JP4548874B2 - Crushing part structure of crushing device - Google Patents

Crushing part structure of crushing device Download PDF

Info

Publication number
JP4548874B2
JP4548874B2 JP22514799A JP22514799A JP4548874B2 JP 4548874 B2 JP4548874 B2 JP 4548874B2 JP 22514799 A JP22514799 A JP 22514799A JP 22514799 A JP22514799 A JP 22514799A JP 4548874 B2 JP4548874 B2 JP 4548874B2
Authority
JP
Japan
Prior art keywords
rotor
housing
peripheral surface
crushing
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22514799A
Other languages
Japanese (ja)
Other versions
JP2001046904A (en
Inventor
恵規 兼田
義広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Iron Works Co Ltd
Original Assignee
Kitagawa Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Iron Works Co Ltd filed Critical Kitagawa Iron Works Co Ltd
Priority to JP22514799A priority Critical patent/JP4548874B2/en
Publication of JP2001046904A publication Critical patent/JP2001046904A/en
Application granted granted Critical
Publication of JP4548874B2 publication Critical patent/JP4548874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)

Description

【産業上の利用分野】
【0001】
本発明は、被処理物(原料)を擂り潰しによって擂潰する擂潰装置の擂潰部の構造に関するものである。
【0002】
【従来の技術】
本出願人は、擂潰装置に関する発明として特願平10―38160号を出願しており、この出願は、排出物の形状を縄様形状から粒体の状態および/又は粉体の状態に変えて排出するための工夫にある。
この擂潰装置の擂潰部は、供給された原料をロータの捩れ角を有する翼とハウジング内周面の刃との間で擂り潰す作用を与えるものであり、排出口の近傍にハウジングとの間に間隔Hを構成する構造の調整手段を備えるものであった。この為特に、原料が硬い珪酸質を含む籾殻などである場合にはロータの外周面およびハウジングの内周面の摩耗が激しく、両者の表面には摩耗を防止するための表面処理が施されていた。表面処理を施工したままの状態で使用していた従来においては、特に初期段階において次のような不具合が発生した。
この装置によって、原料(籾殻)の細粒粉(1.2mmの網目のふるいを70%〜80%以上が通過する粒度)を製造しようとすると、モータが定格電流を超えることがあり、最悪の場合にはロータとハウジングの間に原料が詰り込んでしまい動かなくなることも起こっていた。本出願人はこの原因について調査した結果次のことが解ったのである。それは、粒度の調整が、調整手段によって行なわれ、間隔Hを変え排出量の制御を行なうことによってなされる為に、擂潰部への原料の送り込み量および擂潰部での滑動量と、排出口における排出量が調和しないと上述した不都合が起こることに気づいたのである。その中でも特に、ロータおよびハウジングの摩擦係数が大きな役割を持つことが実験の結果から解明されたのである。
【0003】
【発明が解決しようとする課題】
本発明は、原料とハウジング内周面との摩擦係数および原料とロータ外周面との摩擦係数に着眼し、供給した原料をスムーズに排出口へ滑動させる工夫により、初期トラブルを解消すると共に細粒粉を安定して製造することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、螺旋形状で且つ所定の捩れ角を有する翼を備えた回転するロータ及び該ロータを取囲むと共に内周面に刃を備えた固定して設置されるハウジング並びに該ハウジングと前記ロータとが共に原料の供給側を大径に成して漸減させ原料の排出側を小径となし該小径側へ処理物排出用の排出口を備えて成る構造の擂潰手段と、該排出口近傍に備え且つロータ及びハウジングの共通軸線上に於けるロータ側へ付設すると共に該ロータの小径側先端とハウジング内周面との間に間隔Hを構成する構造の調整手段とを備える擂潰装置の擂潰部であって、前記ハウジング内周面と原料との摩擦係数がロータ外周面と原料との摩擦係数より小さく形成されていることにある。
この作用を説明すると、大径側から供給された原料は、回転するロータによってロータの翼の表面およびハウジング内周面を滑りながら過密化されて小径側へ向う指向方向へ向けて螺旋移動する。この際、原料とハウジング内周面との摩擦係数が原料とロータ外周面との摩擦係数よりも小さくなるように形成された擂潰部構造は、過密化されてハウジングの内周面に押圧された原料がハウジングの内周面を滑る滑り速度を増大し、ロータの翼の表面を滑りながら小径側へ向う指向方向へ向けて螺旋移動する滑動量を減少させる。従って、特に原料供給初期の排出口部位の詰り込みを解消し、同時に粒度の小さい細粒粉の製造を安定してなすことが可能となる。
【0005】
【発明の実施の形態】
本発明の実施の形態は、ハウジングの内周面とロータの外周面との摩擦係数の調整によって細粒粉を安定して製造する装置であって、肝要な点は、ハウジングの内周面の摩擦係数をロータの摩擦係数より小さくすることである。さらに、摩擦係数に相当するものとして、面粗さ、表面処理材質の違いによる実施例を以下に示す。
【0006】
【実施例1】
第一実施例として、ロータおよびハウジングの表面処理として非常に硬く耐摩耗性に優れるWc(タングステンカーバイト)サーメットを高速フレーム溶射にて溶射する場合を説明する。図1は擂潰装置の擂潰部を示す断面図であり、図2はロータとハウジングの斜視図である。
それぞれ3個のロータ1の外周面4、ハウジング2の内周面5に溶射を行う。一般的にWcサーメットを溶射したそのままの状態の面粗さ(mRaで表す)は、前工程の粗面化処理を含め数十μmRa以上であり、表1は、溶射した表面を各々の面粗さに研摩により調整したものである。
【0007】
【表1】

Figure 0004548874
【0008】
3個のロータ(NO1〜NO3)は、No.1の面粗さを3.3μmRa、No.2は2.9μmRa、No.3は0.8μmRaになされ、これに対するハウジング(No.4〜No.6)は、No.4の面粗さを3.6μmRa、No.5は2.4μmRa、No.6は1.4μmRaになされている。これら3個の面粗さの異なるロータおよびハウジングを9通りに組合せて調整手段3を操作して、原料である籾殻を粉砕し、どの程度の粒度まで細粒粉が製造できるかテストを行なった。表2に製造された粒度を示す。尚、粒度は、1.2mmの網目のふるいを通過した粉の割合(%)で示してある。また、表2において、( )内の数値は、ロータとハウジングの組合せによる面粗さの差を表し、ハウジング側の面粗さが小さい場合をプラス、ロータ側の面粗さが小さい場合をマイナスとするものである。
【0009】
【表2】
Figure 0004548874
【0010】
次に、表1、表2を基にして、横軸にハウジングとロータの面粗さの差(ハウジング側の面粗さが小さい場合をプラス、ロータ側の面粗さが小さい場合をマイナスとする)を、縦軸に粒度を示したものが図3である。この図3によると、ハウジングとロータの面粗さの差がない状態を中心にして、ハウジングの面粗さがロータの面粗さより小さい場合は粒度が上昇し、大きい場合は粒度が下降していることが解る。
ここで擂り潰しの作用を考えてみると、籾殻は、ロータ1の回転によって排出口6に向けて押し込まれながら、ハウジングの内周面5との間で排出口6に近づくにつれて圧縮されて擂り潰され、ハウジングの内周面5を滑りながら、調整手段3の隙間Hを通って排出口6から排出される。この一連の作用は主に原料と各部品との摩擦抵抗によるものである。即ち、原料の送り込み量はロータ1が主に支配しており、ロータ1の摩擦抵抗が小さくなればロータ1の回転によって原料の送り込み量は増大する。一方、排出量はハウジング2の摩擦抵抗が主に支配しており、ハウジングの内周面5の摩擦抵抗が小さくなればロータ1によって押し込まれた原料が、ハウジング内周面5に設けられた刃7をハウジングの円周方向へ向けて乗り越えてロータ1の回転方向にも流れることから、擂り潰しが増長され、より粒度の小さい細粒粉を得ることができる。
【0011】
因みに図3によると、ロータとハウジングの面粗さがほぼ等しいロータNo.1とハウジングNo.4の組合せ、同様にNo.2とNo.4、No.3とNo.6においては、面粗さの差が−0.3〜−0.7となり粒度は約80〜82%である。これ以上粒度を上げようとして調整手段3の隙間Hを絞ると排出口6で詰り込みを起こし装置は停止してしまうのである。そこで、ロータ1の面粗さよりハウジング2の面粗さを小さくするロータNo.1とハウジングNo.6、同様にNo.2とNo.6、の組合せにすると粒度が90〜95%に上昇するのである。
以上のように同じ材質の表面処理を施す場合のロータ1の表面粗さは、ハウジング2のそれより粗くすることにより、細粒粉製造時の詰り込みを防止し、より小さい細粒粉を製造することができる。
【0012】
【実施例2】
第二実施例として表面処理を行なう材質の違いによって、摩擦係数を変える場合を示す。それぞれ2個のロータおよびハウジングに、WcサーメットとNi(ニッケル)基合金を溶射する。その品名、No.、材質を表3に示す。
【0013】
【表3】
Figure 0004548874
【0014】
各々の面粗さは約1.0μmRaに揃えてあり、一般的にWcサーメットとNi基合金とでは、その素材自体の硬さ・性質の違いから、同じ面粗さに仕上げてもNi基合金の方が摩擦係数は低くなり、Ni基合金の摩擦係数がWcサーメットの約半分である。各2個の材質の異なるロータおよびハウジングを4通りに組合せて第一実施例と同様に調整手段を操作して、原料である籾殻を粉砕し、どの程度の粒度まで細粒粉が製造できるかテストを行なった。その結果を表4に示す。
【0015】
【表4】
Figure 0004548874
【0016】
この表4から言えることは、ハウジングの摩擦係数よりロータの摩擦係数が小さいNo.2とNo.3の組合せでは粒度の荒い粉(72%)しかできないが、ハウジングの摩擦係数の小さいNo.1とNo.4の組合せでは細粒粉(97%)を安定して製造することができるのである。
【0017】
【発明の効果】
請求項1によると、擂潰部への原料の送り込み量および擂潰部での滑動量と、排出口における排出量が調和され、限られた負荷の中で1.2mm網目のふるいを通過した粉の割合に対して、より粒度の小さい細粒粉を得ることができるようになった。 また、排出量が先行するようにしているので、多少の製造上のばらつきが発生しても目詰まりしにくい。
【0018】
請求項2によると、より微粉砕化することが可能となり、 粒度90%程度の細粒粉が作成できる。
【0019】
請求項3によると、摩耗量の少ない最も適した同一の材料等を選定することができ、製造上も材料を同一にすることにより簡略化でき、1.2mm網目のふるいを通過した粉の割合に対して粒度85%程度以上の細粒粉を安定して作成することができる。
【0020】
請求項4よると、ハウジングの摩擦係数をロータの摩擦係数よりも小さくするのに、単に表面処理する材質を選定するだけで所望する摩擦係数を得ることができる。
【0021】
請求項5によると、Ni基合金はWcサーメットに比べ摩擦係数は約半分であり、研摩の加工性も優れているので、ハウジングの摩擦係数をロータの摩擦係数の半分以下に容易になすことができ、微細な細粒粉の製造をさらに簡単にすることができ、1.2mm網目のふるいを通過した粉の割合に対して粒度97%程度以上の細粒粉を安定して作成することができる。
【0022】
請求項6によると、ハウジングの内周面に備える刃が、ロータの翼の捩れ角とは反対の向きの捩れ角に形成した擂潰手段になされており、さらに微細粉化処理された細粒粉を安定した負荷で得ることが可能となる。
【図面の簡単な説明】
【図1】擂潰装置の擂潰部を示す断面図。
【図2】ロータとハウジングを示す斜視図。
【図3】ハウジングとロータの面粗さの差に対する粒度割合を示す図。
【符号の説明】
1、ロータ
2、ハウジング
3、調整手段
4、ロータの外周面
5、ハウジングの内周面
6、排出口
7、刃[Industrial application fields]
[0001]
The present invention relates to a structure of a crushing part of a crushing apparatus that crushes an object to be processed (raw material) by crushing.
[0002]
[Prior art]
The present applicant has filed Japanese Patent Application No. 10-38160 as an invention related to a crushing device, and this application changes the shape of the discharge from a rope-like shape to a granular state and / or a powder state. Devise to discharge.
The crushing part of this crushing device gives the action of crushing the supplied raw material between the blade having the torsion angle of the rotor and the blade on the inner peripheral surface of the housing. The adjusting means of the structure which comprises the space | interval H in between is provided. For this reason, especially when the raw material is rice husk containing hard siliceous material, the outer peripheral surface of the rotor and the inner peripheral surface of the housing are severely worn, and both surfaces are subjected to surface treatment to prevent wear. It was. In the prior art where the surface treatment was applied as it was, the following problems occurred particularly in the initial stage.
With this equipment, when trying to produce fine powder of raw material (rice husk) (particle size that 70% to 80% or more passes through a screen of 1.2 mm mesh), the motor may exceed the rated current, the worst In some cases, the raw material was clogged between the rotor and the housing, and it could not move. As a result of investigating this cause, the present applicant has found that: This is because the adjustment of the particle size is performed by the adjusting means and the discharge amount is controlled by changing the interval H, so that the amount of raw material fed into the crushed portion and the amount of sliding at the crushed portion, He realized that the inconveniences mentioned above would occur if the discharges at the exit were not harmonized. In particular, the experimental results revealed that the friction coefficient of the rotor and the housing plays a major role.
[0003]
[Problems to be solved by the invention]
The present invention focuses on the friction coefficient between the raw material and the inner peripheral surface of the housing and the friction coefficient between the raw material and the outer peripheral surface of the rotor, eliminates initial troubles and fine particles by means of smoothly sliding the supplied raw material to the discharge port. It aims at producing powder stably.
[0004]
[Means for Solving the Problems]
The present invention relates to a rotating rotor having blades having a spiral shape and a predetermined twist angle, a fixed housing that surrounds the rotor and has a blade on an inner peripheral surface, and the housing and the rotor. Both the material supply side has a large diameter and gradually reduced, the raw material discharge side has a small diameter, and the small diameter side has a discharge port for discharging the processed material, and in the vicinity of the discharge port, with and of Su潰apparatus and an adjustment means structure constituting the distance H between the small-diameter side leading edge and the housing inner peripheral surface of the rotor as well as attached to the rotor and the common axis in in the rotor side of the housing In the crushed portion, the friction coefficient between the inner peripheral surface of the housing and the raw material is smaller than the friction coefficient between the outer peripheral surface of the rotor and the raw material .
Explaining this action, the raw material supplied from the large-diameter side is spirally moved in a directing direction toward the small-diameter side while being densified by the rotating rotor while sliding on the surface of the rotor blades and the inner peripheral surface of the housing. At this time, the crushing portion structure formed so that the friction coefficient between the raw material and the inner peripheral surface of the housing is smaller than the friction coefficient between the raw material and the outer peripheral surface of the rotor is compressed and pressed against the inner peripheral surface of the housing. The sliding speed at which the raw material slides on the inner peripheral surface of the housing is increased, and the amount of sliding that spirally moves in the direction toward the small diameter side while sliding on the surface of the rotor blade is reduced. Therefore, it is possible to eliminate clogging at the discharge port part at the initial stage of raw material supply, and at the same time, to stably produce a fine powder having a small particle size.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention is an apparatus for stably producing fine-grained powder by adjusting the friction coefficient between the inner peripheral surface of the housing and the outer peripheral surface of the rotor. The important point is that the inner peripheral surface of the housing The friction coefficient is made smaller than that of the rotor. Further, examples corresponding to the difference in surface roughness and surface treatment material are shown below as equivalent to the friction coefficient.
[0006]
[Example 1]
As a first embodiment, a case will be described in which Wc (tungsten carbide) cermet, which is extremely hard and excellent in wear resistance, is sprayed by high-speed flame spraying as a surface treatment of a rotor and a housing. FIG. 1 is a cross-sectional view showing a crushing portion of a crushing device, and FIG. 2 is a perspective view of a rotor and a housing.
Thermal spraying is performed on the outer peripheral surface 4 of each of the three rotors 1 and the inner peripheral surface 5 of the housing 2. In general, the surface roughness (expressed in mRa) of Wc cermet as sprayed is as high as several tens of μmRa, including the roughening treatment in the previous step, and Table 1 shows the surface roughness of each sprayed surface. In addition, it was adjusted by polishing.
[0007]
[Table 1]
Figure 0004548874
[0008]
The three rotors (NO1 to NO3) have a surface roughness of No.1 of 3.3 μmRa, No.2 of 2.9 μmRa, and No.3 of 0.8 μmRa. No. 4 has a surface roughness of 3.6 μmRa, No. 5 has a surface roughness of 2.4 μm Ra, and No. 6 has a surface roughness of 1.4 μm Ra. These three rotors and housings having different surface roughnesses were combined in nine ways and the adjusting means 3 was operated to pulverize the rice husk as a raw material, and a test was performed to see how fine the fine powder could be produced. . Table 2 shows the particle sizes produced. The particle size is indicated by the ratio (%) of the powder that passed through a 1.2 mm mesh screen. In Table 2, the values in parentheses indicate the difference in surface roughness due to the combination of the rotor and the housing, plus when the surface roughness on the housing side is small and minus when the surface roughness on the rotor side is small. It is what.
[0009]
[Table 2]
Figure 0004548874
[0010]
Next, based on Tables 1 and 2, the horizontal axis shows the difference between the surface roughness of the housing and the rotor (when the surface roughness on the housing side is small, plus when the surface roughness on the rotor side is small, minus FIG. 3 shows the particle size on the vertical axis. According to FIG. 3, centering on the case where there is no difference in the surface roughness of the housing and the rotor, the particle size increases when the surface roughness of the housing is smaller than the surface roughness of the rotor, and the particle size decreases when it is larger. I understand that
Considering the action of crushing here, the rice husk is compressed toward the discharge port 6 with the inner peripheral surface 5 of the housing while being pressed toward the discharge port 6 by the rotation of the rotor 1. It is crushed and discharged from the discharge port 6 through the gap H of the adjusting means 3 while sliding on the inner peripheral surface 5 of the housing. This series of actions is mainly due to the frictional resistance between the raw material and each component. That is, the feed amount of the raw material is mainly controlled by the rotor 1. If the frictional resistance of the rotor 1 is reduced, the feed amount of the raw material is increased by the rotation of the rotor 1. On the other hand, the amount of discharge is mainly governed by the frictional resistance of the housing 2. If the frictional resistance of the inner peripheral surface 5 of the housing is reduced, the raw material pushed by the rotor 1 is provided on the inner peripheral surface 5 of the housing. 7 is moved in the circumferential direction of the housing and flows also in the rotation direction of the rotor 1, so that smashing is increased and finer powder with a smaller particle size can be obtained.
[0011]
Incidentally, according to FIG. 3, the combination of rotor No. 1 and housing No. 4 in which the surface roughness of the rotor and the housing are almost equal, similarly, No. 2 and No. 4, and No. 3 and No. 6 are rough. The difference in thickness is -0.3 to -0.7, and the particle size is about 80 to 82%. If the gap H of the adjusting means 3 is narrowed to further increase the particle size, the discharge port 6 is clogged and the apparatus stops. Therefore, when the combination of rotor No. 1 and housing No. 6, which similarly makes the surface roughness of the housing 2 smaller than the surface roughness of the rotor 1, similarly No. 2 and No. 6, the particle size increases to 90-95%. It is.
As described above, when the surface treatment of the same material is performed, the surface roughness of the rotor 1 is made rougher than that of the housing 2, thereby preventing clogging during the production of fine-grained powder and producing smaller fine-grained powder. can do.
[0012]
[Example 2]
The case where a friction coefficient is changed by the difference in the material which surface-treats as a 2nd Example is shown. Each of the two rotors and the housing is sprayed with Wc cermet and Ni (nickel) based alloy. The product name, No., and material are shown in Table 3.
[0013]
[Table 3]
Figure 0004548874
[0014]
The surface roughness of each is about 1.0μmRa. In general, Wc cermet and Ni-base alloy are Ni-base alloys even if they are finished to the same surface roughness due to the difference in hardness and properties of the materials themselves. The friction coefficient is lower, and the friction coefficient of Ni-based alloy is about half that of Wc cermet. By combining the four different rotors and housings of two different materials and operating the adjusting means in the same manner as in the first embodiment to pulverize the rice husk as a raw material, to what extent the fine powder can be produced Tested. The results are shown in Table 4.
[0015]
[Table 4]
Figure 0004548874
[0016]
What can be said from Table 4 is that the combination of No. 2 and No. 3 in which the friction coefficient of the rotor is smaller than the friction coefficient of the housing allows only coarse powder (72%), but No. 1 in which the friction coefficient of the housing is small. With the combination of No. 4 and No. 4, fine powder (97%) can be produced stably.
[0017]
【The invention's effect】
According to claim 1, the feed amount of the raw material to the crushed portion, the sliding amount at the crushed portion, and the discharge amount at the discharge port are harmonized and passed through a 1.2 mm mesh screen in a limited load . It became possible to obtain a fine-grained powder having a smaller particle size with respect to the proportion of the powder . Further, since the discharge amount is advanced, clogging is less likely to occur even if some manufacturing variations occur.
[0018]
According to claim 2, it becomes possible to further pulverize, and a fine powder having a particle size of about 90% can be produced.
[0019]
According to claim 3, it is possible to select the most suitable and the same material with the least amount of wear, and it is possible to simplify the production by making the material the same, and the ratio of the powder that has passed through the 1.2 mm mesh screen On the other hand, fine particles having a particle size of about 85% or more can be stably produced. .
[0020]
According to the fourth aspect, in order to make the friction coefficient of the housing smaller than the friction coefficient of the rotor, a desired friction coefficient can be obtained simply by selecting a material to be surface-treated.
[0021]
According to claim 5, the Ni-based alloy has a friction coefficient of about half that of Wc cermet and is excellent in polishing workability. Therefore, the friction coefficient of the housing can be easily made less than half of the friction coefficient of the rotor. The production of fine fine powder can be further simplified, and it is possible to stably produce fine powder having a particle size of about 97% or more with respect to the proportion of the powder that has passed through a 1.2 mm mesh sieve. it can.
[0022]
According to claim 6, the blade provided on the inner peripheral surface of the housing is formed as a crushing means formed at a twist angle opposite to the twist angle of the rotor blade, and further finely pulverized fine particles It becomes possible to obtain powder with a stable load.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a crushing part of a crushing device.
FIG. 2 is a perspective view showing a rotor and a housing.
FIG. 3 is a graph showing a particle size ratio with respect to a difference in surface roughness between a housing and a rotor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, Rotor 2, Housing 3, Adjustment means 4, Rotor outer peripheral surface 5, Housing inner peripheral surface 6, Discharge port 7, Blade

Claims (6)

螺旋形状で且つ所定の捩れ角を有する翼を備えた回転するロータ及び該ロータを取囲むと共に内周面に刃を備えた固定して設置されるハウジング並びに該ハウジングと前記ロータとが共に原料の供給側を大径に成して漸減させ原料の排出側を小径となし該小径側へ処理物排出用の排出口を備えて成る構造の擂潰手段と、該排出口近傍に備え且つロータ及びハウジングの共通軸線上に於けるロータ側へ付設すると共に該ロータの小径側先端とハウジング内周面との間に間隔Hを構成する構造の調整手段とを備える擂潰装置の擂潰部であって、前記ハウジング内周面と原料との摩擦係数がロータ外周面と原料との摩擦係数より小さく形成されていることを特徴とする擂潰装置の擂潰部構造。A rotating rotor having blades having a spiral shape and a predetermined torsion angle, a fixedly installed housing surrounding the rotor and having a blade on an inner peripheral surface, and the housing and the rotor are A crushing means having a structure in which the supply side is gradually reduced to have a large diameter, the discharge side of the raw material is reduced in diameter, and a discharge port for discharging the processed material is provided on the small diameter side, a rotor provided near the discharge port, and a rotor, in scan潰部of Su潰apparatus and an adjustment means structure constituting the distance H between the small-diameter side leading edge and the housing inner peripheral surface of the rotor as well as attached to the in the rotor side to a common axis of the housing A crushing portion structure of a crushing device, wherein a friction coefficient between the inner peripheral surface of the housing and the raw material is smaller than a friction coefficient between the outer peripheral surface of the rotor and the raw material . 前記ハウジング内周面と原料との摩擦係数がロータ外周面と原料との摩擦係数に対し半分以下に形成されていることを特徴とする請求項1記載の擂潰装置の擂潰部構造。The crushed portion structure of the crushing device according to claim 1, wherein a friction coefficient between the inner peripheral surface of the housing and the raw material is less than half of a friction coefficient between the outer peripheral surface of the rotor and the raw material . 前記摩擦係数が、面粗さの違いによって操作されることを特徴とする請求項1記載の擂潰装置の擂潰部構造。The crushing portion structure of a crushing device according to claim 1, wherein the friction coefficient is operated by a difference in surface roughness. 前記摩擦係数が、表面の材質の違いによって操作されることを特徴とする請求項1記載の擂潰装置の擂潰部構造。2. The crushing portion structure of a crushing device according to claim 1, wherein the friction coefficient is manipulated by a difference in surface material. 前記表面の材質が、ハウジングをNi基合金と成しロータをWcサーメットと成されていることを特徴とする請求項4記載の擂潰装置の擂潰部構造。5. The crushing part structure of a crushing device according to claim 4, wherein the material of the surface is made of a Ni-based alloy for the housing and Wc cermet for the rotor. 前記ハウジングの内周面に備える刃が、前記ロータの翼の捩れ角とは反対の向きの捩れ角を有することを特徴とする請求項1乃至5記載の擂潰装置の擂潰部構造。6. The crushing portion structure of a crushing device according to claim 1, wherein the blade provided on the inner peripheral surface of the housing has a twist angle opposite to a twist angle of the blade of the rotor.
JP22514799A 1999-08-09 1999-08-09 Crushing part structure of crushing device Expired - Fee Related JP4548874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22514799A JP4548874B2 (en) 1999-08-09 1999-08-09 Crushing part structure of crushing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22514799A JP4548874B2 (en) 1999-08-09 1999-08-09 Crushing part structure of crushing device

Publications (2)

Publication Number Publication Date
JP2001046904A JP2001046904A (en) 2001-02-20
JP4548874B2 true JP4548874B2 (en) 2010-09-22

Family

ID=16824692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22514799A Expired - Fee Related JP4548874B2 (en) 1999-08-09 1999-08-09 Crushing part structure of crushing device

Country Status (1)

Country Link
JP (1) JP4548874B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5623000B2 (en) * 2007-09-27 2014-11-12 株式会社櫻製作所 Uniaxial grinder
CN103487301B (en) * 2013-09-23 2016-08-10 福建师范大学 Movable integrated machine is ground in a kind of soil analysis sample screening
JP7437128B2 (en) * 2018-10-25 2024-02-22 昭和産業株式会社 Pulverizer for producing flour and method for producing flour using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3980152B2 (en) * 1998-02-03 2007-09-26 株式会社北川鉄工所 Crushing device and crushed material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567324B2 (en) * 1992-05-27 1996-12-25 英 鎬 金 Compression pulverizer
JPH10296104A (en) * 1997-04-25 1998-11-10 Kinzo Matsunaga Automatic crusher for waste goods, such as empty cans

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3980152B2 (en) * 1998-02-03 2007-09-26 株式会社北川鉄工所 Crushing device and crushed material

Also Published As

Publication number Publication date
JP2001046904A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
KR102297829B1 (en) Alloy powder, sintered compact, method for manufacturing alloy powder and sintered compact
TWI393794B (en) Non - magnetic Particle Dispersive Type Strong Magnetic Sputtering Target
CN102234729B (en) Preparation method for hard metal
JP5268908B2 (en) Abrasive compact
JP5309394B2 (en) Cemented carbide
JPH0216378B2 (en)
JP5348537B2 (en) Cemented carbide
KR20120120127A (en) Sb-te based alloy sintered compact sputtering target
KR20110110176A (en) Ball milling method for preparation of hard alloy mixture
JP4548874B2 (en) Crushing part structure of crushing device
JP4523545B2 (en) Discharge surface treatment electrode, discharge surface treatment apparatus, and discharge surface treatment method
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
CN101899602A (en) Cermet body and a method of making a cermet body
JP6123138B2 (en) Cemented carbide, microdrill, and method of manufacturing cemented carbide
JP6922110B1 (en) Crushing / stirring / mixing / kneading machine parts
EP3425072A1 (en) Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
RU2707455C1 (en) Tungsten-based pseudoalloy powder and method of its production
JP2012117101A (en) Method for manufacturing cemented carbide
JP2012117100A (en) Cemented carbide
JP2016041853A (en) Cemented carbide, micro-drill and method for producing cemented carbide
JP2005320557A (en) Abrasion resistant member and manufacturing method therefor
JP2016180183A (en) Cemented carbide, and working tool
JP2008212904A (en) Jet mill
EP3786309A1 (en) Composite sintered body
KR20240061146A (en) High-entropy carbide and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4548874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees