JP4548905B2 - Floor insulation structure and floor construction method - Google Patents

Floor insulation structure and floor construction method Download PDF

Info

Publication number
JP4548905B2
JP4548905B2 JP2000190721A JP2000190721A JP4548905B2 JP 4548905 B2 JP4548905 B2 JP 4548905B2 JP 2000190721 A JP2000190721 A JP 2000190721A JP 2000190721 A JP2000190721 A JP 2000190721A JP 4548905 B2 JP4548905 B2 JP 4548905B2
Authority
JP
Japan
Prior art keywords
floor
heat insulating
plate
insulating plate
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000190721A
Other languages
Japanese (ja)
Other versions
JP2002004480A (en
Inventor
陽輔 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2000190721A priority Critical patent/JP4548905B2/en
Publication of JP2002004480A publication Critical patent/JP2002004480A/en
Application granted granted Critical
Publication of JP4548905B2 publication Critical patent/JP4548905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、断熱性能を向上させた床の断熱構造と、断熱性を有し且つ施工性を向上させた床の施工方法に関するものである。
【0002】
【従来の技術】
住宅に於ける床の断熱性を確保するために断熱構造とすることがある。代表的な断熱構造として、図6に示す主として木造住宅に適用されるものと、図7に示す主としてコンクリート床板を採用した住宅に適用されるものとがある。
【0003】
図6に示す構造(第1公知例)は、コンクリート基礎51や大引き52の上部に根太53を配置し、隣接した根太53の間に形成される空間に断熱板54を取り付け、更に根太53の上部に床下地材55,床板56を取り付けて構成されている。この構造では、床下地材55,床板56の何れか又は両方が適度な強度と剛性を有しており、床板56に作用する荷重は、断熱板54に伝えられることなく、床下地材55,床板56によって支持される。
【0004】
また図7に示す構造(第2公知例)は、コンクリート基礎51,鉄骨基礎57の上部に例えばALC(軽量気泡コンクリート)床板58を配置し、このALC床板58の上面に全面にわたって断熱板59を取り付けると共に該断熱板59の上面に所定の強度を持った合板60を配置し、更に合板60の上面に床仕上げ材61を配置して構成されている。この構造では、床に作用する荷重はALC床板58によって支持されるため、断熱板59や床仕上げ材61に高い強度や剛性を要求することはない。しかし、床仕上げ材61に作用する荷重が、断熱板59に対し集中してかかることは好ましくはない。このため、床仕上げ材61に作用する荷重を分散して断熱板59に伝えるために、適度な強度と剛性を持った面材として合板60を設けることが必須となる。
【0005】
【発明が解決しようとする課題】
上記第1公知例では、断熱板が隣接する根太どうしの間に形成される空間に取り付けられるため、断熱板の連続性が根太によって阻害され、また直接床下地材が直接根太と接触することとなり、この接触部分では断熱板による断熱機能は全く寄与しない。このため、床下地材及び床板に対する断熱板に対応する部位の断熱性能と、根太に対応する部位の断熱性能とが均等にならないという問題がある。
【0006】
また第2公知例では、断熱板に対して集中荷重が作用することを防止するために、該断熱板の上面に適度な強度と剛性を持つ合板の配置が必須となるため、この合板に対するコストの問題や、ALC床板に対して断熱板を取り付ける際に合板も同時に取り付ける必要があることによる作業性及び工程管理の問題、更に、ALC床板の上部に可燃物が配置されてしまうという問題がある。
【0007】
また第2公知例では、床板として用いたALC板の上面に断熱板が配置されるため、室内の熱がALC板まで伝達されることがない。従って、ALC板の持つ蓄熱機能を有効利用し得ないという問題がある。
【0008】
本発明の目的は、床の全面にわたって均等な断熱性能を発揮させ、且つ施工性を向上させると共に蓄熱性を向上することが出来る床の断熱構造と施工方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明に係る床の断熱構造は、建物の床を構成する床板と、所定の圧縮強度を有し、前記床板の下面側に全面にわたって取り付けられる断熱板とを備え、前記床板は、予め設定された負担荷重に充分に耐え得る曲げ強度と剛性を有すると共に熱を蓄熱可能とされ、且つ、前記床板の長手方向の両端が前記断熱板を介して基礎に載置されて支持されているように構成したものである。
【0010】
上記断熱構造では、床板の下面に全面にわたって所定の圧縮強度を有する断熱板を取り付けて基礎に載置して構成されるので、断熱板は床板の下面に全面にわたって取り付けられることとなり、断熱性能にムラが生じることがなく、均等な断熱性を発揮することが出来る。
【0011】
また床板と基礎の間に配置された断熱板には荷重が作用するものの、他の部位に於ける断熱板には荷重が作用することがない。このため、断熱板に対して作用する荷重を分散させる合板を必要とせず、且つ床板の上面には特に多くの可燃物が配置されることもない。
【0012】
特に、断熱板は所定の圧縮強度を有する。即ち、断熱板の圧縮強度を床の負担荷重や基礎との接触面積等の条件を考慮して、単位面積当たりの負担荷重よりも充分に大きい圧縮強度に設定することで、断熱板が床板と基礎との間に配置された場合であっても、該断熱板が損傷することがなく、長期間安定して断熱性能を維持することが出来る。
【0013】
また床板は断熱板の上面、即ち、室内側に配置されることとなり、該床板の持つ蓄熱性を活用することが出来、日射による熱を利用した暖房や冷暖房機を利用した冷暖房を行なう際に有利であり、また室温の変動幅を抑制するのに有利である。
【0014】
上記断熱構造に於いて、特に、生活荷重が過大となる場合には断熱板の基礎に載置される部位の一部又は全部が他の部位よりも高い圧縮強度を有するものであることが好ましい。また床上の水蒸気,含水が懸念される場合には床板と断熱板との接触部位に水蒸気又は水の排出を促進するための隙間を設けることがより好ましい。
【0015】
上記断熱構造では、断熱板の基礎に載置される部位を他の部位、即ち、床板の下面であって隣接する基礎の間の部位よりも高い圧縮強度とすることによって、耐圧縮性を要求される部位では要求された圧縮強度とし、他の部位では、高い断熱性を有するものの低い圧縮強度を持った断熱板とすることが出来、断熱性及びコスト的に有利となる。
【0016】
また断熱板と床板との接触部位に水蒸気や水を排出する隙間を形成することによって、大気や室内の湿度の変化等に応じて生じた水蒸気や水を前記隙間を通して排出することが出来、断熱性能の低下を防止することが出来る。
【0017】
また本発明に係る施工方法は、建物の床を構成する床板の一方側の面に全面にわたって予め設定された圧縮強度を有する断熱板を取り付け、その後、断熱板を取り付けた面を基礎の上面に取り付けることを特徴とするものである。
【0018】
上記施工方法では、床板の一方の面に全面にわたって断熱板を取り付けた後、取り付けた断熱材を下側にして基礎の上面に取り付けるので、極めて簡単な作業で床の断熱を施工することが出来る。特に、断熱施工した床板の上面が露出した状態で後続する工事を進行しても断熱板を損傷することがない。このため、床の施工と同時に他の工事(例えば、断熱板に対する合板の取付工事)を行なう必要がなく、建築工事を円滑に進行させることが出来る。
【0019】
【発明の実施の形態】
以下、上記床の断熱構造の好ましい実施形態について図を用いて説明し、合わせて施工方法について説明する。図1は第1実施例に係る床の断熱構造を説明する模式断面図である。図2は床板に断熱板を取り付ける際に用いて有利なネジの例を説明する斜視図である。図3は図2に示すネジを用いて床板に断熱板を取り付けた状態を説明する図である。図4は第2実施例に係る断熱構造を説明する図であり、基礎に対応する部位と他の部位を異なる断熱板で構成した例を説明する図である。図5は第3実施例に係る断熱構造を説明する図であり、床板と断熱板との間に隙間を設けた例を説明する図である。
【0020】
先ず、図1〜図3により第1実施例に係る断熱構造について説明する。図に於いて、床板1の下面には全面にわたって所定の圧縮強度を持った断熱板2が取り付けられており、該断熱板2を直接基礎3の上面に接触させるようにして載置されると共に固定されている。また床板1の上面には床下地材4を介して床仕上げ材5が設けられている。
【0021】
床板1は長手方向の両端が断熱板2を介して基礎3に載置されて支持されており、予め設定された負担荷重に充分に耐え得る曲げ強度と剛性を有している。即ち、床板1としては前記条件を満足するものであれば良く、コンクリート系の床板、木質系の床板、或いは鋼板等を選択的に採用することが可能である。
【0022】
本断熱構造では、床板1は断熱板2の室内側に配置されるため、室内を冷暖房する際に熱の影響を受ける。このため、床板1として蓄熱体を用いることによって、冷暖房時に発生する急激な温度変化に対する緩衝材としての機能を期待することが可能となる。
【0023】
本実施例では床板1として、幅約600mm,長さ約1800mmのALC(軽量気泡コンクリート)パネルを採用しており、この床板1の幅手方向の両端を夫々40mm基礎3の上部に配置して支持している。床板1の基礎3に対する固定方法は、該床板1を用いたときに通常採用される固定方法を利用している。
【0024】
断熱板2は、床板1の下面側と該床板1を含む室内側とを熱的に遮断する機能を有するものであり、高い断熱性を有し且つ所定の圧縮強度を有するものが用いられている。高い断熱性能を有する断熱板としては、ポリスチレン(PS)やフェノール樹脂(PF)等の発泡体を用いることが可能である。
【0025】
また断熱板2に要求される圧縮強度は、15N/cm2程度である。例えば、上記寸法を持ったALCパネルからなる床板1が長さ方向の両端が基礎3に載置されて支持されており、このときの両者の接地寸法が幅60cm×4cmである場合、接地面積は480cm2となる。従って、前記状態で基礎3に支持された床板1に取り付けた断熱板2が許容し得る全圧縮力は1枚当たり7200Nとなる。
【0026】
一方、上記床板1の重量を65kg、1枚の床板1に作用する内装の重量を50kg、設計荷重を180kg/m2としたとき、1枚の床板1に作用する力は3124Nとなり、上記した断熱板2の許容圧縮力と比較したとき、充分な余裕がある。即ち、断熱板2の圧縮強度が15N/cm2程度以上であれば充分な耐久性があり、常に圧縮力が作用していても破損や沈下することがない。
【0027】
断熱板2を床板1に取り付ける場合の取付方法については特に限定するものではなく、例えば、接着やネジによる取付方法を採用することが可能である。
【0028】
本実施例では、図2に示すネジ6を用いて断熱板2を床板1に取り付けている。このネジ6は、予め設定された径を持った頭部6aと、ネジ部6bと、予め設定された径を持った筒状体6cとを有して構成されている。
【0029】
頭部6aは厚さが2mm〜3mm程度で略平板状に形成されており、直径は断熱板2に対し適度な圧力で接触し得るように、該断熱板2の圧縮強度に対応させて設定されている。
【0030】
頭部6aと筒状体6cとを含む長手方向の寸法は、床板1の材質に対応させて断熱板2の厚さと等しいか或いは2mm〜5mm程度長く設定される。例えば床板1が木質材のように比較的軟質の材料である場合、前記寸法は断熱板2の厚さよりも僅かに長く設定され、また床板1がコンクリート系のパネルのように比較的硬質の材料である場合、断熱板2の厚さと略等しい長さに設定される。
【0031】
ネジ部6bの長さは、ネジ6を床板1に螺合したとき、充分な耐引抜き力を発揮し得るように、床板1の材質に応じて適宜設定される。同様に、ネジ部6bの太さも床板1の材質に応じて適宜設定される。またネジ部6bのネジ形状は、木ネジを含む一般的なタッピングネジの形状であって良い。しかし床板1がコンクリート系パネルであるような場合、専用ネジとして形成されることが好ましい。
【0032】
筒状体6cとネジ部6bとの接合部位は、床板1の材質に対応させて、図3(a)に示すように平面状に、或いは同図(b)に示すようにテーパ状に形成される。また筒状体6cの径は頭部6aの径よりも小さく且つネジ部6bの径よりも大きく形成されている。
【0033】
上記ネジ6によって断熱板2を床板1に取り付ける場合、床板1の一方の面に断熱板2を重ね合わせ、ネジ6の頭部6aに形成された回転力受け部6dにドライバ等を介して回転力を付与することで、ネジ部6bを断熱板2を貫通させて床板1に螺合し、筒状体6cのネジ部6bとの接合部位が床板1の表面に当接したときにネジ6の進行が阻止され、この状態で断熱板2が床板1に取り付けられる。
【0034】
基礎3は床板1の下面に取り付けた断熱板2と直接接触して該断熱板2及び床板1を支持,固定するものであり、この機能を有するものであれば、材料や構造を限定するものではない。図1には床板1を支持する一方の基礎がコンクリート基礎として、他方の基礎が鉄骨基礎として形成されているものが記載されているが、両方の基礎がコンクリート基礎或いは鉄骨基礎である場合もあることは当然である。
【0035】
床下地材4は、床仕上げ材5と床板1との間に配置され、床板1の不陸を調整する調整材としての機能や、緩衝材としての機能を有するものである。例えば、床仕上げ材5として合板のようなものを使用する場合、床下地材4としては前記床仕上げ材5と床板1との間に隙間が形成されることがないように不陸を調整する調整材が用いられる。また床仕上げ材5としてカーペットのような柔軟性を有するものを使用する場合、床下地材4としてはフェルトマットのように、床仕上げ材5上を歩行する際に衝撃を緩衝し得るようなものが利用される。
【0036】
上記の如く、床下地材4,床仕上げ材5は一義的に設定されるものではなく、対応する床上空間の機能や、住む人の嗜好等に合わせて適宜設定されるものである。
【0037】
上記床構造では、床板1の下面に全面にわたって断熱板2が取り付けられており、床板1は断熱板2を介して基礎3に固定されているため、床下と室内との断熱は床の下面全面にわたって連続した断熱板2によって実行される。このため、均等な断熱性能を発揮することが可能である。
【0038】
また床板1が断熱板2よりも室内側に配置されるため、室内の温度の影響を受ける。このため、室内の冷暖房を行なう場合、床板1が、該床板1の熱容量に応じた蓄熱材としての機能を発揮することで、室内の急激な温度の変化を防止することが可能である。
【0039】
次に、上記の如き断熱構造を持った床を施工する手順について説明する。
【0040】
予め工場段階で、或いは建築現場で、床板1の一方の面(下面)に断熱板2を取り付ける。前述したように、床板1に対し断熱板2を取り付ける方法は限定するものではない。例えば、ネジ6を利用して断熱板2を床板1に取り付ける場合には、ネジ6の回転力受け部6dにドライバを差し込んで回転させて螺合させることで行なわれる。
【0041】
上記作業は、床板1の断熱板2を取り付けた面が下面になるにも関わらず、該面を上面に配置した状態で行なわれる。従って、良好な作業性を維持して取り付けることが可能である。
【0042】
断熱板2を取り付けた床板1を現場に搬入し、断熱板2が下面になるように裏返して基礎3上に敷き込む、この作業は、床板1を裏返す以外は通常の床工事と同じであり、特別な困難さはない。そして基礎3上に床板1を敷き込んだ後、該床板1の上面に通常の養生を施してただちに屋内工事にかかることが可能である。
【0043】
従って、従来の床板の上部に断熱板を取り付ける施工法のように、断熱板を取り付けると同時に合板を取り付けるような工程上の制約がなく、工事の進行を円滑に行なうことが可能となる。
【0044】
上記の如く、床板1の下面に取り付けた断熱板2には、基礎3と直接接触する部位以外の部位では何ら力が作用することがない。このため、図4に示す第2実施例のように、基礎3に対応する部位を所定の圧縮強度を持った耐圧縮断熱板7とし、他の部位を比較的強度の高くない通常の強度を有する断熱板8とすることが可能である。
【0045】
この場合、耐圧縮断熱板7は床板1と基礎3とが対向する面の一部或いは全面にわたって取り付けられている。即ち、床板1と基礎3が直接接触したり、両者の間に断熱板2が介在しない部位が存在するようなことはない。
【0046】
また耐圧縮断熱板7としては15N/m2の強度を持った断熱板2以外に、例えばPSフォーム(40N/m2 )や、PFフォーム(25N/m2 )等があり、これらを選択的に用いることが可能である。更に、断熱板8は特に圧縮強度を要求されることがなく、単に、床の断熱構造に要求される充分な断熱性能を有するものであれば良い。
【0047】
上記の如く構成した断熱構造では、床板1の下面に取り付けられた断熱板7,8が夫々に要求される圧縮強度に適した材質のものが用いられるため、過品質になることがなく、合理的な床構造とすることが可能である。
【0048】
図5は第3実施例に係る断熱構造を示す図である。図に於いて、床板1と断熱板2との間にスペーサー9が配置されており、このスペーサー9の配置によって床板1と断熱板2との間に隙間10が形成されている。この隙間10は、床板1を敷き込んだ床下空間の全面にわたって、且つ敷き込まれた床下1の幅方向に連続して形成されている。
【0049】
床板1と断熱板2の間に隙間10を形成することによって、該隙間10を通して水蒸気や水を流通させて床と壁との間に形成される図示しない空間から排出することが可能である。従って、室内の湿度を適度な状態に保持することが可能である。また床板1と断熱板2との間に水蒸気や水を排出する隙間を形成する場合、上記以外にも、例えば予め断熱板2に所定の断面寸法を持った溝を形成しておき、この溝を床板1の一方の面に対向させて取り付けることで、該溝によって両者の間に隙間を形成しても良い。
【0050】
【発明の効果】
以上詳細に説明したように本発明に係る床の断熱構造では、床板の下面に全面にわたって所定の圧縮強度を持った断熱板を取り付け、この断熱板を基礎に載置して支持することで、床の全面にわたって均等な断熱性能を発揮させることが出来る。
【0051】
特に、床板が断熱板よりも室内側に配置されるため、該床板を蓄熱材として機能させることが可能となり、室内の冷暖房を行なったときエネルギを蓄えておくことが出来る。このため、床板が温度の緩衝材として機能し、冷暖房を停止したときに急激な温度変化を生じさせることがない。床板としてALCパネルを利用した場合、このALCパネルが適度の熱容量を有するため蓄熱材として機能することが可能であり、極めて顕著な効果を発揮することが出来る。
【0052】
基礎に載置される部位の断熱板が他の部位よりも高い圧縮強度を有するものとした場合、前記他の部位の断熱板は圧縮強度の低いもので良く、過品質となることを防止して、断熱板の材料を有効に利用することが出来る。
【0053】
また床板と断熱板との間に隙間を形成することによって、該隙間を通して水蒸気や水を排出することが出来、室内の湿度を適度な状態に保持することが出来、且つ断熱性能の低下を防止することが出来る。
【0054】
また本発明に係る施工方法では、床板の一方側の面に断熱板を取り付けた後、この床板を裏返して基礎上に取り付けるので、特別に困難な作業を必要とせずに下面に断熱板を取り付けた床を構成することが出来る。この施工方法では、床板を敷き込むと同時に断熱板が施工され且つ該断熱板を養生するための作業が不要であるため、作業工程の管理が簡単となる。
【0055】
更に、床板に対する断熱板の取り付けを予め工場段階で行なうことが出来る。この場合、現場に於ける作業を軽減させて工期の短縮化をはかることが出来、且つ品質の安定化をはかることが出来る。
【図面の簡単な説明】
【図1】 第1実施例に係る床の断熱構造を説明する模式断面図である。
【図2】 床板に断熱板を取り付ける際に用いて有利なネジの例を説明する斜視図である。
【図3】 図2に示すネジを用いて床板に断熱板を取り付けた状態を説明する図である。
【図4】 第2実施例に係る断熱構造を説明する図であり、基礎に対応する部位と他の部位を異なる断熱板で構成した例を説明する図である。
【図5】 第3実施例に係る断熱構造を説明する図であり、床板と断熱板との間に隙間を設けた例を説明する図である。
【図6】 第1公知例を説明する図である。
【図7】 第2公知例を説明する図である。
【符号の説明】
1 床板
2,8 断熱板
3 基礎
4 床下地材
5 床仕上げ材
6 ネジ
6a 頭部
6b ネジ部
6c 筒状体
6d 回転力受け部
7 耐圧縮断熱板
9 スペーサー
10 隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention also relates to a heat insulating structure of the floor with improved thermal insulation performance, the construction how the floor with improved and workability has a heat insulating property.
[0002]
[Prior art]
In order to ensure the heat insulation of the floor in the house, a heat insulation structure may be used. As a typical heat insulation structure, there are a structure which is mainly applied to a wooden house shown in FIG. 6 and a structure which is mainly applied to a house which adopts a concrete floor board as shown in FIG.
[0003]
In the structure shown in FIG. 6 (first known example), a joist 53 is disposed above the concrete foundation 51 and the large pull 52, and a heat insulating plate 54 is attached to a space formed between the adjacent joists 53. The floor base material 55 and the floor board 56 are attached to the top of the floor. In this structure, either or both of the floor base material 55 and the floor board 56 have appropriate strength and rigidity, and the load acting on the floor board 56 is not transmitted to the heat insulating board 54, but the floor base material 55, Supported by floor board 56.
[0004]
In the structure shown in FIG. 7 (second known example), for example, an ALC (lightweight aerated concrete) floor board 58 is arranged on the concrete foundation 51 and the steel foundation 57, and a heat insulating board 59 is provided on the entire upper surface of the ALC floor board 58. The plywood 60 having a predetermined strength is disposed on the upper surface of the heat insulating plate 59 and the floor finishing material 61 is disposed on the upper surface of the plywood 60. In this structure, since the load acting on the floor is supported by the ALC floor plate 58, the heat insulating plate 59 and the floor finishing material 61 do not require high strength and rigidity. However, it is not preferable that the load acting on the floor finish 61 is concentrated on the heat insulating plate 59. Therefore, in order to disperse the load acting on the floor finishing material 61 and transmit it to the heat insulating plate 59, it is essential to provide the plywood 60 as a face material having appropriate strength and rigidity.
[0005]
[Problems to be solved by the invention]
In the first known example, since the heat insulating plate is attached to a space formed between adjacent joists, the continuity of the heat insulating plate is hindered by the joists, and the floor base material directly contacts the joists. In this contact portion, the heat insulating function by the heat insulating plate does not contribute at all. For this reason, there exists a problem that the heat insulation performance of the site | part corresponding to the heat insulation board with respect to a floor base material and a floor board and the heat insulation performance of the site | part corresponding to joist are not equal.
[0006]
In the second known example, in order to prevent a concentrated load from acting on the heat insulating plate, it is essential to arrange a plywood having an appropriate strength and rigidity on the upper surface of the heat insulating plate. There is a problem of workability and process control due to the necessity of attaching a plywood at the same time when attaching a heat insulating board to the ALC floor board, and a problem that combustible materials are disposed on the upper part of the ALC floor board. .
[0007]
In the second known example, since the heat insulating plate is disposed on the upper surface of the ALC plate used as the floor plate, the indoor heat is not transmitted to the ALC plate. Therefore, there is a problem that the heat storage function of the ALC plate cannot be used effectively.
[0008]
An object of the present invention is to exert a uniform thermal insulation performance over the entire surface of the floor is to provide construction how a can and heat insulating structure of the floor to and improve the heat storing property improves the workability.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a floor heat insulating structure according to the present invention includes a floor plate constituting a floor of a building, and a heat insulating plate having a predetermined compressive strength and attached to the entire lower surface of the floor plate, The floor board has bending strength and rigidity that can sufficiently withstand a preset load, and can store heat, and both longitudinal ends of the floor board are placed on the foundation via the heat insulating board. It is constituted so that it is supported.
[0010]
In the above heat insulating structure, a heat insulating plate having a predetermined compressive strength is attached to the entire bottom surface of the floor plate and placed on the foundation, so that the heat insulating plate is attached to the entire bottom surface of the floor plate, which improves the heat insulating performance. Unevenness does not occur and uniform heat insulation can be exhibited.
[0011]
Moreover, although a load acts on the heat insulation board arrange | positioned between a floor board and a foundation, a load does not act on the heat insulation board in another site | part. For this reason, the plywood which distributes the load which acts with respect to a heat insulation board is not required, and many combustibles are not arrange | positioned especially on the upper surface of a floor board.
[0012]
In particular, the heat insulating plate has a predetermined compressive strength. That is, the compressive strength of the heat insulating plate is set to a compressive strength sufficiently larger than the load load per unit area in consideration of conditions such as the load on the floor and the contact area with the foundation, so that the heat insulating plate Even if it is a case where it arrange | positions between foundations, this heat insulation board is not damaged, and it can maintain heat insulation performance stably for a long period of time.
[0013]
In addition, the floorboard will be placed on the upper surface of the heat insulation board, that is, the indoor side, the heat storage property of the floorboard can be utilized, and when performing heating using the heat of solar radiation and air conditioning using a cooling / heating machine It is advantageous, and it is advantageous for suppressing the fluctuation range of room temperature.
[0014]
In the above heat insulating structure, particularly when the life load is excessive, it is preferable that part or all of the part placed on the foundation of the heat insulating plate has higher compressive strength than other parts. . Further, when there is a concern about water vapor or water content on the floor, it is more preferable to provide a gap for promoting the discharge of water vapor or water at the contact portion between the floor plate and the heat insulating plate.
[0015]
In the above heat insulation structure, compression resistance is required by making the part placed on the foundation of the heat insulation board higher compressive strength than other parts, that is, the lower surface of the floor board and the part between adjacent foundations. It is possible to obtain the required compressive strength in the part to be provided, and in other parts, a heat insulating plate having a high compressibility but a low compressive strength can be obtained, which is advantageous in terms of heat insulation and cost.
[0016]
In addition, by forming a gap for discharging water vapor and water at the contact portion between the heat insulating plate and the floor plate, water vapor and water generated according to changes in the atmosphere and humidity in the room can be discharged through the gap. A decrease in performance can be prevented.
[0017]
In the construction method according to the present invention, a heat insulating plate having a preset compressive strength is attached to the entire surface of one side of the floor plate constituting the floor of the building, and then the surface to which the heat insulating plate is attached is used as the upper surface of the foundation. It is characterized by being attached.
[0018]
In the above construction method, after the heat insulating plate is attached to one side of the floor board over the entire surface, the attached heat insulating material is attached to the upper surface of the foundation, so that the floor can be insulated by a very simple operation. . In particular, the heat insulating plate is not damaged even if the subsequent work proceeds with the upper surface of the floor plate subjected to the heat insulating operation exposed. For this reason, it is not necessary to perform other construction (for example, plywood mounting work on the heat insulating plate) at the same time as the floor construction, and the building work can proceed smoothly.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the heat insulating structure of the floor will be described with reference to the drawings, and a construction method will be described together. FIG. 1 is a schematic cross-sectional view illustrating a heat insulating structure for a floor according to the first embodiment. FIG. 2 is a perspective view for explaining an example of an advantageous screw used when attaching a heat insulating plate to a floor plate. FIG. 3 is a diagram for explaining a state in which a heat insulating plate is attached to the floor board using the screws shown in FIG. FIG. 4 is a diagram for explaining a heat insulation structure according to the second embodiment, and is a diagram for explaining an example in which a part corresponding to the foundation and other parts are constituted by different heat insulation plates. FIG. 5 is a diagram illustrating a heat insulating structure according to the third embodiment, and is a diagram illustrating an example in which a gap is provided between the floor plate and the heat insulating plate.
[0020]
First, the heat insulation structure according to the first embodiment will be described with reference to FIGS. In the figure, a heat insulating plate 2 having a predetermined compressive strength is attached to the entire lower surface of the floor plate 1 and is placed so that the heat insulating plate 2 is in direct contact with the upper surface of the foundation 3. It is fixed. A floor finishing material 5 is provided on the upper surface of the floor board 1 via a floor base material 4.
[0021]
The floor plate 1 has both ends in the longitudinal direction mounted on and supported by the foundation 3 via the heat insulating plate 2 and has bending strength and rigidity that can sufficiently withstand a preset load. In other words, the floor board 1 only needs to satisfy the above conditions, and a concrete floor board, a wooden floor board, a steel plate, or the like can be selectively employed.
[0022]
In this heat insulation structure, since the floor board 1 is arrange | positioned at the room inner side of the heat insulation board 2, when it heats and cools a room | chamber interior, it receives to the influence of a heat | fever. For this reason, it becomes possible to expect the function as a buffer material with respect to the rapid temperature change which generate | occur | produces at the time of air-conditioning by using a thermal storage body as the floor board 1. FIG.
[0023]
In this embodiment, an ALC (lightweight cellular concrete) panel having a width of about 600 mm and a length of about 1800 mm is adopted as the floor board 1, and both ends in the width direction of the floor board 1 are respectively arranged on the upper part of the 40 mm foundation 3. I support it. As a method of fixing the floor board 1 to the foundation 3, a fixing method usually employed when the floor board 1 is used is used.
[0024]
The heat insulating plate 2 has a function of thermally blocking the lower surface side of the floor plate 1 and the indoor side including the floor plate 1, and has a high heat insulating property and a predetermined compressive strength. Yes. As the heat insulating plate having high heat insulating performance, a foamed material such as polystyrene (PS) or phenol resin (PF) can be used.
[0025]
The compressive strength required for the heat insulating plate 2 is about 15 N / cm 2 . For example, if a floorboard 1 made of an ALC panel having the above dimensions is supported by being placed on the foundation 3 at both ends in the length direction, and the grounding dimensions of both are 60 cm × 4 cm wide, Becomes 480cm 2 . Accordingly, the total compressive force that can be allowed by the heat insulating plate 2 attached to the floor plate 1 supported by the foundation 3 in the above state is 7200 N per sheet.
[0026]
On the other hand, when the weight of the floor board 1 is 65 kg, the weight of the interior acting on one floor board 1 is 50 kg, and the design load is 180 kg / m 2 , the force acting on one floor board 1 is 3124N, which is described above. When compared with the allowable compressive force of the heat insulating plate 2, there is a sufficient margin. That is, if the heat insulating plate 2 has a compressive strength of about 15 N / cm 2 or more, it has sufficient durability, and even if a compressive force is always applied, it will not break or sink.
[0027]
The attachment method in the case of attaching the heat insulation board 2 to the floor board 1 is not specifically limited, For example, the attachment method by adhesion | attachment or a screw is employable.
[0028]
In this embodiment, the heat insulating plate 2 is attached to the floor plate 1 using the screws 6 shown in FIG. The screw 6 includes a head 6a having a preset diameter, a screw portion 6b, and a cylindrical body 6c having a preset diameter.
[0029]
The head 6a has a thickness of about 2 mm to 3 mm and is formed in a substantially flat plate shape. The diameter is set according to the compressive strength of the heat insulating plate 2 so that it can contact the heat insulating plate 2 with an appropriate pressure. Has been.
[0030]
The longitudinal dimension including the head 6a and the cylindrical body 6c is set to be equal to the thickness of the heat insulating plate 2 or longer by about 2 mm to 5 mm, corresponding to the material of the floor plate 1. For example, when the floor board 1 is a relatively soft material such as a wood material, the dimensions are set slightly longer than the thickness of the heat insulating board 2, and the floor board 1 is a relatively hard material such as a concrete panel. Is set to a length substantially equal to the thickness of the heat insulating plate 2.
[0031]
The length of the screw portion 6b is appropriately set according to the material of the floor plate 1 so that a sufficient pull-out force can be exerted when the screw 6 is screwed to the floor plate 1. Similarly, the thickness of the screw portion 6b is also appropriately set according to the material of the floor board 1. Further, the screw shape of the screw portion 6b may be a general tapping screw shape including a wood screw. However, when the floor board 1 is a concrete panel, it is preferably formed as a dedicated screw.
[0032]
The joining portion between the cylindrical body 6c and the screw portion 6b is formed in a flat shape as shown in FIG. 3 (a) or in a tapered shape as shown in FIG. 3 (b) corresponding to the material of the floor board 1. Is done. The diameter of the cylindrical body 6c is smaller than the diameter of the head 6a and larger than the diameter of the screw portion 6b.
[0033]
When the heat insulating plate 2 is attached to the floor plate 1 with the screw 6, the heat insulating plate 2 is superposed on one surface of the floor plate 1 and rotated via a driver or the like on the rotational force receiving portion 6 d formed on the head 6 a of the screw 6. When the force is applied, the screw portion 6b penetrates the heat insulating plate 2 and is screwed to the floor plate 1, and when the joint portion with the screw portion 6b of the cylindrical body 6c comes into contact with the surface of the floor plate 1, the screw 6 The heat insulating plate 2 is attached to the floor plate 1 in this state.
[0034]
The foundation 3 directly contacts the heat insulating plate 2 attached to the lower surface of the floor plate 1 to support and fix the heat insulating plate 2 and the floor plate 1, and if it has this function, the material and structure are limited. is not. Although FIG. 1 shows that one foundation supporting the floor board 1 is formed as a concrete foundation and the other foundation is formed as a steel foundation, both foundations may be a concrete foundation or a steel foundation. It is natural.
[0035]
The floor base material 4 is disposed between the floor finishing material 5 and the floor board 1 and has a function as an adjusting material for adjusting unevenness of the floor board 1 and a function as a buffer material. For example, when using something like plywood as the floor finish 5, the floor foundation 4 is adjusted so that no gap is formed between the floor finish 5 and the floor 1. A conditioning material is used. Further, when a floor finish material 5 having a flexibility such as a carpet is used, the floor base material 4 such as a felt mat can cushion an impact when walking on the floor finish material 5. Is used.
[0036]
As described above, the floor base material 4 and the floor finish material 5 are not uniquely set, but are appropriately set according to the function of the corresponding space on the floor, the preference of the residents, and the like.
[0037]
In the above floor structure, the heat insulating plate 2 is attached to the entire lower surface of the floor plate 1, and the floor plate 1 is fixed to the foundation 3 through the heat insulating plate 2, so that the heat insulation between the under floor and the room is the entire lower surface of the floor. It is carried out by a continuous heat insulating plate 2. For this reason, it is possible to exhibit uniform heat insulation performance.
[0038]
Moreover, since the floor board 1 is arrange | positioned indoors rather than the heat insulation board 2, it receives to the influence of indoor temperature. For this reason, when performing indoor air conditioning, the floor board 1 can function as a heat storage material according to the heat capacity of the floor board 1, thereby preventing a sudden change in the indoor temperature.
[0039]
Next, a procedure for constructing a floor having the above heat insulation structure will be described.
[0040]
The heat insulating plate 2 is attached to one surface (lower surface) of the floor plate 1 in advance at the factory stage or at the construction site. As described above, the method of attaching the heat insulating plate 2 to the floor plate 1 is not limited. For example, when the heat insulating plate 2 is attached to the floor plate 1 using the screws 6, it is performed by inserting a driver into the rotational force receiving portion 6 d of the screw 6 and rotating and screwing it.
[0041]
Although the surface to which the heat insulating plate 2 of the floor board 1 is attached becomes the lower surface, the above operation is performed in a state where the surface is arranged on the upper surface. Therefore, it is possible to attach while maintaining good workability.
[0042]
The floorboard 1 with the heat insulating plate 2 attached is brought into the field, turned over so that the heat insulating plate 2 becomes the lower surface, and laid on the foundation 3. This operation is the same as normal floor construction except that the floor plate 1 is turned over. There are no special difficulties. And after laying the floor board 1 on the foundation 3, it is possible to start indoor construction immediately after applying normal curing to the upper surface of the floor board 1.
[0043]
Therefore, unlike the conventional method of attaching a heat insulating plate to the upper part of a floor board, there is no restriction on the process of attaching a heat insulating plate and attaching a plywood at the same time, and it is possible to smoothly proceed with the construction.
[0044]
As described above, no force acts on the heat insulating plate 2 attached to the lower surface of the floor plate 1 at a portion other than the portion that directly contacts the foundation 3. For this reason, as in the second embodiment shown in FIG. 4, the portion corresponding to the foundation 3 is a compression resistant heat insulating plate 7 having a predetermined compressive strength, and the other portions are provided with normal strength that is not relatively high. It can be set as the heat insulation board 8 which has.
[0045]
In this case, the compression resistant heat insulating plate 7 is attached over a part or the entire surface of the floor plate 1 and the foundation 3 facing each other. That is, there is no case where the floor board 1 and the foundation 3 are in direct contact, or there is no portion where the heat insulating board 2 is not interposed between them.
[0046]
Further in addition to the heat insulating plate 2 having a strength of 15N / m 2 as a compression heat insulating plate 7, for example, PS foam (40N / m 2) and has a PF foam (25 N / m 2) or the like, selectively these Can be used. Further, the heat insulating plate 8 is not particularly required to have compressive strength, and may simply have sufficient heat insulating performance required for the heat insulating structure of the floor.
[0047]
In the heat insulating structure configured as described above, the heat insulating plates 7 and 8 attached to the lower surface of the floor plate 1 are made of materials suitable for the compressive strength required for each, so that it does not become over quality and is rational. It is possible to have a typical floor structure.
[0048]
FIG. 5 is a view showing a heat insulating structure according to the third embodiment. In the figure, a spacer 9 is disposed between the floor plate 1 and the heat insulating plate 2, and a gap 10 is formed between the floor plate 1 and the heat insulating plate 2 due to the arrangement of the spacer 9. The gap 10 is continuously formed in the width direction of the underfloor 1 laid over the entire surface of the underfloor space where the floor board 1 is laid.
[0049]
By forming the gap 10 between the floor board 1 and the heat insulating board 2, water vapor or water can be circulated through the gap 10 and discharged from a space (not shown) formed between the floor and the wall. Therefore, it is possible to keep the indoor humidity at an appropriate level. When a gap for discharging water vapor or water is formed between the floor board 1 and the heat insulating board 2, in addition to the above, for example, a groove having a predetermined cross-sectional dimension is formed in the heat insulating board 2 in advance. May be attached to one surface of the floor board 1 so that a gap is formed between the two by the groove.
[0050]
【The invention's effect】
As described above in detail, in the heat insulating structure of the floor according to the present invention, by attaching a heat insulating plate having a predetermined compressive strength over the entire lower surface of the floor plate, by placing and supporting this heat insulating plate on the basis, A uniform thermal insulation performance can be exhibited over the entire surface of the floor.
[0051]
In particular, since the floor plate is disposed on the indoor side of the heat insulating plate, the floor plate can be made to function as a heat storage material, and energy can be stored when the room is air-conditioned. For this reason, a floor board functions as a temperature buffer, and when a cooling / heating is stopped, a rapid temperature change is not caused. When an ALC panel is used as a floor board, since this ALC panel has an appropriate heat capacity, it can function as a heat storage material and can exhibit a very remarkable effect.
[0052]
When the heat insulating plate of the part placed on the foundation has a higher compressive strength than the other part, the heat insulating plate of the other part may be one having a low compressive strength to prevent it from becoming over-quality. Therefore, the material of the heat insulating plate can be used effectively.
[0053]
In addition, by forming a gap between the floor plate and the heat insulating plate, water vapor and water can be discharged through the gap, the indoor humidity can be maintained at an appropriate level, and deterioration of the heat insulating performance is prevented. I can do it.
[0054]
Also, in the construction method according to the present invention, after the heat insulating plate is attached to the one side surface of the floor plate, the floor plate is turned over and mounted on the foundation, so that the heat insulating plate is attached to the lower surface without requiring particularly difficult work. The floor can be configured. In this construction method, the floor board is laid, and at the same time, the heat insulating board is applied and the work for curing the heat insulating board is unnecessary, so that the management of the work process becomes simple.
[0055]
Furthermore, the heat insulating plate can be attached to the floor plate in advance at the factory stage. In this case, the work on site can be reduced, the construction period can be shortened, and the quality can be stabilized.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating a heat insulating structure for a floor according to a first embodiment.
FIG. 2 is a perspective view illustrating an example of an advantageous screw used when attaching a heat insulating plate to a floor plate.
FIG. 3 is a diagram for explaining a state in which a heat insulating plate is attached to the floor board using the screws shown in FIG. 2;
FIG. 4 is a diagram for explaining a heat insulation structure according to a second embodiment, and is a diagram for explaining an example in which a part corresponding to the foundation and other parts are constituted by different heat insulation plates.
FIG. 5 is a diagram illustrating a heat insulating structure according to a third embodiment, and is a diagram illustrating an example in which a gap is provided between a floor board and a heat insulating board.
FIG. 6 is a diagram illustrating a first known example.
FIG. 7 is a diagram illustrating a second known example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Floor board 2,8 Heat insulation board 3 Foundation 4 Floor base material 5 Floor finishing material 6 Screw 6a Head 6b Screw part 6c Cylindrical body 6d Rotation force receiving part 7 Compression-resistant heat insulation board 9 Spacer
10 Clearance

Claims (5)

建物の床を構成する床板と、
所定の圧縮強度を有し、前記床板の下面側に全面にわたって取り付けられる断熱板とを備え、
前記床板は、予め設定された負担荷重に充分に耐え得る曲げ強度と剛性を有すると共に熱を蓄熱可能とされ、且つ、
前記床板の長手方向の両端が前記断熱板を介して基礎に載置されて支持されている
ことを特徴とする床の断熱構造。
A floor board constituting the floor of the building;
A heat insulating plate having a predetermined compressive strength and attached to the entire lower surface of the floor plate;
The floorboard has a bending strength and rigidity that can sufficiently withstand a preset load, and can store heat, and
A heat insulating structure for a floor, wherein both ends of the floor plate in the longitudinal direction are placed and supported on a foundation via the heat insulating plate.
前記断熱板の基礎に載置される部位の一部又は全部が他の部位よりも高い圧縮強度を有するものである
ことを特徴とする請求項1に記載した床の断熱構造。
The heat insulating structure for a floor according to claim 1, wherein a part or all of the part placed on the foundation of the heat insulating plate has higher compressive strength than the other part.
床板と断熱板との接触部位に水蒸気又は水の排出を促進するための隙間を設けた
ことを特徴とする請求項1又は2に記載した床の断熱構造。
The heat insulating structure for a floor according to claim 1 or 2, wherein a gap for promoting discharge of water vapor or water is provided at a contact portion between the floor plate and the heat insulating plate.
前記床板は、軽量気泡コンクリートパネルである
ことを特徴とする請求項1乃至請求項3のいずれかに記載した床の断熱構造。
The floor insulation structure according to any one of claims 1 to 3, wherein the floor board is a lightweight cellular concrete panel.
建物の床を構成する床板の一方側の面に全面にわたって予め設定された圧縮強度を有する断熱板を取り付け、
その後、断熱板を取り付けた面を基礎の上面に取り付ける
ことを特徴とする床の施工方法。
A heat insulating plate having a preset compressive strength is attached to the entire surface of one side of the floor plate constituting the floor of the building,
Then, the floor construction method characterized by attaching the surface to which the heat insulating plate is attached to the upper surface of the foundation.
JP2000190721A 2000-06-26 2000-06-26 Floor insulation structure and floor construction method Expired - Lifetime JP4548905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190721A JP4548905B2 (en) 2000-06-26 2000-06-26 Floor insulation structure and floor construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190721A JP4548905B2 (en) 2000-06-26 2000-06-26 Floor insulation structure and floor construction method

Publications (2)

Publication Number Publication Date
JP2002004480A JP2002004480A (en) 2002-01-09
JP4548905B2 true JP4548905B2 (en) 2010-09-22

Family

ID=18690145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190721A Expired - Lifetime JP4548905B2 (en) 2000-06-26 2000-06-26 Floor insulation structure and floor construction method

Country Status (1)

Country Link
JP (1) JP4548905B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095320A (en) * 2006-10-10 2008-04-24 Asahi Kasei Homes Kk Fixing structure and screw for floor heat insulating material
JP5283990B2 (en) * 2008-06-25 2013-09-04 旭化成ホームズ株式会社 Floor insulation structure
JP2012180677A (en) * 2011-03-01 2012-09-20 Asahi Kasei Homes Co Floor structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145020U (en) * 1981-03-07 1982-09-11
JPS627771Y2 (en) * 1981-02-26 1987-02-23
JPH07317170A (en) * 1994-05-20 1995-12-05 Sumitomo Forestry Co Ltd Heat insulating material and execution method of heat insulating material
JP2863719B2 (en) * 1995-07-13 1999-03-03 株式会社カネコ Moistureproof structure of house and integrated panel method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627771Y2 (en) * 1981-02-26 1987-02-23
JPS57145020U (en) * 1981-03-07 1982-09-11
JPH07317170A (en) * 1994-05-20 1995-12-05 Sumitomo Forestry Co Ltd Heat insulating material and execution method of heat insulating material
JP2863719B2 (en) * 1995-07-13 1999-03-03 株式会社カネコ Moistureproof structure of house and integrated panel method

Also Published As

Publication number Publication date
JP2002004480A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
WO2020256016A1 (en) Outer wall structure for building, heat-blocking structure, and heat-blocking method
JP4548905B2 (en) Floor insulation structure and floor construction method
GB2440204A (en) Acoustic flooring for underfloor heating
BG61238B1 (en) Prefabricated panel component for surface air conditioning installation
KR101056538B1 (en) Heat storage sheet, heat storage roof structure, heat storage outer wall structure and construction method using same
JP2001323648A (en) Floor heating structure
JP2000087538A (en) Floor-backing panel and floor construction using thereof
JP4766790B2 (en) Insulation structure of steel beam
JP3837216B2 (en) Insulated double floor unit
JP4115614B2 (en) Floor heating panel and its laying method
JP2007031933A (en) Strut and floor substrate panel
JPH02272147A (en) Floor-heating floor material
CN217000657U (en) Assembly type building floor structure system
JP3182126B2 (en) Floor heated building floor structure
CN217537710U (en) Overhead wood floor heat preservation system
KR100831632B1 (en) Floor heating system
JPS63903Y2 (en)
KR100712718B1 (en) Hight-adjustable floor panel assembly
KR20080065332A (en) Access floor structure with high efficiency
JP2001295451A (en) Double floor structure and method of constructing partition or heavy material placed object
RU13054U1 (en) PANEL WITH A SET OF ELEMENTS FOR REGULATING ITS LEVEL OVER THE SUPPORT SURFACE
JP4035327B2 (en) Thermal storage floor heating structure
JP2509137B2 (en) Structure of a thatched roof
JPS636327A (en) Floor heating device
JP2010007302A (en) Heat insulation structure of floor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Ref document number: 4548905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term