JP4548588B2 - Molds and molded products - Google Patents

Molds and molded products Download PDF

Info

Publication number
JP4548588B2
JP4548588B2 JP2004296919A JP2004296919A JP4548588B2 JP 4548588 B2 JP4548588 B2 JP 4548588B2 JP 2004296919 A JP2004296919 A JP 2004296919A JP 2004296919 A JP2004296919 A JP 2004296919A JP 4548588 B2 JP4548588 B2 JP 4548588B2
Authority
JP
Japan
Prior art keywords
mold
resin
present
molding
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004296919A
Other languages
Japanese (ja)
Other versions
JP2005119299A (en
JP2005119299A5 (en
Inventor
伸彦 脇阪
Original Assignee
伸彦 脇阪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伸彦 脇阪 filed Critical 伸彦 脇阪
Priority to JP2004296919A priority Critical patent/JP4548588B2/en
Publication of JP2005119299A publication Critical patent/JP2005119299A/en
Publication of JP2005119299A5 publication Critical patent/JP2005119299A5/ja
Application granted granted Critical
Publication of JP4548588B2 publication Critical patent/JP4548588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は金属及びプラスチック加工用成形型の製作技術に関する。The present invention relates to a technique for manufacturing a metal and plastic processing mold.

成形型の製作コスト、製作工期を削減する目的で金属及びプラスチック加工用簡易型(いわゆる簡易金型)材質として複合強化樹脂が多く利用されている。
このうち、成形圧力、温度ともに最も厳しい射出成形用簡易型用及び非常に大きな圧縮応力がかかるプレス加工用簡易型用には以下の素材が一般的に用いられている。
1:エポキシ樹脂、叉はウレタン樹脂にアルミニウム、ニッケル等の無機素材を多量に配合、強化したもの
2:ABS樹脂等、熱可塑性樹脂にアルミニウム、ニッケル等の無機素材を多量に配合、強化したもの
For the purpose of reducing the production cost and production period of a mold, a composite reinforced resin is often used as a material for a simple mold for metal and plastic processing (so-called simple mold).
Among these, the following materials are generally used for the simple mold for injection molding with the most severe molding pressure and temperature, and for the simple mold for press working which requires a very large compressive stress.
1: Epoxy resin or urethane resin with a large amount of inorganic materials such as aluminum and nickel blended and strengthened 2: ABS resin, thermoplastic resin with a large amount of inorganic materials such as aluminum and nickel blended and strengthened

前記素材の加工方法として1、ブロックからの切削加工 2、積層造形法を用いた直接造形(RP法)3、マスターモデルから注型反転させた反転型がある。
これらの素材、加工方法は目的に応じて使い分けられている。
近年、3Dソリッドモデリング技術の発達により、製品データーから型加工データーへの変換が容易になり1、超高速切削加工技術による切削樹脂型 2、RP法を用いたラピッドツーリング(造形型)が脚光をあびている。
特に取り扱いが容易な超高速切削加工による樹脂型は鉄、アルミ、低溶融合金の切削加工よりも切削加工速度が早い、深堀り形状等放電加工でしか加工出来ない形状や金属切削では困難な複雑形状も容易に切削加工が可能である、軽量のため取り扱いが簡単等の理由で製作上の優位点が大きい。
As a processing method of the material, there are 1, cutting from a block 2, direct modeling using a layered modeling method (RP method) 3, and a reversal type in which a master model is cast-reversed.
These materials and processing methods are properly used according to the purpose.
In recent years, the development of 3D solid modeling technology has facilitated the conversion from product data to mold machining data 1, cutting resin molds using ultra-high-speed cutting technology 2, rapid tooling using RP method (modeling mold) I am scared.
Resin molds with ultra-high-speed cutting that are particularly easy to handle have a cutting speed faster than cutting of iron, aluminum, and low-melting alloys. The shape can be easily cut, and because of its light weight, it is easy to handle.

