JP4547674B2 - Vacuum pressure control system - Google Patents

Vacuum pressure control system Download PDF

Info

Publication number
JP4547674B2
JP4547674B2 JP2005339437A JP2005339437A JP4547674B2 JP 4547674 B2 JP4547674 B2 JP 4547674B2 JP 2005339437 A JP2005339437 A JP 2005339437A JP 2005339437 A JP2005339437 A JP 2005339437A JP 4547674 B2 JP4547674 B2 JP 4547674B2
Authority
JP
Japan
Prior art keywords
pressure
valve
vacuum
electric motor
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005339437A
Other languages
Japanese (ja)
Other versions
JP2007146908A (en
Inventor
忠男 渡辺
隆 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMC Corp
Original Assignee
SMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMC Corp filed Critical SMC Corp
Priority to JP2005339437A priority Critical patent/JP4547674B2/en
Publication of JP2007146908A publication Critical patent/JP2007146908A/en
Application granted granted Critical
Publication of JP4547674B2 publication Critical patent/JP4547674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Details Of Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は、理化学機械等において化学反応用の真空チャンバの減圧などに使用する真空調圧システムに関するものである。   The present invention relates to a vacuum pressure control system used for depressurization of a vacuum chamber for chemical reaction in a physics and chemistry machine or the like.

例えば、半導体の製造装置においては理化学処理が真空チャンバ内で行われるが、このとき真空チャンバの減圧には真空ポンプが使用され、これらの真空ポンプと真空チャンバとを結ぶ外部流路の開閉には真空調圧用バルブが用いられ、真空調圧システムが形成される。
この真空調圧用バルブは、例えば、特許文献1に記載されているように、真空ポンプと真空チャンバとに接続される二つのポートと、これらのポート同士を結ぶ内部流路と、この内部流路中に形成された弁座と、この弁座を開閉する弁部材と、この弁部材を開閉操作するピストンとを有していて、該ピストンの位置制御により上記弁部材の弁開度を設定し、真空チャンバ内の真空圧力の変化分を補償して、チャンバ内を必要な真空圧力に維持するようにしている。
For example, in a semiconductor manufacturing apparatus, physicochemical processing is performed in a vacuum chamber. At this time, a vacuum pump is used to depressurize the vacuum chamber, and an external flow path connecting the vacuum pump and the vacuum chamber is opened and closed. A vacuum pressure control valve is used to form a vacuum pressure control system.
For example, as described in Patent Document 1, the vacuum pressure regulating valve includes two ports connected to a vacuum pump and a vacuum chamber, an internal flow path connecting the ports, and the internal flow path. A valve member formed therein, a valve member for opening and closing the valve seat, and a piston for opening and closing the valve member, and the valve opening degree of the valve member is set by position control of the piston. By compensating for the change in the vacuum pressure in the vacuum chamber, the inside of the chamber is maintained at the required vacuum pressure.

このような真空調圧用バルブにおける弁部材の開度を、簡単、迅速に精度良く調節できるようにするため、上記特許文献1の真空調圧用バルブにおいては、電動モータによって駆動される調節軸を設けて、位置調節された調節軸に当接する位置まで上記ピストンを駆動するように構成している。
また、一般的に、電動モータ単独で真空調圧用バルブの開度調整を行う場合にも、それを精度よく行うことができる。
In order to be able to adjust the opening degree of the valve member in such a vacuum pressure regulating valve easily, quickly and accurately, the vacuum pressure regulating valve of Patent Document 1 is provided with an adjusting shaft driven by an electric motor. Thus, the piston is driven to a position where it comes into contact with the adjusted adjustment shaft.
In general, when the opening degree of the vacuum pressure adjusting valve is adjusted by the electric motor alone, it can be accurately performed.

しかしながら、電動モータを単独で用いる場合には、その供給電源が遮断されたときに弁部材の駆動力が失われるので、停電時には弁開度がその位置で保持されてしまうという問題がある。
また、上記特許文献1に記載されているような真空調圧用バルブでは、弁部材に連結されたピストンを、電動モータにより駆動されて位置調節された調節軸に当接する位置まで駆動するように構成しているので、該ピストンを調節軸に強い圧接力で圧接した状態で電動モータを駆動する必要が生じ、この駆動を可能にするには、該電動モータを比較的出力が大きいものにすると同時に、該モータの回転運動を往復直線運動に変換する変換機構を上記圧接力に耐えるものとする必要があり、そのため、小型で安価な電動モータや変換機構を使用することができず、この問題に対する対策を考慮する必要があった。
However, when the electric motor is used alone, the driving force of the valve member is lost when the power supply is shut off, so that there is a problem that the valve opening is held at that position in the event of a power failure.
Further, in the vacuum pressure regulating valve as described in Patent Document 1, the piston connected to the valve member is configured to be driven to a position where the piston contacts the adjustment shaft that is driven and adjusted by the electric motor. Therefore, it is necessary to drive the electric motor in a state where the piston is pressed against the adjustment shaft with a strong pressing force. To enable this driving, the electric motor is made to have a relatively large output. The conversion mechanism that converts the rotational motion of the motor into a reciprocating linear motion needs to withstand the pressure contact force. Therefore, a small and inexpensive electric motor or conversion mechanism cannot be used. It was necessary to consider measures.

特開2005−76829号公報JP 2005-76829 A

本発明の技術的課題は、パイロット流体圧で弁部材を駆動する受圧部材の停止位置を設定するための調整部材の駆動を、小型で安価な電動モータによって行うことを可能にした真空調圧システムを提供することにある。
本発明の他の技術的課題は、上記電動モータを用いた上記受圧部材と調整部材の押付け力をほぼ一定に保ち、それによって、弁部材の開度を迅速且つ正確に制御することができるようにした制御性のよい真空調圧システムを提供することにある。
The technical problem of the present invention is that a vacuum pressure adjustment system that enables a small and inexpensive electric motor to drive an adjustment member for setting a stop position of a pressure receiving member that drives a valve member with pilot fluid pressure. Is to provide.
Another technical problem of the present invention is that the pressing force of the pressure receiving member and the adjusting member using the electric motor can be kept substantially constant, and thereby the opening degree of the valve member can be controlled quickly and accurately. An object of the present invention is to provide a vacuum control system with good controllability.

また、本発明の他の技術的課題は、上記調整部材を駆動するための電動モータに付設する負荷検出手段として、電動モータに供給する駆動電流を検出する検出手段を利用し、更に、電動モータに付設したエンコーダに、弁部材の開度を決定する受圧部材の位置を検出するための位置センサーとしての機能を持たせ、上記受圧部材と調整部材との間に押付け力を検出するための手段を設けたり、受圧部材の位置検出のために一般的な位置センサー(リニアセンサー)を設けたりする場合に比して、構造的に簡単化した真空調圧システムを提供することにある。   Another technical problem of the present invention is to use a detection means for detecting a drive current supplied to the electric motor as a load detection means attached to the electric motor for driving the adjusting member. Means for detecting a pressing force between the pressure receiving member and the adjusting member by causing the encoder attached to the valve to have a function as a position sensor for detecting the position of the pressure receiving member for determining the opening degree of the valve member It is to provide a vacuum pressure control system that is structurally simplified as compared with the case where a general position sensor (linear sensor) is provided for detecting the position of the pressure receiving member.

上記課題を解決するため、本発明は、真空チャンバ及び真空ポンプに接続するための第1及び第2のメインポート、これら両メインポートを結ぶ流路、及び該流路中に弁座が設けられたバルブハウジングと、該バルブハウジング内に設けられ、上記弁座を開閉する弁部材と、この弁部材から上記バルブハウジングの軸線方向に延びて先端が流体圧駆動部に達する弁シャフトと、上記弁部材を弁座の閉鎖方向に向けて付勢する復帰ばねとを有する弁主体部、上記弁シャフトの先端に取り付けられた受圧部材と、この受圧部材に上記弁部材が開放する方向の流体圧を作用させる受圧室と、この受圧室にパイロット流体を給排するためのパイロットポートとを有する上記流体圧駆動部、並びに、上記受圧部材の背後に当接する調整部材と、該調整部材を回転−直動変換機構を介して任意の位置まで無段階に前後進駆動する電動モータとを有する弁開度調節部を備えることにより構成される真空調圧用バルブに、上記受圧室にパイロット流体を給排する電磁弁装置、並びに、少なくとも、上記電動モータの回転負荷を検出する負荷検出手段の出力、上記電動モータの回転量を検出するエンコーダの出力及び外部からの制御指令が入力され、それらに基づいて、上記電動モータ及び上記電磁弁装置の駆動を制御するコントローラを付設することにより構成される真空調圧システムにおいて、上記コントローラに次のような機能を持たせたことを特徴とするものである。   In order to solve the above problems, the present invention is provided with first and second main ports for connection to a vacuum chamber and a vacuum pump, a flow path connecting both the main ports, and a valve seat in the flow path. A valve housing provided in the valve housing for opening and closing the valve seat, a valve shaft extending from the valve member in the axial direction of the valve housing and having a tip reaching the fluid pressure drive unit, and the valve A valve main body having a return spring that biases the member toward the closing direction of the valve seat, a pressure receiving member attached to the tip of the valve shaft, and a fluid pressure in a direction in which the valve member opens to the pressure receiving member. The fluid pressure drive unit having a pressure receiving chamber to be operated, and a pilot port for supplying and discharging pilot fluid to and from the pressure receiving chamber, an adjustment member that contacts the back of the pressure receiving member, and the adjustment unit A vacuum pressure adjusting valve having a valve opening degree adjusting unit having an electric motor that continuously drives back and forth to an arbitrary position via a rotation-linear motion conversion mechanism. And at least an output of a load detection means for detecting the rotational load of the electric motor, an output of an encoder for detecting the rotation amount of the electric motor, and an external control command, In a vacuum pressure regulation system configured by adding a controller for controlling the driving of the electric motor and the electromagnetic valve device, the controller has the following functions: It is.

即ち、上記コントローラは、上記制御指令に基づいて電動モータに必要な駆動電流を供給し、上記エンコーダの出力によって与えられる調整部材の位置が指定の位置になるように制御する位置制御、及び、上記負荷検出手段の出力によって与えられる上記調整部材と受圧部材との押付け力に応じた電動モータの回転負荷が、設定された上限値と下限値との間にあるか否かを検知し、それが当該上下限値間を逸脱する場合に、受圧部材と調整部材とを当該上下限値間の力で押付けるためのパイロット流体圧を上記受圧室に供給するように制御信号を電磁弁装置に出力するパイロット流体圧制御を行い、それによって、上記受圧部材と調整部材とを上記上下限値間の力で押付けた状態で電動モータを動作させる機能を有するものとして構成される。   That is, the controller supplies a driving current necessary for the electric motor based on the control command, and controls the position of the adjusting member given by the output of the encoder to be a specified position; and It is detected whether the rotational load of the electric motor according to the pressing force between the adjusting member and the pressure receiving member given by the output of the load detecting means is between a set upper limit value and a lower limit value. When deviating between the upper and lower limit values, a control signal is output to the solenoid valve device so that pilot fluid pressure for pressing the pressure receiving member and the adjusting member with the force between the upper and lower limit values is supplied to the pressure receiving chamber. It is configured to have a function of operating the electric motor in a state in which the pilot fluid pressure control is performed and the pressure receiving member and the adjustment member are pressed with the force between the upper and lower limit values.

本発明の真空調圧システムの好ましい実施形態においては、上記パイロット流体圧が、復帰ばねの作用力、弁部材に作用する真空チャンバ内圧力に基づく作用力、及び、上記調整部材と受圧部材との間に常に作用させておくバイアス分との和に相当する押付け力を発生させるものとして設定される。
また、上記流体圧駆動部をシリンダ部によって構成し、上記受圧部材をピストンによって構成することができる。
In a preferred embodiment of the vacuum pressure regulating system according to the present invention, the pilot fluid pressure includes an action force of the return spring, an action force based on the pressure in the vacuum chamber acting on the valve member, and the adjustment member and the pressure receiving member. It is set so as to generate a pressing force corresponding to the sum of the bias that is always applied in between.
Further, the fluid pressure driving part can be constituted by a cylinder part, and the pressure receiving member can be constituted by a piston.

本発明の真空調圧システムの他の好ましい実施形態においては、上記電動モータの負荷検出手段として、該電動モータに供給する駆動電流を検出する検出手段を用い、コントローラに、上記電動モータの位置制御のための駆動時に上記検出手段で検出した電動モータの駆動電流が、調整部材と受圧部材との押付け力による上記回転負荷の上限値と下限値に対応した電流設定値の上限値と下限値との間にあるか否かを検知し、それが当該上下限値間を逸脱する場合に、上記電動モータの駆動電流が上記電流設定値の上下限間にあるようにするための制御信号を電磁弁装置に出力する機能を具備させ、あるいは、上記電動モータにその回転量を検出するエンコーダを付設し、該エンコーダに弁部材の開度を与える受圧部材の位置を検出するための位置センサーとしての機能を保有させる。   In another preferred embodiment of the vacuum pressure regulation system of the present invention, a detection means for detecting a drive current supplied to the electric motor is used as the load detection means for the electric motor, and the position control of the electric motor is performed in the controller. The driving current of the electric motor detected by the detection means during driving for the upper limit value and the lower limit value of the current setting value corresponding to the upper limit value and the lower limit value of the rotational load due to the pressing force of the adjustment member and the pressure receiving member, If it deviates between the upper and lower limit values, a control signal for causing the drive current of the electric motor to be between the upper and lower limit values of the current set value is detected. For detecting the position of a pressure receiving member that has a function of outputting to a valve device, or an encoder that detects the amount of rotation of the electric motor, and gives the opening of the valve member to the encoder To retain the function as a location sensor.

本発明の真空調圧システムの他の好ましい実施形態においては、上記電磁弁装置が、給気用及び排気用の複数の2ポート電磁弁で構成され、該給気用の電磁弁の入力側が空気圧源に接続され、該排気用の電磁弁の出力側が大気に開放され、該給気用の電磁弁の出力側及び排気用の電磁弁の入力側が上記パイロットポートに接続され、あるいは、上記電磁弁装置が、3位置3ポート電磁弁で構成され、該電磁弁の入力側が空気圧源に接続され、該電磁弁の出力側が上記パイロットポートに接続され、該電磁弁の排気側が大気に開放される。   In another preferred embodiment of the vacuum pressure control system of the present invention, the solenoid valve device is composed of a plurality of two-port solenoid valves for supply and exhaust, and the input side of the solenoid valve for supply is pneumatic. And the output side of the exhaust solenoid valve is connected to the atmosphere, and the output side of the supply solenoid valve and the input side of the exhaust solenoid valve are connected to the pilot port, or the solenoid valve The device comprises a three-position three-port solenoid valve, the input side of the solenoid valve is connected to a pneumatic source, the output side of the solenoid valve is connected to the pilot port, and the exhaust side of the solenoid valve is opened to the atmosphere.

更に、本発明の真空調圧システムの他の好ましい実施形態においては、上記コントローラとして、真空チャンバに設けた圧力センサーによって検知される真空圧力が、真空チャンバの設定圧力になるように、電動モータ及び電磁弁装置の駆動を制御する機能を有するものが用いられる。
この場合、上記コントローラには、予め真空引きの設定速度と設定加速度を保有させ、制御動作開始直後に、上記設定加速度により各制御周期における真空圧力の変化の速度を緩慢に増加させ、真空チャンバの真空引き動作が穏やかに開始される加速度制御領域を経て、真空圧力の変化速度が上記設定速度に達した後にその設定速度を維持するように制御する制御機能を具備させることができる。
Furthermore, in another preferred embodiment of the vacuum pressure regulation system of the present invention, the controller is an electric motor and a controller so that the vacuum pressure detected by a pressure sensor provided in the vacuum chamber becomes a set pressure of the vacuum chamber. Those having the function of controlling the drive of the electromagnetic valve device are used.
In this case, the controller previously holds a set speed and a set acceleration for evacuation, and immediately after the start of the control operation, the speed of change in the vacuum pressure in each control cycle is slowly increased by the set acceleration. Through an acceleration control region where the vacuuming operation is started gently, it is possible to provide a control function for performing control so that the set speed is maintained after the change speed of the vacuum pressure reaches the set speed.

上記構成を有する本発明の真空調圧システムにおいては、コントローラに対して真空チャンバの真空圧力についての設定入力が与えられ、それに基づいてコントローラから調整部材を所定の位置まで駆動するための駆動電流が電動モータに送られると、該モータが駆動されて、それに付設したエンコーダから調整部材の位置に対応する信号がコントローラにフィードバックされ、常に指定された位置で該モータが止まるようにサーボ機構が動作する。
上記コントローラにおいては、真空チャンバに設けた圧力センサーによって検知される真空圧力を、予め与えられた真空チャンバの圧力設定値と比較し、上記真空チャンバが設定圧力になるように、調整部材の位置を制御することもできる。
In the vacuum pressure regulation system of the present invention having the above-described configuration, a setting input for the vacuum pressure of the vacuum chamber is given to the controller, and based on this, a drive current for driving the adjustment member from the controller to a predetermined position is generated. When sent to the electric motor, the motor is driven and a signal corresponding to the position of the adjusting member is fed back to the controller from the encoder attached thereto, and the servo mechanism operates so that the motor always stops at the designated position. .
In the controller, the vacuum pressure detected by the pressure sensor provided in the vacuum chamber is compared with a preset pressure value of the vacuum chamber, and the position of the adjusting member is adjusted so that the vacuum chamber becomes the set pressure. It can also be controlled.

一方、上記コントローラは、流体圧駆動部におけるピストン等の受圧部材とその位置決めを行う調整部材とを、常にほぼ一定の力で押付けた状態で該受圧部材を動作させるために、上記調整部材の位置によって決まる受圧部材の位置に応じて、〔復帰ばねの作用力+弁部材等に作用する真空チャンバ内圧力に基づく作用力+調整部材と受圧部材との間に常に作用させておくバイアス分の力〕に対抗する力を発生させるパイロット流体圧を受圧室に供給するように、コントローラから電磁弁装置に制御信号が出力される。   On the other hand, the controller controls the position of the adjusting member in order to operate the pressure receiving member such as a piston in the fluid pressure driving unit and the adjusting member that positions the pressure receiving member with a substantially constant force. Depending on the position of the pressure receiving member determined by the following: [the acting force of the return spring + the acting force based on the pressure in the vacuum chamber acting on the valve member, etc. + the force of the bias that is always applied between the adjusting member and the pressure receiving member A control signal is output from the controller to the solenoid valve device so as to supply the pilot fluid pressure that generates a force against the pressure to the pressure receiving chamber.

これにより、受圧部材は上記パイロット流体圧で調整部材にほぼ一定の力で押付ける位置まで駆動され、上記バイアス分の力で常に調整部材に押付けられることになる。このことは、復帰ばねの作用力及び弁部材に作用する真空チャンバ内圧力に基づく作用力を、受圧部材に作用するパイロット空気圧で相殺することにより、電動モータがそれらの作用力に対抗する駆動力を持たなくてもよく、電動モータとしてわずかな力が出力できる小型のものを使用することを可能にするものである。
また、上記コントローラは、上記受圧部材と調整部材とを常にほぼ一定のバイアス分の力で押付けた状態で受圧部材を動作させるように制御するため、電動モータに付設して該電動モータの回転量を検出するエンコーダを、バルブの開度を決定するところの受圧部材位置を検出する位置センサーとして機能させることができる。
As a result, the pressure receiving member is driven to a position where it is pressed against the adjusting member with a substantially constant force by the pilot fluid pressure, and is always pressed against the adjusting member with the force corresponding to the bias. This is because the driving force that the electric motor counters against the acting force by canceling the acting force based on the acting force of the return spring and the pressure in the vacuum chamber acting on the valve member with the pilot air pressure acting on the pressure receiving member. It is possible to use a small motor that can output a slight force as an electric motor.
Further, the controller controls the pressure receiving member and the adjustment member so that the pressure receiving member is operated in a state in which the pressure receiving member and the adjustment member are always pressed with a force of a substantially constant bias, so that the rotation amount of the electric motor is attached to the electric motor. The encoder that detects the pressure can function as a position sensor that detects the position of the pressure receiving member that determines the opening of the valve.

更に、上記真空調圧システムにおいては、流体圧駆動部の受圧室に供給されるパイロット流体の圧力によって調整部材への受圧部材の押付け力は変化するが、電動モータが駆動されると、その押付け力に応じて電動モータの負荷検出手段(駆動電流の検知手段)で検出される回転負荷が増減するので、コントローラにおいて、電動モータに与える駆動電流が設定された上限値と下限値との間にあるか否かを検出し、それが当該上下限値間の範囲を逸脱する場合には、電磁弁装置を作動させる信号がコントローラより出力され、該電磁弁装置において、〔復帰ばねの作用力+弁部材に作用する真空チャンバ内圧力に基づく作用力+調整部材と受圧部材との間に常に作用させておくバイアス分の力〕に対抗する力を発生させるパイロット流体圧が受圧室に供給され、受圧部材と調整部材とを常に略一定の力で押付けるため、小型の電動モータを用い得るばかりでなく、回転−直動変換機構等の電動モータから調整部材に至る駆動力伝達部分の構成を小型化しても、調整部材に所期の動作を行わせることができる。   Further, in the above vacuum pressure control system, the pressing force of the pressure receiving member against the adjusting member varies depending on the pressure of the pilot fluid supplied to the pressure receiving chamber of the fluid pressure driving unit, but when the electric motor is driven, the pressing force Since the rotational load detected by the load detection means (drive current detection means) of the electric motor increases or decreases according to the force, the controller sets the drive current applied to the electric motor between the upper limit value and the lower limit value. When it is detected whether it deviates from the range between the upper and lower limit values, a signal for operating the solenoid valve device is output from the controller, and in the solenoid valve device, [acting force of the return spring + The pilot fluid pressure that generates a force that opposes the (acting force based on the pressure in the vacuum chamber acting on the valve member + the force corresponding to the bias that always acts between the adjusting member and the pressure receiving member) A small electric motor can be used because the pressure receiving member and the adjustment member are always pressed with a substantially constant force supplied to the pressure chamber, and the drive from the electric motor such as a rotation-linear motion conversion mechanism to the adjustment member is also possible. Even if the configuration of the force transmission portion is reduced in size, the adjustment member can be made to perform an intended operation.

以上に詳述した本発明の真空調圧システムによれば、パイロット流体圧で弁部材を駆動する受圧部材の停止位置を設定するための調整部材の駆動を、小型で安価な電動モータによって行うことができ、また、上記電動モータを用いた上記受圧部材と調整部材の押付け力をほぼ一定に保ち、それによって、弁部材の開度を迅速且つ正確に制御することができる。
更に、上記調整部材を駆動するための電動モータに付設する負荷検出手段として、電動モータに供給する駆動電流を検出する検出手段を利用し、また、電動モータに付設したエンコーダに、弁部材の開度を決定する受圧部材の位置を検出するための位置センサーとしての機能を持たせるので、上記受圧部材と調整部材との間に押付け力を検出するための手段を設けたり、受圧部材の位置検出のために一般的な位置センサーを設けたりする場合に比して、構造的に簡単化した真空調圧システムを得ることができる。
According to the vacuum pressure regulation system of the present invention described in detail above, the adjustment member for setting the stop position of the pressure receiving member that drives the valve member with the pilot fluid pressure is driven by a small and inexpensive electric motor. In addition, the pressing force of the pressure receiving member and the adjusting member using the electric motor can be kept substantially constant, and thereby the opening degree of the valve member can be controlled quickly and accurately.
Further, as a load detection means attached to the electric motor for driving the adjusting member, a detection means for detecting a drive current supplied to the electric motor is used, and the valve member is opened to an encoder attached to the electric motor. Since it has a function as a position sensor for detecting the position of the pressure receiving member that determines the degree, a means for detecting the pressing force is provided between the pressure receiving member and the adjusting member, or the position of the pressure receiving member is detected. Therefore, it is possible to obtain a vacuum pressure control system that is structurally simplified as compared with the case where a general position sensor is provided.

図1は、本発明に係る真空調圧システムにおいて用いる真空調圧用バルブの代表的な実施形態を、図2は該真空調圧用バルブを含む真空調圧システムの全体的な構成例を示している。
この真空調圧用バルブは、第1及び第2のメインポート11,12間の流路13を開閉する弁部材15を備えた弁主体部1と、上記弁部材15を開閉操作するピストン16を備えた流体圧駆動部2と、上記弁部材15の開度を設定する弁開度調節部3とを備え、この真空調圧用バルブに、図2に示すように、上記流体圧駆動部2にパイロット流体を給排する電磁弁装置4、制御指令や後述する電動モータ45の負荷、上記ピストン16の位置の情報等に基づいて上記弁部材15の開度を制御するコントローラを接続している。
FIG. 1 shows a typical embodiment of a vacuum pressure regulating valve used in a vacuum pressure regulating system according to the present invention, and FIG. 2 shows an overall configuration example of a vacuum pressure regulating system including the vacuum pressure regulating valve. .
The vacuum pressure adjusting valve includes a valve main body 1 including a valve member 15 that opens and closes a flow path 13 between first and second main ports 11 and 12, and a piston 16 that opens and closes the valve member 15. 2 and a valve opening degree adjusting unit 3 for setting the opening degree of the valve member 15. The vacuum pressure adjusting valve is connected to the fluid pressure driving unit 2 as shown in FIG. An electromagnetic valve device 4 that supplies and discharges fluid is connected to a controller that controls the opening degree of the valve member 15 based on a control command, a load of an electric motor 45 described later, information on the position of the piston 16, and the like.

更に具体的に説明すると、上記弁主体部1における中空のバルブハウジング10には、図2に示すように、真空チャンバ5に接続するための第1のメインポート11と、真空ポンプ6に接続するための第2のメインポート12とが設けられ、バルブハウジング10の内部には、図1に示すように、上記両メインポート11,12を結ぶ流路13が形成されると共に、上記第1のメインポート11がこの流路13に開口する開口部11aの回りを取り囲むように弁座14が形成されている。   More specifically, the hollow valve housing 10 in the valve main body 1 is connected to the first main port 11 for connection to the vacuum chamber 5 and the vacuum pump 6 as shown in FIG. And a flow path 13 connecting the main ports 11 and 12 is formed inside the valve housing 10 as shown in FIG. A valve seat 14 is formed so that the main port 11 surrounds the opening 11 a that opens to the flow path 13.

上記バルブハウジング10の内部には、上記弁座14を開閉するポペット式の上記弁部材15が弁座14と同軸状に設けられている。この弁部材15はディスク形をしていて、その外周に近い部位に、上記弁座14に接離する円環状のゴム弾性材からなる弁シール部材17が取り付けられている。
また、上記弁部材15の背面中央部には、弁シャフト20が取り付けられ、この弁シャフト20は、バルブハウジング10の内部をその中心軸線に沿って延び、弁主体部1と連結されていて流体圧駆動部2を区画するシリンダハウジング30の隔壁31を貫通し、その先端が流体圧駆動部2の内部に延出し、ピストン16に連結されている。
Inside the valve housing 10, the poppet type valve member 15 that opens and closes the valve seat 14 is provided coaxially with the valve seat 14. The valve member 15 has a disk shape, and a valve seal member 17 made of an annular rubber elastic material that contacts and separates from the valve seat 14 is attached to a portion near the outer periphery thereof.
A valve shaft 20 is attached to the center of the back surface of the valve member 15. The valve shaft 20 extends along the central axis of the valve housing 10 and is connected to the valve main body 1 so as to be fluid. It penetrates through a partition wall 31 of a cylinder housing 30 that partitions the pressure drive unit 2, and its tip extends into the fluid pressure drive unit 2 and is connected to the piston 16.

更に、上記弁部材15の背面にはばね座22が設けられ、該ばね座22と上記隔壁31に当接する座板32との間に、上記弁部材15を弁座14の閉鎖方向に向けて付勢するコイル状の復帰ばね23が設けられている。また、上記弁部材15の背面には、上記弁シャフト20及び復帰ばね23の回りを取り囲むように、耐食性素材で形成された伸縮自在のベローズ24が設けられ、これによりシャフト20を流路13から隔離すると共に、該流路13の流体圧駆動部2側を封止している。   Further, a spring seat 22 is provided on the back surface of the valve member 15, and the valve member 15 is directed in the closing direction of the valve seat 14 between the spring seat 22 and a seat plate 32 that contacts the partition wall 31. A coiled return spring 23 is provided for biasing. The valve member 15 is provided with a telescopic bellows 24 made of a corrosion-resistant material so as to surround the valve shaft 20 and the return spring 23 on the back surface. While isolating, the fluid pressure drive unit 2 side of the flow path 13 is sealed.

上記流体圧駆動部2は、上記バルブハウジング10に同軸に結合された上記シリンダハウジング30を有している。このシリンダハウジング30は、上記隔壁31を一体に備えると共に、内部にシリンダ孔33を有し、このシリンダ孔33の内部に上記ピストン16が、シール部材34を介して摺動自在に収容され、上述したように弁シャフト20が隔壁31を摺動自在に貫通してシリンダ孔33内に延出し、その先端部に上記ピストン16が連結されている。そして、上記ピストン16の一面側で、該ピストン16と上記隔壁31との間に受圧室37が形成され、この受圧室37が、上記シリンダハウジング30の側面に開口するパイロットポート38に接続され、上記ピストン16の他面側の室39は外部に開放している。   The fluid pressure drive unit 2 includes the cylinder housing 30 that is coaxially coupled to the valve housing 10. The cylinder housing 30 integrally includes the partition wall 31 and has a cylinder hole 33 therein. The piston 16 is slidably accommodated in the cylinder hole 33 via a seal member 34. As described above, the valve shaft 20 slidably penetrates the partition wall 31 and extends into the cylinder hole 33, and the piston 16 is connected to the tip thereof. A pressure receiving chamber 37 is formed between the piston 16 and the partition wall 31 on one surface side of the piston 16, and the pressure receiving chamber 37 is connected to a pilot port 38 opened on the side surface of the cylinder housing 30. The chamber 39 on the other surface side of the piston 16 is open to the outside.

上記実施例においては、上記流体圧駆動部2における弁シャフト20の駆動を、その先端に取り付けたピストン16によって行うようにしているが、該流体圧駆動部2はシリンダ孔33内にピストン16を摺動自在に挿嵌した構成に限るものではなく、ベロフラムやベローズ等の受圧部材を設けて、該受圧部材により上記弁部材15が開放する方向の流体圧を作用させる受圧室37を形成させ、この受圧室37にパイロット流体を給排するためのパイロットポート38を開口させることができる。   In the above embodiment, the valve shaft 20 in the fluid pressure drive unit 2 is driven by the piston 16 attached to the tip of the fluid pressure drive unit 2, but the fluid pressure drive unit 2 places the piston 16 in the cylinder hole 33. The pressure receiving member 37 is not limited to the slidably inserted configuration, and a pressure receiving member 37 such as a bellowram or bellows is provided, and the pressure receiving chamber 37 for applying the fluid pressure in the direction in which the valve member 15 is opened by the pressure receiving member is formed. A pilot port 38 for supplying and discharging pilot fluid can be opened in the pressure receiving chamber 37.

上記弁開度調節部3は、上記シリンダハウジング30の端部に結合されたカバーブロック40の内部に組み込まれ、上記ピストン16の背後に先端が当接する円筒状をした調整部材41と、電動モータ45の出力軸46から互いに噛合する歯車42a,42bを介して回転駆動される回転軸43との間に、回転−直動変換機構47を設けることにより構成されている。該回転−直動変換機構47は、上記回転軸43の回転をその軸線方向の直動に変換し、上記調整部材41を任意の位置まで無段階的に前後進駆動するものである。   The valve opening degree adjusting unit 3 is incorporated in a cover block 40 coupled to the end of the cylinder housing 30, and has a cylindrical adjustment member 41 whose tip abuts behind the piston 16, and an electric motor. The rotation-linear motion conversion mechanism 47 is provided between the output shaft 46 of the rotation 45 and the rotation shaft 43 that is rotationally driven via gears 42a and 42b meshing with each other. The rotation-linear motion conversion mechanism 47 converts the rotation of the rotary shaft 43 into a linear motion in the axial direction, and drives the adjustment member 41 forward and backward in a stepless manner to an arbitrary position.

上記電動モータ45は、正逆回転可能なモータであり、その出力軸46の回転負荷を検出して、その信号を該コントローラに出力するところの負荷検出手段(図示せず)を備えている。この上記負荷検出手段としては、電動モータ45の駆動電流自体を検知し、あるいは、その駆動電流が予め設定した設定範囲の上限または下限を超えているか否かを検知して、そのデータをコントローラに入力するものとして構成することができる。
また、上記電動モータ45には、その回転量を検出するエンコーダ(図示せず)が付設される。このエンコーダは、弁部材15を開閉するピストン16の位置を検出するための位置センサーとしての機能を有し、従って、その出力によってコントローラには調整部材41の位置が与えられることになる。
The electric motor 45 is a motor that can rotate forward and reverse, and includes load detection means (not shown) that detects the rotational load of the output shaft 46 and outputs the signal to the controller. The load detection means detects the drive current itself of the electric motor 45, or detects whether the drive current exceeds an upper limit or lower limit of a preset setting range, and sends the data to the controller. Can be configured as input.
The electric motor 45 is provided with an encoder (not shown) for detecting the amount of rotation. This encoder has a function as a position sensor for detecting the position of the piston 16 that opens and closes the valve member 15. Therefore, the position of the adjustment member 41 is given to the controller by the output.

上記電動モータ45の正逆回転運動を往復直進運動に変換する上記回転−直動変換機構47は、上記回転軸43におけるボールねじ軸部43aの回転を、上記調整部材41に設けた移動子(ボールねじナット)51の直動に変換するところのボールねじで構成されている。
なお、上記調整部材41及び移動子51には、カバーブロック40内にねじ軸部43aと平行に設置されたガイド軸52に摺動自在に係合して非回転で摺動させるための回転規制部41a,51aを設けている。
また、上記調整部材41としては、上述したボールねじからなる回転−直動変換機構47により駆動されるものに限るものではなく、上記電動モータ45の駆動が直動に変換され、ピストン16等の受圧部材の背後に押付けて、該受圧部材に追随動作するようにした部材であればよい。
The rotation-linear motion conversion mechanism 47 that converts the forward / reverse rotational motion of the electric motor 45 into a reciprocating linear motion is a moving element (on the adjustment member 41) that rotates the ball screw shaft portion 43a in the rotational shaft 43. It is composed of a ball screw that is converted into a linear motion of a ball screw nut) 51.
Note that the adjustment member 41 and the moving element 51 have a rotation restriction for slidingly engaging with a guide shaft 52 installed in the cover block 40 in parallel with the screw shaft portion 43a so as not to rotate. Portions 41a and 51a are provided.
Further, the adjustment member 41 is not limited to the one driven by the rotation-linear motion conversion mechanism 47 formed of the above-described ball screw, and the drive of the electric motor 45 is converted into the linear motion, and the piston 16 or the like Any member may be used as long as it is pressed behind the pressure receiving member so as to follow the pressure receiving member.

上記電磁弁装置4は、図2に示すように、給気用及び排気用の二つの2ポート電磁弁62a,62bで構成され、該給気用の電磁弁62aの入力側が、ピストン16を動作させる最大圧力を設定可能にした圧力調整弁63を介して空気圧源65に接続され、該排気用の電磁弁62bの出力側が大気に開放され、該給気用の電磁弁62aの出力側及び排気用の電磁弁62bの入力側が、管路66を介して上記パイロットポート38に接続されている。上記圧力調整弁63の出力圧は、現実的には、復帰ばね23の作用力、弁部材15に作用する真空チャンバ5内圧力に基づく作用力、及び調整部材41と受圧部材(ピストン16)との間に常に作用させておくバイアス分の力の総和の最大値を主体とし、流体圧駆動部2における摩擦等の影響をも考慮して決定する必要がある。   As shown in FIG. 2, the electromagnetic valve device 4 includes two 2-port electromagnetic valves 62a and 62b for supply and exhaust, and the input side of the supply solenoid valve 62a operates the piston 16. It is connected to an air pressure source 65 via a pressure regulating valve 63 that can set the maximum pressure to be set, the output side of the exhaust solenoid valve 62b is opened to the atmosphere, the output side of the solenoid valve 62a for supply and the exhaust The input side of the electromagnetic valve 62 b for use is connected to the pilot port 38 through a pipe line 66. Actually, the output pressure of the pressure regulating valve 63 includes the acting force of the return spring 23, the acting force based on the pressure in the vacuum chamber 5 acting on the valve member 15, and the adjusting member 41 and the pressure receiving member (piston 16). It is necessary to determine mainly the maximum value of the total force of the bias that is always applied during the period, and also taking into consideration the influence of friction and the like in the fluid pressure drive unit 2.

上記両2ポート電磁弁62a,62bは、上記コントローラからの制御信号により開閉を制御されるが、空気圧源65から上記受圧室37に供給されるパイロット流体を給気用の電磁弁62aによって通断し、また、上記受圧室37から排出されるパイロット流体を排気用の電磁弁62bによって通断し、該受圧室37の圧力を制御するもので、それらの電磁弁62a,62bを一つの3位置3ポート電磁方向切換弁として構成することができる。この場合、上記2ポート電磁弁62a,62bに代えて単一の3位置3ポート電磁弁を用い、該電磁弁を空気圧源65からの圧縮空気を上記パイロットポート38に給排可能に接続することになる。また、上記給気用及び排気用の電磁弁として、オン−オフ弁ばかりでなく、アナログ弁を使用することができる。   The two-port solenoid valves 62a and 62b are controlled to be opened and closed by a control signal from the controller, but the pilot fluid supplied from the air pressure source 65 to the pressure receiving chamber 37 is cut off by the supply solenoid valve 62a. Further, the pilot fluid discharged from the pressure receiving chamber 37 is cut off by the electromagnetic valve 62b for exhaust, and the pressure of the pressure receiving chamber 37 is controlled. The electromagnetic valves 62a and 62b are arranged in one three position. It can be configured as a three-port electromagnetic direction switching valve. In this case, a single three-position three-port solenoid valve is used in place of the two-port solenoid valves 62a and 62b, and the solenoid valve is connected to the pilot port 38 so that compressed air from the air pressure source 65 can be supplied and discharged. become. In addition to the on-off valves, analog valves can be used as the supply and exhaust solenoid valves.

上記コントローラは、概略的には、上記電動モータ45に付設した負荷検出手段及びエンコーダの出力、真空チャンバ5の圧力を検出する真空圧力センサー60の出力、並びに外部からの設定圧力等の制御指令の信号が入力され、それらに基づいて、上記電動モータ45及び上記電磁弁装置4の駆動を制御するものである。
更に具体的には、上記コントローラは、上記制御指令に基づいて電動モータ45に必要な駆動電流を供給し、上記エンコーダの出力によって与えられる調整部材41の位置が指定の位置になるように制御する位置制御、及び、上記電動モータ45の位置制御のための駆動時に、上記負荷検出手段の出力によって与えられる上記調整部材41と受圧部材(ピストン16)との押付け力に応じた電動モータ45の回転負荷(駆動電流)が、設定された上限値と下限値との間にあるか否かを検知し、それが当該上下限値間の範囲を逸脱する場合に、調整部材41とピストン16とを当該上下限値間の力で押付けるためのパイロット流体圧を上記受圧室37に供給するように制御信号を電磁弁装置4に出力するパイロット流体圧制御を行い、それによって、上記ピストン16と調整部材41とを上記上下限値間のバイアス分の力で押付けた状態で電動モータを動作させる機能を有するものである。
The controller generally includes control commands such as an output of a load detection means and an encoder attached to the electric motor 45, an output of a vacuum pressure sensor 60 for detecting the pressure in the vacuum chamber 5, and a set pressure from the outside. Signals are input, and the drive of the electric motor 45 and the electromagnetic valve device 4 is controlled based on these signals.
More specifically, the controller supplies a necessary drive current to the electric motor 45 based on the control command, and controls the position of the adjustment member 41 given by the output of the encoder to be a specified position. When driving for position control and position control of the electric motor 45, the rotation of the electric motor 45 according to the pressing force between the adjustment member 41 and the pressure receiving member (piston 16) given by the output of the load detection means. When it is detected whether the load (drive current) is between the set upper limit value and the lower limit value, and it deviates from the range between the upper and lower limit values, the adjustment member 41 and the piston 16 are moved. Pilot fluid pressure control is performed to output a control signal to the solenoid valve device 4 so that a pilot fluid pressure for pressing with the force between the upper and lower limit values is supplied to the pressure receiving chamber 37. Te is an adjustment member 41 and the piston 16 has a function to operate the electric motor in a state of pressing by the bias component of the force between the upper and lower limit values.

従って、上記受圧室37に供給するパイロット流体圧は、上記調整部材41の位置によって決まるピストン16の位置に応じた復帰ばね23の作用力、弁部材15に作用する真空チャンバ5内圧力に基づく作用力、及び調整部材41と受圧部材(ピストン16)との間に常に作用させておくバイアス分の力、その他、流体圧駆動部2における摩擦等の総和に対応するものになる。   Therefore, the pilot fluid pressure supplied to the pressure receiving chamber 37 is based on the acting force of the return spring 23 corresponding to the position of the piston 16 determined by the position of the adjusting member 41 and the pressure in the vacuum chamber 5 acting on the valve member 15. This corresponds to the sum of the force, the bias force that is always applied between the adjusting member 41 and the pressure receiving member (piston 16), and the friction in the fluid pressure driving unit 2.

上記コントローラによる制御について更に具体的に説明すると、まず、該コントローラに対して真空チャンバの真空圧力についての設定入力を含む制御指令が与えられ、それに基づいて、コントローラから調整部材41を所定の位置まで駆動するための駆動電流が電動モータ45に送られると、該モータが駆動されて、それに付設したエンコーダから調整部材41の位置に対応する信号がコントローラにフィードバックされ、常に指定された位置で該モータが止まるようにサーボ機構が動作する。そして、外乱等によりその調整部材41の位置がずれても、即座に修正動作が行われ、調整部材41の位置制御が行われる。
また、上記コントローラにおいては、真空チャンバ5に設けた圧力センサー60によって検知される真空圧力を、予め与えられた真空チャンバ5の圧力設定値と比較し、上記真空チャンバ5が設定圧力になるように、電動モータ45の駆動で調整部材41の位置が制御される。
More specifically, the control by the controller will be described. First, a control command including a setting input for the vacuum pressure of the vacuum chamber is given to the controller, and based on the control command, the adjustment member 41 is moved from the controller to a predetermined position. When a driving current for driving is sent to the electric motor 45, the motor is driven, and a signal corresponding to the position of the adjusting member 41 is fed back to the controller from an encoder attached thereto, and the motor is always in a designated position. Servo mechanism operates to stop. Even if the position of the adjustment member 41 is shifted due to disturbance or the like, the correction operation is immediately performed, and the position control of the adjustment member 41 is performed.
In the controller, the vacuum pressure detected by the pressure sensor 60 provided in the vacuum chamber 5 is compared with a preset pressure setting value of the vacuum chamber 5 so that the vacuum chamber 5 becomes the set pressure. The position of the adjustment member 41 is controlled by driving the electric motor 45.

一方、上記ピストン16は、調整部材41と常にほぼ一定の力で押付けた状態で動作させるために、上記調整部材41の位置によって決まるピストン16の位置に応じて、〔復帰ばね23の作用力+弁部材等に作用する真空チャンバ5の圧力に基づく作用力+調整部材41とピストン16との間に常に作用させておくバイアス分の力〕に対抗する力を発生させるパイロット流体圧を受圧室37に供給するように、コントローラから給気用または排気用電磁弁62a,62bに制御信号が出力される。   On the other hand, the piston 16 is operated in a state where it is always pressed against the adjusting member 41 with a substantially constant force, and therefore, according to the position of the piston 16 determined by the position of the adjusting member 41, [acting force of the return spring 23+ The pressure receiving chamber 37 generates a pilot fluid pressure that generates a force that opposes the acting force based on the pressure of the vacuum chamber 5 acting on the valve member and the like + the force of the bias that always acts between the adjusting member 41 and the piston 16. A control signal is output from the controller to the supply or exhaust solenoid valves 62a and 62b.

これにより、ピストン16は上記パイロット流体圧で調整部材41にほぼ一定の力で押付ける位置まで駆動され、上記バイアス分の力で常に調整部材41に押付けられることになる。このことは、復帰ばね23の作用力及び弁部材15に作用する真空チャンバ5の圧力に基づく作用力を、ピストン16に作用するパイロット空気圧による作用力で相殺することにより、電動モータ45がそれらの作用力に対抗する駆動力を持たなくてもよく、電動モータ45としてわずかな力が出力できる小型のものを使用することを可能にするものである。その結果、真空調圧用バルブを小型にでき、設置上において有利であるばかりでなく、電力的にも優位になる。また、上記コントローラが上記ピストン16と調整部材41とを常にほぼ一定の力で押付けた状態でピストン16を動作させるように制御するため、電動モータ45に付設して該電動モータの回転量を検出するエンコーダを、バルブの開度を決定するところのピストン位置を検出する位置センサーとして機能させることができる。   As a result, the piston 16 is driven to a position where it is pressed against the adjustment member 41 with a substantially constant force by the pilot fluid pressure, and is always pressed against the adjustment member 41 with the force of the bias. This is because the action force based on the pressure of the vacuum chamber 5 acting on the return spring 23 and the pressure of the vacuum chamber 5 acting on the valve member 15 is canceled by the action force caused by the pilot air pressure acting on the piston 16. It is not necessary to have a driving force that opposes the acting force, and it is possible to use a small motor that can output a slight force as the electric motor 45. As a result, the vacuum pressure regulating valve can be reduced in size, which is advantageous not only in installation but also in power. In addition, since the controller controls the piston 16 so that the piston 16 is operated with the piston 16 and the adjustment member 41 being pressed with a substantially constant force, the controller is attached to the electric motor 45 to detect the rotation amount of the electric motor. It is possible to cause the encoder to function as a position sensor that detects the piston position that determines the opening of the valve.

また、上述したように、電動モータ45で所定の位置に調整部材41を移動させるようにサーボ機構が動作するので、外乱等により調整部材の位置がずれると、即座にその修正動作のために電動モータが駆動され、一方、流体圧駆動部2の受圧室37に供給されるパイロット流体の圧力によって調整部材41へのピストン16の押付け力は変化するが、上記修正動作等のために電動モータ45が駆動されると、その押付け力に応じて電動モータ45の駆動電流が増減し、この電動モータ45への駆動電流の大きさは、外乱の大きさともみなすことができる。   Further, as described above, the servo mechanism operates so as to move the adjustment member 41 to a predetermined position by the electric motor 45. Therefore, if the position of the adjustment member is shifted due to a disturbance or the like, the motor is immediately used for the correction operation. While the motor is driven, the pressing force of the piston 16 against the adjusting member 41 varies depending on the pressure of the pilot fluid supplied to the pressure receiving chamber 37 of the fluid pressure driving unit 2. Is driven, the drive current of the electric motor 45 increases or decreases according to the pressing force, and the magnitude of the drive current to the electric motor 45 can be regarded as the magnitude of the disturbance.

従って、コントローラにおいて、電動モータ45へ与える駆動電流が前記一定の範囲内にあるか否かを検出し、それが設定下限値に満たない場合には、ピストン16が調整部材41に押付けられているか否かが不明であるため、給気用の電磁弁62aを作動させる信号が出力され、受圧室37へのパイロット流体圧の供給によりピストン16を調整部材41に押付ける方向に駆動する。また、電動モータ45に与える駆動電流が設定値上限値を超えることにより過剰な押付け力が負荷されていると判断された場合には、排気用の電磁弁62bを作動させる信号がコントローラより出力され、受圧室37のパイロット流体圧を低下させて、上記押付け力を低下させる。   Therefore, in the controller, it is detected whether or not the drive current applied to the electric motor 45 is within the certain range, and if it is less than the set lower limit value, is the piston 16 pressed against the adjustment member 41? Since it is unclear whether a signal for operating the supply solenoid valve 62 a is output, the pilot fluid pressure is supplied to the pressure receiving chamber 37 to drive the piston 16 against the adjusting member 41. Further, when it is determined that an excessive pressing force is applied because the drive current applied to the electric motor 45 exceeds the set value upper limit value, a signal for operating the electromagnetic valve 62b for exhaust is output from the controller. The pilot fluid pressure in the pressure receiving chamber 37 is reduced to reduce the pressing force.

その結果、上記受圧室37には、常に、〔復帰ばねの作用力+弁部材等に作用する真空チャンバ内圧力に基づく作用力+調整部材と受圧部材との間に常に作用させておくバイアス分の力〕に対抗するパイロット流体圧が供給され、ピストン16と調整部材41とが常に略一定のバイアス分の力で押付けられる。   As a result, the pressure receiving chamber 37 always has [the acting force of the return spring + the acting force based on the pressure in the vacuum chamber acting on the valve member or the like + the bias amount that is always applied between the adjusting member and the pressure receiving member. The pilot fluid pressure that opposes the force] is supplied, and the piston 16 and the adjustment member 41 are always pressed with a force of a substantially constant bias.

また、上述したように、上記コントローラが、流体圧駆動部2におけるピストン16と調整部材41とを常にほぼ一定の力で押付ける状態でピストン16を動作させるように制御するので、電動モータ45に付設するエンコーダを、弁部材15の開度を決定するところのピストン16の位置センサーとして機能させることができ、一般的な位置センサー(リニアセンサー)を流体圧駆動部2に内蔵しなくても、コントローラにおいてピストン16の位置、即ち弁部材15の位置を認識することができ、一般的な位置センサーを用いる場合と比較して、構造的に著しく簡易化することができる。   Further, as described above, the controller controls the piston 16 and the adjustment member 41 in the fluid pressure drive unit 2 to always operate with the substantially constant force, so that the electric motor 45 is operated. The attached encoder can function as a position sensor for the piston 16 that determines the opening degree of the valve member 15, and even if a general position sensor (linear sensor) is not incorporated in the fluid pressure drive unit 2, The position of the piston 16, that is, the position of the valve member 15 can be recognized by the controller, and the structure can be greatly simplified as compared with the case where a general position sensor is used.

更に、上記真空調圧システムにおいて、上記真空チャンバ5の真空圧力を調整するときには、上記コントローラにおいて、真空チャンバ5内の上記真空圧力センサー60からの圧力信号と該コントローラに与えられた圧力設定値とを比較し、電動モータ45に弁部材15の開度を適切に設定するための調整部材41の位置の制御信号が出力され、それによって上記電動モータ45が正転または逆転し、上記調整部材41を指定された位置まで移動させると共に、電磁弁装置の駆動が前述したように制御され、真空チャンバ5が所期の真空圧力に保持される。   Furthermore, when adjusting the vacuum pressure of the vacuum chamber 5 in the vacuum pressure adjusting system, the controller uses a pressure signal from the vacuum pressure sensor 60 in the vacuum chamber 5 and a pressure set value given to the controller. And the control signal of the position of the adjusting member 41 for appropriately setting the opening degree of the valve member 15 is output to the electric motor 45, whereby the electric motor 45 rotates forward or reversely, and the adjusting member 41 Is moved to the designated position, and the drive of the electromagnetic valve device is controlled as described above, and the vacuum chamber 5 is maintained at the desired vacuum pressure.

上記真空調圧システムにおいて、コントローラにおいて上記真空圧力センサー60からの圧力信号と圧力設定値とを比較して真空チャンバ5の真空圧力をフィードバック制御するときには、上述したように、弁部材15の開度を適切に設定するための制御信号が電動モータ45に出力されるが、この場合に、上記コントローラには次のような制御機能を具備させるのが望ましい。
即ち、上記コントローラには、予め真空引きの設定速度(真空圧力変化速度)と設定加速度(上記真空圧力変化速度の変化速度)を保有させ、図3に示すように、時刻t1の制御動作開始直後においては、上記設定加速度により各制御周期Tにおける真空圧力の変化の速度が緩慢に増加し、その結果、真空チャンバ5の真空引き動作が飛び出し的に急変して行われることがなく、穏やかに開始され、諸条件によって決まるある程度の制御周期を含む加速度制御領域を経て、上記設定加速度による速度変化の累積により真空圧力の変化速度が上記設定速度に達し、あるいはそれを超えた時刻t4後には、その設定速度を維持するように制御される。
In the vacuum pressure adjusting system, when the controller compares the pressure signal from the vacuum pressure sensor 60 with the pressure setting value and performs feedback control of the vacuum pressure in the vacuum chamber 5, the opening degree of the valve member 15 is as described above. In this case, it is desirable to provide the controller with the following control function.
That is, the controller previously holds a set speed (vacuum pressure change speed) and a set acceleration (change speed of the vacuum pressure change speed) for evacuation in advance, and immediately after the start of the control operation at time t1, as shown in FIG. , The speed of change of the vacuum pressure in each control cycle T slowly increases due to the set acceleration, and as a result, the vacuuming operation of the vacuum chamber 5 does not suddenly change and starts gently. After the time t4 when the change speed of the vacuum pressure reaches or exceeds the set speed due to the accumulation of the speed change due to the set acceleration after passing through the acceleration control region including a certain control cycle determined by various conditions, Controlled to maintain set speed.

上記真空圧力の変化の制御は、具体的には、コントローラにおける算出により求めた圧力変化分から目標圧力に相当する調整部材41の位置を内部演算し、電動モータ45による調整部材41の位置制御によって行われる。この電動モータ45による位置制御は、空気圧制御に比較して空気の圧縮性による非線形要素がないため、比較的制御よく行うことができる。
そして、このように制御動作開始直後から調整部材41の微小変位を電動モータ45で位置制御することにより、圧力の急変がなく、安定して滑らかに真空度を上げる制御を行うことができる。
Specifically, the control of the change in the vacuum pressure is performed by internally calculating the position of the adjustment member 41 corresponding to the target pressure from the pressure change obtained by the calculation by the controller, and by controlling the position of the adjustment member 41 by the electric motor 45. Is called. The position control by the electric motor 45 can be performed with relatively good control because there is no nonlinear element due to the compressibility of air as compared with the pneumatic control.
Then, by controlling the position of the minute displacement of the adjustment member 41 with the electric motor 45 immediately after the start of the control operation in this way, it is possible to perform control to increase the degree of vacuum stably and smoothly without causing a sudden change in pressure.

なお、大気圧から高真空圧までの範囲で真空チャンバ内の真空圧力をフィードバック制御する制御手段として、コントローラに設定された目標真空圧力変化速度に基づいて算出される真空圧力値をコントローラで内部コマンドとして順次発生させると共に、上記内部コマンドを前記フィードバック制御の目標値として順次変更することにより、前記フィードバック制御を追従制御として実行し、真空チャンバ内の真空圧力を目標真空圧力変化速度で変化させる方法が提案されている(特許第3606754号公報参照)。   As a control means for feedback control of the vacuum pressure in the vacuum chamber in the range from atmospheric pressure to high vacuum pressure, the controller uses an internal command for the vacuum pressure value calculated based on the target vacuum pressure change rate set in the controller. And sequentially changing the internal command as a target value of the feedback control, thereby executing the feedback control as follow-up control and changing the vacuum pressure in the vacuum chamber at a target vacuum pressure change rate. It has been proposed (see Japanese Patent No. 3606754).

しかしながら、この方法では、ある制御周期で目標圧力に対して誤差が生じた場合、その誤差が生じた圧力に次の変化圧力分を加えて目標圧力とすると、誤差が積算されて目標速度から大きく外れる可能性があり、また、算出された目標圧力に変化圧力分を加えて目標圧力とすると、目標速度を中心にハンチングするなどの不都合が生じる可能性がある。
これに対して、上述した設定加速度による加速度制御領域を有する制御を行うことにより、このような不都合がないばかりでなく、動作開始直後から滑らかに真空引きする制御を行うことができる。
However, in this method, if an error occurs with respect to the target pressure in a certain control cycle, the error is integrated and increased from the target speed by adding the next change pressure to the pressure in which the error has occurred. In addition, if the change pressure is added to the calculated target pressure to obtain the target pressure, there is a possibility that inconvenience such as hunting around the target speed may occur.
On the other hand, by performing the control having the acceleration control region based on the set acceleration described above, not only such inconvenience is caused, but also the control for evacuating smoothly immediately after the start of the operation can be performed.

また、上記真空調圧システムにおいては、弁部材15に取り付けたゴム弾性材からなる弁シール部材17の復帰ばねによる圧縮状態で生じる反発力と、弁部材17に作用する真空チャンバの圧力に基づく作用力とのバランス位置を、上記弁シール部材17による完全なシール位置(ゼロ点)として、弁座14と弁シール部材17との間の隙間を限りなく0に近いところから調整できるので、容易に実施できる圧力制御の範囲が拡大される。   Moreover, in the said vacuum pressure regulation system, the effect | action based on the repulsive force which arises in the compression state by the return spring of the valve seal member 17 which consists of a rubber elastic material attached to the valve member 15, and the pressure of the vacuum chamber which acts on the valve member 17 Since the balance position between the force and the valve seal member 17 is a complete seal position (zero point), the gap between the valve seat 14 and the valve seal member 17 can be adjusted from as close to zero as possible. The range of pressure control that can be implemented is expanded.

以上において、本発明の真空調圧システムの実施の態様について詳述したが、本発明は上記実施例等に限定されるものではなく、本発明の特許請求の範囲に記載の発明の精神を逸脱しない範囲で、設計において種々の変更ができるものである。   Although the embodiment of the vacuum pressure control system of the present invention has been described in detail above, the present invention is not limited to the above-described embodiments and the like, and departs from the spirit of the invention described in the claims of the present invention. Various changes can be made in the design without departing from the scope.

本発明に係る真空調圧システムにおける真空調圧用バルブの構成を示し、左半は弁部材の閉弁状態を、右半は同開弁状態を示す断面図である。The structure of the valve for vacuum pressure regulation in the vacuum pressure regulation system which concerns on this invention is shown, The left half is sectional drawing which shows the valve closing state of a valve member, and the right half shows the valve opening state. 本発明に係る真空調圧システムの構成図である。It is a block diagram of the vacuum pressure regulation system which concerns on this invention. 本発明における真空圧力の変化の制御について説明するための模式的説明図である。It is typical explanatory drawing for demonstrating control of the change of the vacuum pressure in this invention.

符号の説明Explanation of symbols

1 弁主体部
2 流体圧駆動部
3 弁開度調節部
4 電磁弁装置
5 真空チャンバ
6 真空ポンプ
10 バルブハウジング
11 第1メインポート
12 第2メインポート
13 流路
14 弁座
15 弁部材
16 ピストン
20 弁シャフト
23 復帰ばね
37 受圧室
38 パイロットポート
41 調整部材
45 電動モータ
47 回転−直動変換機構
60 真空圧力センサー
62a 給気用2ポート電磁弁
62b 排気用2ポート電磁弁
DESCRIPTION OF SYMBOLS 1 Valve main part 2 Fluid pressure drive part 3 Valve opening degree adjustment part 4 Electromagnetic valve device 5 Vacuum chamber 6 Vacuum pump 10 Valve housing 11 1st main port 12 2nd main port 13 Flow path 14 Valve seat 15 Valve member 16 Piston 20 Valve shaft 23 Return spring 37 Pressure receiving chamber 38 Pilot port 41 Adjustment member 45 Electric motor 47 Rotation-linear motion conversion mechanism 60 Vacuum pressure sensor 62a Supply two-port solenoid valve 62b Exhaust two-port solenoid valve

Claims (9)

真空チャンバ及び真空ポンプに接続するための第1及び第2のメインポート、これら両メインポートを結ぶ流路、及び該流路中に弁座が設けられたバルブハウジングと、該バルブハウジング内に設けられ、上記弁座を開閉する弁部材と、この弁部材から上記バルブハウジングの軸線方向に延びて先端が流体圧駆動部に達する弁シャフトと、上記弁部材を弁座の閉鎖方向に向けて付勢する復帰ばねとを有する弁主体部、
上記弁シャフトの先端に取り付けられた受圧部材と、この受圧部材に上記弁部材が開放する方向の流体圧を作用させる受圧室と、この受圧室にパイロット流体を給排するためのパイロットポートとを有する上記流体圧駆動部、並びに、
上記受圧部材の背後に当接する調整部材と、該調整部材を回転−直動変換機構を介して任意の位置まで無段階に前後進駆動する電動モータとを有する弁開度調節部、
を備えることにより、真空調圧用バルブが構成され、
上記真空調圧用バルブに、
上記受圧室にパイロット流体を給排する電磁弁装置、並びに、
少なくとも、上記電動モータの回転負荷を検出する負荷検出手段の出力、上記電動モータの回転量を検出するエンコーダの出力及び外部からの制御指令が入力され、それらに基づいて、上記電動モータ及び上記電磁弁装置の駆動を制御するコントローラ、
を付設することにより構成される真空調圧システムにおいて、
上記コントローラが、上記制御指令に基づいて電動モータに必要な駆動電流を供給し、上記エンコーダの出力によって与えられる調整部材の位置が指定の位置になるように制御する位置制御、及び、上記負荷検出手段の出力によって与えられる上記調整部材と受圧部材との押付け力に応じた電動モータの回転負荷が、設定された上限値と下限値との間にあるか否かを検知し、それが当該上下限値間を逸脱する場合に、受圧部材と調整部材とを当該上下限値間の力で押付けるためのパイロット流体圧を上記受圧室に供給するように制御信号を電磁弁装置に出力するパイロット流体圧制御を行い、それによって、上記受圧部材と調整部材とを上記上下限値間の力で押付けた状態で電動モータを動作させる機能を有している、
ことを特徴とする真空調圧システム。
First and second main ports for connecting to a vacuum chamber and a vacuum pump, a flow path connecting both the main ports, a valve housing provided with a valve seat in the flow path, and provided in the valve housing A valve member that opens and closes the valve seat, a valve shaft extending from the valve member in the axial direction of the valve housing and having a tip reaching the fluid pressure drive unit, and the valve member facing the valve seat closing direction. A valve main body having a return spring to be energized,
A pressure receiving member attached to the tip of the valve shaft; a pressure receiving chamber for applying a fluid pressure in a direction in which the valve member opens to the pressure receiving member; and a pilot port for supplying and discharging pilot fluid to and from the pressure receiving chamber. The fluid pressure drive unit, and
A valve opening degree adjuster having an adjustment member that contacts the back of the pressure receiving member, and an electric motor that drives the adjustment member steplessly back and forth to an arbitrary position via a rotation-linear motion conversion mechanism;
The vacuum pressure regulating valve is configured by providing
In the above vacuum regulating valve,
An electromagnetic valve device for supplying and discharging pilot fluid to and from the pressure receiving chamber; and
At least the output of the load detection means for detecting the rotational load of the electric motor, the output of the encoder for detecting the rotation amount of the electric motor, and an external control command are input, and based on these, the electric motor and the electromagnetic A controller for controlling the drive of the valve device,
In a vacuum pressure regulation system configured by attaching
Position control in which the controller supplies necessary drive current to the electric motor based on the control command and controls the position of the adjustment member given by the output of the encoder to be a specified position, and the load detection Detecting whether or not the rotational load of the electric motor according to the pressing force between the adjusting member and the pressure receiving member given by the output of the means is between a set upper limit value and a lower limit value. A pilot that outputs a control signal to the solenoid valve device so that a pilot fluid pressure for pressing the pressure receiving member and the adjusting member with the force between the upper and lower limit values is supplied to the pressure receiving chamber when deviating between the lower limit values. Fluid pressure control is performed, thereby having a function of operating the electric motor in a state where the pressure receiving member and the adjustment member are pressed with a force between the upper and lower limit values.
Vacuum pressure regulation system characterized by that.
上記パイロット流体圧が、復帰ばねの作用力、弁部材に作用する真空チャンバ内圧力に基づく作用力、及び、上記調整部材と受圧部材との間に常に作用させておくバイアス分との和に相当する押付け力を発生させるものである、
ことを特徴とする請求項1に記載の真空調圧システム。
The pilot fluid pressure corresponds to the sum of the action force of the return spring, the action force based on the pressure in the vacuum chamber acting on the valve member, and the bias component that always acts between the adjustment member and the pressure receiving member. To generate a pressing force
The vacuum pressure regulating system according to claim 1.
上記電動モータの負荷検出手段として、該電動モータに供給する駆動電流を検出する検出手段を用い、
コントローラに、上記電動モータの位置制御のための駆動時に上記検出手段で検出した電動モータの駆動電流が、調整部材と受圧部材との押付け力による上記回転負荷の上限値と下限値に対応した電流設定値の上限値と下限値との間にあるか否かを検知し、それが当該上下限値間を逸脱する場合に、上記電動モータの駆動電流が上記電流設定値の上下限間にあるようにするための制御信号を電磁弁装置に出力する機能を具備させた、
ことを特徴とする請求項1または2に記載の真空調圧システム。
As a load detection means of the electric motor, a detection means for detecting a drive current supplied to the electric motor is used.
In the controller, the driving current of the electric motor detected by the detecting means during driving for position control of the electric motor is a current corresponding to the upper limit value and the lower limit value of the rotational load due to the pressing force between the adjustment member and the pressure receiving member. When it is detected whether the set value is between the upper limit value and the lower limit value, and it deviates between the upper and lower limit values, the drive current of the electric motor is between the upper and lower limit values of the current set value. A function to output a control signal to the solenoid valve device
The vacuum pressure regulation system according to claim 1 or 2, characterized by the above-mentioned.
上記電動モータにその回転量を検出するエンコーダを付設し、該エンコーダに弁部材の開度を与える受圧部材の位置を検出するための位置センサーとしての機能を持たせた、
ことを特徴とする請求項1〜3のいずれかに記載の真空調圧システム。
The electric motor is provided with an encoder for detecting the rotation amount, and the encoder has a function as a position sensor for detecting the position of the pressure receiving member that gives the opening degree of the valve member.
The vacuum pressure regulation system according to any one of claims 1 to 3.
上記流体圧駆動部がシリンダ部によって構成され、上記受圧部材がピストンによって構成されている、
ことを特徴とする請求項1〜4のいずれかに記載の真空調圧システム。
The fluid pressure driving part is constituted by a cylinder part, and the pressure receiving member is constituted by a piston;
The vacuum pressure regulation system according to any one of claims 1 to 4.
上記電磁弁装置が、給気用及び排気用の複数の2ポート電磁弁で構成され、該給気用の電磁弁の入力側が空気圧源に接続され、該排気用の電磁弁の出力側が大気に開放され、該給気用の電磁弁の出力側及び排気用の電磁弁の入力側が上記パイロットポートに接続されている、
ことを特徴とする請求項1〜5のいずれかに記載の真空調圧システム。
The solenoid valve device includes a plurality of two-port solenoid valves for supply and exhaust, the input side of the supply solenoid valve is connected to a pneumatic pressure source, and the output side of the exhaust solenoid valve is connected to the atmosphere. Open, the output side of the solenoid valve for air supply and the input side of the solenoid valve for exhaust are connected to the pilot port,
The vacuum pressure regulation system according to any one of claims 1 to 5.
上記電磁弁装置が、3位置3ポート電磁弁で構成され、該電磁弁の入力側が空気圧源に接続され、該電磁弁の出力側が上記パイロットポートに接続され、該電磁弁の排気側が大気に開放されている、
ことを特徴とする請求項1〜5のいずれかに記載の真空調圧システム。
The solenoid valve device is composed of a three-position, three-port solenoid valve, the input side of the solenoid valve is connected to a pneumatic source, the output side of the solenoid valve is connected to the pilot port, and the exhaust side of the solenoid valve is open to the atmosphere Being
The vacuum pressure regulation system according to any one of claims 1 to 5.
上記コントローラにおいて、真空チャンバに設けた圧力センサーによって検知される真空圧力が、真空チャンバの設定圧力になるように、電動モータ及び電磁弁装置の駆動を制御する機能を有する、
ことを特徴とする請求項1〜7のいずれかに記載の真空調圧システム。
The controller has a function of controlling the driving of the electric motor and the electromagnetic valve device so that the vacuum pressure detected by the pressure sensor provided in the vacuum chamber becomes the set pressure of the vacuum chamber.
The vacuum pressure regulation system according to any one of claims 1 to 7.
コントローラにおいて上記圧力センサーからの圧力信号と圧力設定値とを比較して真空チャンバの真空圧力をフィードバック制御するに際し、
上記コントローラに、予め真空引きの設定速度と設定加速度を保有させ、制御動作開始直後に、上記設定加速度により各制御周期における真空圧力の変化の速度を緩慢に増加させ、真空チャンバの真空引き動作が穏やかに開始される加速度制御領域を経て、真空圧力の変化速度が上記設定速度に達した後にその設定速度を維持するように制御する制御機能を具備させた、
ことを特徴とする請求項8に記載の真空調圧システム。
When the controller performs feedback control of the vacuum pressure in the vacuum chamber by comparing the pressure signal from the pressure sensor and the pressure set value,
The controller holds the set vacuum speed and set acceleration in advance, and immediately after the start of the control operation, the set acceleration accelerates the rate of change of the vacuum pressure in each control cycle slowly, and the vacuum chamber vacuum operation is performed. Through an acceleration control region that is gently started, a control function is provided to control the vacuum pressure change rate so as to maintain the set speed after reaching the set speed.
The vacuum pressure regulating system according to claim 8.
JP2005339437A 2005-11-24 2005-11-24 Vacuum pressure control system Expired - Fee Related JP4547674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339437A JP4547674B2 (en) 2005-11-24 2005-11-24 Vacuum pressure control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339437A JP4547674B2 (en) 2005-11-24 2005-11-24 Vacuum pressure control system

Publications (2)

Publication Number Publication Date
JP2007146908A JP2007146908A (en) 2007-06-14
JP4547674B2 true JP4547674B2 (en) 2010-09-22

Family

ID=38208552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339437A Expired - Fee Related JP4547674B2 (en) 2005-11-24 2005-11-24 Vacuum pressure control system

Country Status (1)

Country Link
JP (1) JP4547674B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007034926A1 (en) 2007-07-24 2009-02-05 Vat Holding Ag Method for controlling or regulating a vacuum valve
DE102007034927A1 (en) 2007-07-24 2009-02-05 Vat Holding Ag Method for controlling or regulating a vacuum valve
JP5612906B2 (en) * 2010-05-28 2014-10-22 サーパス工業株式会社 Flow control valve
JP5397525B1 (en) * 2012-11-13 2014-01-22 Smc株式会社 Vacuum pressure control system
JP6155088B2 (en) * 2013-05-10 2017-06-28 日立バルブ株式会社 Valve device
CN104405951B (en) * 2014-10-29 2017-08-11 武汉百耐流体控制设备有限公司 A kind of electro-hydraulic quick operated valve drive device of the integrated monolithic devices of compact type intelligent
JP6456102B2 (en) * 2014-11-04 2019-01-23 昭和電工ガスプロダクツ株式会社 Air driven automatic valve control device
CN106065972B (en) * 2016-08-24 2018-06-05 中车大连机车车辆有限公司 The chain safety valve of locomotive air braking system
CN107748040B (en) * 2017-11-17 2024-01-16 扬州曙光光电自控有限责任公司 Sealing pressure-resistant test device capable of adjusting water pressure
JP7137951B2 (en) * 2018-03-29 2022-09-15 株式会社キッツエスシーティー pressure control valve
JP7041419B2 (en) * 2020-06-04 2022-03-24 Smc株式会社 Time delay valve and flow controller
DE102022000602A1 (en) 2022-02-17 2023-08-17 Vat Holding Ag Vacuum angle valve with pressure sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004056A (en) * 1999-06-18 2001-01-09 Hikari Gokin Seisakusho:Kk Drive device for valve
JP2003083466A (en) * 2001-09-11 2003-03-19 Ckd Corp Flow rate control valve
JP2005076829A (en) * 2003-09-02 2005-03-24 Smc Corp Valve for vacuum pressure regulation
JP2005076828A (en) * 2003-09-02 2005-03-24 Smc Corp Valve for vacuum pressure regulation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2957029B2 (en) * 1991-08-05 1999-10-04 積水化学工業株式会社 Electric valve
JP3573484B2 (en) * 1994-04-20 2004-10-06 カヤバ工業株式会社 Hydraulic control valve
JP2677536B2 (en) * 1995-09-01 1997-11-17 シーケーディ株式会社 Vacuum pressure control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004056A (en) * 1999-06-18 2001-01-09 Hikari Gokin Seisakusho:Kk Drive device for valve
JP2003083466A (en) * 2001-09-11 2003-03-19 Ckd Corp Flow rate control valve
JP2005076829A (en) * 2003-09-02 2005-03-24 Smc Corp Valve for vacuum pressure regulation
JP2005076828A (en) * 2003-09-02 2005-03-24 Smc Corp Valve for vacuum pressure regulation

Also Published As

Publication number Publication date
JP2007146908A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4547674B2 (en) Vacuum pressure control system
KR101462977B1 (en) Vacuum pressure regulation system
JP4196293B2 (en) Vacuum pressure control valve
JP3619032B2 (en) Vacuum pressure control valve
US8201580B2 (en) High flow capacity positioner
US6276385B1 (en) Plug and seat positioning system for control applications
JP2006052846A (en) Control method of vacuum valve arranged between two vacuum spaces
US9677579B2 (en) Actuator unit
JP2009015822A (en) Vacuum pressure control system
JP2013519047A (en) Fluid energized actuating drive on valve
JP2003083466A (en) Flow rate control valve
JP2011243217A (en) Vacuum control valve and vacuum control system
JP4828642B1 (en) Vacuum control valve and vacuum control system
JP6737669B2 (en) Vacuum pressure control system and controller for vacuum pressure control
JP2624943B2 (en) Vacuum pressure control system
JP3777311B2 (en) Vacuum pressure control valve
JP2004125151A (en) Pilot valve of valve positioner
JPH0567805B2 (en)
JP2009069949A (en) Pressure controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R150 Certificate of patent or registration of utility model

Ref document number: 4547674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

LAPS Cancellation because of no payment of annual fees