JP4549157B2 - Seismic joint structure of concrete panels - Google Patents

Seismic joint structure of concrete panels Download PDF

Info

Publication number
JP4549157B2
JP4549157B2 JP2004314779A JP2004314779A JP4549157B2 JP 4549157 B2 JP4549157 B2 JP 4549157B2 JP 2004314779 A JP2004314779 A JP 2004314779A JP 2004314779 A JP2004314779 A JP 2004314779A JP 4549157 B2 JP4549157 B2 JP 4549157B2
Authority
JP
Japan
Prior art keywords
joint
rock wool
panel
layer
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004314779A
Other languages
Japanese (ja)
Other versions
JP2006104902A (en
Inventor
克明 平井
Original Assignee
クリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリオン株式会社 filed Critical クリオン株式会社
Priority to JP2004314779A priority Critical patent/JP4549157B2/en
Publication of JP2006104902A publication Critical patent/JP2006104902A/en
Application granted granted Critical
Publication of JP4549157B2 publication Critical patent/JP4549157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、コンクリートパネル(以下、パネル)の耐震目地構造に関し、さらに詳しくは、ロッキング構法等により建築物の壁面等に取付けられるパネルの外表面にロックウール等の無機繊維層が形成された断熱構造において、その隣接するパネル間の目地部に成形目地材を設け、耐震安全性を向上させたコンクリートパネルの耐震目地構造に関するものである。  The present invention relates to a seismic joint structure of a concrete panel (hereinafter referred to as a panel), and more specifically, heat insulation in which an inorganic fiber layer such as rock wool is formed on the outer surface of a panel attached to a wall surface of a building by a rocking construction method or the like. In the structure, the present invention relates to a seismic joint structure for a concrete panel in which a joint material is provided at a joint portion between adjacent panels to improve seismic safety.

一般に、建築物の壁等は、建築基準法に基づいて一定の耐火性能、断熱性能、耐震性能を備える必要がある。また、建築物の居住性を向上させるために、断熱性を備える必要があり、壁や屋根等に各種の断熱材が多く用いられている。  Generally, a building wall or the like needs to have certain fire resistance, heat insulation performance, and earthquake resistance based on the Building Standard Law. Moreover, in order to improve the habitability of a building, it is necessary to provide heat insulation, and various heat insulating materials are often used for walls, roofs, and the like.

例えば、軽量気泡コンクリート(ALC)パネルは、断熱性が高く、軽量であるため、戸建て住宅や店舗併用住宅、あるいは工場、高層共同住宅の外壁等に多く使用されている建材である。しかし、昨今の省エネルギーに対する社会的ニーズの高さから、ALCパネルに他の断熱材料を複合し、さらに断熱性能を高める構法も採用されてきた。  For example, lightweight cellular concrete (ALC) panels are highly heat-insulating and lightweight, and are therefore frequently used for detached houses, store-use houses, factories, outer walls of high-rise apartment houses, and the like. However, due to the recent high social needs for energy saving, other heat insulating materials are combined with ALC panels to further improve the heat insulating performance.

この場合、壁一面に、壁面の凹凸の有無に関わらず一様に途切れることがなく、断熱層を形成できる構法として、発泡ウレタン等を付す方法が用いられてきた。しかし、発泡ウレタンは、フロンガスを用いることによる環境汚染や、非常に燃えやすいことによる工事現場での管理の難しさ、火災による類焼の危険等の問題があった。  In this case, a method of attaching urethane foam or the like has been used as a construction method in which a heat insulating layer can be formed on a wall without being uniformly interrupted regardless of the presence or absence of unevenness on the wall. However, urethane foam has problems such as environmental pollution due to the use of chlorofluorocarbons, difficulty in management at the construction site due to its extremely flammability, and risk of burning due to fire.

それらの問題点を解決する方法として、従来、耐火被覆材として用いられてきた吹付けロックウールを断熱材として壁面に吹付ける工法が用いられるようになってきた。図4(a)および(b)は、その断面構造を示したものである。また、図4(b)は、図4(a)の目地部43付近の拡大図である。すなわち、複数枚のALCパネルを並設して相互に隣り合う両ALCパネル41a,41bがその目地部43同士が嵌合された状態で躯体に取付けられ、その各ALCパネルの外表面に、前記目地部43も含めて、全外表面に亘ってロックウール層45が吹付け工法により形成されている。  As a method of solving these problems, a method of spraying sprayed rock wool, which has been conventionally used as a fireproof coating material, on a wall surface as a heat insulating material has come to be used. 4A and 4B show the cross-sectional structure. Moreover, FIG.4 (b) is an enlarged view of the joint part 43 vicinity of Fig.4 (a). That is, a plurality of ALC panels are arranged side by side, and both ALC panels 41a and 41b adjacent to each other are attached to the housing in a state where the joint portions 43 are fitted to each other, and on the outer surface of each ALC panel, The rock wool layer 45 is formed by the spraying method over the entire outer surface including the joint portion 43.

ところで、近年、ALCパネル等のコンクリートパネルは、耐震安全性の確保の観点から、構造躯体の変形に対して追随するロッキング構法等が採用されてきた。ロッキング構法は、地震や風圧等による構造躯体の層間変形に対して、各パネルが一枚ずつ微小回転し、全てのパネル間目地がずれることにより、その層間変形に追随する取付構法である。  In recent years, concrete panels such as ALC panels have adopted a rocking construction method that follows the deformation of the structural frame from the viewpoint of ensuring seismic safety. The rocking construction method is a mounting construction method in which each panel rotates slightly one by one with respect to the interlayer deformation of the structural frame due to an earthquake, wind pressure, or the like, and the joints between all the panels are displaced to follow the interlayer deformation.

図5は、その構造躯体の層間変形に対してパネルが追随している状態を示す。すなわち、地震等により構造躯体である梁54,55に取付けられたパネル51が、前記梁54,55の長さ方向からの水平応力Aにより、層間変形lを生じるが、各パネル51が一枚ずつ微小回転し、隣接するパネル間の目地部53がずれることにより、構造躯体の層間変形に対してパネル51が追随している状態を示す。  FIG. 5 shows a state in which the panel follows the interlayer deformation of the structural housing. That is, the panel 51 attached to the beams 54 and 55 which are structural frames due to an earthquake or the like causes the interlayer deformation l due to the horizontal stress A from the longitudinal direction of the beams 54 and 55. It shows a state in which the panel 51 follows the interlayer deformation of the structural frame by slightly rotating each time and shifting the joint portion 53 between adjacent panels.

このようなロッキング構法によれば、従来使用されてきた発泡ウレタンは、目地部付近から破断することにより、パネルのロッキング挙動に追随する。しかし、吹付けロックウールは、発泡ウレタンよりも引張り強度が高く、パネルのロッキング挙動による目地部付近からの破断は生じない。すなわち、パネル面に吹付けたロックウールがパネルのロッキング挙動を妨げ、壁面の耐震安全性を損なうこととなる。  According to such a rocking construction method, conventionally used urethane foam follows the locking behavior of the panel by breaking from the vicinity of the joint. However, spray rock wool has higher tensile strength than foamed urethane, and does not break from the vicinity of the joint due to the locking behavior of the panel. That is, the rock wool sprayed on the panel surface hinders the locking behavior of the panel and impairs the seismic safety of the wall surface.

そこで、本出願人は、パネルの外表面にロックウールのような無機繊維質の層を形成して、発泡ウレタンのような環境汚染の問題がなく、耐火被覆性能にも優れたパネルの断熱構造において、ロッキング挙動による目地部の破断が生じることによって、耐震安全性も具備させることができないかと考えた。  Therefore, the present applicant forms an inorganic fiber layer such as rock wool on the outer surface of the panel, and there is no problem of environmental pollution such as foamed urethane, and the heat insulation structure of the panel is excellent in fireproof coating performance. In this case, it was considered that seismic safety could be provided by the fracture of the joint due to the rocking behavior.

この問題に対して、例えば、特許文献1に、壁パネル間の目地部にタイル伸縮目地が設けられた構造が提案されている。これを図6に示して説明すると、複数枚の壁パネル61間の目地63に打設されたシーリング材65の表面にバックアップ材67を固着し、そのバックアップ材67をパネル表面よりも突出させ、バックアップ材67の仕上がり高さをパネル61面に張り合わされるタイル60の接着剤層69の仕上げ表面近傍とすることにより、壁パネル面へのタイル張りの施工管理を容易としたものである。  For example, Patent Document 1 proposes a structure in which tile expansion joints are provided at joints between wall panels. This will be described with reference to FIG. 6. A backup material 67 is fixed to the surface of a sealing material 65 placed on a joint 63 between a plurality of wall panels 61, and the backup material 67 protrudes from the panel surface. By making the finished height of the backup material 67 close to the finished surface of the adhesive layer 69 of the tile 60 bonded to the surface of the panel 61, it is easy to manage the installation of tiles on the wall panel surface.

しかしながら、この特許文献1に示されたようなタイル張り仕上げの伸縮目地構造は、耐震安全性を確保するというよりも、タイル目地を設けることにより前記接着剤層69の引張り応力を分散する目的で設けられた構造であり、その構造が複雑で、施工費が嵩むという問題がある。また、パネルにロックウール等の無機繊維材を吹付けた断熱構造に適用しようとしてもその施工は容易ではなく、施工管理も複雑で、作業効率が低下するという問題がある。  However, the expansion joint structure of the tiled finish as shown in this Patent Document 1 is intended to disperse the tensile stress of the adhesive layer 69 by providing a tile joint rather than ensuring seismic safety. There is a problem that the structure is provided, the structure is complicated, and the construction cost increases. Moreover, even if it tries to apply to the heat insulation structure which sprayed inorganic fiber materials, such as rock wool, to the panel, the construction is not easy, construction management is complicated, and there exists a problem that work efficiency falls.

特開2003−206613号公報JP 2003-206613 A

本発明の解決しようとする課題は、ロッキング構法等により構造躯体に取付けられたコンクリートパネルの外表面に無公害なロックウール等の無機繊維層が設けられた断熱構造において、地震等の振動でパネルにロッキング挙動が生じた場合に、目地部近傍で前記無機繊維層が破断し、構造躯体の層間変形に対する追随が容易な耐震性に優れたコンクリートパネルの耐震目地構造を提供することにある。  The problem to be solved by the present invention is to provide a heat insulating structure in which an inorganic fiber layer such as non-polluting rock wool is provided on the outer surface of a concrete panel attached to a structural frame by a rocking construction method or the like. An object of the present invention is to provide a seismic joint structure for a concrete panel having excellent seismic resistance, in which the inorganic fiber layer breaks in the vicinity of the joint when rocking behavior occurs, and the structure can easily follow the interlayer deformation.

上記課題を解決するために本発明のコンクリートパネルの耐震目地構造は、請求項1に記載のように、複数枚のコンクリートパネルを並べて構成した壁体の屋外側表面上に、無機繊維層が積層された断熱構造において、前記コンクリートパネルの周縁部の目地部に、断熱性素材からなる成形目地材を介在させたことを要旨とする。  In order to solve the above-mentioned problems, the seismic joint structure of a concrete panel according to the present invention has an inorganic fiber layer laminated on the outdoor side surface of a wall body constituted by arranging a plurality of concrete panels as described in claim 1. The gist of the heat insulating structure is that a formed joint material made of a heat insulating material is interposed in the joint portion of the peripheral portion of the concrete panel.

この場合に、前記成形目地材の部位における成形目地材の頂部と無機繊維層の表層部までの厚さは、10mm以下であると好適である。より好ましくは、3mm〜6mmの範囲とされる。  In this case, it is preferable that the thickness from the top part of the molding joint material to the surface layer part of the inorganic fiber layer in the part of the molding joint material is 10 mm or less. More preferably, it is set to a range of 3 mm to 6 mm.

さらに、前記無機繊維層は、ロックウールがコンクリートパネルの表面に吹付けられて形成されたものであると好適である。  Furthermore, the inorganic fiber layer is preferably formed by spraying rock wool onto the surface of the concrete panel.

本発明の請求項1に記載のコンクリートパネルの耐震目地構造によれば、ロッキング構法等により構造躯体に取付けられたコンクリートパネルにおいて、隣接するパネル間の目地部に成形目地材が介在され、その上に無機繊維層が形成されており、他の部位における無機繊維層の厚みよりも薄くすることにより、引張り強度が低くなるようにした。このことで、地震等の振動によって、構造躯体にロッキング挙動が生じ、その結果、無機繊維層が薄い目地部で破断し、該コンクリートパネルの耐震安全性を確保することができる。  According to the seismic joint structure of a concrete panel according to claim 1 of the present invention, in a concrete panel attached to a structural frame by a rocking construction method or the like, a molded joint material is interposed in a joint portion between adjacent panels, An inorganic fiber layer is formed on the surface, and the tensile strength is lowered by making it thinner than the thickness of the inorganic fiber layer in other parts. As a result, rocking behavior occurs in the structural frame due to vibration such as an earthquake, and as a result, the inorganic fiber layer breaks at the thin joints, and the seismic safety of the concrete panel can be ensured.

そして、成形目地材の部位における成形目地材の頂部と無機繊維層の表層部までの厚さを、10mm以下とすることにより比較的大きな地震や風圧に対して、破断感応性が高められ、耐震安全性がより確実なものとなる。  And by making the thickness from the top part of the molding joint material to the surface layer part of the inorganic fiber layer at the part of the molding joint material to be 10 mm or less, the fracture sensitivity to a relatively large earthquake or wind pressure is improved, and the earthquake resistance Safety is more certain.

また、無機繊維層としてロックウールがコンクリートパネル表面に吹付けられると、パネルの板厚が薄くても、耐火性、断熱性および曲げ強さ等が高められる。また、発泡ウレタンを用いないため、環境汚染物質の解消および火災等による被害が防止できるという利点を有する。  Moreover, when rock wool is sprayed on the concrete panel surface as an inorganic fiber layer, fire resistance, heat insulation, bending strength, etc. are improved even if the panel thickness is thin. Moreover, since urethane foam is not used, there is an advantage that environmental pollutants can be eliminated and damage caused by fires can be prevented.

以下に本発明の一実施の形態について、図面を参照して詳細に説明する。図1(a),(b)は本発明の一実施形態に係るコンクリートパネルの目地構造の断面図である。本発明に係るコンクリートパネルは、軽量気泡コンクリート(ALC)パネル11a,11bの表面に無機繊維断熱材として、ロックウール層13が吹付けられ、断熱性を有する壁として建築物を構成している。  Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. 1A and 1B are cross-sectional views of a joint structure of a concrete panel according to an embodiment of the present invention. In the concrete panel according to the present invention, the rock wool layer 13 is sprayed as an inorganic fiber heat insulating material on the surface of the lightweight cellular concrete (ALC) panels 11a and 11b to constitute a building as a wall having heat insulating properties.

この場合、前記コンクリートパネルは、吹付けロックウールとの接着における適合性があるものであれば、例えば、ケイ酸カルシウム成形板、木毛セメント板、パルプセメント板、石綿セメントパーライト板、PC板、石膏板、スレート板、押出成形板等に適用することも可能である。  In this case, as long as the concrete panel is compatible with adhesion with spray rock wool, for example, calcium silicate molded board, wood wool cement board, pulp cement board, asbestos cement pearlite board, PC board, It is also possible to apply to a gypsum board, a slate board, an extrusion molding board, etc.

そして、前記建築物は、複数枚のALCパネルを並設して、相互に隣り合う両ALCパネル11a,11b間の目地部15に、該目地部15に沿ってかつALCパネル表面19に対して垂直となる方向に一定の厚みをもって成形目地材17を介在させたのち、ALCパネル表面19および前記成形目地材17表面に、前記ロックウールを吹付け完成する。また、ロックウールは、一般に鉱物繊維をセメントに混入したものが用いられる。  The building has a plurality of ALC panels arranged side by side on the joint 15 between the two adjacent ALC panels 11a and 11b, along the joint 15 and to the ALC panel surface 19. After the molding joint material 17 is interposed with a certain thickness in the vertical direction, the rock wool is sprayed and completed on the ALC panel surface 19 and the molding joint material 17 surface. In addition, rock wool is generally used in which mineral fibers are mixed into cement.

また、成形目地材17は、目地部15の断熱性能が損なわれないように、ポリスチレン、ポリウレタン、ポリエチレンあるいはフェノールフォーム製等の断熱性能を有する材料を使用することが望ましい。  The molded joint material 17 is desirably made of a material having heat insulation performance such as polystyrene, polyurethane, polyethylene, or phenol foam so that the heat insulation performance of the joint portion 15 is not impaired.

図2は、図1(b)に示されるコンクリートパネルの目地構造の拡大断面図である。図示するように、複数枚のALCパネルを並設して、相互に隣り合う両ALCパネル21a,21b間の目地部23の面取り部24a,24bに、該面取り部24a,24bの断面形状に合わせ、底部が断面三角形状で、表層に向けて先細突形状をした成形目地材25を介在させた後、ALCパネル表面27および成形目地材25表面にロックウールを吹付けて、ロックウール層29を形成したものである。成形目地材25の頂部22の部位におけるロックウール層29の平均厚さ(h)を10mm以下にすることにより、ロックウール層29の破断強度が低くなるようにしてある。  FIG. 2 is an enlarged cross-sectional view of the joint structure of the concrete panel shown in FIG. As shown in the figure, a plurality of ALC panels are arranged side by side, and the chamfered portions 24a and 24b of the joint portion 23 between the adjacent ALC panels 21a and 21b are matched to the cross-sectional shape of the chamfered portions 24a and 24b. Then, after the molded joint material 25 having a triangular bottom section and a tapered projection toward the surface layer is interposed, rock wool is sprayed on the ALC panel surface 27 and the molded joint material 25 surface to form the rock wool layer 29. Formed. By setting the average thickness (h) of the rock wool layer 29 at the site of the top portion 22 of the molding joint material 25 to 10 mm or less, the breaking strength of the rock wool layer 29 is lowered.

また、ロックウールとの馴染み性の良いALCパネル21a,21bとロックウール層29との接合界面27の接着強度は、充分高いものとなっているが、材料的な馴染み性が低い成形目地材25とその表面に被着されるロックウール層29との接合界面20の接着強度は低いものとなっている。このため、成形目地材25が位置する部位におけるロックウール層29との接合界面20は、構造的にも低くなるようになっている。  In addition, the bonding strength of the bonding interface 27 between the ALC panels 21a and 21b and the rock wool layer 29, which are well-familiar with rock wool, is sufficiently high, but the molding joint material 25 having low material familiarity. The adhesive strength of the bonding interface 20 between the rock wool layer 29 and the rock wool layer 29 deposited on the surface thereof is low. For this reason, the bonding interface 20 with the rock wool layer 29 at the portion where the molding joint material 25 is located is structurally low.

したがって、地震等により、ALCパネル21a,21bにロッキング挙動が生じた場合、前記ALCパネル21a,21bの目地部23に設けた成形目地材25に沿って、微小なクラックが発生して、ロックウール層29が破断する。その結果、ALCパネル21a,21bの耐震安全性が確保されることになる。尚、成形目地材25とロックウール層29との接合界面には、離型剤が塗布されていると、ロッキング挙動に際し、追随させやすくなるため好適である。  Therefore, when rocking behavior occurs in the ALC panels 21a and 21b due to an earthquake or the like, micro cracks are generated along the molding joint material 25 provided in the joint portion 23 of the ALC panels 21a and 21b, and rock wool Layer 29 breaks. As a result, the seismic safety of the ALC panels 21a and 21b is ensured. In addition, it is preferable that a release agent is applied to the bonding interface between the molding joint material 25 and the rock wool layer 29 because it is easy to follow the rocking behavior.

次に、構造躯体に取付けたALCパネル(幅600mm×長さ2990mm×厚さ100mm)において、隣接するALCパネル間の目地部に成形目地材を設けてロックウールを吹付けた。その後、図5に示すように、構造躯体を面内方向に微震、中震、強震の3段階に振動させる実験を行い、ロックウール層の破断状況およびALCパネルのロッキング挙動を確認した。微震はパネルの変形角(ラジアン)が300分の1、つまり3mのパネルの層間変形lが10mm生じ、中震はパネルの変形角が200分の1、層間変形lが15mm生じ、強震はパネルの変形角が100分の1、層間変形lが30mm生じることを意味する。それについて以下に詳述する。  Next, in the ALC panel (width 600 mm × length 2990 mm × thickness 100 mm) attached to the structural housing, a molding joint material was provided at the joint between adjacent ALC panels, and rock wool was sprayed. Thereafter, as shown in FIG. 5, an experiment was performed in which the structural frame was vibrated in three stages of a slight earthquake, a middle earthquake, and a strong earthquake in the in-plane direction, and the fracture condition of the rock wool layer and the rocking behavior of the ALC panel were confirmed. A slight earthquake has a panel deformation angle (radian) of 1/300, that is, an interlayer deformation of a 3 m panel is 10 mm, a middle earthquake has a panel deformation angle of 1/200, an interlayer deformation is 15 mm, and a strong earthquake is a panel Means that the deformation angle is 1/100 and the interlayer deformation l is 30 mm. This will be described in detail below.

(実施例1〜5)
初めに本発明の実施例1〜5は、ALCパネル面の吹付けロックウール層29の平均厚さ(H)は20mmとし、成形目地材25の頂部22におけるロックウール層29の厚さ(h)は2,4,6,8,10mmとした。また、成形目地材は、ポリスチレン製のものを使用し、図1および図2に示したようにその低部が断面三角形状で表層に向けて先細突形状をしたものを用いた。
(Examples 1-5)
First, in Examples 1 to 5 of the present invention, the average thickness (H) of the sprayed rock wool layer 29 on the ALC panel surface is 20 mm, and the thickness (h) of the rock wool layer 29 at the top portion 22 of the molding joint material 25 is set. ) Was 2, 4, 6, 8, 10 mm. Moreover, the molding joint material used was made of polystyrene, and as shown in FIG. 1 and FIG. 2, the lower part had a triangular section and a tapered shape toward the surface layer.

(比較例1,2)
比較例1,2は、実施例1〜5との比較のため実験を行なったもので、ALCパネル面の吹付けロックウール層29の平均厚さ(H)は20mmとし、成形目地材25の頂部22におけるロックウール層29の厚さ(h)は12,14mmとした。成形目地材は実施例1〜5と同じものを用いた。
(Comparative Examples 1 and 2)
Comparative Examples 1 and 2 were tested for comparison with Examples 1 to 5, and the average thickness (H) of the sprayed rock wool layer 29 on the ALC panel surface was 20 mm. The thickness (h) of the rock wool layer 29 at the top 22 was 12, 14 mm. The same molding joint material as in Examples 1 to 5 was used.

(比較例3)
比較例3は、やはり実施例1〜5との比較のため行なった実験で、ALCパネル面の吹付けロックウール層29の平均厚さ(H)は20mmとし、成形目地材は用いなかった。
(Comparative Example 3)
Comparative Example 3 was also an experiment conducted for comparison with Examples 1 to 5, in which the average thickness (H) of the sprayed rock wool layer 29 on the ALC panel surface was 20 mm, and no molding joint material was used.

その結果を次の表1に示す。この表1では、上記実施例および比較例の構造躯体を面内方向に微震、中震、強震の3段階で振動させて、ロックウールの破断状況等を目視にて観察した結果、躯体の振動に追随するか、目地部に沿って微小クラックが発生し破断したものを良好(○印)、躯体の振動に追随せず目地部で破断しなかったものあるいは躯体の取付金具部でパネルの亀裂や破断が生じたものを不良(×印)、躯体の振動にある程度追随し、目地部の破断が生じるものの完全ではなかったものをやや良好(△印)として判定した。総合評価では、特に微震での追随性が良く、かつ中震・強震では目地部に沿って破断が生じて特性が極立って良好なものを◎印として判定している。  The results are shown in Table 1 below. In Table 1, the structural bodies of the above-mentioned examples and comparative examples were vibrated in three stages of in-plane direction of slight earthquake, middle earthquake, and strong earthquake, and as a result of visually observing the breaking situation of rock wool, etc. Or cracks that occurred due to the occurrence of microcracks along the joints (good circles), those that did not follow the chassis vibration and did not break at the joints, or cracks in the panel at the bracket mounting brackets The case where the fracture occurred was defective (x mark), the vibration of the casing was followed to some extent, and the fracture of the joint part which was not perfect was judged as slightly good (Δ mark). In the comprehensive evaluation, the traceability is particularly good in slight earthquakes, and in the middle and strong earthquakes, breaks occur along the joints and the characteristics are extremely good, and are marked as ◎.

Figure 0004549157
Figure 0004549157

この表1の結果から明らかなように、本発明の耐震目地構造(実施例1〜5)によれば、躯体に微震が与えられた場合には、実施例1では微震で若干の亀裂が確認されたものの、実施例2〜5は成形目地材部位のロックウールの厚さがいずれの場合も躯体の振動に追随し、目地部の破断が生じることはなく、軽微な地震や多少の風力等の微震に対しては、目地部のロックウール層は破断することなく、躯体の振動に追随し、耐震安全性が確保されることが確認された。  As is clear from the results of Table 1, according to the seismic joint structure of the present invention (Examples 1 to 5), when a strong earthquake was given to the frame, in Example 1, some cracks were confirmed by the slight earthquake. However, in Examples 2 to 5, the thickness of the rock wool of the molded joint material part follows the vibration of the casing, the joint part does not break, a slight earthquake, some wind power, etc. It was confirmed that the rock wool layer at the joints followed the vibration of the frame without breaking the joints, and seismic safety was ensured.

また、本発明品によれば、躯体に中震、あるいは強震が与えられた場合には、中震の場合に実施例1〜3は完全に目地部で破断され、実施例4および5は目地部全域で亀裂が確認されるものの、一部で無機繊維同士の結束が見られたが、成形目地材部位のロックウール厚さがいずれの場合も目地部の全長に亘って微小クラックが発生し、ロックウール層が破断し、耐震安全性が確保されることが確認された。そして本発明品の場合特に、成形目地材の頂部におけるロックウール層の厚さが3mm〜6mmの範囲において、軽微な地震や多少の風力に対して目地部のロックウール層が破断することもなく、また躯体の振動に追随し、しかし地震による強震あるいは、大型台風等の強風による躯体の振動に際しては、パネルのロッキング挙動を阻害することなく、目地部で破断することも確認された。したがって実施例2および3では総合評価として◎印と判定した。  Also, according to the product of the present invention, when a middle or strong earthquake is applied to the frame, Examples 1 to 3 are completely broken at the joint in the case of the middle earthquake, and Examples 4 and 5 are joints. Although some cracks were observed in the entire area, some of the inorganic fibers were bound, but in any case where the rock wool thickness of the molded joint material part was small, microcracks occurred over the entire joint area. It was confirmed that the rock wool layer was broken and seismic safety was ensured. And in the case of the product of the present invention, in particular, in the range of 3 to 6 mm in the thickness of the rock wool layer at the top of the molded joint material, the rock wool layer at the joint does not break against a slight earthquake or some wind force. In addition, following the vibration of the frame, it was also confirmed that the frame breaks at the joints without obstructing the rocking behavior of the panel in the event of strong earthquakes or strong frame vibrations such as large typhoons. Therefore, in Examples 2 and 3, it was determined as ◎ as an overall evaluation.

これに対して比較品(比較例1〜3)によれば、まず成形目地材が介在されない比較例3においては、微震に対して躯体の振動に対する追随性が悪く、中震あるいは、強震では取付金具部でパネルの亀裂や破断が見られるのみで目地部での破断は全く認められなかった。これに対して比較例1,2では、微震に対して躯体振動への追随性はあまり良くないが、中震あるいは、強震に対しても目地部での破断はあるものの、取付金具部での亀裂や破断が認められ、評価としては本発明品よりは若干劣るものであった。  On the other hand, according to the comparative product (Comparative Examples 1 to 3), in Comparative Example 3 in which the molded joint material is not interposed, the followability to the vibration of the frame is poor with respect to the slight earthquake, and it is attached in the middle or strong earthquake. Only cracks and breaks in the panel were seen at the metal part, and no breaks at the joints were observed. On the other hand, in Comparative Examples 1 and 2, the followability to the body vibration is not so good with respect to the slight earthquake, but there is a break at the joint part even for the middle earthquake or strong earthquake, Cracks and fractures were observed, and the evaluation was slightly inferior to the product of the present invention.

したがって、これらの結果より、本発明の耐震目地構造のように、ALCパネル表面にロックウール層を吹付けにより形成したものであって、ALCパネル間の目地部に成形目地材を介在させると、地震等の震動により目地部のロックウール層が破断し、ALCパネルは各々ロッキング挙動を示すことができる。また、成形目地材の部位における成形目地材の頂部とロックウール層の表層部までの厚さを10mm以下とすることにより、ロックウールの破断特性がより向上し、耐震安全性も向上することが明暸となった。  Therefore, from these results, like the seismic joint structure of the present invention, the rock wool layer was formed by spraying on the surface of the ALC panel, and when the molding joint material was interposed in the joint part between the ALC panels, The rock wool layer at the joint portion is broken by a vibration such as an earthquake, and each ALC panel can show a rocking behavior. In addition, by setting the thickness from the top of the molding joint to the surface layer of the rock wool layer at 10 mm or less at the site of the molding joint, the breaking characteristics of rock wool can be further improved, and the seismic safety can be improved. It became clear.

また、上記結果より、軽微な地震や多少の風力等の微震時には、ロックウール層が破断することがなく、躯体の振動に追随し、強い地震や大型台風等による強震時にはパネルのロッキング挙動に追随し、目地部が破断するためには成形目地材の頂部のロックウール層の厚さが3mm〜6mmが好ましいこともわかった。  In addition, from the above results, the rock wool layer does not break during minor earthquakes or slight earthquakes such as wind power, and follows the vibration of the frame, and follows the rocking behavior of the panel during strong earthquakes or strong earthquakes such as large typhoons. And in order to fracture | rupture a joint part, it turned out that the thickness of the rock wool layer of the top part of a shaping | molding joint material has preferable 3 mm-6 mm.

なお、前記成形目地材の形態としては、図1および図2に示された以外のものも考えられる。例えば、図3に示すように、断面形状が円形状、半円形状、方形状、台形状、三角形状のものでも良く、構造躯体の振動時にパネルの目地部に沿って線上に集中させることができる形態のものであればよい。これら各種形態の成形目地材もその頂部におけるロックウール層厚さ(h)が10mm以下であれば、表1に示したものと同じ結果を得ることができる。  In addition, as a form of the said molding joint material, the thing except having shown by FIG. 1 and FIG. 2 is also considered. For example, as shown in FIG. 3, the cross-sectional shape may be circular, semicircular, square, trapezoidal, or triangular, and when the structural frame vibrates, it can be concentrated on the line along the joints of the panel. Any form can be used. If the rock wool layer thickness (h) at the top of these various types of molded joint materials is 10 mm or less, the same results as those shown in Table 1 can be obtained.

以上、本発明の各種の実施形態について詳細に説明したが、本発明は前記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。例えば、前記実施例では、コンクリートパネル表面の無機繊維層としてロックウールの例を示したが、グラスウール等の繊維材を用いたものにも適用できる。また、ALCパネルの大きさは、上記実施例品に限られるものではなく、また、パネル面のロックウール層の吹付け量も上記実施例に限定されるものではないことは言うまでもない。  Although various embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. For example, in the said Example, although the example of rock wool was shown as an inorganic fiber layer on the surface of a concrete panel, it can apply also to what used fiber materials, such as glass wool. In addition, the size of the ALC panel is not limited to the above-mentioned example product, and it is needless to say that the spraying amount of the rock wool layer on the panel surface is not limited to the above example.

本発明の一実施形態に係るコンクリートパネルの目地構造を示した断面図である。It is sectional drawing which showed the joint structure of the concrete panel which concerns on one Embodiment of this invention. 図1に示されるコンクリートパネルの目地構造を拡大して示した図である。It is the figure which expanded and showed the joint structure of the concrete panel shown by FIG. 本発明に適用される成形目地材の他の実施形態を示した図である。It is the figure which showed other embodiment of the molding joint material applied to this invention. 従来一般的に知られているロックウール表層コンクリートパネルの断面図である。It is sectional drawing of the rock wool surface layer concrete panel generally known conventionally. 従来一般に知られているALCパネルのロッキング挙動の説明図である。It is explanatory drawing of the rocking behavior of the ALC panel generally known conventionally. 従来例としてのタイル張りコンクリートパネルのタイル伸縮目地構造を示した図である。It is the figure which showed the tile expansion joint structure of the tiled concrete panel as a prior art example.

符号の説明Explanation of symbols

11a,11b ALCパネル
13 ロックウール層
15 目地部
17 成形目地材
21a,21b ALCパネル
23 目地部
25 成形目地材
29 ロックウール層
54,55 梁
A 水平応力
l 層間変形
11a, 11b ALC panel 13 Rock wool layer 15 Joint part 17 Molded joint material 21a, 21b ALC panel 23 Joint part 25 Molded joint material 29 Rock wool layer 54, 55 Beam A Horizontal stress l Interlayer deformation

Claims (3)

複数枚のコンクリートパネルを並べて構成した壁体の屋外側表面上に、無機繊維層が積層された断熱構造において、前記コンクリートパネルの周縁部の目地部に、断熱性素材からなる成形目地材を介在させたことを特徴とするコンクリートパネルの耐震目地構造。  In a heat insulating structure in which an inorganic fiber layer is laminated on the outdoor side surface of a wall body composed of a plurality of concrete panels arranged side by side, a molding joint material made of a heat insulating material is interposed in the joint portion of the peripheral edge of the concrete panel Seismic joint structure of concrete panels characterized by 前記成形目地材の部位における成形目地材の頂部と無機繊維層の表層部までの厚さを10mm以下としたことを特徴とする請求項1記載のコンクリートパネルの耐震目地構造。  The seismic joint structure for a concrete panel according to claim 1, wherein a thickness from the top part of the molding joint material to the surface layer part of the inorganic fiber layer in the part of the molding joint material is 10 mm or less. 前記無機繊維層は、ロックウールがコンクリートパネルの表面に吹付けられて形成されたものであることを特徴とする請求項1または2に記載のコンクリートパネルの耐震目地構造。  The seismic joint structure according to claim 1 or 2, wherein the inorganic fiber layer is formed by spraying rock wool onto the surface of the concrete panel.
JP2004314779A 2004-09-30 2004-09-30 Seismic joint structure of concrete panels Expired - Fee Related JP4549157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314779A JP4549157B2 (en) 2004-09-30 2004-09-30 Seismic joint structure of concrete panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314779A JP4549157B2 (en) 2004-09-30 2004-09-30 Seismic joint structure of concrete panels

Publications (2)

Publication Number Publication Date
JP2006104902A JP2006104902A (en) 2006-04-20
JP4549157B2 true JP4549157B2 (en) 2010-09-22

Family

ID=36374949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314779A Expired - Fee Related JP4549157B2 (en) 2004-09-30 2004-09-30 Seismic joint structure of concrete panels

Country Status (1)

Country Link
JP (1) JP4549157B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057470B2 (en) * 2008-03-19 2012-10-24 ダウ化工株式会社 Insulated wall structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128044A (en) * 1988-11-08 1990-05-16 Onoda Autoclaved Light Weight Concrete Co Ltd Fitting of anchor to light-weight concrete panel
JPH03119235A (en) * 1989-09-29 1991-05-21 Misawa Homes Co Ltd Joint construction of dry external wall material
JP2000017743A (en) * 1998-07-01 2000-01-18 Kikusui Kagaku Kogyo Kk Joint filling member and wall face structure
JP2003049494A (en) * 2001-08-03 2003-02-21 Toyo Industry Co Ltd Heat insulating coating structure and heat insulating coating construction method
JP2003206613A (en) * 2002-01-09 2003-07-25 Asahi Kasei Corp Expansion-joint structure of tiling finishing and building method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128044A (en) * 1988-11-08 1990-05-16 Onoda Autoclaved Light Weight Concrete Co Ltd Fitting of anchor to light-weight concrete panel
JPH03119235A (en) * 1989-09-29 1991-05-21 Misawa Homes Co Ltd Joint construction of dry external wall material
JP2000017743A (en) * 1998-07-01 2000-01-18 Kikusui Kagaku Kogyo Kk Joint filling member and wall face structure
JP2003049494A (en) * 2001-08-03 2003-02-21 Toyo Industry Co Ltd Heat insulating coating structure and heat insulating coating construction method
JP2003206613A (en) * 2002-01-09 2003-07-25 Asahi Kasei Corp Expansion-joint structure of tiling finishing and building method

Also Published As

Publication number Publication date
JP2006104902A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP6378858B2 (en) Joint structure and construction method of lightweight fireproof partition wall
CN102966189B (en) Outer wall insulating system integrated with construction of shear wall structure with lightweight-steel framework
JP6257021B2 (en) Insulation panel connection structure
JP5659039B2 (en) Panel connection structure
KR100512119B1 (en) the construction method of outer wall insulating with insulation board
JP6034050B2 (en) Steel beam fireproof coating structure
TWI794534B (en) room structure
JP4549157B2 (en) Seismic joint structure of concrete panels
CN104805928A (en) Pump watering core material fibreboard wrapping sandwich insulation outer wall
JP2010018971A (en) Fire resistant covering structure of steel column
JP2011220072A (en) Earthquake-resistant, heat-insulating and fireproof building
JP2016204860A (en) Design panel, wall structure and construction method
CN201850664U (en) Composite insulation board
JP5317785B2 (en) Fire spread prevention structure in outer heat insulation structure
JP5659037B2 (en) Panel connection structure
JP2002369891A (en) Fire limit wall
JP2011052414A (en) Repair structure of building exterior wall
JP4630866B2 (en) External heat insulating wall construction structure and external heat insulating wall construction method using the same
CN205475827U (en) Wallboard for construction
KR101798457B1 (en) Construction method for attaching insulation in exterior insulation finishing system
JP5659034B2 (en) Roof structure
JP2012087563A (en) Panel connection structure
CN210562913U (en) Box plate steel structure fabricated building floor
KR20130039454A (en) Angle bracket for fixing exterior of insulation panel and that construction method
CN220704809U (en) Balcony outer wall insulation board structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees