焼鈍雰囲気は、10%水素、残90%窒素ガス雰囲気であり、露点を−30度とした。焼鈍温度は730℃、焼鈍時間は3分である。めっき浴はAl:3.5〜22%、Mg:0〜10.5%、Si:0〜2.2%、Ti:0〜1.7%、Cr:0〜1.7%、Ni:0〜1.7%、Sn:0〜1.9%、残部Zn及び不可避的不純物に調整しためっき浴を使用した。得られためっき鋼板の組成を表2に示す。めっき浴温は420〜510℃で行い、めっき後は通常のワイピングによりめっき付着量を片面当たり90g/m2に調整した。めっき後、調質圧延を1%行った。その後、後処理を行った。後処理は無機酸化物被覆処理を70mg/m2〜2500mg/m2の範囲で行った。
【0034】
得られためっき鋼板の溶接性の評価は、連続打点性試験による評価と溶接安定性による評価で行った。
【0035】
(連続打点性試験)
めっき鋼板を2枚重ね併せてスポット溶接の連続打点性試験を実施した。
【0036】
試験条件は、電極形状:先端ドーム径12φ、加圧力:220kgf、溶接時間:12サイクル(AC 50サイクル)、溶接電流:12kAで行い、剪断引張後のナゲット径を測定して、その値が4.5mmになった時を電極寿命とした。電極寿命が2500点超を◎、2000〜2500点を○、1000〜2000点を△、1000点未満を×とし、△と×を不合格とした。
【0037】
(溶接安定性)
電極寿命が2000点以上のものについて、2000点から2010点までのナゲット径サイズのばらつきで表し、最大と最小のナゲットサイズの差が0.3mm以下のものを◎、0.5mm以下のものを○とし、それぞれ合格とした。
【0038】
結果を表2に示す。No.46からNo.77が本発明例で、いずれも良好な溶接性を示している。No.78からNo.86は比較例であり、No.78、No.79、No.85、No.86は無機酸化物皮膜が厚すぎるため溶接性が劣り、No.80〜No.85はめっき層中の成分が本発明範囲外となっているため、無機皮膜処理を施しても溶接性が不十分となっている。
【0039】
【表2】
【0040】
(実施例3)鋼スラブを溶製して通常の方法で薄鋼板を製造した板厚0.8mmのSPCC板をめっき原板とした。めっきはゼンジミアタイプの連続溶融亜鉛めっきラインにて加熱、焼鈍、めっきを行った。焼鈍雰囲気は、10%水素、残90%窒素ガス雰囲気であり、露点を−30度とした。焼鈍温度は730℃、焼鈍時間は3分である。めっき浴の組成はAl:3.5〜22%、Mg:0〜10.5%、Si:0〜2.2%、Ti:0〜1.7%、Cr:0〜1.7%、Ni:0〜1.7%、Sn:0〜1.9%、残部Zn及び不可避的不純物に調整しためっき浴を使用した。得られためっき鋼板の組成を表3に示す。めっき浴温は420〜470℃で行い、めっき後は通常のワイピングによりめっき付着量を片面当たり90g/m2に調整した。めっき後、調質圧延を1%行い、溶剤脱脂後に表3に示す樹脂系の有機樹脂皮膜処理を行った。
【0041】
得られためっき鋼板の溶接性の評価は、連続打点性試験による評価と溶接安定性による評価で行った。
【0042】
(連続打点性試験)
めっき鋼板を2枚重ね併せてスポット溶接の連続打点性試験を実施した。
【0043】
試験条件は、電極形状:先端ドーム径12φ、加圧力:220kgf、溶接時間:12サイクル(AC 50サイクル)、溶接電流:12kAで行い、剪断引張後のナゲット径を測定して、その値が4.5mmになった時を電極寿命とした。電極寿命が2500点超を◎、2000〜2500点を○、1000〜2000点を△、1000点未満を×とし、△と×を不合格とした。
【0044】
(溶接安定性)
電極寿命が2000点以上のものについて、2000点から2010点までのナゲット径サイズのばらつきで表し、最大と最小のナゲットサイズの差が0.3mm以下のものを◎、0.5mm以下のものを○とし、それぞれ合格とした。
【0045】
結果を表3に示す。No.87〜No.132は本発明例で、いずれも良好な溶接性を示した。No.133とNo.134は皮膜量が少なく、溶接性向上効果が得られておらず、No.135とNo.136は逆に皮膜が厚すぎて溶接性が劣る結果となっている。
【0046】
【表3】
【0047】
【発明の効果】
このように本発明によれば、溶接性に優れた溶融亜鉛−アルミニウム系合金めっき鋼板を製造することが可能となり、自動車、建材等の産業上きわめて大きな効果を有している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot dip zinc-aluminum alloy plated steel sheet excellent in spot weldability and a method for producing the same.
[0002]
[Prior art]
In recent years, the use of surface-treated steel sheets has been expanded in order to cope with the prolonged service life of automobiles, household electrical products, building materials, and the like. In particular, Zn-5% Al hot dip galvanized steel sheets are used mainly for building materials because they have superior corrosion resistance compared to conventional hot dip galvanizing. Recently, Zn-Al-Mg-based plated steel sheets have been developed, and further improvement in corrosion resistance has been achieved.
[0003]
However, such a Zn-high Al alloy-plated steel sheet has the disadvantage of poor weldability. This is because the melting point of hot dip galvanizing is about 419 ° C., whereas the melting point of high Al alloy-plated steel sheet is generally low, the plating layer dissolves easily during spot welding, and the contact area of the weld becomes large, resulting in a high current density. As the nugget diameter decreases, the Cu—Zn alloy is generated and the electrode is worn. For this reason, the heating of the surface of the welding tip is excessive, a brittle alloy layer is deposited on the surface of the electrode tip, and the tip wear becomes severe.
[0004]
JP-A-2-4983 discloses a technique for forming an oxide film mainly composed of ZnO as a method for improving the weldability in an alloyed hot-dip galvanized steel sheet. Industrially, a ZnO film is easily formed. It is difficult to make it practical and has not been put to practical use. Japanese Patent Laid-Open No. 5-263210 discloses a Ti-5% Al alloy-plated steel sheet, in which Ti is added to promote Fe alloying, Fe is alloyed using an alloying furnace after plating, and spot welding is performed. Techniques that improve performance are described. However, this has a problem that an alloying furnace is essential and the cost is high. Japanese Patent Application Laid-Open No. 6-336664 describes a technique for improving spot weldability by immersing a steel sheet in a zinc-aluminum-based hot dipping bath and then spraying a silicon-containing aqueous solution to form a silica coating on the plating surface. However, it is difficult to uniformly form a silica coating on a steel sheet with good adhesion, and there is a problem that it is not very effective at present.
[0005]
[Problems to be solved by the invention]
In view of such a situation, it is an object of the present invention to provide a hot dip zinc-aluminum alloy-plated steel sheet with improved spot weldability of a conventional zinc-aluminum alloy-plated steel sheet and a method for producing the same.
[0006]
[Means for Solving the Problems]
Degradation of spot weldability occurs due to lowering of the melting point of the plating alloy and wear of the electrode due to the formation of the Cu-Zn alloy on the electrode. Based on this recognition, the inventors aimed to change the composition and structure of the plating alloy. As a result of intensive studies, it has been found that it is effective to add Si to the plating bath. Although this reason is not clear, it is considered that (1) Si suppresses the formation of the Cu—Zn alloy, and (2) Si suppresses the formation of the Al-based oxide. In addition, the present inventors investigated the existence state of Si in the plating layer, and found that the presence of silica was not necessarily due to a variety of metals such as Si, SiO 2 , Mg 2 Si. As a result of further detailed investigation, it was found that when the size of the Si-based material in the plating layer is large, the spot weldability is deteriorated, and when the number is increased, it is significantly deteriorated. The present invention has been made on the basis of these findings, and the gist thereof is as follows.
[0007]
(1) The surface of the steel sheet contains Al: 3 to 19.5 % by mass%, Si: 0.01 to 2%, and has a plating layer composed of the balance Zn and inevitable impurities, and has an area of 100 μm 2 or more. A hot-dip zinc-aluminum alloy-plated steel sheet having a surface that is a plated layer and having excellent spot weldability, wherein the Si-based material is contained in an amount of 6 × 10 3 or less per unit cross-sectional area (mm 2 ) of the plated layer .
[0008]
(2) The hot dip zinc excellent in spot weldability whose surface is a plating layer, characterized by further containing Mg: 0.1 to 10% in the plating layer of the plated steel sheet according to (1) above -Aluminum alloy plated steel sheet.
[0009]
(3) The plated layer of the plated steel sheet according to (1) or (2) further contains 0.01 to 2% by mass of one or more of Ti, Cr, Ni, and Sn. A hot dip zinc-aluminum alloy plated steel sheet having excellent spot weldability , the surface of which is a plating layer .
[0010]
(4) Spot weldability characterized by having an inorganic oxide film of 70 mg / m 2 to 2 g / m 2 on the plated layer of the plated steel sheet according to any one of (1) to (3) above. Excellent hot dip zinc-aluminum alloy plated steel sheet.
[0011]
(5) Excellent spot weldability characterized by having an organic resin film of 100 mg / m 2 to 2 g / m 2 on the plated layer of the plated steel sheet according to any one of (1) to (3) above. Hot dip zinc-aluminum alloy plated steel sheet.
[0012]
(6) When manufacturing a hot dip zinc-aluminum alloy plated steel sheet, the plating bath temperature is set to 400 ° C. or higher, whereby an Si-based material having an area of 100 μm 2 or more in the plating layer is 6 × per unit sectional area of the plating layer. The method for producing a hot-dip galvanized aluminum alloy-plated steel sheet having excellent spot weldability , the surface of which is a plating layer, according to any one of (1) to ( 3 ), wherein 10 3 or less are contained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. First, elements contained in the plating layer will be described.
[0014]
Al in the plating layer is added to improve the corrosion resistance. Poor corrosion resistance is less than 3%, the corrosion resistance improving effect becomes more and less 19.5% of the upper limit indicated in the examples (Example invention) 3% or more for spot weldability are degraded with saturated.
[0015]
Si is an important element for the present invention, and is added to improve spot weldability. If it is less than 0.01%, the spot weldability is not improved, and if it exceeds 2%, the spot weldability is deteriorated.
[0016]
As for the size in the plating layer of Si-based substances (metal Si, SiO 2 , Mg 2 Si, etc.), if there is something larger than 100 μm 2 , there will be a microscopic difference in resistance, and explosion will occur during spot welding. It becomes easy and the spot weldability tends to deteriorate. And, when the Si-based material of this size or more exceeds 6 × 10 3 per unit cross-sectional area (mm 2 ) of the plating layer, spot weldability is remarkably deteriorated, so that the Si-based material having an area of 100 μm 2 or more The number was set to 6 × 10 3 or less per unit sectional area (mm 2 ) of the plating layer.
[0017]
In general, Mg is often added because it has an effect of improving corrosion resistance. In the present invention, the addition of Mg suppresses the deterioration of weldability by suppressing the formation of Al 2 O 3 that adversely affects weldability. If it is less than 0.1%, there is no effect of addition, and if it exceeds 10%, bath dross often occurs and plating becomes difficult, so the content is set to 0.1 to 10%, preferably 0.5 to 10%.
[0018]
Ti, Cr, Ni, and Sn are added as necessary to stabilize weldability. If it is less than 0.01%, there is no effect of addition, and if it exceeds 2%, the weldability improving effect is saturated, so 0.01 to 2%.
[0019]
There is no particular limitation on the plating plate to be used, and it can be used regardless of the steelmaking method, steel strength, hot rolled PO material, cold rolled material, and the like. The present technology can be applied to plating regardless of the manufacturing method such as Sendzimir type, flux type, or pre-plating type.
[0020]
The temperature of the plating bath affects the uniform dispersibility of Si in the bath. When the temperature is lower than 400 ° C., Si is precipitated, the Si-based material becomes too coarse, and the weldability is hindered. Further, the plating bath is liable to dross out and leads to a decrease in the pot yield.
[0021]
Further, temper rolling may be performed without any particular problem even if water-based or organic post-treatment is performed after plating to improve black resistance and corrosion resistance.
[0022]
If the plated layer after plating is further coated with at least one inorganic oxide selected from oxides of Si, Mg, Zr, Mo, Ce, and Ca, the effect of the present invention can be further improved. . In this case, for example, there is no problem in using a complex oxide such as phosphate. If the coating amount of this inorganic oxide film is less than 70 mg / m 2 , the effect of improving weldability is not sufficient, and if it exceeds 2 g / m 2 , it becomes easy to conduct electricity and deteriorates the weldability. The coating amount was set to 70 mg / m 2 to 2 g / m 2 .
[0023]
Moreover, even if it coats an organic resin film instead of this inorganic oxide film, the effect of this invention can be improved further similarly to an inorganic oxide film. If it is less than 100 mg / m 2 , the effect of improving the weldability is not sufficient, and if it exceeds 2 g / m 2 , it becomes easy to be de-energized and the weldability deteriorates, so the coating amount of the organic resin film is 100 mg / m 2 to 2 g / m. Two . The organic resin may be in any form of water-based resin, solvent-based resin, powder-based resin, and solvent-free resin. The water-based resin referred to here includes a water-soluble resin and a water-insoluble resin (water-dispersible resin) that can be finely dispersed in water, such as an emulsion or a suspension, while being water-insoluble.
[0024]
Resins that can be used as organic resins are not particularly limited, but polyolefin resins, acrylic olefin resins, polyurethane resins, acrylic resins, polycarbonate resins, epoxy resins, polyester resins, alkyd resins, phenol resins, Other heat-curing resins can be used, and those that can be crosslinked are more preferable. Two or more kinds of organic resins may be used in combination, or may be used after being copolymerized. Moreover, you may add crosslinking agents, such as various melamine resin and an amino resin, as needed. Among these, it is desirable to use an acrylic olefin resin or an acrylic resin when considering both performance and cost. Furthermore, even if a small amount of fine silica or a lubricant is added in addition to the organic resin, the effect of the present invention is not impaired.
[0025]
As a coating method for forming the inorganic oxide film or the organic resin film, any method such as spraying, curtain coating, flow coater, roll coater, bar coater, brush coating, dipping and air knife squeezing can be applied. The ultimate baking temperature is preferably 80 to 250 ° C. If it is less than 80 ° C., the water in the paint is not easily volatilized, and thus adverse effects such as a decrease in corrosion resistance are caused. If the temperature exceeds 250 ° C., the alkyl part of the organic resin is not preferable because it undergoes modification such as thermal decomposition, or the coating is excessively cured and the corrosion resistance and workability are deteriorated. More preferably, it is 80-160 degreeC. Moreover, although it does not specifically limit about drying equipment, The method by hot air blowing, the indirect heating method by a heater, the method by infrared rays, the method by induction heating, and the method of using these together are also employable. Further, depending on the type of organic resin to be used, it can be cured by energy rays such as ultraviolet rays and electron beams.
[0026]
【Example】
(Example 1) An SPCC plate having a thickness of 0.8 mm obtained by melting a steel slab and producing a thin steel plate by an ordinary method was used as a plating base plate. Plating was performed by heating, annealing, and plating in a Sendzimir type continuous galvanizing line. The annealing atmosphere was an atmosphere of 10% hydrogen and the remaining 90% nitrogen gas, and the dew point was −30 degrees. The annealing temperature is 730 ° C., and the annealing time is 3 minutes. The plating bath is Al: 3.5 to 21%, Mg: 0 to 10.5%, Si: 0 to 2.2%, Ti: 0 to 1.8%, Cr: 0 to 1.7%, Ni: A plating bath adjusted to 0 to 1.7%, Sn: 0.4 to 1.8%, the balance Zn and inevitable impurities was used. Table 1 shows the composition of the obtained plated steel sheet. The plating bath temperature was 420 to 500 ° C., and after plating, the plating adhesion amount was adjusted to 90 g / m 2 per side by ordinary wiping. After plating, temper rolling was performed 1% . The Si-based material of the manufactured plated steel sheet as this, conducted EPMA observation of the plating section, was observed for each field of view of any of 100 [mu] m square, it counts the number of 100 [mu] m 2 or more of the units of the plating layer cross-section Expressed as the number per cross-sectional area. The results are shown in Table 1.
[0027]
Evaluation of the weldability of the obtained plated steel sheet was performed by evaluation by a continuous spot test and evaluation by welding stability.
[0028]
(Continuous spot test)
Two plated steel sheets were overlapped and a spot spot continuous test was conducted.
[0029]
The test conditions were electrode shape: tip dome diameter 12φ, pressure: 220 kgf, welding time: 12 cycles (AC 50 cycles), welding current: 12 kA, the nugget diameter after shear tension was measured, and the value was 4 The electrode life was defined as when it reached 5 mm. Those having an electrode life of 2000 points or more were evaluated as ◯, 1000 to 2000 points as Δ, less than 1000 points as ×, and Δ and × as rejected.
[0030]
(Welding stability)
For those with an electrode life of 2000 points or more, the difference in nugget diameter size from 2000 points to 2010 points is indicated. The difference between the maximum and minimum nugget sizes is 0.3 mm or less. ○ and each passed.
[0031]
The evaluation results are shown in Table 1. No. 1 to No. 36 is an example of the present invention, and the weldability is good. In particular, no. 21-No. No. 36 is an example in which Ti, Cr, Ni, or Sn is further contained in the plating layer, and is excellent in welding stability in addition to continuous spotting properties. On the other hand, no. 37 to No. No. 45 is a comparative example. No. 44 is inferior in weldability because Al is too high. 37, no. 38, no. 40, no. 41, no. No. 42 is too low in Si content. No. 45 is too high for Si. No. 43 is too high for Mg. No. 39 has poor weldability because the bath temperature is too low.
[0032]
[Table 1]
[0033]
(Example 2) An SPCC plate having a thickness of 0.8 mm obtained by melting a steel slab and producing a thin steel plate by a conventional method was used as a plating base plate. Plating was performed by heating, annealing, and plating in a Sendzimir type continuous galvanizing line. The annealing atmosphere was an atmosphere of 10% hydrogen and the remaining 90% nitrogen gas, and the dew point was −30 degrees. The annealing temperature is 730 ° C., and the annealing time is 3 minutes. The plating bath is Al: 3.5 to 22%, Mg: 0 to 10.5%, Si: 0 to 2.2%, Ti: 0 to 1.7%, Cr: 0 to 1.7%, Ni: A plating bath adjusted to 0 to 1.7%, Sn: 0 to 1.9%, the balance Zn and inevitable impurities was used. Table 2 shows the composition of the obtained plated steel sheet. The plating bath temperature was 420 to 510 ° C., and after plating, the plating adhesion amount was adjusted to 90 g / m 2 per side by ordinary wiping. After plating, temper rolling was performed 1%. Thereafter, post-treatment was performed. Work-up was carried out inorganic oxide coating process in the range of 70mg / m 2 ~2500mg / m 2 .
[0034]
Evaluation of the weldability of the obtained plated steel sheet was performed by evaluation by a continuous spot test and evaluation by welding stability.
[0035]
(Continuous spot test)
Two plated steel sheets were overlapped and a spot spot continuous test was conducted.
[0036]
The test conditions were electrode shape: tip dome diameter 12φ, pressure: 220 kgf, welding time: 12 cycles (AC 50 cycles), welding current: 12 kA, the nugget diameter after shear tension was measured, and the value was 4 The electrode life was defined as when it reached 5 mm. The electrode life exceeded 2,500 points, ◎, 2000-2500 points ◯, 1000-2000 points △, less than 1000 points x, and △ and x were rejected.
[0037]
(Welding stability)
For those with an electrode life of 2000 points or more, the difference in nugget diameter size from 2000 points to 2010 points is indicated. The difference between the maximum and minimum nugget sizes is 0.3 mm or less. ○ and each passed.
[0038]
The results are shown in Table 2. No. 46 to No. No. 77 is an example of the present invention, and all show good weldability. No. 78 to No. 86 is a comparative example. 78, no. 79, no. 85, no. No. 86 has poor weldability because the inorganic oxide film is too thick. 80-No. No. 85, because the components in the plating layer are outside the scope of the present invention, the weldability is insufficient even when the inorganic film treatment is performed.
[0039]
[Table 2]
[0040]
(Example 3) An SPCC plate having a thickness of 0.8 mm obtained by melting a steel slab and producing a thin steel plate by a conventional method was used as a plating base plate. Plating was performed by heating, annealing, and plating in a Sendzimir type continuous galvanizing line. The annealing atmosphere was an atmosphere of 10% hydrogen and the remaining 90% nitrogen gas, and the dew point was −30 degrees. The annealing temperature is 730 ° C., and the annealing time is 3 minutes. The composition of the plating bath is Al: 3.5 to 22%, Mg: 0 to 10.5%, Si: 0 to 2.2%, Ti: 0 to 1.7%, Cr: 0 to 1.7%, A plating bath adjusted to Ni: 0 to 1.7%, Sn: 0 to 1.9%, the balance Zn and inevitable impurities was used. Table 3 shows the composition of the obtained plated steel sheet. The plating bath temperature was 420 to 470 ° C., and after plating, the plating adhesion amount was adjusted to 90 g / m 2 per side by ordinary wiping. After plating, temper rolling was performed at 1%, and after the solvent degreasing, the resin-based organic resin film treatment shown in Table 3 was performed.
[0041]
Evaluation of the weldability of the obtained plated steel sheet was performed by evaluation by a continuous spot test and evaluation by welding stability.
[0042]
(Continuous spot test)
Two plated steel sheets were overlapped and a spot spot continuous test was conducted.
[0043]
The test conditions were electrode shape: tip dome diameter 12φ, pressure: 220 kgf, welding time: 12 cycles (AC 50 cycles), welding current: 12 kA, the nugget diameter after shear tension was measured, and the value was 4 The electrode life was defined as when it reached 5 mm. The electrode life exceeded 2,500 points, ◎, 2000-2500 points ◯, 1000-2000 points △, less than 1000 points x, and △ and x were rejected.
[0044]
(Welding stability)
For those with an electrode life of 2000 points or more, the difference in nugget diameter size from 2000 points to 2010 points is indicated. The difference between the maximum and minimum nugget sizes is 0.3 mm or less. ○ and each passed.
[0045]
The results are shown in Table 3. No. 87-No. No. 132 is an example of the present invention, and all showed good weldability. No. 133 and No. No. 134 has a small amount of film and has no effect of improving weldability. 135 and No. On the other hand, 136 has a result that the film is too thick and the weldability is inferior.
[0046]
[Table 3]
[0047]
【The invention's effect】
As described above, according to the present invention, it is possible to produce a hot-dip galvanized aluminum alloy-plated steel sheet having excellent weldability, which has an extremely large effect on industries such as automobiles and building materials.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001111341A JP4555498B2 (en) | 2000-04-11 | 2001-04-10 | Hot-dip zinc-aluminum alloy plated steel sheet with excellent spot weldability and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-109408 | 2000-04-11 | ||
JP2000109408 | 2000-04-11 | ||
JP2001111341A JP4555498B2 (en) | 2000-04-11 | 2001-04-10 | Hot-dip zinc-aluminum alloy plated steel sheet with excellent spot weldability and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001355052A JP2001355052A (en) | 2001-12-25 |
JP4555498B2 true JP4555498B2 (en) | 2010-09-29 |
Family
ID=26589855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001111341A Expired - Lifetime JP4555498B2 (en) | 2000-04-11 | 2001-04-10 | Hot-dip zinc-aluminum alloy plated steel sheet with excellent spot weldability and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4555498B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3793522B2 (en) * | 2002-11-27 | 2006-07-05 | 新日本製鐵株式会社 | High corrosion-resistant coated steel sheet with excellent sharpness |
JP4757581B2 (en) * | 2005-09-20 | 2011-08-24 | 新日本製鐵株式会社 | High corrosion resistance hot-dip galvanized steel sheet with excellent weldability and manufacturing method thereof |
JP2007146199A (en) * | 2005-11-25 | 2007-06-14 | Nisshin Steel Co Ltd | Rust-preventive structure for automobile |
JP5389133B2 (en) * | 2011-09-27 | 2014-01-15 | 日新製鋼株式会社 | Rust-proof structure for automobiles |
JP6451327B2 (en) * | 2015-01-08 | 2019-01-16 | 新日鐵住金株式会社 | Overlapping blank for hot stamping, method for manufacturing overlapping hot stamping molded body, and overlapping hot stamping molded body |
RU2019125494A (en) * | 2017-03-27 | 2021-04-28 | Ниппон Стил Корпорейшн | ALUMINUM STEEL SHEET |
JP7040695B1 (en) * | 2020-11-18 | 2022-03-23 | 日本製鉄株式会社 | Plated steel |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56169761A (en) * | 1980-05-31 | 1981-12-26 | Sumitomo Metal Ind Ltd | Zn-plated high-tension steel plate having excellent spot weldability and method for production thereof |
JPS58177446A (en) * | 1982-04-09 | 1983-10-18 | Nisshin Steel Co Ltd | Manufacture of steel plate plated with alloy by hot dipping and provided with superior corrosion resistance and coatability |
JPH0273954A (en) * | 1988-09-07 | 1990-03-13 | Nippon Steel Corp | Highly corrosion resistant zinc-aluminum alloy hot-dipped steel sheet excellent in surface smoothness |
JPH05263210A (en) * | 1992-03-19 | 1993-10-12 | Kobe Steel Ltd | Production of hot-dip zinc-aluminum alloy-plated steel sheet excellent in spot weldability |
JPH06336664A (en) * | 1993-05-27 | 1994-12-06 | Kobe Steel Ltd | Production of zinc-aluminum plated steel sheet excellent in spot weldability |
JPH07278844A (en) * | 1994-04-08 | 1995-10-24 | Kobe Steel Ltd | Organic-coated rustproof steel sheet excellent in spot weldability |
JPH09316618A (en) * | 1996-05-22 | 1997-12-09 | Nkk Corp | Coated aluminum-zinc base alloy plated steel sheet excellent in edge creep resistance |
JP2000064061A (en) * | 1998-08-18 | 2000-02-29 | Nippon Steel Corp | Precoated steel sheet excellent in corrosion resistance |
JP2000087202A (en) * | 1998-09-04 | 2000-03-28 | Sumitomo Metal Ind Ltd | Hot dip galvannealed steel sheet excellent in spot weldability and its production |
-
2001
- 2001-04-10 JP JP2001111341A patent/JP4555498B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56169761A (en) * | 1980-05-31 | 1981-12-26 | Sumitomo Metal Ind Ltd | Zn-plated high-tension steel plate having excellent spot weldability and method for production thereof |
JPS58177446A (en) * | 1982-04-09 | 1983-10-18 | Nisshin Steel Co Ltd | Manufacture of steel plate plated with alloy by hot dipping and provided with superior corrosion resistance and coatability |
JPH0273954A (en) * | 1988-09-07 | 1990-03-13 | Nippon Steel Corp | Highly corrosion resistant zinc-aluminum alloy hot-dipped steel sheet excellent in surface smoothness |
JPH05263210A (en) * | 1992-03-19 | 1993-10-12 | Kobe Steel Ltd | Production of hot-dip zinc-aluminum alloy-plated steel sheet excellent in spot weldability |
JPH06336664A (en) * | 1993-05-27 | 1994-12-06 | Kobe Steel Ltd | Production of zinc-aluminum plated steel sheet excellent in spot weldability |
JPH07278844A (en) * | 1994-04-08 | 1995-10-24 | Kobe Steel Ltd | Organic-coated rustproof steel sheet excellent in spot weldability |
JPH09316618A (en) * | 1996-05-22 | 1997-12-09 | Nkk Corp | Coated aluminum-zinc base alloy plated steel sheet excellent in edge creep resistance |
JP2000064061A (en) * | 1998-08-18 | 2000-02-29 | Nippon Steel Corp | Precoated steel sheet excellent in corrosion resistance |
JP2000087202A (en) * | 1998-09-04 | 2000-03-28 | Sumitomo Metal Ind Ltd | Hot dip galvannealed steel sheet excellent in spot weldability and its production |
Also Published As
Publication number | Publication date |
---|---|
JP2001355052A (en) | 2001-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9302449B2 (en) | High corrosion resistant hot dip Zn alloy plated steel sheet | |
JP7359894B2 (en) | Zinc alloy plated steel material with excellent weldability and corrosion resistance of processed parts and method for manufacturing the same | |
CN111989420B (en) | Plated steel material | |
JP3582504B2 (en) | Hot-press plated steel sheet | |
US6635359B1 (en) | Zn-Al-Mg-Si-alloy plated steel product having excellent corrosion resistance and method for preparing the same | |
JP3732141B2 (en) | Hot-dip galvanized-Al alloy-plated steel sheet with excellent corrosion resistance after processing and method for producing the same | |
JP2020143370A (en) | HOT-DIP Al-Zn-Mg-Si BASED PLATING STEEL SHEET AND MANUFACTURING METHOD THEREOF, AND COATED STEEL SHEET AND MANUFACTURING METHOD THEREOF | |
JP3758549B2 (en) | Hot pressing method | |
JP2024500435A (en) | Plated steel sheet with excellent sealer adhesion and manufacturing method thereof | |
JP4555499B2 (en) | Hot-dip Zn-Al-Mg-Si plated steel with excellent surface properties and method for producing the same | |
JP4555498B2 (en) | Hot-dip zinc-aluminum alloy plated steel sheet with excellent spot weldability and manufacturing method thereof | |
JP2004107695A (en) | Hot dip galvanized steel member having excellent uniform coating suitability and corrosion resistance and production method therefor | |
JP2004019000A (en) | HOT-DIP Zn-Al PLATED STEEL SHEET SUPERIOR IN APPEARANCE, WORKABILITY AND CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR | |
JP4377743B2 (en) | High corrosion resistance galvannealed steel sheet | |
JP4555500B2 (en) | Hot-dip zinc-aluminum alloy-plated steel sheet with excellent workability and manufacturing method thereof | |
JP2023507962A (en) | Zn-Al-Mg system hot-dip alloy plated steel material excellent in corrosion resistance of processed parts and its manufacturing method | |
JP3931859B2 (en) | Galvanized steel for hot forming and hot forming method | |
JP3591501B2 (en) | Steel for hot press forming | |
JP2627788B2 (en) | High corrosion resistance hot-dip zinc-aluminum alloy coated steel sheet with excellent surface smoothness | |
JP2004277839A (en) | Zinc based metal-coated steel | |
JP2004124118A (en) | Galvanized steel sheet having excellent press formability and appearance and method for manufacturing the same | |
JP2002371342A (en) | Hot-dip galvanized steel sheet and manufacturing method therefor | |
JP2002004017A (en) | HOT-DIP Zn-Al-Mg-Si PLATED STEEL MATERIAL EXCELLENT IN SURFACE CHARACTERISTIC AND ITS PRODUCTION METHOD | |
JP4634652B2 (en) | Hot-dip Zn-Al-Mg-Si alloy-plated steel pipe with excellent corrosion resistance | |
JP3205292B2 (en) | Manufacturing method of hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100713 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100716 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4555498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |