JP4547853B2 - Operation method and characteristic recovery method of polymer electrolyte fuel cell - Google Patents

Operation method and characteristic recovery method of polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4547853B2
JP4547853B2 JP2002293876A JP2002293876A JP4547853B2 JP 4547853 B2 JP4547853 B2 JP 4547853B2 JP 2002293876 A JP2002293876 A JP 2002293876A JP 2002293876 A JP2002293876 A JP 2002293876A JP 4547853 B2 JP4547853 B2 JP 4547853B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
fuel cell
gas
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002293876A
Other languages
Japanese (ja)
Other versions
JP2003123812A5 (en
JP2003123812A (en
Inventor
久朗 行天
輝壽 神原
誠 内田
一仁 羽藤
修 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002293876A priority Critical patent/JP4547853B2/en
Publication of JP2003123812A publication Critical patent/JP2003123812A/en
Publication of JP2003123812A5 publication Critical patent/JP2003123812A5/ja
Application granted granted Critical
Publication of JP4547853B2 publication Critical patent/JP4547853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、民生用コジェネレーションや移動体用の発電器として有用な燃料電池、特に高分子電解質を用いた高分子電解質型燃料電池とその特性回復方法に関する。
【0002】
【従来の技術】
燃料電池は、水素などの燃料と空気などの酸化剤ガスとをガス拡散電極で電気化学的に反応させ、電気と熱を同時に供給するものである。燃料電池には、用いる電解質の種類によりいくつかのタイプがある。電解質に高分子を用いた高分子電解質型燃料電池は、−CF2−を主鎖骨格として、スルホン酸を側鎖の末端に導入した高分子電解質膜の裏表の両表面に、上述の高分子電解質のディスパージョン溶液に白金系の金属触媒を担持したカーボン粉末を混合した電極ペーストを塗布乾燥することで、空気電極と燃料極とをする。空気極と燃料極との外側には、通常カーボンペーパーなど、導電性の多孔質体を電極基材とし、空気および燃料ガスの拡散層として配置する。このとき、上述のカーボンペーパーに電極ペーストを塗布し、これに電解質膜を接合することもある。
【0003】
この外側には、電極と電解質膜との接合体を機械的に固定するとともに、隣接する接合体を互いに電気的に直列に接続するための導電性のセパレータ板を配置する。セパレータ板には、電極に反応ガスを供給し、水素と酸素との反応で生成した水や余剰ガスを運ぶためのガス流路を形成する。ガス流路や電極の周囲にはガスケットやシール剤などのシール部材を配置し、反応ガスが直接混合することや外部へ漏逸するのを防止する。
【0004】
これを発電装置として用いるときは出力電圧を高めるため、高分子電解質層、ガス拡散電極層、セパレータ板、ガス流路などからできた単セルを複数個積層するのが通例である。それぞれのガス流路は、マニホルドを通じて外部から水素などの燃料ガスと空気とをガス拡散電極に供給する。電極反応層で発生した電流は電極基材で集電され、セパレータ板を経て外部に取り出す。セパレータ板には、導電性があり、ガス気密性と耐食性を兼ね備えたカーボン材料を用いることが多い。しかし、成形加工性・低コスト性に加え、セパレータの薄型化が容易であるという観点からステンレスなどの金属材料を用いたセパレータも検討されている。
【0005】
【発明が解決しようとする課題】
上述の高分子電解質は水を含有した状態で水素イオンの伝導性を有するため、燃料電池に供給する燃料ガスを加湿することが一般的に行われている。また、空気極では電池反応により水が生成するため、電池の内部では常に水が存在している。その結果、電池を長い期間運転すると電池の構成材料であるカーボン材料やシール材料、樹脂材料、金属材料に含まれるイオン性の不純物や無機不純物、有機不純物が溶出する。また、電池外部から供給する空気には大気汚染物質、例えば微量の窒素酸化物や硫黄酸化物が含有されており、また、燃料ガス中にも水素精製機に含まれる金属酸化物が痕跡量混入することもある。これらの不純物は電解質膜や空気極や燃料極中の触媒反応層などに蓄積し、高分子電解質の導電性低下や、触媒反応の活性の低下をもたらす。その結果、長期にわたる電池の運転中に徐々に電池性能が低下する。また、セパレータ板に金属を用いた場合では、ここから溶出した金属イオンにより、電解質膜や触媒反応層へのダメージがさらに著しくなる。
【0006】
【課題を解決するための手段】
以上の課題を解決するため本発明の高分子電解質型燃料電池の運転方法は、高分子電解質膜と、前記高分子電解質膜を挟んで配置した燃料極および空気極と、前記空気極に酸化剤ガスを供給排出し、燃料極に燃料ガスを供給排出するガス流路を有する一対のセパレータ板とで構成した単電池を積層した電池本体部と、前記電池本体部へ前記酸化剤ガスと燃料ガスとを供給排出する手段と、前記電池本体部で発生した電力の取出しを制御する手段と、電池特性回復手段とを具備する高分子電解質型燃料電池の運転方法であって、前記高分子電解質型燃料電池を、通常運転時の1.5倍以上の電流での運転モードで前記燃料電池内に存在する不純物イオンが電極反応の生成水に混じって外部に排出されるに足る所定時間運転すること、または、前記高分子電解質型燃料電池を、単電池あたりの出力電圧が0.2V以下になる電流での運転モードで前記燃料電池内に存在する不純物イオンが電極反応の生成水に混じって外部に排出されるに足る所定時間運転することを特徴とする。
【0007】
本発明の高分子電解質型燃料電池の特性回復方法は、高分子電解質膜と、前記高分子電解質膜を挟んで配置した燃料極および空気極と、前記空気極に酸化剤ガスを供給排出し、燃料極に燃料ガスを供給排出するガス流路を有する一対のセパレータ板とで構成した単電池を積層した電池本体部と、前記電池本体部へ前記酸化剤ガスと燃料ガスとを供給排出する手段と、前記電池本体部で発生した電力の取出しを制御する手段と、電池特性回復手段とを具備する高分子電解質型燃料電池の特性回復方法であって、前記高分子電解質型燃料電池を、通常運転時の1.5倍以上の電流での運転モードで運転することにより、電池内の不純物イオンが電極反応の生成水に混じって外部に排出されること、または、前記高分子電解質型燃料電池を、単電池あたりの出力電圧が0.2V以下になる電流での運転モードで運転することにより、電池内の不純物イオンが電極反応の生成水に混じって外部に排出されることを特徴とする。
【0009】
【発明の実施の形態】
上述のような高分子電解質型燃料電池で用いる電解質のイオン導電性は、ポリマー主鎖にペンダントした側鎖の、先端にあるスルホン基の水素イオンによって発現する。ところが、鉄やナトリウムなどの金属イオンが不純物として存在すると、これが水素イオンと置換し、電解質膜のイオン導電性が低下する。また、電解質中に浸入した金属イオンは水和状態が水素イオンとは異なるため、電解質の含水率が低下し、これにより電解質膜のイオン導電性が低下する。このようなイオン導電性の低下や含水率の低下は、電池の直流抵抗成分の増大になるばかりではなく、電極中の触媒反応層の反応面積を低下させるため、さらに電池性能が低下する。また、上述の金属イオンは、触媒表面に接着したり、酸化物を形成して触媒をシールすることで、電池性能の低下を生む。さらにアニオン性不純物として、硫黄酸化物は触媒を被毒することで電池性能を低下させ、また窒素酸化物イオンやカルボン酸イオンは酸性物質として構成部材を腐食変質させる。
【0010】
このような汚染イオンは、通常運転状態では電池内の特定部位に高濃度で存在している。例えば上述の金属イオンは、電解質膜と電極層との界面や、電極内部に練り込んだ高分子電解質部分に、高濃度で分布している。アニオン性の不純物に由来する酸性物質は、ガス拡散層となる電極基材やセパレータ板表面への集積が進む。これらの金属イオン、カチオンアニオン性不純物やアニオン性不純物は、通常の運転状態では電池外へ排出されることがないため、電池性能が徐々に低下する原因となる。
【0011】
電池内に存在するイオン性不純物は、そのイオン種により動きやすいものと動きにくいものがある。しかし、いずれにしても電池内に流れる電流とともに、一定の割合で移動していく。この点を利用し、電池を通常運転時(例えば定格運転時)より、電流密度を1.5倍以上として負荷を取ると、集積した不純物イオンの分布が変わり、電解質から追い出されて、電極反応の生成水に混じって電池外へ排出することが出来る。
【0012】
また、燃料極と空気極とでガスの供給を入れ替え、電流方向を逆転させると、不純物イオンが浸入してきた方向へ逆に移動させ排出することが出来る。
【0013】
また、反応ガスを加圧したり酸化性ガスとして酸素を用いることで、不純物イオンの移動と排出を促進することが出来る。
【0014】
また、電解質内の不純物イオンは、水素イオンと置換する形で外部へ排出されるので、電解質や電極を酸性液で洗浄すると外部へ排出することが出来る。
【0015】
【実施例】
以下、本発明に適する実施例を具体的に説明する。
【0016】
(実施例1)
アセチレンブラック系カ−ボン粉末に、平均粒径約30Åの白金粒子を25重量%担持したものを反応電極の触媒とした。この触媒粉末をイソプロパノ−ルに分散させた溶液に、パーフルオロカーボンスルホン酸の粉末をエチルアルコールに分散したディスパージョン溶液を混合し、電極用ペーストとした。
【0017】
一方、厚さ300ミクロンのカーボンペーパーをポリテトラフルオロエチレン(PTFE)の水性ディスパージョンに浸し、乾燥処理を行うことで撥水性の多孔質電極基材を得た。この多孔質電極基材の片面に前記電極用ペーストを塗布・乾燥することで電極とした。次に、一対の前記電極で、電極用ペーストを塗布した面を内側にして、高分子電解質膜を挟み、これを110℃の温度で30秒間ホットプレスすることにより、電解質・電極接合体(MEA)を作製した。ここでは高分子電解質膜としては、パーフルオロカーボンスルホン酸を50μmの厚さで膜化したもの(ヂュポン社製ナフィオン)を用いた。
【0018】
多孔質電極基材としては上述のカーボンペーパーの他にも、可撓性を有する素材としてカーボン繊維を織ったカーボンクロス、さらにはカーボン繊維とカーボン粉末を混合し有機バインダーを加えて成型したカーボンフェルトを用いることもできる。
【0019】
つぎに、セパレータ板として、カーボン粉末材料を冷間プレス成形したカーボン板に、フェノール樹脂を含浸・硬化させガスシール性を改善した樹脂含浸カーボン板を用い、これに切削加工でガス流路を形成した。ガス流路の周辺部には、ガス供給・排出用と、電池の温度を制御するための冷却水を供給・排出するためのマニホルド孔を設けた。また、上述のカーボン製セパレータの他に、SUS304製の金属板に、ガス流路とマニホルド孔を形成した金属セパレータも用意した。
【0020】
電極面積を25cm2としたMEAの周囲に、ガスシール材となるシリコンゴム製のガスケットを配し、SUS304製の集電板を介して、両端から20kgf/cm2の圧力で電池を加圧締結した。
【0021】
実用上の電池は、冷却水流路を刻んだセパレータを挟んで、複数個の単電池を積層して用いるのが一般的である。しかし、前述の汚染イオンが異なるセル間で移動することは少ないと考え、本実施例での評価は単電池で行った。このようにして作成した単電池に、空気側および水素側に加湿したガスを供給するためのガス供給系、電池から取り出す負荷電流を設定調節する電気出力系、さらには電池温度を調整し、排熱を有効活用する熱調整系を取り付け、本実施例の高分子電解質型燃料電池とした。
【0022】
以上の方法で作成した燃料電池に対して、以下の運転条件を通常モードとして駆動し、その結果、電池性能が初期に比べて低下したものに対して、本発明の特性回復方法の有効性を評価した。まず、取り出す電流密度を0.6A/cm2とした。つぎに、供給した燃料ガスおよび酸化剤ガスに対して、どれだけの割合のガスが実際に電極反応をするかを表す指標であるガス利用率を、燃料極側では70%、空気側では30%とした。また、電池の温度を75℃とするように冷却水を調整した。そして、供給ガスとしては純水素と空気を用い、供給圧力は空気側を0.2kgf/cm2,水素側を0.05kgf/cm2とし、ガスの出口は大気開放とした。
【0023】
この条件で電池システムを駆動した結果、セパレータ板としてカーボン製のものを用いたものも、SUS304を用いたものも、いずれも連続500時間の運転で性能が低下してきた。そこで、電流を0.8A/cm2に増加し、この条件で20時間の運転を行った。この後に電流を再度0.6A/cm2に戻して、電池の運転を行ったが、性能の改善はあまり見られなかった。そこで再び、電流を1.0A/cm2に増加し、この条件で20時間運転することで、汚染イオンの除去・排出による電池性能回復処理を試みた。さらに1.5A/cm2、2.0A/cm2でも同様に汚染イオンの除去・排出を試みた。それらの電池連続試験の結果を図1に示した。
【0024】
図1に於いて、電流密度を1.0A/cm2に増やした処理を行うと、カーボンセパレータを用いた電池では電池電圧が570mVが590mVまで回復し、SUS304セパレータを用いたものでは530mVが580mVまで性能が回復した。また、電流密度を1.5A/cm2、2.0A/cm2としたものも、それぞれ同様に電池電圧が改善された。
【0025】
以上の処理で、出力電流を上げた際の、電池から排出される水の分析を行ったところ、SUS304セパレータを用いた電池では鉄イオンを、また、カーボンセパレータを用いた電池ではフェノール成分を検出した。この結果は即ち、長期駆動により電池内部に蓄積された汚染イオンを、本発明の処理で除去・排出することが出来、これにより電池性能を回復することが出来たことを実証したものである。
【0026】
以上は、連続運転により劣化した電池の性能の回復処理を、電流密度を変化させるということで行い、当初の目的を実現できることを確認した。そこで、電池の性能を回復させるための処理として、電流負荷を増大させ、単セルの出力電圧を0.2V以下にした状態で一定時間保持した後、通常の運転状態に戻すことで行った。その結果、このような処理方法をもちいても上述と同様に、出力電圧の回復を図ることが出来ることを見出した。
【0027】
つぎに、連続500時間の運転で電圧が低下した電池を、取り出す電流の向きを逆転させることによる電池性能回復処理を試みた。すなわち、通常運転(出力電流=0.6A/cm2)時に、水素を流していた燃料極側に空気を送り、空気を供給していた空気極側に水素を供給した状態で、出力電流の方向を反対にして0.6A/cm2で20時間運転した。その後、もとの通常運転モードに戻した。このような処理を行うと、カーボンセパレータ電池は、電池電圧が570mVから585mVに回復し、また、SUS304セパレータ電池は、530mVが565mVに回復することを見いだした。
【0028】
このように、負荷電流の大きさや方向を変える処理や、供給ガスの逆転処理を行うと、電池内部に蓄積した汚染物質を、排出ガスや排出水に混入して排除することが出来、その結果、電池性能を回復することが出来た。
【0029】
また、供給ガスの導入方向を変えること、すなわち通常運転における反応ガス(空気、水素)の排出口からガスを供給することでも、電池の性能を回復することが出来た。さらに、この電池性能の回復効果は、空気に代えて純酸素を導入したり、加圧した反応ガスを用いて処理を行うことにより促進出来ることも見いだした。
【0030】
(実施例2)
つぎに、実施例1で作成したものと同一の燃料電池を用いて、性能が劣化した電池中に存在する汚染イオンを、強制的に洗浄することで、その濃度を低減し、電池の特性を回復する試みを行った。
【0031】
まず、上述の燃料電池を実施例1で記載した通常運転モードで500時間連続運転し、電池の電圧が初期から低下した時、運転を停止した。つぎに、この電池を純水中で1時間煮沸することで、反応ガスの供給ガス流路を通じて沸騰した純水を電池内部に循環させた。この操作の後、再び通常運転モードで運転した結果、カーボン製セパレータを用いた電池では、電池電圧が570mVから580mVに回復し、また、SUS304セパレータを用いた電池では、530mVから555mVに出力電圧が回復した。
【0032】
(実施例3)
実施例2に記載した処理では、電池の洗浄に沸騰水を用いたが、本実施例では、pH2とpH1の希硫酸を用いて洗浄した。実施例1で作成したものと同一の燃料電池を、実施例1と同じ通常運転モードで運転した後、運転を停止し、この電池に対して、反応ガスの供給口(空気側・水素側)に、チューブを介して希硫酸を導入し、排出口から排出した。2時間の希硫酸による洗浄の後、純水を導入して十分に洗浄し、排出口から出てくる洗浄水のpHが5以上になるまで洗浄した。
【0033】
この操作の後、再び通常運転モードで運転した結果、カーボン製セパレータを用いた電池では580mVから588mVまで出力電圧が回復し、SUS304セパレータの電池では555mVから572mVまで出力電圧が回復した。
【0034】
以上の処理では、洗浄液として弱酸性の希硫酸を用いたが、弱アルカリ製すなわちpH9程度の洗浄液を用いると、若干の洗浄効果は確認できたものの、大きな回復は認められなかった。以上の結果を図2に示した。
【0035】
このように、電池内部を洗浄液で洗浄することにより、電池の性能を回復できることを見いだした。その際、より高い温度で洗浄することで回復効果が高くなることも確認した。また、実施例1で行った高電流密度運転による回復処理と、弱酸性洗浄水による洗浄を併用すると、電池電圧の回復がさらに促進出来ることも見いだした。また、弱酸性洗浄液として希酢酸や硫酸アンモニウムを用いても、同等の効果を有することも確認した。
【0036】
以上の実施例1、2および3で示した本発明の効果を、電池本体の構成要素であるセパレータ材料の違いからまとめると、金属セパレータを用いた電池は、長時間の運転中にセパレータから溶出する金属イオンにより、電池性能が低下するが、高電流運転や弱酸性洗浄水による洗浄により、電池内部に蓄積した金属イオンを除去することで、電池の特性を回復することが出来た。
【0037】
一方、カーボンセパレータを構成要素とする電池は、金属セパレータほど金属イオンや各種のカチオンの溶出は発生しないが、灰化分析によると微量の鉄やカルシウムがセパレータ中に含まれていることが判明した。したがって、電池を長期運転しても金属セパレータを用いた電池ほどの性能低下はないが、含有されている金属イオンによる若干の性能低下がある。加えてカーボンセパレータのガス気密性を高めるために混合する樹脂から溶出する有機物や、空気中に含まれる痕跡量の硫黄化合物や窒素酸化物により、500時間の連続試験後は性能が30mVほど低下したものと考えられる。カーボンセパレータを用いた電池に対しても、本発明の回復処理が有効であった。
【0038】
本発明の実施要件をまとめると、まず高分子電解質型燃料電池としては電気出力系に、負荷電流や出力電圧を調整する手段を有すること、あるいはガスの供給系としてはガス流路に洗浄液を導入して電池内部を直接洗浄可能な手段を有すること、また運転方法としては一定期間の経過後あるいは一定期間運転後もしくは電池性能の劣化後、負荷電流や出力電圧を調整したり、電池内部を洗浄すること、さらに搭載機器としては上記の電池、ガス供給系、熱調整系、電気出力系に加えて燃料改質系、制御系、充電器系などが加わったシステム、例えば燃料電池搭載の電気自動車やコジェネレーションシステムやポータブル電源システムなどがある。
【0039】
【発明の効果】
本発明によると、高分子電解質型燃料電池の長期運転による性能低下を効果的に回復することが出来、その結果、高い耐久性を実現できた。
【図面の簡単な説明】
【図1】本発明の第1の実施例である電池性能の回復特性を示した図
【図2】本発明の他の実施例である電池性能の回復特性を示した図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell useful as a consumer cogeneration system or a power generator for a moving body, and more particularly to a polymer electrolyte fuel cell using a polymer electrolyte and a method for recovering its characteristics.
[0002]
[Prior art]
In a fuel cell, a fuel such as hydrogen and an oxidant gas such as air are electrochemically reacted by a gas diffusion electrode to simultaneously supply electricity and heat. There are several types of fuel cells depending on the type of electrolyte used. A polymer electrolyte fuel cell using a polymer as an electrolyte has the above-mentioned polymer on both surfaces of the back and front of a polymer electrolyte membrane in which —CF 2 — is a main chain skeleton and sulfonic acid is introduced at the end of a side chain. An electrode paste in which a carbon powder carrying a platinum-based metal catalyst is mixed with an electrolyte dispersion solution is applied and dried to form an air electrode and a fuel electrode. Outside the air electrode and the fuel electrode, a conductive porous body such as carbon paper is usually used as an electrode base material, and is arranged as a diffusion layer of air and fuel gas. At this time, an electrode paste may be applied to the carbon paper described above, and an electrolyte membrane may be bonded thereto.
[0003]
Outside this, a conductive separator plate for mechanically fixing the joined body of the electrode and the electrolyte membrane and electrically connecting adjacent joined bodies to each other in series is disposed. In the separator plate, a reaction gas is supplied to the electrode, and a gas flow path for carrying water and surplus gas generated by the reaction between hydrogen and oxygen is formed. A sealing member such as a gasket or a sealing agent is disposed around the gas flow path and the electrode to prevent the reaction gas from being directly mixed or leaked to the outside.
[0004]
When this is used as a power generation device, in order to increase the output voltage, it is usual to stack a plurality of single cells made of a polymer electrolyte layer, a gas diffusion electrode layer, a separator plate, a gas flow path, and the like. Each gas flow path supplies fuel gas such as hydrogen and air from the outside to the gas diffusion electrode through the manifold. The current generated in the electrode reaction layer is collected by the electrode base material and taken out through the separator plate. The separator plate is often made of a carbon material that is electrically conductive and has both gas tightness and corrosion resistance. However, a separator using a metal material such as stainless steel is also being studied from the viewpoint that it is easy to reduce the thickness of the separator in addition to molding processability and low cost.
[0005]
[Problems to be solved by the invention]
Since the polymer electrolyte described above has hydrogen ion conductivity in a state of containing water, it is generally performed to humidify the fuel gas supplied to the fuel cell. Further, since water is generated by the battery reaction at the air electrode, water is always present inside the battery. As a result, when the battery is operated for a long period of time, ionic impurities, inorganic impurities, and organic impurities contained in the carbon material, sealing material, resin material, and metal material, which are constituent materials of the battery, are eluted. In addition, air supplied from the outside of the battery contains air pollutants, such as trace amounts of nitrogen oxides and sulfur oxides, and trace amounts of metal oxides contained in the hydrogen purifier are also included in the fuel gas. Sometimes. These impurities accumulate in the electrolyte membrane, the air electrode, the catalytic reaction layer in the fuel electrode, and the like, leading to a decrease in the conductivity of the polymer electrolyte and a decrease in the catalytic reaction activity. As a result, the battery performance gradually deteriorates during long-term battery operation. Further, when a metal is used for the separator plate, the metal ions eluted from the separator plate further damage the electrolyte membrane and the catalytic reaction layer.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a method for operating a polymer electrolyte fuel cell according to the present invention includes a polymer electrolyte membrane, a fuel electrode and an air electrode arranged with the polymer electrolyte membrane sandwiched therebetween, and an oxidant on the air electrode. gas supply discharge, the battery main body formed by laminating a single cell constituted by a pair of separator plates to have a gas flow path for supplying and discharging a fuel gas to the fuel electrode, the oxidizer gas and the fuel into the cell main body It means for supplying and discharging the gas, and means for controlling the extraction of power generated by the battery main body, a method of operating a polymer electrolyte fuel cell and a battery performance recovery means, the polymer electrolyte The fuel cell is operated for a predetermined period of time sufficient to allow impurity ions present in the fuel cell to be mixed with the product water of the electrode reaction and discharged to the outside in an operation mode at a current 1.5 times or more that in normal operation. Or before In a polymer electrolyte fuel cell, impurity ions present in the fuel cell are mixed with the water generated in the electrode reaction and discharged to the outside in an operation mode at a current where the output voltage per unit cell is 0.2 V or less. It is characterized by driving for a predetermined time sufficient.
[0007]
A method for recovering characteristics of a polymer electrolyte fuel cell according to the present invention includes a polymer electrolyte membrane, a fuel electrode and an air electrode arranged with the polymer electrolyte membrane interposed therebetween, and an oxidant gas supplied to and discharged from the air electrode, A battery main body part in which unit cells constituted by a pair of separator plates having a gas flow path for supplying and discharging fuel gas to and from the fuel electrode, and means for supplying and discharging the oxidant gas and fuel gas to the battery main body part And a method for recovering characteristics of a polymer electrolyte fuel cell comprising: means for controlling extraction of electric power generated in the battery main body portion; and means for recovering battery characteristics, wherein the polymer electrolyte fuel cell is By operating in an operation mode with a current 1.5 times or more that of the operation, the impurity ions in the battery are mixed with the water generated in the electrode reaction and discharged to the outside, or the polymer electrolyte fuel cell A cell When the output voltage of or is driven at a driving mode of a current to be 0.2V or less, wherein the impurity ions in the battery is discharged to the outside mixed in produced water of electrode reaction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The ionic conductivity of the electrolyte used in the polymer electrolyte fuel cell as described above is expressed by the hydrogen ion of the sulfone group at the tip of the side chain pendant to the polymer main chain. However, when metal ions such as iron and sodium are present as impurities, they are replaced with hydrogen ions, and the ionic conductivity of the electrolyte membrane is lowered. Moreover, since the metal ion which infiltrated into the electrolyte has a hydration state different from that of hydrogen ions, the water content of the electrolyte is lowered, thereby reducing the ionic conductivity of the electrolyte membrane. Such a decrease in ionic conductivity and a decrease in water content not only increase the direct current resistance component of the battery, but also reduce the reaction area of the catalytic reaction layer in the electrode, further reducing the battery performance. In addition, the above-described metal ions adhere to the catalyst surface or form an oxide to seal the catalyst, thereby causing a decrease in battery performance. Further, as an anionic impurity, sulfur oxide poisons the catalyst to lower the battery performance, and nitrogen oxide ions and carboxylate ions corrode and alter the constituent members as acidic substances.
[0010]
Such contaminating ions are present at a high concentration at a specific site in the battery in a normal operation state. For example, the above-described metal ions are distributed at a high concentration at the interface between the electrolyte membrane and the electrode layer and at the polymer electrolyte portion kneaded inside the electrode. Accumulation of acidic substances derived from anionic impurities progresses to the electrode base material and the separator plate surface that become the gas diffusion layer. Since these metal ions, cationic anionic impurities, and anionic impurities are not discharged out of the battery in a normal operation state, the battery performance gradually decreases.
[0011]
The ionic impurities present in the battery include those that move easily and those that do not move easily depending on the ionic species. However, in any case, it moves at a constant rate along with the current flowing in the battery. Taking advantage of this point, when the load is taken with the current density 1.5 times or more than during normal operation (for example, rated operation), the distribution of accumulated impurity ions changes and is expelled from the electrolyte, causing electrode reactions. It can be discharged out of the battery mixed with the generated water.
[0012]
In addition, when the gas supply is switched between the fuel electrode and the air electrode and the current direction is reversed, the impurity ions can be moved and discharged in the reverse direction.
[0013]
Further, the movement and discharge of impurity ions can be promoted by pressurizing the reaction gas or using oxygen as the oxidizing gas.
[0014]
Further, since the impurity ions in the electrolyte are discharged to the outside in the form of replacement with hydrogen ions, they can be discharged to the outside by washing the electrolyte and the electrode with an acidic solution.
[0015]
【Example】
Examples suitable for the present invention will be specifically described below.
[0016]
Example 1
A catalyst for the reaction electrode was prepared by supporting 25% by weight of platinum particles having an average particle diameter of about 30 mm on acetylene black carbon powder. A dispersion solution in which perfluorocarbon sulfonic acid powder was dispersed in ethyl alcohol was mixed with a solution in which the catalyst powder was dispersed in isopropanol to obtain an electrode paste.
[0017]
On the other hand, carbon paper having a thickness of 300 microns was dipped in an aqueous dispersion of polytetrafluoroethylene (PTFE) and dried to obtain a water-repellent porous electrode substrate. An electrode was prepared by applying and drying the electrode paste on one side of the porous electrode substrate. Next, the polymer electrolyte membrane is sandwiched between a pair of the electrodes with the surface on which the electrode paste is applied facing inside, and this is hot-pressed at a temperature of 110 ° C. for 30 seconds, whereby an electrolyte-electrode assembly (MEA) ) Was produced. Here, as the polymer electrolyte membrane, a perfluorocarbon sulfonic acid membrane having a thickness of 50 μm (Nafion manufactured by DuPont) was used.
[0018]
In addition to the above-mentioned carbon paper, the porous electrode base material is a carbon cloth woven with carbon fibers as a flexible material, and a carbon felt formed by mixing carbon fibers and carbon powder and adding an organic binder. Can also be used.
[0019]
Next, as a separator plate, a carbon plate made by cold press-molding a carbon powder material is used, and a resin-impregnated carbon plate that has been impregnated and cured with phenol resin to improve gas sealability is formed. did. Manifold holes for supplying and discharging cooling water for gas supply and discharge and for controlling the temperature of the battery were provided in the periphery of the gas flow path. In addition to the carbon separator described above, a metal separator in which a gas channel and a manifold hole were formed on a metal plate made of SUS304 was also prepared.
[0020]
Around the MEA with an electrode area of 25 cm 2 , a gasket made of silicon rubber serving as a gas seal material is placed, and the battery is pressed and fastened from both ends with a pressure of 20 kgf / cm 2 through a current collector plate made of SUS304. did.
[0021]
A practical battery is generally used by laminating a plurality of unit cells with a separator engraved with a cooling water flow path interposed therebetween. However, it is considered that the above-mentioned contaminating ions rarely move between different cells, and the evaluation in this example was performed with a single cell. A gas supply system for supplying humidified gas to the air side and hydrogen side to the unit cell thus created, an electric output system for setting and adjusting the load current to be extracted from the battery, and further adjusting the battery temperature to discharge A heat regulation system that effectively utilizes heat was attached to form a polymer electrolyte fuel cell of this example.
[0022]
For the fuel cell created by the above method, the following operating conditions are driven in the normal mode. evaluated. First, the current density taken out was set to 0.6 A / cm 2 . Next, a gas utilization rate, which is an index indicating how much gas actually reacts with the supplied fuel gas and oxidant gas, is 70% on the fuel electrode side and 30% on the air side. %. Further, the cooling water was adjusted so that the battery temperature was 75 ° C. Then, using the pure hydrogen and air as the feed gas, supply pressure 0.2 kgf / cm 2 air side, the hydrogen side is 0.05 kgf / cm 2, the outlet of the gas was air release.
[0023]
As a result of driving the battery system under these conditions, the performance of both separators using carbon as separator plates and those using SUS304 has deteriorated after continuous operation for 500 hours. Therefore, the current was increased to 0.8 A / cm 2 and operation was performed for 20 hours under these conditions. Thereafter, the current was returned again to 0.6 A / cm 2 and the battery was operated, but the performance was not improved so much. Therefore, again, the current was increased to 1.0 A / cm 2 , and the battery performance was recovered by removing and discharging the contaminated ions by operating for 20 hours under these conditions. Furthermore, removal and discharge of contaminating ions were similarly attempted at 1.5 A / cm 2 and 2.0 A / cm 2 . The results of these battery continuous tests are shown in FIG.
[0024]
In FIG. 1, when the current density is increased to 1.0 A / cm 2 , the battery voltage is restored from 570 mV to 590 mV in the battery using the carbon separator, and 530 mV is 580 mV in the battery using the SUS304 separator. Performance has been recovered. In addition, the battery voltage was improved in the same manner for those having current densities of 1.5 A / cm 2 and 2.0 A / cm 2 .
[0025]
Through the above processing, the water discharged from the battery was analyzed when the output current was increased. Iron ions were detected in the battery using the SUS304 separator, and the phenol component was detected in the battery using the carbon separator. did. This result proves that the contaminated ions accumulated in the battery by long-term driving can be removed and discharged by the treatment of the present invention, and thereby the battery performance can be recovered.
[0026]
As described above, it was confirmed that the process for recovering the performance of the battery deteriorated by the continuous operation was performed by changing the current density, and the original purpose could be realized. Therefore, as a process for recovering the performance of the battery, the current load was increased, the output voltage of the single cell was kept at a voltage of 0.2 V or less for a certain period of time, and then returned to the normal operation state. As a result, it has been found that the output voltage can be recovered in the same manner as described above even if such a processing method is used.
[0027]
Next, a battery performance recovery process was attempted by reversing the direction of the current to be taken out from the battery whose voltage had been reduced by continuous operation for 500 hours. That is, during normal operation (output current = 0.6 A / cm 2 ), air is sent to the fuel electrode side where hydrogen is flowing, and hydrogen is supplied to the air electrode side where air is supplied. The direction was reversed and the operation was performed at 0.6 A / cm 2 for 20 hours. Thereafter, the normal operation mode was restored. When such a treatment was performed, the carbon separator battery was found to recover from 570 mV to 585 mV, and the SUS304 separator battery was found to recover from 530 mV to 565 mV.
[0028]
In this way, when the process of changing the magnitude and direction of the load current and the reverse process of the supply gas are performed, the pollutants accumulated in the battery can be mixed into the exhaust gas and the exhaust water and eliminated. The battery performance was recovered.
[0029]
In addition, the performance of the battery could be recovered by changing the direction in which the supply gas was introduced, that is, by supplying gas from the outlet of the reaction gas (air, hydrogen) in normal operation. Furthermore, it has also been found that this battery performance recovery effect can be promoted by introducing pure oxygen instead of air or by performing treatment using a pressurized reaction gas.
[0030]
(Example 2)
Next, by using the same fuel cell as that prepared in Example 1 and forcibly washing the contaminating ions present in the battery with degraded performance, the concentration is reduced, and the characteristics of the battery are improved. An attempt was made to recover.
[0031]
First, the above-described fuel cell was continuously operated for 500 hours in the normal operation mode described in Example 1, and the operation was stopped when the voltage of the battery decreased from the initial stage. Next, the battery was boiled in pure water for 1 hour, so that the boiled pure water was circulated inside the battery through the reaction gas supply gas passage. As a result of operating again in the normal operation mode after this operation, the battery voltage recovered from 570 mV to 580 mV in the battery using the carbon separator, and the output voltage from 530 mV to 555 mV in the battery using the SUS304 separator. Recovered.
[0032]
(Example 3)
In the treatment described in Example 2, boiling water was used for washing the battery. In this example, washing was performed using dilute sulfuric acid having pH 2 and pH 1. After the same fuel cell as that prepared in Example 1 was operated in the same normal operation mode as in Example 1, the operation was stopped, and a reaction gas supply port (air side / hydrogen side) was supplied to this battery. Then, dilute sulfuric acid was introduced through the tube and discharged from the outlet. After washing with dilute sulfuric acid for 2 hours, pure water was introduced and washed thoroughly, and washing was performed until the pH of the washing water coming out from the outlet became 5 or more.
[0033]
As a result of operating again in the normal operation mode after this operation, the output voltage recovered from 580 mV to 588 mV in the battery using the carbon separator, and the output voltage recovered from 555 mV to 572 mV in the battery of the SUS304 separator.
[0034]
In the above treatment, weakly acidic dilute sulfuric acid was used as the cleaning solution. However, when a cleaning solution made of weak alkali, that is, about pH 9, was used, although a slight cleaning effect was confirmed, no significant recovery was observed. The above results are shown in FIG.
[0035]
Thus, it has been found that the performance of the battery can be recovered by washing the inside of the battery with the cleaning liquid. At that time, it was also confirmed that the recovery effect was enhanced by washing at a higher temperature. Further, it was also found that the recovery of the battery voltage can be further promoted when the recovery treatment by the high current density operation performed in Example 1 and the cleaning with the weakly acidic cleaning water are used in combination. It was also confirmed that even if dilute acetic acid or ammonium sulfate was used as the weakly acidic cleaning solution, the same effect was obtained.
[0036]
Summarizing the effects of the present invention shown in Examples 1, 2, and 3 above from the difference in separator material that is a constituent element of the battery body, a battery using a metal separator is eluted from the separator during long-time operation. Although the battery performance deteriorates due to the metal ions, the characteristics of the battery could be recovered by removing the metal ions accumulated in the battery by high current operation or washing with weakly acidic washing water.
[0037]
On the other hand, batteries with carbon separators as constituent elements do not generate metal ions and various cations as much as metal separators, but according to ashing analysis, it was found that trace amounts of iron and calcium were contained in the separators. . Therefore, even if the battery is operated for a long time, the performance is not lowered as much as the battery using the metal separator, but there is a slight performance drop due to the contained metal ions. In addition, the organic substance eluted from the resin to be mixed in order to improve the gas tightness of the carbon separator, and trace amounts of sulfur compounds and nitrogen oxides contained in the air reduced the performance by about 30 mV after 500 hours of continuous testing. It is considered a thing. The recovery treatment of the present invention was also effective for a battery using a carbon separator.
[0038]
To summarize the implementation requirements of the present invention, the polymer electrolyte fuel cell first has means for adjusting the load current and output voltage in the electrical output system, or the gas supply system introduces cleaning liquid into the gas flow path. The battery can be cleaned directly, and the operation method is to adjust the load current and output voltage after a certain period of time, after a certain period of operation, or after the battery performance has deteriorated, or to clean the battery interior. In addition to the above battery, gas supply system, heat adjustment system, and electric output system, a system that includes a fuel reforming system, a control system, a charger system, etc., for example, an electric vehicle equipped with a fuel cell And cogeneration systems and portable power systems.
[0039]
【The invention's effect】
According to the present invention, it was possible to effectively recover performance degradation due to long-term operation of the polymer electrolyte fuel cell, and as a result, high durability could be realized.
[Brief description of the drawings]
FIG. 1 is a graph showing recovery characteristics of battery performance according to a first embodiment of the present invention. FIG. 2 is a graph showing recovery characteristics of battery performance according to another embodiment of the present invention.

Claims (8)

高分子電解質膜と、前記高分子電解質膜を挟んで配置した燃料極および空気極と、前記空気極に酸化剤ガスを供給排出し、燃料極に燃料ガスを供給排出するガス流路を有する一対のセパレータ板とで構成した単電池を積層した電池本体部と、前記電池本体部へ前記酸化剤ガスと燃料ガスとを供給排出する手段と、前記電池本体部で発生した電力の取出しを制御する手段と、電池特性回復手段とを具備する高分子電解質型燃料電池の運転方法であって、
前記高分子電解質型燃料電池を、通常運転時の1.5倍以上の電流での運転モードで前記燃料電池内に存在する不純物イオンが電極反応の生成水に混じって外部に排出されるに足る所定時間運転することを特徴とする高分子電解質型燃料電池の運転方法。
To chromatic polymer electrolyte membrane, a fuel electrode and an air electrode arranged to sandwich the polymer electrolyte membrane, an oxidant gas is supplied discharged into the air electrode, a gas flow path for supplying and discharging a fuel gas to the fuel electrode A battery main body portion in which unit cells constituted by a pair of separator plates are stacked, means for supplying and discharging the oxidant gas and fuel gas to and from the battery main body portion, and taking out of electric power generated in the battery main body portion is controlled. And a method for operating a polymer electrolyte fuel cell comprising a means for recovering battery characteristics and a means for recovering battery characteristics,
In the polymer electrolyte fuel cell, the impurity ions present in the fuel cell are sufficient to be discharged outside by being mixed with the water generated in the electrode reaction in an operation mode at a current 1.5 times or more that in normal operation. A method for operating a polymer electrolyte fuel cell, characterized by operating for a predetermined time .
高分子電解質膜と、前記高分子電解質膜を挟んで配置した燃料極および空気極と、前記空気極に酸化剤ガスを供給排出し、燃料極に燃料ガスを供給排出するガス流路を有する一対のセパレータ板とで構成した単電池を積層した電池本体部と、前記電池本体部へ前記酸化剤ガスと燃料ガスとを供給排出する手段と、前記電池本体部で発生した電力の取出しを制御する手段と、電池特性回復手段とを具備する高分子電解質型燃料電池の運転方法であって、
前記高分子電解質型燃料電池を、単電池あたりの出力電圧が0.2V以下になる電流での運転モードで前記燃料電池内に存在する不純物イオンが電極反応の生成水に混じって外部に排出されるに足る所定時間運転することを特徴とする高分子電解質型燃料電池の運転方法。
To chromatic polymer electrolyte membrane, a fuel electrode and an air electrode arranged to sandwich the polymer electrolyte membrane, an oxidant gas is supplied discharged into the air electrode, a gas flow path for supplying and discharging a fuel gas to the fuel electrode A battery main body portion in which unit cells constituted by a pair of separator plates are stacked, means for supplying and discharging the oxidant gas and fuel gas to and from the battery main body portion, and taking out of electric power generated in the battery main body portion is controlled. And a method for operating a polymer electrolyte fuel cell comprising a means for recovering battery characteristics and a means for recovering battery characteristics,
In the polymer electrolyte fuel cell, impurity ions existing in the fuel cell are mixed with the generated water of the electrode reaction and discharged to the outside in an operation mode at a current where the output voltage per unit cell is 0.2 V or less. A method for operating a polymer electrolyte fuel cell, characterized by operating for a predetermined time .
前記運転モードにおいて、前記酸化剤ガスまたは前記燃料ガスの導入方向を変えることを特徴とする請求項1または2に記載の高分子電解質型燃料電池の運転方法。The method for operating a polymer electrolyte fuel cell according to claim 1 or 2, wherein in the operation mode, an introduction direction of the oxidant gas or the fuel gas is changed. 前記運転モードにおいて、前記酸化剤ガスまたは前記燃料ガスを通常運転時より加圧して供給することを特徴とする請求項1または2に記載の高分子電解質型燃料電池の運転方法。3. The method for operating a polymer electrolyte fuel cell according to claim 1, wherein, in the operation mode, the oxidant gas or the fuel gas is supplied under pressure from a normal operation time. 高分子電解質膜と、前記高分子電解質膜を挟んで配置した燃料極および空気極と、前記空気極に酸化剤ガスを供給排出し、燃料極に燃料ガスを供給排出するガス流路を有する一対のセパレータ板とで構成した単電池を積層した電池本体部と、前記電池本体部へ前記酸化剤ガスと燃料ガスとを供給排出する手段と、前記電池本体部で発生した電力の取出しを制御する手段と、電池特性回復手段とを具備する高分子電解質型燃料電池の特性回復方法であって、A pair having a polymer electrolyte membrane, a fuel electrode and an air electrode arranged with the polymer electrolyte membrane interposed therebetween, and a gas flow path for supplying and discharging oxidant gas to the air electrode and supplying and discharging fuel gas to the fuel electrode A battery main body portion in which unit cells composed of the separator plate are stacked, means for supplying and discharging the oxidant gas and fuel gas to and from the battery main body portion, and taking out of electric power generated in the battery main body portion is controlled. And a method for recovering the characteristics of a polymer electrolyte fuel cell comprising a battery characteristics recovery means,
前記高分子電解質型燃料電池を、通常運転時の1.5倍以上の電流での運転モードで運転することにより、電池内の不純物イオンが電極反応の生成水に混じって外部に排出されることを特徴とする高分子電解質型燃料電池の特性回復方法。By operating the polymer electrolyte fuel cell in an operation mode at a current 1.5 times or more that in normal operation, impurity ions in the cell are mixed with the water generated in the electrode reaction and discharged to the outside. A method for recovering characteristics of a polymer electrolyte fuel cell.
高分子電解質膜と、前記高分子電解質膜を挟んで配置した燃料極および空気極と、前記空気極に酸化剤ガスを供給排出し、燃料極に燃料ガスを供給排出するガス流路を有する一対のセパレータ板とで構成した単電池を積層した電池本体部と、前記電池本体部へ前記酸化剤ガスと燃料ガスとを供給排出する手段と、前記電池本体部で発生した電力の取出しを制御する手段と、電池特性回復手段とを具備する高分子電解質型燃料電池の特性回復方法であって、A pair having a polymer electrolyte membrane, a fuel electrode and an air electrode arranged with the polymer electrolyte membrane interposed therebetween, and a gas flow path for supplying and discharging oxidant gas to the air electrode and supplying and discharging fuel gas to the fuel electrode A battery main body portion in which unit cells composed of the separator plate are stacked, means for supplying and discharging the oxidant gas and fuel gas to and from the battery main body portion, and taking out of electric power generated in the battery main body portion is controlled. And a method for recovering the characteristics of a polymer electrolyte fuel cell comprising a battery characteristics recovery means,
前記高分子電解質型燃料電池を、単電池あたりの出力電圧が0.2V以下になる電流での運転モードで運転することにより、電池内の不純物イオンが電極反応の生成水に混じって外部に排出されることを特徴とする高分子電解質型燃料電池の特性回復方法。By operating the polymer electrolyte fuel cell in an operation mode with an electric current at which the output voltage per unit cell is 0.2 V or less, impurity ions in the cell are mixed with the water generated in the electrode reaction and discharged to the outside. A method for recovering the characteristics of a polymer electrolyte fuel cell.
前記運転モードにおいて、前記酸化剤ガスまたは前記燃料ガスの導入方向を変えることを特徴とする請求項5または6に記載の高分子電解質型燃料電池の特性回復方法。7. The method for recovering characteristics of a polymer electrolyte fuel cell according to claim 5, wherein the direction of introduction of the oxidant gas or the fuel gas is changed in the operation mode. 前記運転モードにおいて、前記酸化剤ガスまたは前記燃料ガスを通常運転時より加圧して供給することを特徴とする請求項5または6に記載の高分子電解質型燃料電池の特性回復方法。The method for recovering characteristics of a polymer electrolyte fuel cell according to claim 5 or 6, wherein, in the operation mode, the oxidant gas or the fuel gas is supplied under pressure from the normal operation.
JP2002293876A 2002-10-07 2002-10-07 Operation method and characteristic recovery method of polymer electrolyte fuel cell Expired - Fee Related JP4547853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293876A JP4547853B2 (en) 2002-10-07 2002-10-07 Operation method and characteristic recovery method of polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293876A JP4547853B2 (en) 2002-10-07 2002-10-07 Operation method and characteristic recovery method of polymer electrolyte fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26297199A Division JP3475869B2 (en) 1999-09-17 1999-09-17 Polymer electrolyte fuel cell and method for recovering its characteristics

Publications (3)

Publication Number Publication Date
JP2003123812A JP2003123812A (en) 2003-04-25
JP2003123812A5 JP2003123812A5 (en) 2009-08-20
JP4547853B2 true JP4547853B2 (en) 2010-09-22

Family

ID=19197220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293876A Expired - Fee Related JP4547853B2 (en) 2002-10-07 2002-10-07 Operation method and characteristic recovery method of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4547853B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4038723B2 (en) 2003-05-21 2008-01-30 アイシン精機株式会社 Method for activating solid polymer fuel cell
ITMI20031972A1 (en) * 2003-10-14 2005-04-15 Nuvera Fuel Cells Europ Srl MEMBRANE FUEL CELL WITH STABLE OVER TIME OPERATION
JP2006307017A (en) * 2005-04-28 2006-11-09 Polyplastics Co Conductive resin composition
JP5151035B2 (en) * 2006-02-03 2013-02-27 日産自動車株式会社 Fuel cell system
JP2008077911A (en) * 2006-09-20 2008-04-03 Nissan Motor Co Ltd Fuel cell system
JP5871756B2 (en) * 2012-09-13 2016-03-01 日立造船株式会社 Method for activating alkaline fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077365A (en) * 1983-10-03 1985-05-01 Fuji Electric Corp Res & Dev Ltd Operation of fuel cell
WO1999034465A1 (en) * 1997-12-23 1999-07-08 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
JPH11345624A (en) * 1998-06-01 1999-12-14 Matsushita Electric Ind Co Ltd Method for operating fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077365A (en) * 1983-10-03 1985-05-01 Fuji Electric Corp Res & Dev Ltd Operation of fuel cell
WO1999034465A1 (en) * 1997-12-23 1999-07-08 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
JPH11345624A (en) * 1998-06-01 1999-12-14 Matsushita Electric Ind Co Ltd Method for operating fuel cell

Also Published As

Publication number Publication date
JP2003123812A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
KR100429040B1 (en) Method for resorting characteristics of polymer electrolyte fuel cell
US8795918B2 (en) Single fuel cell and fuel cell stack
KR101601378B1 (en) Fuel cell management method
CN102170005B (en) Methods and processes to recover voltage loss of PEM fuel cell stack
US8323415B2 (en) Fast recycling process for ruthenium, gold and titanium coatings from hydrophilic PEM fuel cell bipolar plates
JP3606514B2 (en) Stacked fuel cell system
US7955745B2 (en) Fuel cell system and activation method for fuel cell
CN102044689B (en) In-situ fuel cell stack reconditioning
JP2002289230A (en) Polymer electrolyte fuel cell
JP2002270196A (en) High molecular electrolyte type fuel cell and operating method thereof
JP4547853B2 (en) Operation method and characteristic recovery method of polymer electrolyte fuel cell
EP2639869B1 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP2004172105A (en) Operation method of fuel cell system and fuel cell system
JP2021177484A (en) Reversible shunts for overcharge protection in polymer electrolyte membrane fuel cells
JP6981883B2 (en) Fuel cell aging method
JP2011086398A (en) Fuel cell system and method for operating fuel cell system
EP2157643B1 (en) Polymer electrolyte fuel cell
JP2002025565A (en) Electrode for high polymer molecule electrolyte fuel cells and its manufacturing process
CN103825035A (en) Procedure for stack voltage recovery
JP4554163B2 (en) Fuel cell operating method and fuel cell operating system
JP2019129017A (en) Method for aging fuel battery
JP2011086399A (en) Fuel cell system and operation method of fuel cell system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees