JP4551416B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP4551416B2
JP4551416B2 JP2007088349A JP2007088349A JP4551416B2 JP 4551416 B2 JP4551416 B2 JP 4551416B2 JP 2007088349 A JP2007088349 A JP 2007088349A JP 2007088349 A JP2007088349 A JP 2007088349A JP 4551416 B2 JP4551416 B2 JP 4551416B2
Authority
JP
Japan
Prior art keywords
temperature
resistor
fluid
flow rate
detection resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007088349A
Other languages
Japanese (ja)
Other versions
JP2007178447A (en
Inventor
雄二 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007088349A priority Critical patent/JP4551416B2/en
Publication of JP2007178447A publication Critical patent/JP2007178447A/en
Application granted granted Critical
Publication of JP4551416B2 publication Critical patent/JP4551416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流体の流量の測定に関する。   The present invention relates to the measurement of fluid flow rates.

流体の流量を測定する方式は、大きく2種類に分けることができる。すなわち、加熱電流検出方式と、温度差検出方式である。   There are two main types of methods for measuring the flow rate of fluid. That is, a heating current detection method and a temperature difference detection method.

加熱電流検出方式は、流体中に設けられたヒーターを、流体温度に対して一定温度だけ高く保つのに必要な加熱電流を検出して、流体の流量を測定する。一方の温度差検出方式は、発熱抵抗体の温度を一定に保ち、その上流側に形成された上流側温度検出抵抗体と、下流側に形成された下流側温度検出抵抗体との温度差を検出して、流体の流量を測定する。温度差検出方式を採用する流体流量測定装置は例えば特公平5−7659に示されている。   In the heating current detection method, the flow rate of the fluid is measured by detecting the heating current required to keep the heater provided in the fluid higher by a certain temperature than the fluid temperature. One temperature difference detection method maintains the temperature of the heating resistor constant, and detects the temperature difference between the upstream temperature detection resistor formed upstream and the downstream temperature detection resistor formed downstream. Detect and measure fluid flow. For example, Japanese Patent Publication No. 5-7659 discloses a fluid flow rate measuring apparatus that employs a temperature difference detection method.

上述した従来の2つの方式には、それぞれ以下のような欠点が存在する。   The two conventional methods described above have the following drawbacks.

具体的には、加熱電流検出方式を採用する流体流量測定装置では、小型化に適さず、かつ、小さな流量域の流量を測定することが困難である。   Specifically, a fluid flow rate measuring apparatus that employs a heating current detection method is not suitable for downsizing and it is difficult to measure a flow rate in a small flow rate range.

温度差検出方式を採用する流体流量測定装置では、小型化、および、小さい流量域の流量の測定が可能であるが、流体流量が大きくなると上流側温度検出抵抗体の温度がそれ以上低下しなくなり、また、下流側温度検出抵抗体の温度も低下を始める。よって大流量域で感度が低下し、ダイナミックレンジを大きく取れない。また、流量変化により温度検出抵抗体の温度が変化するため、応答性が悪い。   The fluid flow rate measurement device that uses the temperature difference detection method can be downsized and measure the flow rate in a small flow rate range. However, as the fluid flow rate increases, the temperature of the upstream temperature detection resistor does not drop any further. In addition, the temperature of the downstream temperature detection resistor starts to decrease. Therefore, the sensitivity decreases at a large flow rate range, and the dynamic range cannot be increased. Moreover, since the temperature of the temperature detection resistor changes due to the flow rate change, the responsiveness is poor.

本発明の目的は、小型化が可能で、感度および応答性が高く、かつ、ダイナミックレンジが広い流体流量測定方式を提供することである。   An object of the present invention is to provide a fluid flow rate measurement method that can be miniaturized, has high sensitivity and responsiveness, and has a wide dynamic range.

本発明による流量測定装置は、流体中に配置され、熱を発する発熱体の上流側の放熱量と下流側の放熱量との差から、流体の流量を測定する流量測定装置において、流体の上流側から下流側にかけて配置され、各々が、熱を発する発熱体および温度を検出する温度検出体の機能を有する第1、第2、第3、第4、第5、第6の感温抵抗体と、前記感温抵抗体を発熱させる電力の供給を制御する制御回路を備える。前記第1、第2、第5、第6の感温抵抗体は、定電流源あるいは定電圧源に接続されており、前記第2、第3、第4、第5の感温抵抗体は電力供給源である電源に接続されており、
前記制御回路は、前記第1、第6の感温抵抗体の温度を比較する第1比較回路と、前記第2、第5の感温抵抗体の温度を比較する第2比較回路と、前記電源と前記第2、第3、第4、第5の感温抵抗体の間に配置される複数のスイッチであって、前記第1比較回路による温度比較結果と前記第2比較回路による温度比較結果とに基づいて、前記第1、第2、第3、第4の感温抵抗体の中の1つの感温抵抗体に前記電源から電力を供給するように開閉動作をして、前記第2、第5の感温抵抗体の温度が等しくなるようにし、さらに、前記第1、第6の感温抵抗体の温度が等しくなるようにする前記スイッチとを備え、前記第3、第4の感温抵抗体に供給された電力の差と、前記第2、第5の感温抵抗体に供給された電力の差とに基づいて、流体の流量を測定する。これにより上記目的が達成される。
The flow rate measuring device according to the present invention is arranged in a fluid, and is a flow rate measuring device that measures the flow rate of a fluid from the difference between the heat release amount upstream and the heat release amount downstream of a heating element that generates heat. 1st, 2nd, 3rd, 4th, 5th, 6th temperature sensitive resistor which is arrange | positioned from the side to the downstream, and each has the function of the heat generating body which emits heat, and the temperature detection body which detects temperature And a control circuit for controlling supply of electric power for generating heat from the temperature sensitive resistor. The first, second, fifth, and sixth temperature sensitive resistors are connected to a constant current source or a constant voltage source, and the second, third, fourth, and fifth temperature sensitive resistors are Connected to the power supply,
The control circuit includes a first comparison circuit that compares the temperatures of the first and sixth temperature sensitive resistors, a second comparison circuit that compares the temperatures of the second and fifth temperature sensitive resistors, A plurality of switches arranged between a power source and the second, third, fourth, and fifth temperature sensitive resistors, the temperature comparison result by the first comparison circuit and the temperature comparison by the second comparison circuit Based on the result, an opening / closing operation is performed to supply power from the power source to one of the first, second, third, and fourth temperature sensitive resistors, and the first And the switch for making the temperatures of the second and fifth temperature sensitive resistors equal , and further making the temperatures of the first and sixth temperature sensitive resistors equal. Based on the difference between the power supplied to the temperature sensitive resistor and the difference between the power supplied to the second and fifth temperature sensitive resistors. The flow rate is measured. This achieves the above object.

好ましくは、前記第3と第4の感温抵抗体の間に、さらに発熱抵抗体を備え、回路は、前記第1の感温抵抗体と第6の感温抵抗体の平均温度が予め設定された温度になるように、前記発熱抵抗体に供給する電力を制御してもよい。   Preferably, a heating resistor is further provided between the third and fourth temperature sensitive resistors, and the circuit is configured so that an average temperature of the first temperature sensitive resistor and the sixth temperature sensitive resistor is preset. The electric power supplied to the heating resistor may be controlled so that the temperature is set.

また、前記回路は、流体の温度に基づいて、前記予め設定された温度を変化させてもよい。   The circuit may change the preset temperature based on the temperature of the fluid.

流体の上流側から下流側に設けた6つの感温抵抗体のうち、第2、第5の感温抵抗体に供給される電力差は流体流量が小さいときに変化が大きく、第3、第4の感温抵抗体に供給される電力差は流体流量が大きいときに変化が大きくなる。よって、広い流量範囲にわたって感度の良い流量測定が可能となる。また、上流側と下流側の感温抵抗体の温度をフィードバック制御することになるので応答性が改善する。   Among the six temperature sensitive resistors provided from the upstream side to the downstream side of the fluid, the difference in power supplied to the second and fifth temperature sensitive resistors changes greatly when the fluid flow rate is small, and the third, The difference in power supplied to the temperature sensitive resistor 4 increases greatly when the fluid flow rate is large. Therefore, it is possible to measure the flow rate with high sensitivity over a wide flow range. In addition, since the temperatures of the upstream and downstream temperature sensitive resistors are feedback-controlled, the responsiveness is improved.

流量が増大しても、第1〜第6の感温抵抗体の温度を高く保つことができるので、特に大流量での感度増大、ダイナミックレンジの拡大に効果がある。また、上流側と下流側の温度検出体の温度を一定に保つことになるので応答性が改善する。   Even if the flow rate is increased, the temperature of the first to sixth temperature sensitive resistors can be kept high, which is particularly effective for increasing sensitivity and increasing the dynamic range at a large flow rate. In addition, since the temperatures of the upstream and downstream temperature detectors are kept constant, the responsiveness is improved.

流体の温度が変化しても流体と装置との温度差が一定に保たれるので、流体の温度変化が生じた場合でも流量を測定できる。   Even if the temperature of the fluid changes, the temperature difference between the fluid and the apparatus is kept constant, so that the flow rate can be measured even when the temperature of the fluid changes.

以下、添付の図面を参照して、本発明の実施の形態を説明する。図面では、同一の機能を有する構成要素には同一の参照符号を付している。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the drawings, the same reference numerals are assigned to components having the same function.

(実施の形態1)
は、実施の形態の流体流量測定装置の測定部の構成を示す。流体流量測定装置は、シリコン基板1上に形成された薄肉部3に、上流側から温度センサとしての上流側温度検出抵抗体5、白金等の感温材料により形成された第1の発熱抵抗体68、第2の発熱抵抗体69、第3の発熱抵抗体70および第4の発熱抵抗体71、温度センサとしての下流側温度検出抵抗体6の6つの抵抗体を備えている。なお、「温度検出抵抗体」および「発熱抵抗体」と区別しているが、これらは、「感温抵抗体」と呼ばれる同一の要素と考えることができる。すなわち、感温抵抗体は、温度を検出する機能と熱を発する機能との2つの機能を有する。それぞれの抵抗体5、68、69、70、71、6には配線部9が接続され、配線部9の一端にはパッド部10が接続されている。パッド部10は外部回路との接続のため、ワイヤボンディング等に使用される。薄肉部3は、絶縁層7、8とその間に形成された抵抗体5、6などから形成されている。薄肉部3の裏面側のシリコンはエッチングにより除去され、空洞部が形成されている。
(Embodiment 1)
Figure 1 shows the structure of the measurement portion of the fluid flow measuring apparatus of the first embodiment. The fluid flow measuring device includes a thin-walled portion 3 formed on a silicon substrate 1 and an upstream temperature detection resistor 5 as a temperature sensor from the upstream side, and a first heating resistor formed of a temperature sensitive material such as platinum. 68, a second heating resistor 69, a third heating resistor 70 and a fourth heating resistor 71, and a downstream temperature detection resistor 6 as a temperature sensor . In addition, although distinguished from "temperature detection resistor" and "heat generating resistor", these can be considered as the same element called "temperature sensitive resistor". That is, the temperature sensitive resistor has two functions: a function of detecting temperature and a function of generating heat. A wiring portion 9 is connected to each of the resistors 5, 68, 69, 70, 71 and 6, and a pad portion 10 is connected to one end of the wiring portion 9. The pad portion 10 is used for wire bonding or the like for connection with an external circuit. The thin portion 3 is formed of insulating layers 7 and 8 and resistors 5 and 6 formed therebetween. Silicon on the back surface side of the thin portion 3 is removed by etching to form a cavity.

は、実施の形態による、6つの抵抗体を含む、流体流量測定装置の回路図である。上流側温度検出抵抗体5(Rsu)と下流側温度検出抵抗体6(Rsd)には定電流源13が接続され、定電流Isが供給される。上流側温度検出抵抗体5の両端電圧(Vsu)と下流側温度検出抵抗体6の両端電圧(Vsd)とは、それぞれコンパレータ72の−入力端子と+入力端子とに入力される。コンパレータ72の出力は、上流側温度検出抵抗体5の温度が下流側温度検出抵抗体6の温度より低い場合(すなわちVsu<Vsdの場合)にはハイレベルとなり、逆の場合(すなわちVsu>Vsdの場合)にはローレベルとなる。コンパレータ72の出力はスイッチ74、75に接続される。 FIG. 2 is a circuit diagram of a fluid flow rate measuring device including six resistors according to the first embodiment. A constant current source 13 is connected to the upstream temperature detection resistor 5 (Rsu) and the downstream temperature detection resistor 6 (Rsd), and a constant current Is is supplied. The both-ends voltage (Vsu) of the upstream temperature detection resistor 5 and the both-ends voltage (Vsd) of the downstream temperature detection resistor 6 are input to the −input terminal and the + input terminal of the comparator 72, respectively. The output of the comparator 72 is high when the temperature of the upstream temperature detection resistor 5 is lower than the temperature of the downstream temperature detection resistor 6 (ie, Vsu <Vsd), and vice versa (ie, Vsu> Vsd). In the case of). The output of the comparator 72 is connected to the switches 74 and 75.

第1の発熱抵抗体68と第4の発熱抵抗体71には、定電流Isを供給する定電流源80が接続されている。第1の発熱抵抗体68の両端電圧82(Vh1)と、第4の発熱抵抗体71の両端電圧85(Vh4)は、それぞれコンパレータ73の−入力端子と+入力端子に入力される。コンパレータ73の出力は、第1の発熱抵抗体68の温度が第4の発熱抵抗体71の温度より低い場合(すなわちVh1<Vh4の場合)はハイレベルとなり、逆の場合(すなわちVh1>Vh4の場合)はローレベルとなる。コンパレータ73の出力はスイッチ76,77,78,79に接続されている。スイッチ74の一端は電源11に接続され、他端はスイッチ78の一端、および、スイッチ79の一端に接続されている。スイッチ78の他端は、第2の発熱抵抗体69に接続され、スイッチ79の他端は第1の発熱抵抗体68に接続されている。また、スイッチ75の一端は電源11に接続され、他端はスイッチ76の一端およびスイッチ77の一端に接続されている。スイッチ76の他端は第4の発熱抵抗体71に接続され、スイッチ77の他端は第3の発熱抵抗体70に接続されている。コンパレータ72の出力端16とコンパレータ73の出力端81の電圧が出力電圧となる。   A constant current source 80 for supplying a constant current Is is connected to the first heating resistor 68 and the fourth heating resistor 71. The both-end voltage 82 (Vh1) of the first heating resistor 68 and the both-end voltage 85 (Vh4) of the fourth heating resistor 71 are input to the −input terminal and the + input terminal of the comparator 73, respectively. The output of the comparator 73 is high when the temperature of the first heating resistor 68 is lower than the temperature of the fourth heating resistor 71 (ie, Vh1 <Vh4), and vice versa (ie, Vh1> Vh4). ) Is low. The output of the comparator 73 is connected to switches 76, 77, 78, 79. One end of the switch 74 is connected to the power supply 11, and the other end is connected to one end of the switch 78 and one end of the switch 79. The other end of the switch 78 is connected to the second heating resistor 69, and the other end of the switch 79 is connected to the first heating resistor 68. One end of the switch 75 is connected to the power supply 11, and the other end is connected to one end of the switch 76 and one end of the switch 77. The other end of the switch 76 is connected to the fourth heating resistor 71, and the other end of the switch 77 is connected to the third heating resistor 70. The voltage at the output terminal 16 of the comparator 72 and the output terminal 81 of the comparator 73 is the output voltage.

次に図の回路の動作を説明する。上流側から流体の流れが生じた場合、上流側温度検出抵抗体5の温度は下流側温度検出抵抗体6の温度より低くなり、それぞれの両端電圧の関係はVsu<Vsdとなる。このときコンパレータ72の出力はハイレベルになるので、スイッチ74がオンされ、スイッチ75がオフされる。またこのとき、第1の発熱抵抗体68の温度は第4の発熱抵抗体71の温度よりも低くなり、それぞれの両端電圧の関係はVh1<Vh4となる。よってコンパレータ73の出力はハイレベルとなり、スイッチ76とスイッチ78がオンされ、スイッチ77とスイッチ79はオフされる。すると第2の発熱抵抗体69が電源11に接続される。 Next, the operation of the circuit of FIG. 2 will be described. When fluid flows from the upstream side, the temperature of the upstream temperature detection resistor 5 is lower than the temperature of the downstream temperature detection resistor 6, and the relationship between the voltages at both ends is Vsu <Vsd. At this time, since the output of the comparator 72 is at a high level, the switch 74 is turned on and the switch 75 is turned off. At this time, the temperature of the first heating resistor 68 is lower than the temperature of the fourth heating resistor 71, and the relationship between the voltages at both ends is Vh1 <Vh4. Therefore, the output of the comparator 73 becomes high level, the switches 76 and 78 are turned on, and the switches 77 and 79 are turned off. Then, the second heating resistor 69 is connected to the power supply 11.

第2の発熱抵抗体69に電流が流れるとジュール熱により発熱し、近傍にある第1の発熱抵抗体68の温度を上昇させる。第1の発熱抵抗体68の温度が上昇して、第4の発熱抵抗体71の温度より高くなると、それぞれの両端電圧の関係はVh1>Vh4となる。このときコンパレータ73の出力はローレベルとなり、スイッチ76、78はオフされ、スイッチ77、79はオンされて、第1の発熱抵抗体68と電源11とが接続される。   When a current flows through the second heating resistor 69, heat is generated by Joule heat, and the temperature of the first heating resistor 68 in the vicinity is raised. When the temperature of the first heating resistor 68 rises and becomes higher than the temperature of the fourth heating resistor 71, the relationship between the voltages at both ends becomes Vh1> Vh4. At this time, the output of the comparator 73 is at a low level, the switches 76 and 78 are turned off, the switches 77 and 79 are turned on, and the first heating resistor 68 and the power source 11 are connected.

第1の発熱抵抗体68に電流が流れるとジュール熱により発熱し、近傍にある上流側温度検出抵抗体5の温度を上昇させる。上流側温度検出抵抗体5の温度が上昇して、下流側温度検出抵抗体6の温度より高くなると、それぞれの両端電圧の関係はVsu>Vsdとなる。その結果、コンパレータ72の出力がローレベルとなり、スイッチ74はオフされ、スイッチ75はオンされる。すると、第3の発熱抵抗体70と電源11とが接続され、第3の発熱抵抗体70に電流が流れる。   When a current flows through the first heating resistor 68, heat is generated by Joule heat, and the temperature of the upstream temperature detection resistor 5 in the vicinity is raised. When the temperature of the upstream temperature detection resistor 5 rises and becomes higher than the temperature of the downstream temperature detection resistor 6, the relationship between the voltages at both ends becomes Vsu> Vsd. As a result, the output of the comparator 72 becomes low level, the switch 74 is turned off, and the switch 75 is turned on. Then, the third heating resistor 70 and the power source 11 are connected, and a current flows through the third heating resistor 70.

第3の発熱抵抗体70はジュール熱により発熱し、近傍にある第4の発熱抵抗体71の温度を上昇させる。第4の発熱抵抗体71の温度が上昇して、第1の発熱抵抗体68の温度より高くなると、それぞれの両端電圧の関係はVh1<Vh4となる。このときコンパレータ73の出力はハイレベルとなり、スイッチ77、79はオフされ、スイッチ76、78はオンされる。すると第4の発熱抵抗体71と電源11が接続され、第4の発熱抵抗体71に電流が流れる。   The third heating resistor 70 generates heat due to Joule heat and raises the temperature of the fourth heating resistor 71 in the vicinity. When the temperature of the fourth heating resistor 71 rises and becomes higher than the temperature of the first heating resistor 68, the relationship between the voltages at both ends becomes Vh1 <Vh4. At this time, the output of the comparator 73 becomes high level, the switches 77 and 79 are turned off, and the switches 76 and 78 are turned on. Then, the fourth heating resistor 71 and the power source 11 are connected, and a current flows through the fourth heating resistor 71.

第4の発熱抵抗体71はジュール熱により発熱し、近傍にある下流側温度検出抵抗体6の温度を上昇させる。下流側温度検出抵抗体6の温度が上昇し、上流側温度検出抵抗体5の温度より高くなると、それぞれの両端電圧の関係はVsu<Vsdとなる。このときコンパレータ72の出力はハイレベルとなり、スイッチ75はオフされ、スイッチ74はオンされて、初期の状態に戻る。   The fourth heating resistor 71 generates heat due to Joule heat and raises the temperature of the downstream temperature detection resistor 6 in the vicinity. When the temperature of the downstream temperature detection resistor 6 rises and becomes higher than the temperature of the upstream temperature detection resistor 5, the relationship between the voltages at both ends becomes Vsu <Vsd. At this time, the output of the comparator 72 is at a high level, the switch 75 is turned off, the switch 74 is turned on, and the initial state is restored.

このように、スイッチ74、75、76、77、78、79によって、電源11を第1、第2、第3、第4の発熱抵抗体に順番に切り換える動作が繰り返され、上流側温度検出抵抗体5の温度と下流側温度検出抵抗体6の温度、および、第1の発熱抵抗体68の温度と第4の発熱抵抗体71の温度が等しくなるように制御される。   Thus, the operation of switching the power supply 11 to the first, second, third, and fourth heating resistors in order by the switches 74, 75, 76, 77, 78, and 79 is repeated, and the upstream temperature detection resistor The temperature of the body 5 and the temperature of the downstream temperature detection resistor 6, and the temperature of the first heating resistor 68 and the temperature of the fourth heating resistor 71 are controlled to be equal.

は、抵抗体68〜71(図)の端子電圧と出力端子16、81(図)の電圧との関係を示す。図中、パルス86は、図における第1の出力電圧16(Vout1)を示す。パルス87は、第2の出力電圧81(Vout2)を示す。また、パルス88は第2の発熱抵抗体69の両端電圧(Vh2)を示し、パルス89は第1の発熱抵抗体68の両端電圧(Vh1)を示し、パルス90は第3の発熱抵抗体70の両端電圧(Vh3)を示し、パルス91は第4の発熱抵抗体71の両端電圧(Vh4)を示す。図に示すタイミングから明らかなように、パルス86(Vout1)およびパルス87(Vout2)の両方がハイレベルのとき、パルス88(Vh2)がハイレベルになる。そして、その後、Vh1、Vh3、Vh4の順にハイレベル状態が移動し、再度Vh2に戻る。 FIG. 3 shows the relationship between the terminal voltages of the resistors 68 to 71 (FIG. 2 ) and the voltages of the output terminals 16 and 81 (FIG. 2 ). In the figure, the pulse 86 represents the first output voltage 16 (Vout1) in FIG. The pulse 87 indicates the second output voltage 81 (Vout2). The pulse 88 indicates the voltage across the second heating resistor 69 (Vh2), the pulse 89 indicates the voltage across the first heating resistor 68 (Vh1), and the pulse 90 indicates the third heating resistor 70. , And a pulse 91 indicates a voltage across the fourth heating resistor 71 (Vh4). As apparent from the timing shown in FIG. 3 , when both the pulse 86 (Vout1) and the pulse 87 (Vout2) are at a high level, the pulse 88 (Vh2) is at a high level. After that, the high level state moves in the order of Vh1, Vh3, Vh4, and returns to Vh2.

は、Vout1,Vout2とVh1〜Vh4との関係を示す。上流側から流体が流れている場合、上流側温度検出抵抗体5の温度が下流側温度検出抵抗体6の温度より低い時間の方が長いため、コンパレータ72の出力がハイレベルにある時間(t1)の方がローレベルにある時間(t2)より長くなる。また、第1の発熱抵抗体68の温度が第4の発熱抵抗体71の温度より低い時間の方が長いためコンパレータ73の出力がハイレベルにある時間(t3)の方がローレベルにある時間(t4)より長くなる。それぞれの差(あるいは比)は流体の流量が大きいほど大きくなる。逆流の場合は大小関係が逆になる。 FIG. 4 shows the relationship between Vout1, Vout2 and Vh1 to Vh4. When the fluid is flowing from the upstream side, the time during which the temperature of the upstream temperature detection resistor 5 is lower than the temperature of the downstream temperature detection resistor 6 is longer, so the time during which the output of the comparator 72 is at the high level (t1 ) Is longer than the time (t2) at the low level. Further, since the time when the temperature of the first heating resistor 68 is lower than the temperature of the fourth heating resistor 71 is longer, the time (t3) when the output of the comparator 73 is at the high level is the time when it is at the low level. It becomes longer than (t4). Each difference (or ratio) increases as the fluid flow rate increases. In the case of backflow, the magnitude relationship is reversed.

に示すように、出力電圧86(Vout1)、87(Vout2)をローパスフィルタ92、93に通すことにより、アナログ出力電圧94、95が得られる。アナログ出力電圧94、95は、出力電圧86、87のデューティ比[t1/(t1+t2)]、および、[t3/(t3+t4)]に応じた値をとる。アナログ出力電圧94、95を加算回路96によって加算することにより最終的な出力電圧97が得られる。よって電圧97を測定することにより、流体の流量を知ることができる。 As shown in FIG. 5 , the analog output voltages 94 and 95 are obtained by passing the output voltages 86 (Vout1) and 87 (Vout2) through the low-pass filters 92 and 93, respectively. The analog output voltages 94 and 95 take values corresponding to the duty ratios [t1 / (t1 + t2 )] and [t3 / (t3 + t4)] of the output voltages 86 and 87. The final output voltage 97 is obtained by adding the analog output voltages 94 and 95 by the adder circuit 96. Therefore, by measuring the voltage 97, the fluid flow rate can be known.

は、2つの出力電圧94、95から得られた最終的な出力電圧97のグラフを示す。上流側温度検出抵抗体5および下流側温度検出抵抗体6の温度の大小関係に基づいて得られた出力電圧94(Vout1)は、第1の発熱抵抗体68と第4の発熱抵抗体71の温度の大小関係に基づいて得られた出力電圧95(Vout2)よりも、より小流量域で変化が大きくなる。逆に大流量域では、出力電圧94(Vout1)が飽和状態になるのに対し、出力電圧95(Vout2)は変化が大きくなる。これは上流側温度検出抵抗体5と下流側温度検出抵抗体6が薄肉部3上の高温部(中央部)から離れた位置にあり、小流量で温度変化がおきやすいためであり、さらに、第1、第4の発熱抵抗体68、71は高温部により近く、大流量で温度変化が起きやすくなるためである。2つの出力電圧を加算することにより、小流量でも大流量でも感度の高い出力電圧97が得られる。比較のため、従来の出力電圧98を点線で示す。 FIG. 6 shows a graph of the final output voltage 97 obtained from the two output voltages 94, 95. The output voltage 94 (Vout1) obtained based on the temperature magnitude relationship between the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 is obtained from the first heating resistor 68 and the fourth heating resistor 71. The change is larger in a smaller flow rate region than the output voltage 95 (Vout2) obtained based on the temperature magnitude relationship. Conversely, in the large flow rate region, the output voltage 94 (Vout1) is saturated, whereas the output voltage 95 (Vout2) varies greatly. This is because the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 are located away from the high temperature portion (center portion) on the thin portion 3, and the temperature change is likely to occur at a small flow rate. This is because the first and fourth heat generating resistors 68 and 71 are closer to the high temperature portion and the temperature change is likely to occur at a large flow rate. By adding the two output voltages, a high-sensitivity output voltage 97 can be obtained regardless of whether the flow rate is small or large. For comparison, the conventional output voltage 98 is indicated by a dotted line.

以上のように、本実施の形態では小流量域で感度の良い出力と大流量域で感度の良い出力を加算して出力とするので、広範囲において感度の良い出力が得られ、ダイナミックレンジが拡大する。また、上流側温度検出抵抗体5、下流側温度検出抵抗体6、第1の発熱抵抗体68、第4の発熱抵抗体71の温度をフィードバック制御することになるので、オープンループだった従来に比べ応答性が向上する。   As described above, according to the present embodiment, a high-sensitivity output in a small flow region and a high-sensitivity output in a large flow region are added to obtain an output, so that a high-sensitivity output can be obtained over a wide range and the dynamic range is expanded. To do. Further, since the temperatures of the upstream temperature detection resistor 5, the downstream temperature detection resistor 6, the first heating resistor 68, and the fourth heating resistor 71 are feedback-controlled, the conventional open loop method is used. Responsiveness is improved.

(実施の形態
は、図で説明した出力電圧86(Vout1)および87(Vout2)をデジタル出力するための処理を示す。出力電圧86、87と高周波パルス信号99を乗算器100、101によって乗算すると、出力電圧86、87がハイレベルにあるときだけ(図のt1、t3の間だけ)高周波パルス102、103が残る。これら高周波パルス102、103のパルス数を、一定時間、パルスカウンタ104、105で計数し、その結果を加算回路106で加算することにより、デジタル出力107が得られる。
(Embodiment 2 )
Figure 7 shows a process for digitally outputting the output voltage 86 described in FIG. 5 (Vout1) and 87 (Vout2). When the output voltages 86 and 87 and the high-frequency pulse signal 99 are multiplied by the multipliers 100 and 101, the high-frequency pulses 102 and 103 remain only when the output voltages 86 and 87 are at the high level (between t1 and t3 in FIG. 3 ). . The number of pulses of the high-frequency pulses 102 and 103 is counted by the pulse counters 104 and 105 for a fixed time, and the result is added by the adder circuit 106, whereby a digital output 107 is obtained.

このような構成にすることにより、実施の形態と同様の効果が得られる上に、CPUとの結合性が良くなる。 By adopting such a configuration, the same effects as those of the first embodiment can be obtained, and the connectivity with the CPU can be improved.

(実施の形態
実施の形態では、デューティ比[t1/(t1+t2)]、[t3/(t3+t4)]を出力として採用したが、デューティ比差[(t1-t2)/(t1+t2)]、[(t3-t4)/(t3+t4)]を出力とすることもできる。
(Embodiment 3 )
In the first embodiment, the duty ratios [t1 / (t1 + t2)] and [t3 / (t3 + t4)] are adopted as outputs, but the duty ratio difference [(t1-t2) / (t1 + t2)] , [(T3-t4) / (t3 + t4)] can be output.

は、デューティ比差を出力するための処理を示す。まず、出力電圧86(Vout1)は、ローパスフィルタ92に通され、アナログ電圧94が得られる。また、出力電圧86(Vout1)は、反転回路108で反転され、さらにローパスフィルタ110に通され、アナログ電圧112が得られる。これらのアナログ電圧94、112を減算回路114で減算処理することにより、デューティ比差[(t1-t2)/(t1+t2)]に応じたアナログ電圧116が得られる。 FIG. 8 shows a process for outputting the duty ratio difference. First, the output voltage 86 (Vout1) is passed through the low-pass filter 92, and an analog voltage 94 is obtained. Further, the output voltage 86 (Vout1) is inverted by the inverting circuit 108 and further passed through the low-pass filter 110 to obtain the analog voltage 112. By subtracting these analog voltages 94 and 112 by the subtraction circuit 114, an analog voltage 116 corresponding to the duty ratio difference [(t1-t2) / (t1 + t2)] is obtained.

一方、出力電圧87(Vout2)は、ローパスフィルタ93に通され、アナログ電圧95が得られる。また、出力電圧87(Vout2)は、反転回路109で反転され、さらにローパスフィルタ111に通され、アナログ電圧113が得られる。これらのアナログ電圧95、113を減算回路115で減算処理することにより、デューティ比差[(t3-t4)/(t3+t4)]に応じたアナログ電圧117が得られる。   On the other hand, the output voltage 87 (Vout2) is passed through the low-pass filter 93, and an analog voltage 95 is obtained. Further, the output voltage 87 (Vout2) is inverted by the inverting circuit 109 and further passed through the low-pass filter 111 to obtain the analog voltage 113. By subtracting these analog voltages 95 and 113 by the subtraction circuit 115, an analog voltage 117 corresponding to the duty ratio difference [(t3-t4) / (t3 + t4)] is obtained.

以上のようにして得られたアナログ電圧116、117を、加算回路96で加算することにより最終出力電圧97が得られる。   The final output voltage 97 is obtained by adding the analog voltages 116 and 117 obtained as described above by the adding circuit 96.

このような構成によっても実施の形態と同様の効果が得られるとともに、オフセット出力(流量0での出力)が0にできるので感度がさらに向上する。 Even with such a configuration, the same effect as in the first embodiment can be obtained, and the offset output (output at a flow rate of 0) can be reduced to 0, so that the sensitivity is further improved.

(実施の形態
は、図で説明した出力電圧86(Vout1)および87(Vout2)をデジタル出力するための別の処理を示す。
(Embodiment 4 )
Figure 9 shows another process for the output voltage 86 (Vout1) and 87 described in FIG. 5 (Vout2) to a digital output.

まず乗算器100において、出力電圧86(Vout1)に高周波パルス信号99を乗算すると、出力電圧86がハイレベルにあるときだけ高周波パルス102が残る。このパルス102のパルス数を、一定時間、パルスカウンタ104で計数する。また、出力電圧86(Vout1)を反転回路118で反転し、乗算器120において、高周波パルス信号99を乗算すると、反転電圧がハイレベルにあるときだけ高周波パルス122が残る。このパルス122のパルス数を、一定時間、パルスカウンタ124で計数する。以上のようにして得られたパルスの計数結果を、減算回路126で減算処理する。   First, when the multiplier 100 multiplies the output voltage 86 (Vout1) by the high frequency pulse signal 99, the high frequency pulse 102 remains only when the output voltage 86 is at a high level. The number of pulses 102 is counted by the pulse counter 104 for a certain time. Further, when the output voltage 86 (Vout1) is inverted by the inverting circuit 118 and multiplied by the high frequency pulse signal 99 in the multiplier 120, the high frequency pulse 122 remains only when the inverted voltage is at a high level. The pulse counter 124 counts the number of pulses 122 for a certain time. The subtraction circuit 126 performs a subtraction process on the pulse counting result obtained as described above.

一方、乗算器101において、出力電圧87(Vout2)に高周波パルス信号99を乗算すると、出力電圧87がハイレベルにあるときだけ高周波パルス103が残る。このパルス103のパルス数を、一定時間、パルスカウンタ105で計数する。また、出力電圧87(Vout2)を反転回路119で反転し、乗算器121において、高周波パルス信号99を乗算すると、反転電圧がハイレベルにあるときだけ高周波パルス123が残る。このパルス123のパルス数を、一定時間、パルスカウンタ125で計数する。以上のようにして得られたパルスの計数結果を、減算回路127で減算処理する。   On the other hand, when the multiplier 101 multiplies the output voltage 87 (Vout2) by the high frequency pulse signal 99, the high frequency pulse 103 remains only when the output voltage 87 is at a high level. The number of pulses 103 is counted by a pulse counter 105 for a certain time. Further, when the output voltage 87 (Vout2) is inverted by the inverting circuit 119 and multiplied by the high frequency pulse signal 99 in the multiplier 121, the high frequency pulse 123 remains only when the inverted voltage is at a high level. The number of pulses 123 is counted by the pulse counter 125 for a certain time. The count result of the pulses obtained as described above is subtracted by the subtraction circuit 127.

以上のようにして求めたそれぞれの減算結果を、加算回路106において加算することにより、最終的なデジタル出力107が得られる。   Each subtraction result obtained as described above is added by the adder circuit 106, whereby a final digital output 107 is obtained.

このような構成にすることによっても、実施の形態と同様の効果が得られる上に、CPUとの結合性が良くなる。 Even with this configuration, the same effects as those of the third embodiment can be obtained, and the connectivity with the CPU can be improved.

実施の形態1、2、3、4の回路構成では、上流温度検出抵抗体5と下流温度検出抵抗体6、第1の発熱抵抗体68および第4の発熱抵抗体71には、定電流を供給する定電流源13、80を用いた。しかし、定電圧を印加する定電圧源を用いても同様の結果が得られる。 In the circuit configuration of Embodiment 1, 2, 3, 4 of the embodiment, the upstream temperature sensing resistor 5 and the downstream temperature sensing resistor 6, the first heating resistor 68 and the fourth heating resistor 71, a constant current The supplied constant current sources 13 and 80 were used. However, similar results can be obtained using a constant voltage source that applies a constant voltage.

(実施の形態
10は、実施の形態の流体流量測定装置の測定部の構成を示す。実施の形態の流体流量測定装置では、第2の発熱抵抗体69と第3の発熱抵抗体70との間に中央発熱抵抗体4を形成した。図では、配線部9とパッド部10は図と同様であるので、それらの記載は省略している。中央発熱抵抗体4(Rh)、上流側温度検出抵抗体5(Rsu)および下流側温度検出抵抗体6(Rsd)により定温度回路を構成し、上流側温度検出抵抗体5と下流側温度検出抵抗体6の平均温度が一定となるように中央発熱抵抗体4に供給する電力を制御する。定温度回路図は図11に示される
(Embodiment 5 )
FIG. 10 shows the configuration of the measurement unit of the fluid flow measurement device according to the fifth embodiment. In the fluid flow measuring device of the fifth embodiment, the central heating resistor 4 is formed between the second heating resistor 69 and the third heating resistor 70. In the figure, since the wiring part 9 and the pad part 10 are the same as those in FIG. 1 , their description is omitted. The central heating resistor 4 (Rh), upstream temperature detection resistor 5 (Rsu), and downstream temperature detection resistor 6 (Rsd) constitute a constant temperature circuit, and the upstream temperature detection resistor 5 and downstream temperature detection. The power supplied to the central heating resistor 4 is controlled so that the average temperature of the resistor 6 is constant. A constant temperature circuit diagram is shown in FIG .

11は、抵抗体4、5、6を含む、流体流量測定装置の回路図である。上流側温度検出抵抗体5(Rsu)と下流側温度検出抵抗体6(Rsd)には定電流源13が接続され、定電流Isが供給される。抵抗体Rsu5と抵抗体Rsd6の両端電圧(Vsu,Vsd)は加算回路15に入力される。加算回路15のゲインをGとすると、加算回路の出力電圧Vaddは下記数1で表される。

Figure 0004551416
FIG. 11 is a circuit diagram of the fluid flow rate measuring device including the resistors 4, 5 and 6. A constant current source 13 is connected to the upstream temperature detection resistor 5 (Rsu) and the downstream temperature detection resistor 6 (Rsd), and a constant current Is is supplied. The voltage across the resistors Rsu5 and Rsd6 (Vsu, Vsd) is input to the adder circuit 15. When the gain of the adder circuit 15 is G, the output voltage Vadd of the adder circuit is expressed by the following formula 1.
Figure 0004551416

固定抵抗R1とR2により定電圧12(Vc)を分圧した電圧19(Vt)と、加算回路15の出力電圧Vaddとが比較され、パワートランジスタ20により、両者が等しくなるように発熱抵抗体4に電力が供給される。ここで定電圧Vcを分圧した電圧Vtは下記数2で表される。

Figure 0004551416
The voltage 19 (Vt) obtained by dividing the constant voltage 12 (Vc) by the fixed resistors R1 and R2 is compared with the output voltage Vadd of the adder circuit 15, and the power transistor 20 causes the heating resistor 4 to equalize both. Is supplied with power. Here, a voltage Vt obtained by dividing the constant voltage Vc is expressed by the following formula 2.
Figure 0004551416

よって、Vt=Vaddとすると、数1および数2から、下記数3が得られる。

Figure 0004551416
Therefore, when Vt = Vadd, the following equation 3 is obtained from the equations 1 and 2.
Figure 0004551416

上流温度検出抵抗体5と下流温度検出抵抗体6の0℃の時の抵抗値をRs0、抵抗温度係数をαs、温度をそれぞれTsu、Tsdとすると、上流温度検出抵抗体5と下流温度検出抵抗体6の両端電圧Vsu,Vsdは、それぞれ下記数4および数5のように得られ、その結果、下記数6が得られる。

Figure 0004551416
Figure 0004551416
Figure 0004551416
If the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 have a resistance value at 0 ° C. of Rs0, the resistance temperature coefficient is αs, and the temperatures are Tsu and Tsd, respectively, the upstream temperature detection resistor 5 and the downstream temperature detection resistor The both-end voltages Vsu and Vsd of the body 6 are obtained as shown in the following equations 4 and 5, respectively. As a result, the following equation 6 is obtained.
Figure 0004551416
Figure 0004551416
Figure 0004551416

上述の数3および数6から、下記数7が得られる。

Figure 0004551416
From the above formulas 3 and 6, the following formula 7 is obtained.
Figure 0004551416

数7の右辺の各項は全て定数であるから、右辺は定数である。よって、図11に示す回路を構成することにより、上流側温度検出抵抗体5の温度(Tsu)と下流側温度検出抵抗体の温度(Tsd)の平均値を一定に保つことができる。 Since all the terms on the right side of Equation 7 are constants, the right side is a constant. Therefore, by configuring the circuit shown in FIG. 11 , the average value of the temperature (Tsu) of the upstream temperature detection resistor 5 and the temperature (Tsd) of the downstream temperature detection resistor 5 can be kept constant.

さらに図11を参照して、上流温度検出抵抗体5および下流温度検出抵抗体6には差動増幅器17が接続されている。差動増幅器17は、上流温度検出抵抗体5と下流温度検出抵抗体6の両端電圧Vsu,Vsdの電位差を、出力電圧Voutとして端子16から出力する。具体的には、出力電圧Voutは、下記数8に示すように

Figure 0004551416
となる。数8から明らかなように、出力電圧Voutは、上流温度検出抵抗体5の温度(Tsu)と下流温度検出抵抗体6の温度(Tsd)の差に比例することが理解される。 Further, referring to FIG. 11 , a differential amplifier 17 is connected to the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6. The differential amplifier 17 outputs the potential difference between the both-end voltages Vsu and Vsd of the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 from the terminal 16 as the output voltage Vout. Specifically, the output voltage Vout is as shown in the following equation (8).
Figure 0004551416
It becomes. As is apparent from Equation 8, it is understood that the output voltage Vout is proportional to the difference between the temperature (Tsu) of the upstream temperature detection resistor 5 and the temperature (Tsd) of the downstream temperature detection resistor 6.

出力電圧Voutから、流量を得るためには、一般に、流量−出力電圧のテーブルを予め作成しておき、このテーブルを参照すればよい。テーブルは、流体流量測定装置が有するメモリ(図示せず)に格納される。テーブルを参照する動作は流体流量測定装置の中央演算装置(図示せず)が行う。なお、テーブルを用いることなく、出力電圧Voutを変数として、流量が出力値として与えられる換算式を用いてもよい。   In order to obtain a flow rate from the output voltage Vout, a flow rate-output voltage table is generally prepared in advance and this table may be referred to. The table is stored in a memory (not shown) included in the fluid flow measuring device. The operation referring to the table is performed by a central processing unit (not shown) of the fluid flow rate measuring device. Instead of using a table, a conversion formula in which the flow rate is given as an output value using the output voltage Vout as a variable may be used.

12は、流体の流量に応じた、上流温度検出抵抗体5と下流温度検出抵抗体6の温度変化のグラフである。この図は、熱回路網法によりシミュレーションを行った結果に基づいて作成されている。曲線21および曲線22は、それぞれ、本実施の形態による上流温度検出抵抗体5の温度と下流温度検出抵抗体6の温度を示す。一方、曲線23、24は、それぞれ、従来例における上流温度検出抵抗体5の温度と下流温度検出抵抗体6の温度を示す。従来例では上流温度検出抵抗体5の温度と下流温度検出抵抗体6の温度は、流量が大きくなると低下し、その平均温度も流量とともに低下する。数7に関連して説明したように、本実施の形態では、上流側温度検出抵抗体5の温度と下流側温度検出抵抗体6の平均温度を一定に保つよう制御している。したがって、上流側温度検出抵抗体5の温度(曲線21)が流量とともに低下すると、下流側温度検出抵抗体6の温度(曲線22)は流量ともに上昇する。 FIG. 12 is a graph of temperature changes of the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 according to the fluid flow rate. This figure is created based on the result of simulation by the thermal network method. A curve 21 and a curve 22 indicate the temperature of the upstream temperature detection resistor 5 and the temperature of the downstream temperature detection resistor 6 according to the present embodiment, respectively. On the other hand, curves 23 and 24 indicate the temperature of the upstream temperature detection resistor 5 and the temperature of the downstream temperature detection resistor 6 in the conventional example, respectively. In the conventional example, the temperature of the upstream temperature detection resistor 5 and the temperature of the downstream temperature detection resistor 6 decrease as the flow rate increases, and the average temperature also decreases with the flow rate. As described in relation to Equation 7, in this embodiment, the temperature of the upstream temperature detection resistor 5 and the average temperature of the downstream temperature detection resistor 6 are controlled to be constant. Accordingly, when the temperature of the upstream temperature detection resistor 5 (curve 21) decreases with the flow rate, the temperature of the downstream temperature detection resistor 6 (curve 22) increases with the flow rate.

本実施の形態における上流側温度検出抵抗体5の流量による温度低下(曲線21)は、従来例における上流側温度検出抵抗体5の流量による温度低下(曲線23)よりも小さい。このため流量がある程度大きくなった場合には、本発明における上流側温度検出抵抗体5の温度は、従来例における上流側温度検出抵抗体5の温度よりも高くなる。測定可能温度の観点から説明すると、例えば、測定可能温度の下限が65℃と仮定したとき、従来は曲線23で示すように約60g/sの流量までしか測定できなかった。しかし実施の形態1によれば、約200g/sまで測定可能である。よって実施の形態1における上流側温度検出抵抗体5の温度は、従来例に比べ、より大流量まで変化が許容される。   In the present embodiment, the temperature drop due to the flow rate of the upstream temperature detection resistor 5 (curve 21) is smaller than the temperature drop due to the flow rate of the upstream temperature detection resistor 5 in the conventional example (curve 23). Therefore, when the flow rate is increased to some extent, the temperature of the upstream temperature detection resistor 5 in the present invention is higher than the temperature of the upstream temperature detection resistor 5 in the conventional example. From the viewpoint of the measurable temperature, for example, when the lower limit of the measurable temperature is assumed to be 65 ° C., conventionally, only a flow rate of about 60 g / s can be measured as shown by the curve 23. However, according to Embodiment 1, it is possible to measure up to about 200 g / s. Therefore, the temperature of the upstream temperature detection resistor 5 in the first embodiment is allowed to change to a larger flow rate than in the conventional example.

13は、上流温度検出抵抗体5の温度と下流温度検出抵抗体6の温度の差の流量依存性を示すグラフである。図中、曲線25は実施の形態1における上流温度検出抵抗体5と下流温度検出抵抗体6との温度差を示す。一方、曲線26は従来例における上流温度検出抵抗体5と下流温度検出抵抗体6との温度差を示す。上述のように、実施の形態1における上流側温度検出抵抗体5の温度は、より大流量まで変化が可能であり、また、本発明の下流側温度検出抵抗体6の温度は流量とともに増大する。したがって、その温度差は従来に比べて大きくなり、より大流量まで大きな流量依存性を示す。 FIG. 13 is a graph showing the flow rate dependency of the difference between the temperature of the upstream temperature detection resistor 5 and the temperature of the downstream temperature detection resistor 6. In the figure, a curve 25 indicates a temperature difference between the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 in the first embodiment. On the other hand, a curve 26 shows a temperature difference between the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 in the conventional example. As described above, the temperature of the upstream temperature detection resistor 5 in the first embodiment can be changed to a larger flow rate, and the temperature of the downstream temperature detection resistor 6 of the present invention increases with the flow rate. . Therefore, the temperature difference becomes larger than the conventional one, and shows a large flow rate dependency up to a larger flow rate.

11の回路によれば、上流側温度検出抵抗体5および下流側温度検出抵抗体6の平均温度を一定に保つことができる。さらに図の回路により、上流側温度検出抵抗体5および下流側温度検出抵抗体6の温度を等しく制御することにより、抵抗体5、6の温度は全流量範囲において一定に保たれることになる。 According to the circuit of FIG. 11 , the average temperature of the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 can be kept constant. Further, by controlling the temperature of the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 equally by the circuit of FIG. 2, the temperature of the resistors 5 and 6 is kept constant in the entire flow rate range. Become.

以上のように、本実施の形態の構成によれば、上流側温度検出抵抗体5と下流側温度検出抵抗体6の温度が流量によらず一定に保たれるので、ダイナミックレンジの拡大が図れる。また、流量変化による温度変化が生じないので応答性が向上する。さらに、抵抗体の温度を100℃以上に保つことができるので、水滴などが付着した場合に即座に蒸発させることができ、水分付着による特性のドリフトを低減することができる。   As described above, according to the configuration of the present embodiment, the temperature of the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 is kept constant regardless of the flow rate, so that the dynamic range can be expanded. . Further, since the temperature change due to the flow rate change does not occur, the responsiveness is improved. Furthermore, since the temperature of the resistor can be maintained at 100 ° C. or higher, when a water droplet or the like adheres, it can be immediately evaporated, and the drift of characteristics due to moisture adhesion can be reduced.

(実施の形態
14は、実施の形態の流体流量測定装置の測定部の構成を示す。図では、配線部9とパッド部10は図と同様であるので、それらの記載は省略している。
(Embodiment 6 )
FIG. 14 shows the configuration of the measurement unit of the fluid flow measurement device according to the sixth embodiment. In the figure, since the wiring part 9 and the pad part 10 are the same as those in FIG. 1 , their description is omitted.

実施の形態では、シリコンチップ1上に流体の温度を検出する流体温度検出抵抗体55(Ra)を形成する。流体温度検出抵抗体55は発熱抵抗体4、68、69、70、71から熱的な影響を受けないように薄肉部3から離れた位置に形成される。流体温度検出抵抗体55の裏面のシリコンをエッチングにより除去し、流体温度検出抵抗体55を第2の薄肉部上に形成してもよい。 In the sixth embodiment, a fluid temperature detection resistor 55 (Ra) for detecting the temperature of the fluid is formed on the silicon chip 1. The fluid temperature detection resistor 55 is formed at a position away from the thin portion 3 so as not to be thermally affected by the heating resistors 4, 68, 69, 70 and 71. Silicon on the back surface of the fluid temperature detection resistor 55 may be removed by etching, and the fluid temperature detection resistor 55 may be formed on the second thin portion.

流体温度検出抵抗体55を用いて実施の形態7における16に示す回路を構成する。これにより、上流側温度検出抵抗体5の温度(Tsu)と下流側温度検出抵抗体6の温度(Tsd)との平均値が流体温度Taに依存した値となり、流体温度Taが高いときは上流側温度検出抵抗体5および下流側温度検出抵抗体6の平均温度も高い。一方、流体温度Taが低いときは上流側温度検出抵抗体5と下流側温度検出抵抗体6の平均温度も低くなるように制御される。流体温度Taと上流側温度検出抵抗体5、下流側温度検出抵抗体6の平均温度との関係は、下記数12中の回路定数R1やR2により調整できる。 The circuit shown in FIG. 16 in the seventh embodiment is configured using the fluid temperature detection resistor 55. Thereby, the temperature of the upper stream side temperature sensing resistor 5 and (Tsu) value the average value is dependent on the fluid temperature Ta between the temperature of the downstream temperature sensing resistor 6 (Tsd), when the high fluid temperature Ta is The average temperature of the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 is also high. On the other hand, when the fluid temperature Ta is low, the average temperature of the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 is also controlled to be low. Fluid temperature Ta and the upstream side temperature sensing resistor 5, the relationship between the average temperature of the downstream temperature sensing resistor 6 can be adjusted by the circuit constants R1 and R2 having in 12 below.

このような構成および制御を採用することにより、流体の温度が変化したときの特性の変化を補償することができ、温度特性が向上する。   By adopting such a configuration and control, it is possible to compensate for the change in characteristics when the temperature of the fluid changes, and the temperature characteristics are improved.

(実施の形態7)
15は、実施の形態7の流体流量測定装置の測定部の構成を示す。実施の形態7の流体流量測定装置では、シリコンチップ1上に流体の温度を検出する流体温度検出抵抗体55が形成されている。流体温度検出抵抗体55は、発熱抵抗体4から熱的な影響を受けないように薄肉部3から離れた位置に形成される。流体温度検出抵抗体55の裏面のシリコンをエッチングにより除去し、流体温度検出抵抗体55を第2の薄肉部上に形成してもよい。
(Embodiment 7)
FIG. 15 shows a configuration of a measurement unit of the fluid flow measurement device according to the seventh embodiment. In the fluid flow rate measurement device according to the seventh embodiment, a fluid temperature detection resistor 55 that detects the temperature of the fluid is formed on the silicon chip 1. The fluid temperature detection resistor 55 is formed at a position away from the thin portion 3 so as not to be thermally affected by the heating resistor 4. Silicon on the back surface of the fluid temperature detection resistor 55 may be removed by etching, and the fluid temperature detection resistor 55 may be formed on the second thin portion.

16は、実施の形態7による、流体温度検出抵抗体55を含む、流体流量測定装置の回路図である。この回路において、電圧19(Vt)は数で表される。

Figure 0004551416
FIG. 16 is a circuit diagram of a fluid flow rate measuring device including the fluid temperature detection resistor 55 according to the seventh embodiment. In this circuit, the voltage 19 (Vt) is expressed by Equation 9 .
Figure 0004551416

数1のVaddと、数のVtとが等しくなるように制御すると、下記数10が成り立つ。

Figure 0004551416
When control is performed so that Vadd in Expression 1 is equal to Vt in Expression 9 , the following Expression 10 is established.
Figure 0004551416

流体温度検出抵抗体55の0℃の時の抵抗値をRa0、抵抗温度係数をαaとすると、流体(および抵抗体55)の温度がTaのとき、

Figure 0004551416
10および数6から、下記数12が成り立つ。
Figure 0004551416
12の右辺に流体温度検出抵抗体55の温度Taが含まれているため、右辺全体はTaに依存した値となる。よって、上流側温度検出抵抗体5の温度(Tsu)と下流側温度検出抵抗体6の温度(Tsd)との平均値も流体温度Taに依存した値となり、流体温度Taが高いときは上流側温度検出抵抗体5と下流側温度検出抵抗体6の平均温度も高く、流体温度Taが低いときは上流側温度検出抵抗体5と下流側温度検出抵抗体6の平均温度も低くなる。流体温度Taと、上流側温度検出抵抗体5および下流側温度検出抵抗体6の平均温度との関係は、数12中の回路定数R1やR2により調整できる。 When the resistance value of the fluid temperature detection resistor 55 at 0 ° C. is Ra0 and the resistance temperature coefficient is αa, when the temperature of the fluid (and the resistor 55) is Ta,
Figure 0004551416
From Equation 10 and Equation 6 , the following Equation 12 holds.
Figure 0004551416
Since the temperature Ta of the fluid temperature detection resistor 55 is included in the right side of Equation 12, the entire right side is a value dependent on Ta. Therefore, the average value of the temperature (Tsu) of the upstream temperature detection resistor 5 and the temperature (Tsd) of the downstream temperature detection resistor 6 also depends on the fluid temperature Ta, and when the fluid temperature Ta is high, the upstream side The average temperature of the temperature detection resistor 5 and the downstream temperature detection resistor 6 is also high, and when the fluid temperature Ta is low, the average temperature of the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 is also low. The relationship between the fluid temperature Ta and the average temperature of the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 can be adjusted by the circuit constants R1 and R2 in Equation 12 .

このような構成および制御を採用することにより、流体の温度が変化したときの特性の変化を補償することができ、温度特性が向上する。   By adopting such a configuration and control, it is possible to compensate for the change in characteristics when the temperature of the fluid changes, and the temperature characteristics are improved.

(実施の形態8)
実施の形態7では、電圧19(Vt)が流体温度によって変化するよう、流体温度検出抵抗体55(Ra)を抵抗R1、R2と直列に接続した。しかし、数12から理解されるように、電圧Veを流体温度によって変化させても同様の効果が得られる。例えば図17のような構成を採用することもできる。
(Embodiment 8)
In the seventh embodiment, the fluid temperature detection resistor 55 (Ra) is connected in series with the resistors R1 and R2 so that the voltage 19 (Vt) varies depending on the fluid temperature. However, as understood from Equation 12 , the same effect can be obtained even when the voltage Ve is changed depending on the fluid temperature. For example, a configuration as shown in FIG. 17 may be employed.

17は、実施の形態8における、電圧Veを出力する回路図である。この回路では、固定抵抗(R3,R4)および流体温度検出抵抗体55により定電圧源56を分圧した電圧を電圧Veとして出力する。流体温度の変化は、流体温度検出抵抗体55を用いて検出されるので、流体温度が変化したときにVeを変化させることができる。よって、上流側温度検出抵抗体5(図16)の温度(Tsu)と下流側温度検出抵抗体6(図16)の温度(Tsd)の平均値も、流体温度Taにより変化させることができる。流体温度Taと上流側温度検出抵抗体5、下流側温度検出抵抗体6の平均温度との関係は、図17中の固定抵抗R3やR4により調整すればよい。 FIG. 17 is a circuit diagram for outputting voltage Ve in the eighth embodiment. In this circuit, a voltage obtained by dividing the constant voltage source 56 by the fixed resistors (R3, R4) and the fluid temperature detecting resistor 55 is output as the voltage Ve. Since the change in the fluid temperature is detected using the fluid temperature detection resistor 55, Ve can be changed when the fluid temperature changes. Therefore, it is possible to average value of the temperature (Tsd) temperature (Tsu) and downstream temperature sensing resistor 6 (FIG. 16) of the upstream side temperature sensing resistor 5 (FIG. 16) is also varied by the fluid temperature Ta. Fluid temperature Ta and the upstream side temperature sensing resistor 5, the relationship between the average temperature of the downstream temperature sensing resistor 6 may be adjusted by the fixed resistor R3 and R4 in FIG. 17.

上述の構成によれば、流体の温度が変化したときの特性の変化を補償することができ、温度特性が向上する。   According to the above configuration, the change in characteristics when the temperature of the fluid changes can be compensated, and the temperature characteristics are improved.

(実施の形態9)
実施の形態8で説明したように、流体温度検出抵抗体を用いれば、流体温度の変化を反映した特性の変化を保証できる。
(Embodiment 9)
As described in the eighth embodiment, if a fluid temperature detection resistor is used, a change in characteristics reflecting a change in fluid temperature can be guaranteed.

18は、実施の形態9における、流体温度検出抵抗体55を挿入した流体流量測定装置の回路図である。 FIG. 18 is a circuit diagram of a fluid flow rate measurement device in which the fluid temperature detection resistor 55 is inserted in the ninth embodiment.

実施の形態の流体流量測定装置の測定部の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a measurement unit of the fluid flow measurement device according to the first embodiment. 実施の形態による、6つの抵抗体を含む、流体流量測定装置の回路図である。 1 is a circuit diagram of a fluid flow rate measuring device including six resistors according to Embodiment 1. FIG. 抵抗体68〜71(図)の端子電圧と、出力端子16、81(図)の電圧との関係を示す図である。It is a figure which shows the relationship between the terminal voltage of the resistors 68-71 (FIG. 2 ), and the voltage of the output terminals 16 and 81 (FIG. 2 ). Vout1,Vout2とVh1〜Vh4との関係を示す図である。It is a figure which shows the relationship between Vout1, Vout2 and Vh1-Vh4. 最終出力を出力するための処理を示す図である。It is a figure which shows the process for outputting a final output. 2つの出力電圧94、95から得られた最終的な出力電圧97のグラフである。It is a graph of the final output voltage 97 obtained from the two output voltages 94 and 95. で説明した出力電圧86(Vout1)および87(Vout2)をデジタル出力するための処理を示す図である。It is a figure which shows the process for outputting the output voltage 86 (Vout1) and 87 (Vout2) demonstrated in FIG. 5 digitally. デューティ比差を出力するための処理を示す図である。It is a figure which shows the process for outputting a duty ratio difference. で説明した出力電圧86(Vout1)および87(Vout2)をデジタル出力するための別の処理を示す図である。It is a figure which shows another process for outputting the output voltage 86 (Vout1) and 87 (Vout2) demonstrated in FIG. 5 digitally. 実施の形態の流体流量測定装置の測定部の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a measurement unit of a fluid flow measurement device according to a fifth embodiment. 実施の形態における、抵抗体4、5、6を含む、流体流量測定装置の回路図である。FIG. 10 is a circuit diagram of a fluid flow rate measuring device including resistors 4, 5, and 6 in a fifth embodiment. 流体の流量に応じた、上流温度検出抵抗体5と下流温度検出抵抗体6の温度変化のグラフである。It is a graph of the temperature change of the upstream temperature detection resistor 5 and the downstream temperature detection resistor 6 according to the flow volume of the fluid. 上流温度検出抵抗体5の温度と下流温度検出抵抗体6の温度の差の流量依存性を示すグラフである。It is a graph which shows the flow rate dependence of the difference of the temperature of the upstream temperature detection resistor 5 and the temperature of the downstream temperature detection resistor 6. 実施の形態の流体流量測定装置の測定部の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a measurement unit of a fluid flow measurement device according to a sixth embodiment. 実施の形態7の流体流量測定装置の測定部の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a measurement unit of a fluid flow measurement device according to a seventh embodiment. 実施の形態7による、流体温度検出抵抗体55を含む、流体流量測定装置の回路図である。FIG. 10 is a circuit diagram of a fluid flow rate measurement device including a fluid temperature detection resistor 55 according to a seventh embodiment. 実施の形態8における、電圧Veを出力する回路図である。FIG. 20 is a circuit diagram for outputting a voltage Ve in the eighth embodiment. 実施の形態9における、流体温度検出抵抗体55を挿入した流体流量測定装置の回路図である。FIG. 20 is a circuit diagram of a fluid flow rate measuring device with a fluid temperature detection resistor 55 inserted in a ninth embodiment.

1 シリコン基板、 3 薄肉部、 4 発熱抵抗体、 5 上流側温度検出抵抗体、 6 下流側温度検出抵抗体、 7 絶縁層、 8 絶縁層、 9 配線部、 10 パッド部、 13 定電流源、 68 第1の発熱抵抗体、 69 第2の発熱抵抗体、 70 第3の発熱抵抗体、 71 第4の発熱抵抗体、 72 差動増幅器。   DESCRIPTION OF SYMBOLS 1 Silicon substrate, 3 Thin part, 4 Heating resistor, 5 Upstream temperature detection resistor, 6 Downstream temperature detection resistor, 7 Insulating layer, 8 Insulating layer, 9 Wiring part, 10 Pad part, 13 Constant current source, 68 first heat generating resistor, 69 second heat generating resistor, 70 third heat generating resistor, 71 fourth heat generating resistor, 72 differential amplifier.

Claims (3)

流体中に配置され、熱を発する発熱体の上流側の放熱量と下流側の放熱量との差から、流体の流量を測定する流量測定装置において、
流体の上流側から下流側にかけて配置され、各々が、熱を発する発熱体および温度を検出する温度検出体の機能を有する第1、第2、第3、第4、第5、第6の感温抵抗体と、
前記感温抵抗体を発熱させる電力の供給を制御する制御回路を備え、
前記第1、第2、第5、第6の感温抵抗体は、定電流源あるいは定電圧源に接続されており、前記第2、第3、第4、第5の感温抵抗体は電力供給源である電源に接続されており、
前記制御回路は、前記第1、第6の感温抵抗体の温度を比較する第1比較回路と、前記第2、第5の感温抵抗体の温度を比較する第2比較回路と、前記電源と前記第2、第3、第4、第5の感温抵抗体の間に配置される複数のスイッチであって、前記第1比較回路による温度比較結果と前記第2比較回路による温度比較結果とに基づいて、前記第1、第2、第3、第4の感温抵抗体の中の1つの感温抵抗体に前記電源から電力を供給するように開閉動作をして、前記第2、第5の感温抵抗体の温度が等しくなるようにし、さらに、前記第1、第6の感温抵抗体の温度が等しくなるようにする前記スイッチとを備え、前記第3、第4の感温抵抗体に供給された電力の差と、前記第2、第5の感温抵抗体に供給された電力の差とに基づいて、流体の流量を測定する流量測定装置。
In the flow rate measuring device that measures the flow rate of the fluid from the difference between the heat release amount on the upstream side and the heat release amount on the downstream side of the heating element that is arranged in the fluid and generates heat,
1st, 2nd, 3rd, 4th, 5th, 6th sense which is arrange | positioned from the upstream of the fluid to the downstream, and each has the function of the heat generating body which generates heat, and the temperature detection body which detects temperature. A thermal resistor,
A control circuit for controlling supply of electric power for generating heat in the temperature sensitive resistor;
The first, second, fifth, and sixth temperature sensitive resistors are connected to a constant current source or a constant voltage source, and the second, third, fourth, and fifth temperature sensitive resistors are Connected to the power supply,
The control circuit includes a first comparison circuit that compares the temperatures of the first and sixth temperature sensitive resistors, a second comparison circuit that compares the temperatures of the second and fifth temperature sensitive resistors, A plurality of switches arranged between a power source and the second, third, fourth, and fifth temperature sensitive resistors, the temperature comparison result by the first comparison circuit and the temperature comparison by the second comparison circuit Based on the result, an opening / closing operation is performed to supply power from the power source to one of the first, second, third, and fourth temperature sensitive resistors, and the first The second and fifth temperature sensitive resistors have the same temperature , and the switch has the same that the first and sixth temperature sensitive resistors have the same temperature. 4 based on the difference between the power supplied to the temperature sensitive resistor 4 and the difference between the power supplied to the second and fifth temperature sensitive resistors. Flow rate measuring device for measuring the flow rate.
さらに、前記第3と第4の感温抵抗体の間に発熱抵抗体を備え、
前記制御回路は、前記第1の感温抵抗体と第6の感温抵抗体の平均温度が予め設定された温度になるように、前記発熱抵抗体に供給する電力を制御する、請求項1に記載の流量測定装置。
Furthermore, a heating resistor is provided between the third and fourth temperature sensitive resistors,
The control circuit controls electric power supplied to the heating resistor so that an average temperature of the first temperature sensing resistor and the sixth temperature sensing resistor becomes a preset temperature. The flow measurement device described in 1.
前記制御回路は、流体の温度に基づいて、前記予め設定された温度を変化させる、請求項2に記載の流量測定装置。 The flow measurement device according to claim 2, wherein the control circuit changes the preset temperature based on a temperature of the fluid.
JP2007088349A 2007-03-29 2007-03-29 Flow measuring device Expired - Lifetime JP4551416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007088349A JP4551416B2 (en) 2007-03-29 2007-03-29 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007088349A JP4551416B2 (en) 2007-03-29 2007-03-29 Flow measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001251434A Division JP3955747B2 (en) 2001-08-22 2001-08-22 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2007178447A JP2007178447A (en) 2007-07-12
JP4551416B2 true JP4551416B2 (en) 2010-09-29

Family

ID=38303741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007088349A Expired - Lifetime JP4551416B2 (en) 2007-03-29 2007-03-29 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4551416B2 (en)

Also Published As

Publication number Publication date
JP2007178447A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5209232B2 (en) Thermal flow meter
JP3955747B2 (en) Flow measuring device
DK2869041T3 (en) Flow sensor for determining a flow parameter and method for determining same
WO2000065315A1 (en) Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement
JP5378391B2 (en) Fluid flow rate sensor and method of operation
JP2006113064A (en) Flow velocity sensor for fluid, and operation method therefor
JP4939128B2 (en) Fluid velocity measuring device
TW201346264A (en) Anemometer
JP4551416B2 (en) Flow measuring device
CN110646017B (en) Fluid sensor device and failure detection method for fluid sensor
JP5111180B2 (en) Thermal flow meter
JPH09318412A (en) Thermal flow velocity sensor
JP3454265B2 (en) Thermal flow sensor
JP3596596B2 (en) Flow measurement device
WO2019031329A1 (en) Wind speed measurement device and air flow measurement device
JP3238984B2 (en) Heat-sensitive microbridge flowmeter
US11650088B2 (en) Thermal flow sensor for determining the temperature and the flow velocity of a flowing measuring medium
JPH11118567A (en) Flow sensor
JP4435351B2 (en) Thermal flow meter
JP2004257790A (en) Measuring method of gas physical property value
TW384391B (en) Thermal pulsed micro flow sensor
CN117686043A (en) Thermal type gas flow compensation calculation method and thermal type gas flow sensor
JP2008046143A (en) Thermal fluid sensor and flow sensor
JP2001296165A (en) Flow rate measuring device and electronic flowmeter
JP2004093160A (en) Thermal flowmeter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R150 Certificate of patent or registration of utility model

Ref document number: 4551416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term