JP4547800B2 - Decomposition method and equipment for refractory components in desulfurization waste water - Google Patents

Decomposition method and equipment for refractory components in desulfurization waste water Download PDF

Info

Publication number
JP4547800B2
JP4547800B2 JP2000390582A JP2000390582A JP4547800B2 JP 4547800 B2 JP4547800 B2 JP 4547800B2 JP 2000390582 A JP2000390582 A JP 2000390582A JP 2000390582 A JP2000390582 A JP 2000390582A JP 4547800 B2 JP4547800 B2 JP 4547800B2
Authority
JP
Japan
Prior art keywords
desulfurization
hot water
decomposition
effluent
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000390582A
Other languages
Japanese (ja)
Other versions
JP2002186830A (en
Inventor
文彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000390582A priority Critical patent/JP4547800B2/en
Publication of JP2002186830A publication Critical patent/JP2002186830A/en
Application granted granted Critical
Publication of JP4547800B2 publication Critical patent/JP4547800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、排煙脱硫排水中に含まれる難分解性のCODであるチオン酸等を分解するための脱硫排水中の難分解性成分の分解法及び装置に関するものである。
【0002】
【従来の技術】
従来、ボイラ等の排ガスの脱硫処理後の排煙脱硫排水中には、難分解性のCOD(Chemical Oxiygen Demand ;化学的酸素要求量)であるチオン酸(二チオン酸など)が含まれることが多く、これを排水から除去しない限り、放流条件としてのCOD濃度を10ppm以下に下げることはできない。
【0003】
このチオン酸は、空気中の酸素では容易に酸化されないために、現在はCOD吸着塔などで吸着除去することがなされている。
【0004】
【発明が解決しようとする課題】
しかしながら、COD吸着塔は、建設費が高く、運転費も高い問題がある。
【0005】
そこで、排煙脱硫排水を熱水処理にて分解することが検討されているが、熱水による分解では、ニチオン酸が熱水で分解されるときに発生する亜硫酸を酸化しないと、CODが高くなるので、この放流が難しい。
【0006】
この場合、発生した亜硫酸を酸素で酸化することで、石膏化し、CODを下げることが可能であるが、排水中には、チオン酸の他にセレン酸塩が含まれ、これが、熱水処理で6価から凝集沈殿されやすい4価のセレン酸塩に還元されており、単純に酸化したのでは、凝集沈殿で分離しにくい6価のセレン酸に再度酸化されてしまい、放流の水質基準以下にすることが困難となる。
【0007】
そこで、本発明の目的は、上記課題を解決し、排煙脱硫排水中に含まれる難分解性のCODであるチオン酸を分離除去できると共にセレン酸塩などの除去に支障のない脱硫排水中の難分解性成分の分解法及び装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、ボイラからの排ガスを吸収塔で吸収剤スラリと接触させて脱硫処理し、その脱硫後の吸収剤スラリから硫黄分を分離回収後の脱硫排水中に含まれるチオン酸からなる難分解性成分を分離除去できると共に前記脱硫排水に含まれるセレン酸塩の除去に支障のない脱硫排水中の難分解性成分の分解法において、前記脱硫排水を熱水処理してチオン酸を分解し、その熱水処理後の分解処理液中にボイラからの排ガスを吹き込んで、チオン酸分解で発生する亜硫酸ガスを放散させると共にこの放散した亜硫酸ガスを吸収塔に戻して脱硫するようにした脱硫排水中の難分解性成分の分解法である。
【0009】
請求項2の発明は、脱硫排水を、5〜10MPaに昇圧し、200〜320℃の温度に加熱して熱水処理を行う請求項1記載の脱硫排水中の難分解性成分の分解法である。
【0010】
請求項3の発明は、熱水処理後の分解処理液を、熱回収後、減圧し、温度を50〜100℃にし、その分解処理液に排ガスを導入して亜硫酸ガスを放散させる請求項2記載の脱硫排水中の難分解性成分の分解法である。
【0011】
請求項4の発明は、亜硫酸ガス放散後の分解処理液から4価のセレン酸塩を含む沈殿物を分離する請求項3記載の脱硫排水中の難分解性成分の分解法である。
【0012】
請求項5の発明は、ボイラからの排ガスを吸収塔で吸収剤スラリと接触させて脱硫処理し、その脱硫後の吸収剤スラリから硫黄分を分離回収後の脱硫排水中に含まれるチオン酸からなる難分解性成分を分離除去できると共に前記脱硫排水に含まれるセレン酸塩の除去に支障のない脱硫排水中の難分解性成分の分解装置において、前記脱硫排水を熱水処理する熱水反応器と、その熱水反応器で熱水処理されて分解された分解処理液を導入すると共に、ボイラからの排ガスを分解処理液中に吹き込んで分解処理液中の亜硫酸ガスを放散させるSO2放散槽と、そのSO2放散槽で放散した亜硫酸ガスを吸収塔に戻す亜硫酸ガス戻しラインとを備えた脱硫排水中の難分解性成分の分解装置である。
【0013】
請求項6の発明は、熱水反応器の上流側に、熱水反応器に導入する脱硫排水と熱水処理されて分解された分解処理液とを熱交換する熱回収器が接続された請求項5記載の脱硫排水中の難分解性成分の分解装置である。
【0014】
【発明の実施の形態】
以下、本発明の好適実施の形態を添付図面に基づいて詳述する。
【0015】
図1において、10は、吸収塔で、ボイラ等の排ガスライン11と接続され、その排ガスとCaCO3 等を吸収剤とする吸収剤スラリとを気液接触させて排ガス中のSOxを吸収除去する。
【0016】
吸収塔10の頂部には脱硫後の排ガスの排気ライン12が接続され、脱硫後の排ガスが、GGHヒータ等を経て大気に排気される。
【0017】
吸収塔10で、SOxを吸収した吸収剤スラリは、吸収塔10内で空気等で酸化されて石膏化され、ライン13より石膏分離器14に導入されて固液分離される。
【0018】
石膏分離器14で石膏15と分離された脱硫排水は、補給ライン16にて、吸収塔10に吸収剤スラリの補給液として戻され、残りは、ライン17より熱回収器18を経て熱水反応器19に供給される。
【0019】
熱水反応器19は、詳細は図示していないが、脱硫排水を昇圧ポンプで、水の亜臨界圧である5〜10MPaまで昇圧すると共に熱媒等により、200〜320℃の温度まで加熱し、その亜臨界圧水による加水分解で、脱硫排水中に含まれるチオン酸(H2n6 ,n≧2)を、例えば二チオン酸(H226 )を下式のように分解する。
【0020】
226 = H2 SO4 + SO2
また、脱硫排水中に含まれる6価のセレンであるセレン酸塩(Na2 SeO4 ,CaSeO4 )を分解して、4価の亜セレン酸(Na2 SeO3 ,CaSeO3 )に還元する。
【0021】
熱水反応器19で熱水分解された分解処理液は、ライン20より熱回収器18の伝熱管21に供給され、熱回収器18に導入された脱硫排水と熱交換して熱回収がなされた後、減圧弁22にて常圧まで減圧され、温度が50〜100℃の分解処理液となってSO2 放散槽23に導入される。
【0022】
SO2 放散槽23には、排ガス吹き込み管24が設けられ、その排ガス吹き込み管24が、排ガスライン11より分岐した排ガス供給ライン25に接続される。また、SO2 放散槽23の頂部には、放散した亜硫酸ガスの亜硫酸ガス戻しライン26が接続され、その戻しライン26より、排ガスライン11又は吸収塔10に亜硫酸ガスが戻されるようになっている。
【0023】
また、SO2 放散槽23で亜硫酸ガス放散後の分解処理液は、排出ライン27より排水処理装置(図示せず)に供給され、また沈殿物は、沈殿物処理装置28に供給される。
【0024】
以上において、吸収塔10で脱硫処理され、石膏分離器14で石膏分離がなされた脱硫排水は、熱回収器18で予熱され、熱水反応器19で、水の亜臨界状態まで昇圧・加熱され、脱硫排水中の二チオン酸等が分解され、その分解処理液が、熱回収器18を通って熱回収され、減圧弁22に減圧されて、SO2 放散槽23に導入される。
【0025】
他方、排ガスライン11より排ガス供給ライン25を介し、排ガス吹き込み管24から分解処理液中に排ガスが吹き込まれる。
【0026】
この排ガスにより、分解処理液中の亜硫酸ガスは、排ガスと共に放散し、亜硫酸ガス戻しライン26から吸収塔10に戻されて脱硫処理され、排出ライン27からは、SO2 の含まない処理液が排水されることとなる。この場合、分解処理液の温度が50〜100℃にされるため、SO2 の放散が効率よく行える。
【0027】
排ガス吹き込み管24から吹き込まれる排ガスの酸素濃度は4〜6%であり、このため熱水反応器19で6価のセレン酸塩が4価のセレン酸塩に還元された状態でも、排ガスの吹き込みで6価に酸化されることを防止できる。また4価のセレン酸塩は、通常は、水溶液状態であるが、実液を用いて水熱反応をさせた結果、液中にはセレン酸が検出されず、固形分となることが確かめられた。これは、脱硫排水中に、燃焼排ガスに含まれる灰分や重金属成分や含まれており、4価のセレン酸がこれら重金属等と結合して固形分沈殿物を形成するものと認められる。
【0028】
従って、SO2 放散槽23より沈殿物を沈殿物処理装置28に供給することでセレン酸も分離除去できることが可能である。また、実液で用いた脱硫排水は、石炭炊きボイラの脱硫排水であり、重油焚きボイラでは、脱硫排水中の重金属類が少ないと予想され、セレン酸が水溶液として存在する場合には、SO2 放散槽23内の分解処理液中に、塩化鉄(FeCl3 )等を添加して凝集沈殿させるようにしても良い。
【0029】
【発明の効果】
以上要するに本発明によれば、脱硫排水を熱水処理後の分解処理液に酸素の含まない排ガスを吹き込んで、亜硫酸ガスを放散させることで、熱水処理で同時に分解された4価のセレンが含まれていても、これを6価のセレンに酸化することなく、亜硫酸ガスを放散させることができる。また放散された亜硫酸ガスは吸収塔に戻して脱硫するため二次公害の問題がない。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す図である。
【符号の説明】
10 吸収塔
11 排ガスライン
18 熱回収器
19 熱水反応器
23 SO2 放散槽
25 排ガス供給ライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for decomposing a hardly decomposable component in desulfurization effluent for decomposing thionic acid which is a hardly decomposable COD contained in flue gas desulfurization effluent.
[0002]
[Prior art]
Conventionally, flue gas desulfurization effluent after desulfurization treatment of exhaust gas such as boilers includes thionic acid (dithionic acid, etc.) which is a hardly decomposable COD (Chemical Oxiygen Demand). In many cases, the COD concentration as the discharge condition cannot be lowered to 10 ppm or less unless it is removed from the waste water.
[0003]
Since this thionic acid is not easily oxidized by oxygen in the air, it is currently adsorbed and removed by a COD adsorption tower or the like.
[0004]
[Problems to be solved by the invention]
However, the COD adsorption tower has a problem of high construction cost and high operation cost.
[0005]
Therefore, decomposition of flue gas desulfurization wastewater by hot water treatment has been studied. However, in the decomposition by hot water, COD is high unless sulfurous acid generated when nithionic acid is decomposed by hot water is oxidized. Therefore, this release is difficult.
[0006]
In this case, the generated sulfurous acid can be converted into gypsum by oxidizing it with oxygen, and COD can be lowered. However, the sewage contains selenate in addition to thionic acid. It is reduced from hexavalent to tetravalent selenate that is easy to coagulate and precipitate. If it is simply oxidized, it will be oxidized again to hexavalent selenic acid that is difficult to separate by coagulation and precipitation, and it will be below the water quality standard for discharge. Difficult to do.
[0007]
Accordingly, an object of the present invention is to solve the above-mentioned problems, and to separate and remove thionic acid, which is a hardly decomposable COD contained in the flue gas desulfurization waste water, and in the desulfurization waste water that does not hinder the removal of selenate and the like. An object of the present invention is to provide a decomposition method and apparatus for a hardly decomposable component.
[0008]
[Means for Solving the Problems]
To achieve the above object, a first aspect of the invention, the boiler or these exhaust gas is contacted with the absorbent slurry in the absorption tower and the desulfurization treatment, after separation and recovery of sulfur from the absorbent slurry after the desulfurization In the method for decomposing a hardly decomposable component in desulfurized effluent, which can separate and remove the hardly decomposable component composed of thionic acid contained in the desulfurized effluent and does not interfere with the removal of selenate contained in the desulfurized effluent. drainage and hot water treatment to decompose the dithionite is blown with boiler or these flue gas decomposing solution after the hydrothermal treatment was the dissipated with dissipating sulfurous acid gas generated thione acidolysis sulfite This is a method for decomposing a hardly decomposable component in desulfurization effluent in which gas is returned to an absorption tower for desulfurization.
[0009]
The invention according to claim 2 is a method for decomposing a hardly decomposable component in desulfurization wastewater according to claim 1, wherein the desulfurization wastewater is pressurized to 5 to 10 MPa and heated to a temperature of 200 to 320 ° C. to perform hot water treatment. is there.
[0010]
According to a third aspect of the present invention, after the heat recovery, the decomposition treatment liquid after the hot water treatment is decompressed to a temperature of 50 to 100 ° C., and exhaust gas is introduced into the decomposition treatment liquid to diffuse the sulfurous acid gas. It is the decomposition method of the hardly decomposable component in the desulfurization waste water of description.
[0011]
The invention of claim 4 is a method for decomposing a hardly decomposable component in desulfurized effluent according to claim 3, wherein a precipitate containing tetravalent selenate is separated from the decomposition treatment solution after the sulfurous acid gas is diffused.
[0012]
The invention of claim 5, thione the boiler or these exhaust gas is contacted with the absorbent slurry in the absorption tower and the desulfurization process includes sulfur from the absorbent slurry after the desulfurization in the desulfurization waste water after separation and recovery Hot water for hydrothermally treating the desulfurized effluent in a decomposing apparatus for the hardly decomposable component in the desulfurized effluent, which can separate and remove the hardly decomposable component consisting of an acid and does not hinder the removal of selenate contained in the desulfurized effluent and reactor, as well as introducing a decomposition treatment liquid that has been decomposed is hydrothermally treated at that hydrothermal reactor dissipates sulfur dioxide in the decomposition treatment liquid is blown boiler or these exhaust gas during the decomposition treatment liquid An apparatus for decomposing a hardly decomposable component in desulfurization effluent, comprising an SO 2 diffusion tank and a sulfurous acid gas return line for returning the sulfurous acid gas diffused in the SO 2 diffusion tank to an absorption tower.
[0013]
In the invention of claim 6, a heat recovery device for exchanging heat between the desulfurization waste water introduced into the hot water reactor and the decomposition treatment liquid decomposed by the hot water treatment is connected to the upstream side of the hot water reactor. Item 6. An apparatus for decomposing a hardly decomposable component in desulfurization waste water according to Item 5.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[0015]
In FIG. 1, reference numeral 10 denotes an absorption tower, which is connected to an exhaust gas line 11 such as a boiler, and absorbs and removes SOx in the exhaust gas by bringing the exhaust gas into contact with an absorbent slurry using CaCO 3 or the like as an absorbent. .
[0016]
An exhaust line 12 for exhaust gas after desulfurization is connected to the top of the absorption tower 10, and the exhaust gas after desulfurization is exhausted to the atmosphere via a GGH heater or the like.
[0017]
The absorbent slurry that has absorbed SOx in the absorption tower 10 is oxidized with air or the like in the absorption tower 10 to form gypsum, and is introduced into the gypsum separator 14 from the line 13 for solid-liquid separation.
[0018]
The desulfurization effluent separated from the gypsum 15 by the gypsum separator 14 is returned to the absorption tower 10 as a replenishment liquid of the absorbent slurry in the replenishment line 16, and the rest is subjected to the hot water reaction via the heat recovery device 18 from the line 17. Is supplied to the container 19.
[0019]
The hot water reactor 19 is not shown in detail, but the desulfurization effluent is heated to a temperature of 200 to 320 ° C. with a heating medium and the like while the pressure is increased to 5 to 10 MPa, which is a subcritical pressure of water. The thionic acid (H 2 S n O 6 , n ≧ 2), for example dithionic acid (H 2 S 2 O 6 ) contained in the desulfurization effluent by the subcritical pressure water hydrolysis Disassembled into
[0020]
H 2 S 2 O 6 = H 2 SO 4 + SO 2
Further, selenate (Na 2 SeO 4 , CaSeO 4 ) which is hexavalent selenium contained in the desulfurization waste water is decomposed and reduced to tetravalent selenious acid (Na 2 SeO 3 , CaSeO 3 ).
[0021]
The cracked liquid hydrothermally decomposed in the hot water reactor 19 is supplied from the line 20 to the heat transfer pipe 21 of the heat recovery unit 18, and heat is recovered by exchanging heat with the desulfurization effluent introduced into the heat recovery unit 18. After that, the pressure is reduced to normal pressure by the pressure reducing valve 22 and is introduced into the SO 2 diffusion tank 23 as a decomposition treatment liquid having a temperature of 50 to 100 ° C.
[0022]
The SO 2 diffusion tank 23 is provided with an exhaust gas blowing pipe 24, and the exhaust gas blowing pipe 24 is connected to an exhaust gas supply line 25 branched from the exhaust gas line 11. A sulfurous acid gas return line 26 for the diffused sulfurous acid gas is connected to the top of the SO 2 diffusion tank 23, and the sulfurous acid gas is returned to the exhaust gas line 11 or the absorption tower 10 from the return line 26. .
[0023]
Further, the decomposition treatment liquid after the sulfurous acid gas is diffused in the SO 2 diffusion tank 23 is supplied from a discharge line 27 to a wastewater treatment apparatus (not shown), and the precipitate is supplied to a precipitate treatment apparatus 28.
[0024]
In the above, the desulfurization waste water desulfurized by the absorption tower 10 and gypsum separated by the gypsum separator 14 is preheated by the heat recovery unit 18 and is pressurized and heated to the subcritical state of water by the hot water reactor 19. The dithionic acid etc. in the desulfurization effluent is decomposed, and the decomposition treatment liquid is heat recovered through the heat recovery device 18, decompressed by the pressure reducing valve 22, and introduced into the SO 2 diffusion tank 23.
[0025]
On the other hand, exhaust gas is blown into the decomposition treatment liquid from the exhaust gas blowing pipe 24 through the exhaust gas supply line 25 from the exhaust gas line 11.
[0026]
By this exhaust gas, the sulfurous acid gas in the decomposition treatment liquid is diffused together with the exhaust gas, returned to the absorption tower 10 from the sulfurous acid gas return line 26 and desulfurized, and from the discharge line 27, the treatment liquid not containing SO 2 is drained. Will be. In this case, since the temperature of the decomposition treatment liquid is set to 50 to 100 ° C., SO 2 can be efficiently diffused.
[0027]
The oxygen concentration of the exhaust gas blown from the exhaust gas blowing pipe 24 is 4 to 6%. Therefore, even when the hexavalent selenate is reduced to the tetravalent selenate in the hot water reactor 19, the exhaust gas is blown into the exhaust gas. Can be prevented from being oxidized to hexavalent. The tetravalent selenate is usually in an aqueous solution state, but as a result of hydrothermal reaction using the actual liquid, it was confirmed that selenic acid was not detected in the liquid and became a solid content. It was. It is recognized that the desulfurization waste water contains ash and heavy metal components contained in the combustion exhaust gas, and tetravalent selenic acid is combined with these heavy metals to form a solid precipitate.
[0028]
Therefore, it is possible to separate and remove selenic acid by supplying the precipitate from the SO 2 diffusion tank 23 to the precipitate treatment device 28. The desulfurization effluent used in the actual liquid is a desulfurization effluent of a coal-fired boiler. In a heavy oil fired boiler, it is expected that there are few heavy metals in the desulfurization effluent, and when selenic acid exists as an aqueous solution, SO 2 Iron chloride (FeCl 3 ) or the like may be added to the decomposition treatment liquid in the diffusion tank 23 to cause aggregation precipitation.
[0029]
【The invention's effect】
In short, according to the present invention, tetravalent selenium simultaneously decomposed by the hydrothermal treatment is obtained by blowing the exhaust gas not containing oxygen into the decomposing treatment liquid after the hydrothermal treatment of the desulfurization waste water and releasing the sulfurous acid gas. Even if it is contained, sulfurous acid gas can be diffused without oxidizing it to hexavalent selenium. In addition, the diffused sulfurous acid gas is returned to the absorption tower for desulfurization, so there is no problem of secondary pollution.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
[Explanation of symbols]
10 Absorption tower 11 Exhaust gas line 18 Heat recovery device 19 Hot water reactor 23 SO 2 diffusion tank 25 Exhaust gas supply line

Claims (6)

ボイラからの排ガスを吸収塔で吸収剤スラリと接触させて脱硫処理し、その脱硫後の吸収剤スラリから硫黄分を分離回収後の脱硫排水中に含まれるチオン酸からなる難分解性成分を分離除去できると共に前記脱硫排水に含まれるセレン酸塩の除去に支障のない脱硫排水中の難分解性成分の分解法において、前記脱硫排水を熱水処理してチオン酸を分解し、その熱水処理後の分解処理液中にボイラからの排ガスを吹き込んで、チオン酸分解で発生する亜硫酸ガスを放散させると共にこの放散した亜硫酸ガスを吸収塔に戻して脱硫することを特徴とする脱硫排水中の難分解性成分の分解法。The boiler or these exhaust gas is contacted with the absorbent slurry in the absorption tower desulfurizing, hardly degradable component consisting of dithionite contained absorbent in the desulfurization effluent after separating and recovering sulfur from the slurry after the desulfurization In the method for decomposing a hardly decomposable component in the desulfurization wastewater that can be separated and removed and the selenate contained in the desulfurization wastewater is not hindered , the desulfurization wastewater is hydrothermally treated to decompose thionic acid, and the heat by blowing boiler or these flue gas decomposition treatment liquid after the water treatment, characterized by desulfurizing back the dissipation was sulfurous acid gas in the absorption tower along with dissipating sulfurous acid gas generated in dithionate decomposition desulfurization A method for decomposing difficult-to-decompose components in wastewater. 脱硫排水を、5〜10MPaに昇圧し、200〜320℃の温度に加熱して熱水処理を行う請求項1記載の脱硫排水中の難分解性成分の分解法。  The method for decomposing a hardly decomposable component in desulfurized wastewater according to claim 1, wherein the desulfurized wastewater is pressurized to 5 to 10 MPa and heated to a temperature of 200 to 320 ° C to perform hot water treatment. 熱水処理後の分解処理液を、熱回収後、減圧し、温度を50〜100℃にし、その分解処理液に排ガスを導入して亜硫酸ガスを放散させる請求項2記載の脱硫排水中の難分解性成分の分解法。  3. The difficulty in desulfurization effluent according to claim 2, wherein after the heat recovery, the decomposition treatment solution after the hot water treatment is decompressed to a temperature of 50 to 100 ° C., and exhaust gas is introduced into the decomposition treatment solution to diffuse sulfurous acid gas. Decomposition method of degradable components. 亜硫酸ガス放散後の分解処理液から4価のセレン酸塩を含む沈殿物を分離する請求項3記載の脱硫排水中の難分解性成分の分解法。  The method for decomposing a hardly decomposable component in desulfurized effluent according to claim 3, wherein a precipitate containing tetravalent selenate is separated from the decomposition treatment solution after the sulfurous acid gas is diffused. ボイラからの排ガスを吸収塔で吸収剤スラリと接触させて脱硫処理し、その脱硫後の吸収剤スラリから硫黄分を分離回収後の脱硫排水中に含まれるチオン酸からなる難分解性成分を分離除去できると共に前記脱硫排水に含まれるセレン酸塩の除去に支障のない脱硫排水中の難分解性成分の分解装置において、前記脱硫排水を熱水処理する熱水反応器と、その熱水反応器で熱水処理されて分解された分解処理液を導入すると共に、ボイラからの排ガスを分解処理液中に吹き込んで分解処理液中の亜硫酸ガスを放散させるSO2放散槽と、そのSO2放散槽で放散した亜硫酸ガスを吸収塔に戻す亜硫酸ガス戻しラインとを備えたことを特徴とする脱硫排水中の難分解性成分の分解装置。The boiler or these exhaust gas is contacted with the absorbent slurry in the absorption tower desulfurizing, hardly degradable component consisting of dithionite contained absorbent in the desulfurization effluent after separating and recovering sulfur from the slurry after the desulfurization In a decomposing apparatus for a hardly decomposable component in desulfurization effluent that does not hinder the removal of selenate contained in the desulfurization effluent, and a hot water reactor for treating the desulfurization effluent with hot water, and its hot water while introducing a decomposition treatment liquid that has been decomposed is hydrothermally treated in the reactor, and SO 2 emission bath dissipating sulfur dioxide in the decomposition treatment liquid is blown boiler or these exhaust gas during the decomposition treatment liquid, the An apparatus for decomposing hardly decomposable components in desulfurization wastewater, comprising a sulfurous acid gas return line for returning sulfurous acid gas diffused in an SO 2 diffusion tank to an absorption tower. 熱水反応器の上流側に、熱水反応器に導入する脱硫排水と熱水処理されて分解された分解処理液とを熱交換する熱回収器が接続された請求項5記載の脱硫排水中の難分解性成分の分解装置。  The desulfurization drainage according to claim 5, wherein a heat recovery unit for exchanging heat between the desulfurization drain introduced into the hot water reactor and the decomposition treatment liquid decomposed by hydrothermal treatment is connected upstream of the hot water reactor. Degradable component decomposition equipment.
JP2000390582A 2000-12-22 2000-12-22 Decomposition method and equipment for refractory components in desulfurization waste water Expired - Lifetime JP4547800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000390582A JP4547800B2 (en) 2000-12-22 2000-12-22 Decomposition method and equipment for refractory components in desulfurization waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000390582A JP4547800B2 (en) 2000-12-22 2000-12-22 Decomposition method and equipment for refractory components in desulfurization waste water

Publications (2)

Publication Number Publication Date
JP2002186830A JP2002186830A (en) 2002-07-02
JP4547800B2 true JP4547800B2 (en) 2010-09-22

Family

ID=18856916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000390582A Expired - Lifetime JP4547800B2 (en) 2000-12-22 2000-12-22 Decomposition method and equipment for refractory components in desulfurization waste water

Country Status (1)

Country Link
JP (1) JP4547800B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4180877B2 (en) 2002-10-22 2008-11-12 Smk株式会社 2-stage push switch
CN108067090B (en) * 2016-11-11 2020-05-19 中国石油化工股份有限公司抚顺石油化工研究院 Method and device for treating flue gas containing sulfur dioxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146962A (en) * 1976-06-02 1977-12-07 Hitachi Ltd Process for treating blow down water from wet type waste gas denitrator
JPS5363278A (en) * 1976-11-19 1978-06-06 Hitachi Ltd Wet desulfurizing method for exhaust gas
JPH10202050A (en) * 1997-01-28 1998-08-04 Ishikawajima Harima Heavy Ind Co Ltd Suppressing method of oxidation of selenium in flue gas desulfurization apparatus and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146962A (en) * 1976-06-02 1977-12-07 Hitachi Ltd Process for treating blow down water from wet type waste gas denitrator
JPS5363278A (en) * 1976-11-19 1978-06-06 Hitachi Ltd Wet desulfurizing method for exhaust gas
JPH10202050A (en) * 1997-01-28 1998-08-04 Ishikawajima Harima Heavy Ind Co Ltd Suppressing method of oxidation of selenium in flue gas desulfurization apparatus and device therefor

Also Published As

Publication number Publication date
JP2002186830A (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US5985223A (en) Removal of NOx and SOx emissions form pickling lines for metal treatment
JP4928786B2 (en) Mercury fixing method and gypsum production method using the same, mercury fixing device and flue gas desulfurization system using the same
JP2009262081A (en) System for treating discharge gas and method of removing mercury from discharge gas
KR20120080221A (en) Exhaust gas treatment system, and exhaust gas treatment method
JP5675364B2 (en) Method for promoting mercury retention in wet flue gas desulfurization systems
WO2010116482A1 (en) Seawater desulfation treatment apparatus, method for treating desulfurized seawater, and power generation system to which the method has been applied
JP6462359B2 (en) Method and apparatus for desulfurization of exhaust gas containing sulfurous acid gas
JP2017006822A (en) Exhaust gas treatment device for coal-firing boiler and exhaust gas treatment method for coal-firing boiler
JP2011200848A (en) Treatment method of wastewater
JP4406017B2 (en) Coal gasification wastewater treatment method
JP2012206016A (en) Exhaust gas treatment device, method for treating exhaust gas and coal modification process facilities
WO2010131327A1 (en) Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization
JP4547800B2 (en) Decomposition method and equipment for refractory components in desulfurization waste water
JP4987237B2 (en) Combustion waste gas purification method
JP2009095711A (en) Method and device for treating exhaust gas
JP2014057912A (en) Mercury processing system in exhaust gas
JP2007222766A (en) Method for processing pyrolysis gas
JP3990207B2 (en) Coal gasification wastewater treatment method
JP4507291B2 (en) Method and apparatus for treating flue gas desulfurization waste
JP2758607B2 (en) Treatment method for desulfurization wastewater from wet exhaust gas desulfurization equipment
JP6031376B2 (en) Selenium-containing wastewater treatment system and selenium-containing wastewater treatment method
JP3786786B2 (en) Flue gas desulfurization method
JP4534326B2 (en) Selenium-containing waste liquid treatment method and apparatus
JPS63336Y2 (en)
JPS5948675B2 (en) Treatment method for wet flue gas treatment liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R151 Written notification of patent or utility model registration

Ref document number: 4547800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term