しかしながら樹脂素材の型の場合、熱伝導性が金属より大幅に劣る為、その素材には機械的耐久性、寸法安定性と同時に厳しい耐熱性も要求される。
この点において従来のエポキシ、ウレタン系の素材では原素材(マトリックス材)の基本的な物性が劣っているためそのまま型素材としては使用出来ず、大量の(多くの場合重量比50%以上)強化充填材を配合して使用に供しているが多量の強化充填材を配合する事により切削加工性(切削速度及び加工用刃物の耐久)が大幅に損なわれ本来の目的の型加工コスト、工期の削減効果が少ない。
又、作られた成形型も温度勾配に耐え切れず割れてしまったり、繰り返しの大きな機械的負荷に弱く耐久性に非常に問題がある。
このため、汎用樹脂を中心に一部の試作用型として用いられているに留まっている。
However, in the case of a resin material mold, the thermal conductivity is significantly inferior to that of metal, so that the material is required to have strict heat resistance as well as mechanical durability and dimensional stability.
In this regard, conventional epoxy and urethane materials are inferior in basic physical properties of the raw material (matrix material), so they cannot be used as mold materials as they are, and they are reinforced in large quantities (in many cases 50% or more by weight). Mixing fillers for use, but by adding a large amount of reinforcing fillers, cutting workability (cutting speed and durability of the cutting tool) is greatly impaired and the original mold processing cost and construction period are reduced. There is little reduction effect.
Also, the molds that are made cannot withstand the temperature gradient and are cracked, and they are vulnerable to repeated large mechanical loads, which is very problematic in terms of durability.
For this reason, it is only used as a part for trial manufactures centering on general purpose resin.

本発明の課題は、充填材の配合を極力抑え、十分な切削加工性を維持したまま加工出来るにも関わらず射出成形時の高温高圧の繰り返し負荷及びプレス加工時の大きな繰り返し圧縮負荷に対し、十分な剛性、寸法安定性、耐久性を保持出来、エンジニアリングプラスチック等の高機能樹脂の成形をも可能にする成形加工用の型を提供する事である。The object of the present invention is to suppress the blending of fillers as much as possible, while being able to process while maintaining sufficient machinability, for high temperature and high pressure repeated load during injection molding and large repeated compression load during press processing, The object of the present invention is to provide a molding die that can maintain sufficient rigidity, dimensional stability, and durability, and can also mold high-performance resins such as engineering plastics.

アニオン重合を利用したω−ラクタム系モノマーの重合による結晶化度の高い注型ポリアミド樹脂(いわゆるモノマーキャストナイロン)をベースにした素材をブロック状に重合成形しこれを高速切削加工等の加工用の型素材として使用する。A material based on cast polyamide resin (so-called monomer cast nylon) with high crystallinity by polymerization of ω-lactam monomer using anionic polymerization is polymerized into a block shape, and this is used for processing such as high-speed cutting. Use as mold material.

本発明はε−カプロラクタムに各種触媒、重合開始材を配合しアニオン重合反応を起こし、硬化させた高結晶化度を有するε−カプロラクタム重合体を含む事を特徴とした板状に成形された切削加工用の型素材プレートを切削加工する事によって得られる成形加工用の型、並びに上記成形型を用いて加工されたプラスチック射出成形品又はプレス加工品である。The present invention is a plate-shaped cutting characterized in that it contains an ε-caprolactam polymer having a high degree of crystallinity obtained by blending various catalysts and polymerization initiators into ε-caprolactam to cause an anionic polymerization reaction and curing. These are a mold for molding obtained by cutting a mold material plate for processing, and a plastic injection molded product or a press-processed product processed by using the mold.

同素材は公知の様に金型に加熱液化したε・カプロラクタムに代表されるω・ラクタムを注入し、アニオン重合触媒、トリレンジイソシアネート等の重合開始剤を使用して重合させ、該樹脂ブロックを作成する。
これを切削加工して必要な製品として利用する事が一般的に行われている。
同素材は水重合法によって得られるポリアミド樹脂(いわゆる6ナイロン)よりも高い結晶化率(X線回折測定法による結晶化度で約50%)、均一な結晶構造(α形単斜系)を有しこれにより、いわゆる6ナイロンより低い吸湿性と優れた耐熱性、耐磨耗性、自己潤滑性を併せ持ち、車輪、歯車、カム、ベアリング等、耐久部品への用途に使用されている。
The same material is injected with ω / lactam represented by ε / caprolactam, which is heated and liquefied in a mold as is known, and polymerized using a polymerization initiator such as an anionic polymerization catalyst, tolylene diisocyanate, and the resin block is create.
In general, this is cut and used as a necessary product.
High crystallization rate than the material obtained by the water polymerization polyamide resin (so-called nylon 6) (about 50% crystallinity by X-ray diffractometry), uniform crystal structure (alpha form monoclinic) As a result, it has lower moisture absorption than so-called 6 nylon and has excellent heat resistance, wear resistance, and self-lubricating properties, and is used for durable parts such as wheels, gears, cams and bearings.

本発明者は上記素材が上記特性に優れているだけでなく高い温度領域でも弾性に富み、弾性変形に対する優れた復元性を有している事に着目して射出成形のような高温高圧の条件下において一時的に変形を起こしても弾性変形内の領域において充填後、比較的均一に圧力がかかる冷却工程の初期において復元し、正確な形状を転写出来る傾向を見出した。
これにより、優れた切削加工性と熱、圧力に対する耐久性、寸法安定性のバランスの取れた簡易型を製作出来る技術的思想が成り立つ事を見出した。
The present inventor noticed that the above-mentioned material is not only excellent in the above-mentioned characteristics but also rich in elasticity even in a high temperature region, and has excellent resilience against elastic deformation, such as high-temperature and high-pressure conditions such as injection molding. It was found that even if the deformation occurs temporarily below, the region within the elastic deformation is restored in the initial stage of the cooling process in which pressure is applied relatively uniformly, and an accurate shape can be transferred.
As a result, it has been found that a technical idea that can produce a simple mold having a balance between excellent machinability, durability against heat and pressure, and dimensional stability is established.

本発明においてε・カプロラクタム重合体とはε・カプロラクタムを主原料として製造された任意の重合体である。例えばε・カプロラクタムの単独重合体であるポリアミド6、ε・カプロラクタムと他のモノマーとの共重合体またはこれらの混合物が挙げられる。In the present invention, the ε · caprolactam polymer is an arbitrary polymer produced using ε · caprolactam as a main raw material. Examples thereof include polyamide 6 which is a homopolymer of ε · caprolactam, a copolymer of ε · caprolactam and another monomer, or a mixture thereof.

本発明に用いられるアニオン重合触媒は公知のラクタム類のアルカリ重合法において使用される化合物をすべて用いる事が出来る。
すなわち、アルカリ金属、アルカリ土類金属、これらの水酸化物酸化物、水素化物、炭酸塩、アルキル化物、叉はアルコキシド、グリニヤール化合物ソジウムナフタレン等が挙げられる。
また重合開始剤についても公知のラクタム類のアルカリ重合法に使用される化合物をすべて用いる事が出来る。すなわち、有機イソシアネート、酸塩化物、エステル、尿素誘導体、カルボジイミド等が挙げられる。
As the anionic polymerization catalyst used in the present invention, all compounds used in known alkali polymerization methods for lactams can be used.
That is, alkali metals, alkaline earth metals, hydroxides thereof, hydrides, carbonates, alkylates, alkoxides, Grignard compounds sodium naphthalene, and the like can be given.
Moreover, also about a polymerization initiator, all the compounds used for the well-known alkali polymerization method of lactams can be used. That is, organic isocyanate, acid chloride, ester, urea derivative, carbodiimide and the like can be mentioned.

本発明の一例を示す。
素材調整としてε−カプロラクタム100重量部に対し、重合触媒として1〜50重量部、好ましくは1〜2重量部の間で適時調整された水酸化ナトリウム及び助触媒として2〜10重量部、好ましくは2〜3重量部の間で適時調整されたトリレンジイソシアネートを用意する。
An example of this invention is shown.
As a raw material adjustment, 1 to 50 parts by weight as a polymerization catalyst, preferably 2 to 10 parts by weight as sodium hydroxide and a co-catalyst adjusted as appropriate between 1 and 2 parts by weight, preferably 100 parts by weight of ε-caprolactam A tolylene diisocyanate prepared in a timely manner between 2 to 3 parts by weight is prepared.

必要量のε・カプロラクタムを容器にて好ましくは100℃〜200℃、より好ましくは120℃〜130℃まで加熱し液状化させるとともに容器内の空気を窒素にて置換する。
前述の液体に用意された重合触媒、及び助触媒を添加し攪拌しながら所定の型に注入し100℃〜160℃の範囲、好ましくは130℃〜150℃にて10分〜120分、好ましくは60分〜120分アニールし、重合反応を完了させ、冷却後該成形体を取り出す。
ε・カプロラクタム重合体の結晶化度は出来るだけ高い方が好ましく上記諸条件により適時調整されるが本発明において必要とされる結晶化度は特に上限は無いが60%を超えると靭性が低下する恐れがある為それ以下にする事が好ましい。
具体的にはX線回折測定法による測定で37%〜75%好ましくは50%〜60%にて調整される。
The necessary amount of ε · caprolactam is heated in a container, preferably 100 ° C. to 200 ° C., more preferably 120 ° C. to 130 ° C., and liquefied, and the air in the container is replaced with nitrogen.
The polymerization catalyst and co-catalyst prepared in the liquid are added and poured into a predetermined mold while stirring, and the temperature is in the range of 100 ° C. to 160 ° C., preferably 130 ° C. to 150 ° C., preferably 10 minutes to 120 minutes, preferably Annealing is performed for 60 to 120 minutes to complete the polymerization reaction, and after cooling, the molded body is taken out.
The crystallinity of the ε · caprolactam polymer is preferably as high as possible, and is adjusted as needed according to the above conditions. The crystallinity required in the present invention is not particularly limited, but if it exceeds 60%, the toughness decreases. Since there is a fear, it is preferable to make it lower.
Specifically, it is adjusted to 37% to 75%, preferably 50% to 60% as measured by X-ray diffraction measurement.

また本発明における素材の結晶化率を上げるため、叉結晶成長サイズを均一に制御して安定した特性を確保する為に必要な結晶核材を配合する事が好ましい。
結晶核材としては特に限定されないがタルク、マイカ、クレイ、シリカ、グラファイト等の無機微粒子、酸化マグネシウム、酸化アルミニウム、酸化鉄、酸化亜鉛、酸化銅等の金属酸化物、金属塩、ナイロン6T、ナイロン66等の高融点ポリアミド等が挙げられる。
結晶核剤の配合比としてはε・カプロラクタム重合体100部に対し0.01〜10重量部好ましくは0.03〜5重量部である。
In order to increase the crystallization rate of the material in the present invention, it is preferable to blend a crystal nucleus material necessary for uniformly controlling the fork crystal growth size and ensuring stable characteristics.
The crystal nucleus material is not particularly limited, but inorganic fine particles such as talc, mica, clay, silica and graphite, metal oxides such as magnesium oxide, aluminum oxide, iron oxide, zinc oxide and copper oxide, metal salts, nylon 6T, nylon 66 high melting point polyamide and the like.
The compounding ratio of the crystal nucleating agent is 0.01 to 10 parts by weight, preferably 0.03 to 5 parts by weight, based on 100 parts of the ε · caprolactam polymer.

本発明に用いる素形材は結晶化度が高いため、高い弾性係数を持ち高い樹脂圧力下にも変形が極めて少なく(弾性変形内)線膨張係数も低く充填材を用いなくても寸法安定性は確保出来る。叉ポリアミド構造を持つにも関わらず標準状態において吸水率は低く成形物の寸法は安定している。
しかしながら、ポリアミド構造を持つ以上、若干の吸湿による強度、寸法変化の影響は避けられない。このため機械強度、耐久性の補強、線膨張係数の低減並びに吸水率の改善を目的として若干の強化充填材を配合する事が好ましい。
しかしながら他の樹脂型と同様ガラス繊維等の大きな充填物は表面仕上げに悪影響を及ぼす為、表面状態がきれいに仕上がる微細充填物を用いる。本発明において添加される微細充填物の配合は、切削加工性(快削性)の保持のため、重量比10%〜40%、好ましくは10%〜20%にて調整される。本発明においてはマトリックス素材の特性ゆえに他の樹脂型に比較して低配合比でも強化充填材配合の目的は十分に達せられる。
本実施例において微細無機充填材として重合時にほう酸アルミニウムを素材とした微細ウィスカーを重量比20%配合した。本発明における微細充填材としては特に限定されないが炭酸カルシウム、酸化チタンウィスカ、ワラストナイト、カオリン、黒鉛、カーボンブラック、クレイ、ガラスバルーン等が挙げられる。
The shaped material used in the present invention has a high degree of crystallinity, so it has a high elastic modulus, extremely little deformation under high resin pressure (within elastic deformation), low linear expansion coefficient, and dimensional stability without using fillers. Can be secured. In spite of having a fork polyamide structure, the water absorption is low in the standard state and the dimensions of the molded product are stable.
However, as long as it has a polyamide structure, the influence of strength and dimensional changes due to slight moisture absorption is inevitable. For this reason, it is preferable to mix some reinforcing fillers for the purpose of reinforcing mechanical strength and durability, reducing linear expansion coefficient, and improving water absorption.
However, as with other resin molds, large fillers such as glass fibers have an adverse effect on the surface finish, so fine fillers with a finely finished surface state are used. The blending of the fine filler added in the present invention is adjusted at a weight ratio of 10% to 40%, preferably 10% to 20%, in order to maintain the machinability (free machining). In the present invention, because of the characteristics of the matrix material, the purpose of blending the reinforcing filler can be sufficiently achieved even at a low blending ratio compared to other resin molds.
In this example, 20% by weight of fine whiskers made of aluminum borate was used as a fine inorganic filler during polymerization. The fine filler in the present invention is not particularly limited, and examples thereof include calcium carbonate, titanium oxide whisker, wollastonite, kaolin, graphite, carbon black, clay, and glass balloon.

また、型用途として潤滑性、離型性を改良する為にグラファイト、二硫化モリブデン等の固体潤滑材、ポリテトラフロロエチレンのような高分子粉末を重量比数部〜数十部程度添加する事が好ましい。In addition, in order to improve lubricity and releasability as mold applications, solid lubricants such as graphite and molybdenum disulfide, and polymer powders such as polytetrafluoroethylene should be added in a few parts to several tens of parts by weight. Is preferred.

本発明における微細充填材の形状は特に限定されないが、好ましくは粒径10nm〜50μm程度の微細粒子、叉は長さ1μm〜50μm程度、径10nm〜5μm程度の微細繊維、より好ましくは粒径10nm〜10μm程度の超微細粒子、叉は長さ1μm〜30μm程度、径10nm〜1μm程度の超微細繊維を使用する。
特に針状、層状の超微細充填材を使用したいわゆるナノコンポジットは補強機能と共に結晶核剤の機能をも果し、微量の配合で大きな効果が得られる。
The shape of the fine filler in the present invention is not particularly limited, but is preferably fine particles having a particle diameter of about 10 nm to 50 μm, or fine fibers having a length of about 1 μm to 50 μm and a diameter of about 10 nm to 5 μm, more preferably a particle diameter of 10 nm. Ultrafine particles of about 10 μm or so, or ultrafine fibers having a length of about 1 μm to 30 μm and a diameter of about 10 nm to 1 μm are used.
In particular, a so-called nanocomposite using acicular and layered ultrafine fillers functions not only as a reinforcing function but also as a crystal nucleating agent, and a great effect can be obtained with a small amount of blending.

同部材を板状に成形したものを工具鋼にて切削し、目的の型形状を掘り込む。切削工程は形状に関わらず通常のフライス盤、旋盤を使用する事が出来、エンドミル等の切削工具も通常のプラスチック加工用の工具で十分に加工出来る。
本発明者は通常の金型作製に必要な超硬工具、放電加工等特殊な設備、工程を必要としないで製品部のみを高速加工した樹脂製型を作製出来た。
The member formed into a plate shape is cut with tool steel, and the target mold shape is dug. For the cutting process, a normal milling machine or lathe can be used regardless of the shape, and a cutting tool such as an end mill can be sufficiently processed with a normal plastic processing tool.
The present inventor has been able to produce a resin mold in which only a product portion is processed at high speed without requiring special equipment and processes such as a carbide tool and electric discharge machining necessary for ordinary mold production.

また本発明において、吸湿による影響を緩和するため、素形材の状態において事前に均一な加湿処理を施し切削加工前に重量比0.5〜1%程度の水分率を保持する事が望ましい。しかしながら過剰な水分率は弾性率の低下を招くため水分率は重量比1%以下に抑える必要がある。本発明におけるポリアミド樹脂素形材は標準状態での大気中において1%程度の水分率で安定しており保存、使用上特に不都合は無いが寸法、強度をより安定化させる為乾燥状態での保存、叉は使用前の乾燥を行なう事が好ましい。Further, in the present invention, in order to reduce the influence of moisture absorption, it is desirable to perform a uniform humidification process in advance in the shape of the shaped material and maintain a moisture content of about 0.5 to 1% by weight before cutting. However, since an excessive moisture content causes a decrease in elastic modulus, the moisture content must be suppressed to 1% or less by weight. The polyamide resin shape material in the present invention is stable at a moisture content of about 1% in the air in the standard state, and there is no particular inconvenience in storage, but it is stored in a dry state in order to further stabilize the size and strength. It is preferable to perform drying before use.

通常、樹脂製の成形型は熱伝導率が大きく劣るため、連続成形において型温度が許容温度以上に上がる事が多く、この結果寸法安定性が保持出来なくなる、成形品が十分に冷却出来ない、温度勾配ひずみに耐え切れず型が破壊される等の不都合が発生する。これを防ぐべく型冷却のため、射出成形においては成形サイクル時間を極めて多く確保しなければならない。
本実施例の場合も型の機械的、熱的強度、耐久性は保持できても量産性に問題が残る。
Usually, the resin mold has a very poor thermal conductivity, so the mold temperature often rises above the allowable temperature in continuous molding. As a result, dimensional stability cannot be maintained, and the molded product cannot be cooled sufficiently. There are inconveniences such as failure to withstand temperature gradient strain and die breakage. In order to prevent this, in order to cool the mold, a very long molding cycle time must be secured in the injection molding.
In the case of this embodiment as well, there remains a problem in mass productivity even if the mechanical, thermal strength and durability of the mold can be maintained.

本発明は吸水の大きなポリアミド樹脂を主成分としている為、成形型の冷却のため、冷却水を通す事は好ましく無い。又冷却のために穴加工を施す事も強度保持の面から好ましく無い。Since the present invention is mainly composed of a polyamide resin having a large water absorption, it is not preferable to pass cooling water for cooling the mold. Also, it is not preferable to drill holes for cooling from the viewpoint of maintaining strength.

そこで本発明において型冷却のため図1に示す様に冷却が必要な部位を中心に樹脂型にアルミニウム、又は銅製の細い冷却棒をモールドベース側から埋め込み、冷却配管されたモールドベースに密着させる事でヒートパイプの機能を持たせた。これにより樹脂型の機械強度を損なう事無く効率的な型冷却システムを簡易に構築できた。
尚、本冷却システムは本発明の例に限らず、他の樹脂素材を用いた射出成形型、プレス成形型、真空成形型、ブロー成形型にも有効である。
Therefore, in the present invention, as shown in FIG. 1, for mold cooling, a thin cooling rod made of aluminum or copper is embedded in the resin mold from the mold base side around the portion that needs to be cooled, and is closely attached to the mold base provided with cooling piping. With the function of a heat pipe. As a result, an efficient mold cooling system could be easily constructed without impairing the mechanical strength of the resin mold.
The cooling system is not limited to the example of the present invention, but is effective for an injection mold, a press mold, a vacuum mold, and a blow mold using other resin materials.

作製した型に仕上げ加工した後、モールドベースに組み込む。
発明者は前述の様にして作製された射出成形型を使用してポリプロピレン、ABS(アクリル、ブタジエン、スチレン共重合)樹脂、ポリアセタール樹脂等を図2のような形状にて成形し、成形物の寸法をチェックした。表1にその結果を示す。
表1に示す様に、射出圧600kgf/cm2以下の成形圧力においては全く寸法変化を起こさずに金型設計寸法通りの寸法安定性を示し、ポリアセタール樹脂の成形において同寸法安定性を維持したまま5000ショット以上の連続成形が可能である事を確認した。
After finishing the produced mold, it is assembled into the mold base.
The inventor molded polypropylene, ABS (acrylic, butadiene, styrene copolymer) resin, polyacetal resin, etc. in the shape as shown in FIG. 2 using the injection mold produced as described above. Checked dimensions. Table 1 shows the results.
As shown in Table 1, when the injection pressure is 600 kgf / cm2 or less, the dimensional stability does not change at all and the dimensional stability as the mold design dimensions is shown, and the same dimensional stability is maintained in the molding of the polyacetal resin. It was confirmed that continuous molding over 5000 shots was possible.

Figure 0004548588
Figure 0004548588

本発明のもう一つの特徴は、充填材配合が全く無い、又は極力抑えられている為型表面が比較的柔らかく、硝子等、金型では傷つきやすい素材で構成された物を傷つけずにインサート成形出来る事である。
これにより、従来困難であったセラミック類のインサート成形を容易に行う事が出来る。
Another feature of the present invention is that the molding surface is relatively soft because there is no filler compounding or is suppressed as much as possible. It can be done.
Thereby, ceramic insert molding, which has been difficult in the past, can be easily performed.

本発明により、複雑形状を容易に高速切削加工でき、安価、短納期、軽量である樹脂型であるにも関わらず、強靭で連続した高温、高圧の樹脂成形負荷に耐えながら寸法安定性を保持しながら成形加工を行なう事が可能で、なおかつ他の樹脂よりも極めて高い耐久性を持った理想的な樹脂型を従来の専門業者で無くとも比較的簡単に得る事が出来るため型コストの大幅削減に寄与し得る事より少量多品種生産、試作など経済的理由で初期投資が困難な用途に広く利用できる。The present invention enables high-speed cutting of complex shapes easily, and maintains dimensional stability while withstanding high-temperature, high-pressure resin molding loads that are tough and continuous, despite the fact that it is a resin mold that is inexpensive, fast delivery, and lightweight. It is possible to carry out molding processing, and it is possible to obtain an ideal resin mold with extremely higher durability than other resins, even if it is not a conventional specialist. It can be widely used for applications where initial investment is difficult due to economic reasons such as low-volume, multi-product production and trial production.

また、本発明は切削加工用だけではなく、大気中の重合工程を利用して石膏、樹脂などから製作される製品モデルをマスターとした反転型の製造にも応用出来る等、多岐の型製造方法に応用出来る。In addition, the present invention can be applied not only to cutting processing but also to the production of inverted molds using a product model manufactured from gypsum, resin, etc. using a polymerization process in the atmosphere as a master, and a variety of mold manufacturing methods It can be applied to.

本発明による樹脂型は射出成形のみならず、真空、圧空成形など温度、圧力をかけ成形する必要のあるプラスチック材料の成形型並びにアルミニウム、マグネシウム等比較的塑性加工し易い金属薄板のプレス加工用の型としても利用出来、上記初期投資が困難な少量多品種の上記用途にも適用可能である。The resin mold according to the present invention is not only used for injection molding, but also for molding a plastic material that needs to be molded by applying temperature and pressure, such as vacuum and pressure molding, as well as for pressing a metal sheet that is relatively easy to plastically process such as aluminum and magnesium. It can also be used as a mold, and can be applied to the above-mentioned use of a small variety of products that are difficult to make the initial investment.

型断面図Mold cross section 成形品形状及び測定寸法Molded product shape and measurement dimensions

符号の説明Explanation of symbols

1 モールドベース(金属)
2 冷却配管(冷媒)
3 樹脂型部分
4 冷却棒
1 Mold base (metal)
2 Cooling piping (refrigerant)
3 Resin mold part 4 Cooling rod

Claims (2)

アニオン重合を利用したW−ラクタム系モノマーの重合体であるモノマーキャストナイロンを含む樹脂素形材で構成される事を特徴としたプラスチック射出成形加工用型、又は金属。プラスチック板のプレス加工用型。A mold for plastic injection molding processing or a metal, characterized in that it is composed of a resin shape material containing monomer cast nylon, which is a polymer of W-lactam monomers utilizing anionic polymerization. Mold for pressing plastic plates. アニオン重合を利用したW−ラクタム系モノマーの重合体であるモノマーキャストナイロンに微細充填材を添加した樹脂素形材で構成される事を特徴としたプラスチック射出成形用型、又は金属、プレス加工用型。Plastic injection mold characterized by comprising a resin shape material in which fine filler is added to monomer cast nylon, which is a polymer of W-lactam monomer using anionic polymerization, or for metal, press working Type.
JP2004296919A 2003-09-22 2004-09-10 Molds and molded products Expired - Fee Related JP4548588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296919A JP4548588B2 (en) 2003-09-22 2004-09-10 Molds and molded products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003366647 2003-09-22
JP2004296919A JP4548588B2 (en) 2003-09-22 2004-09-10 Molds and molded products

Publications (3)

Publication Number Publication Date
JP2005119299A JP2005119299A (en) 2005-05-12
JP2005119299A5 JP2005119299A5 (en) 2007-02-22
JP4548588B2 true JP4548588B2 (en) 2010-09-22

Family

ID=34622141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296919A Expired - Fee Related JP4548588B2 (en) 2003-09-22 2004-09-10 Molds and molded products

Country Status (1)

Country Link
JP (1) JP4548588B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680790A (en) * 1992-09-04 1994-03-22 Sumitomo Chem Co Ltd Omega-lactam powder and production of fiber-reinforced polyamide resin molding
JPH0732390A (en) * 1993-07-15 1995-02-03 Toray Ind Inc Manufacture of hollow molded form
JPH10119063A (en) * 1996-10-17 1998-05-12 Mitsuboshi Belting Ltd Cast polyamide resin molding tool
JP2001079855A (en) * 1999-09-10 2001-03-27 Teijin Seiki Co Ltd Mold for photo fabrication
JP2002006269A (en) * 2000-06-22 2002-01-09 Kuraray Co Ltd Resin mold for manufacturing contact lens and method for manufacturing contact lens
JP2002166436A (en) * 2000-12-01 2002-06-11 Mekku Giken:Kk Resin mold for producing contact lens and method for producing contact lens using the mold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680790A (en) * 1992-09-04 1994-03-22 Sumitomo Chem Co Ltd Omega-lactam powder and production of fiber-reinforced polyamide resin molding
JPH0732390A (en) * 1993-07-15 1995-02-03 Toray Ind Inc Manufacture of hollow molded form
JPH10119063A (en) * 1996-10-17 1998-05-12 Mitsuboshi Belting Ltd Cast polyamide resin molding tool
JP2001079855A (en) * 1999-09-10 2001-03-27 Teijin Seiki Co Ltd Mold for photo fabrication
JP2002006269A (en) * 2000-06-22 2002-01-09 Kuraray Co Ltd Resin mold for manufacturing contact lens and method for manufacturing contact lens
JP2002166436A (en) * 2000-12-01 2002-06-11 Mekku Giken:Kk Resin mold for producing contact lens and method for producing contact lens using the mold

Also Published As

Publication number Publication date
JP2005119299A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
CN109277574B (en) Preparation method of air-conditioning compressor rocker
CN101831172A (en) Carbon fiber reinforced nylon 66 composite material and preparation method thereof
CN115338405A (en) Preparation method of micro-injection molded iron-based small-modulus gear
CN101597706B (en) Nickel base mould material for hot extrusion of nonferrous metal and manufacturing method thereof
JP4548588B2 (en) Molds and molded products
CN105110764A (en) Manufacturing method of high-performance die
JP2017105865A (en) Sheet-like molded article and manufacturing method therefor
JP2005119299A5 (en)
KR20140107977A (en) Carbon nano complex die material and preparation method thereof
CN205997274U (en) A kind of In-Ear Headphones ear muff plastic mould
CN112159908A (en) Preparation method of few-layer nano molybdenum disulfide reinforced aluminum matrix composite material
CN101665607B (en) Revolving shaft sealing material and preparation method thereof
CN114889036B (en) Near-net injection molding method for thick-wall low-fluidity special engineering plastic part
CN107363488A (en) A kind of processing technology of high abrasion mould
CN105220056A (en) A kind of manufacture method of mould for plastics
CN102925788B (en) Special material for insulator mold and preparation method of material
JPH0568335B2 (en)
CN208555836U (en) Multilayer drilling tail mold
CN108015290A (en) A kind of anticorrosion antiwear damage mould and preparation method thereof
CN116288052B (en) Powder metallurgy material for precision parts, powder metallurgy processing method and parts
CN107325430A (en) A kind of plastic die steel
CN104004289B (en) Non-shrinking plastic poppet of a kind of dimensionally stable and preparation method thereof
CN106834957A (en) Double-deck extrusion molding dies steel
CN111073142A (en) High-molecular ceramic material for pouring mold and manufacturing method thereof
CN206983366U (en) Mould locked screw backing structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees