JP4547072B2 - Air purification device - Google Patents

Air purification device Download PDF

Info

Publication number
JP4547072B2
JP4547072B2 JP2000199327A JP2000199327A JP4547072B2 JP 4547072 B2 JP4547072 B2 JP 4547072B2 JP 2000199327 A JP2000199327 A JP 2000199327A JP 2000199327 A JP2000199327 A JP 2000199327A JP 4547072 B2 JP4547072 B2 JP 4547072B2
Authority
JP
Japan
Prior art keywords
chamber
tube
air
pipe
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000199327A
Other languages
Japanese (ja)
Other versions
JP2002011083A (en
Inventor
八郎 土屋
伸介 小原
英和 後藤
Original Assignee
オパーツ株式会社
八郎 土屋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オパーツ株式会社, 八郎 土屋 filed Critical オパーツ株式会社
Priority to JP2000199327A priority Critical patent/JP4547072B2/en
Publication of JP2002011083A publication Critical patent/JP2002011083A/en
Application granted granted Critical
Publication of JP4547072B2 publication Critical patent/JP4547072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、特に、空気中に浮遊する結核菌その他の細菌を含む感染性飛沫や塵埃等を高温で加熱、燃焼させると共に前記細菌を死滅させるために有用な空気浄化装置に関する。
【0002】
【従来の技術】
最近、医療施設における結核院内集団感染が大きな社会問題となっているが、このような院内感染は、医療施設内の空気中に浮遊する結核菌等の細菌を含んだ感染性飛沫を吸い込むことにより発生するものである。
【0003】
前記問題の解決手段として、前記感染性飛沫を捕捉し得るフィルターを備えた空気浄化装置を医療施設内に設置すると共に、医療施設内の空気をフィルターに通しつつ循環させることにより、空気中に含まれる感染性飛沫の量を減少させる方法が知られている。しかし、前記方法では、除菌効率の低下した使用済みフィルターを未使用のものと交換する必要があり、その交換時に、感染性細菌で汚染された使用済みフィルターから生じる感染性細菌を含んだ飛沫や塵埃を誤って交換作業者が吸入したり、医療施設内の空気中に飛散させてしまう危険が伴う上に、該使用済みフィルターの密閉下における保管及び特殊な消毒処理を必要とする等の問題があった。
【0004】
【発明が解決しようとする課題】
本発明の解決すべき課題は、医療施設内等の空気中に浮遊する結核菌その他の細菌を含む感染性飛沫や塵埃等を加熱、燃焼により確実に減少させると共に前記細菌を死滅させることができ、しかも従来技術にみられる使用済みフィルターの交換のように危険且つ工数を要する作業を必要としない空気浄化装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明に係る空気浄化装置は、外套管内に複数の短い伝熱性分割内管がそれらの各端面に少なくとも外套管内壁に達する伝熱性多孔板を当接させつつ軸線方向に積層配置されてなり、それによって各分割内管の外側及び内側に各々管外室及び管内室が画成されると共に各多孔板を挟んで隣接する両管外室及び両管内室が該多孔板の各細孔群を介して各々互いに連通させられるようにした複合管と、複合管の一端に位置する管外室及び管内室にそれらと各々連通するように連結された吸気室及び排気室と、複合管の他端に位置する管外室及び管内室にそれらを互いに連通させるように連結された端室と、端室及び/又はそれに近接した管内室内にそれらを加熱室として設置されたヒータとからなり、
吸気室に導入された空気が、各多孔板の細孔群を介して各管外室を順次通過すると共に端室に至り、端室から各多孔板の細孔群を介して各管内室を順次通過すると共に排気室から排出される間に、加熱室内においてヒータで加熱されると共に、各管外室を通過する空気と各管内室を通過する空気との間で、向流状態下に、各分割内管壁及び各多孔板を介して熱交換が行われるようにしたことを特徴としている。
【0006】
【発明の実施の形態】
前記構成の空気浄化装置では、既述のように、吸気室に導入された空気が、各多孔板の細孔群を介して各管外室を順次通過すると共に端室に至り、端室から各多孔板の細孔群を介して各管内室を順次通過すると共に排気室から排出される間に、加熱室内においてヒータで加熱されると共に、各管外室を通過する空気と各管内室を通過する空気との間で、向流状態下に、各分割内管壁及び各多孔板を介して熱交換が行われる。
【0007】
前記のような両空気間の熱交換性能は、分割内管の積層段数の増減等により容易に調節することができる。また、分割内管の積層段数の増減作業を容易にするために、外套管が、各分割内管の周囲を囲む複数の短い分割外套管からなり、複合管は、複数対の分割外套管及び分割内管がそれらの各端面に伝熱性多孔板を当接させつつ軸線方向に積層配置されていてもよく、この場合、熱交換性能の調節に際して分割内管の積層段数が対応する分割外套管と対になって増減されることになる。また、前記熱交換性能を高めるために、前記複合管における外套管又は分割外套管内に複数の分割内管が多管状に並設されると共に、端室からの空気が分流して複数に並設された各管内室を順次通過すると共に排気室から排出されるようにすることもできる。
【0008】
吸気室に導入された空気は、各管外室を順次通過し、加熱室内においてヒータで好ましくは400℃以上の高温に加熱されることにより、その空気に含まれる感染性飛沫や塵埃等が燃焼させられる。加熱室通過後における高温の空気は、各管内室を順次通過して排気室に至るが、その間に各管外室を通過する低温側の空気との間の熱交換により漸次冷却され、排気室から排出されるときは、好ましくは、吸気室に導入された空気に近い温度に戻されている。これに対して、各管外室を通過する空気は、各管内室を通過する高温側の空気との間の熱交換により漸次加熱されて加熱室に至るので、ここではヒータから生じる熱が有効に利用されることになる。
【0009】
前記熱交換に際して、各管外室を通過する空気及び各管内室を通過する空気の各流れは、各多孔板の各細孔群を通過するときに激しく撹拌され、それによって各管外室及び各管内室における各空気分子が伝熱部材である各分割内管壁及び各多孔板と複雑に衝突すると共に、各空気分子と伝熱部材との衝突回数が従来の二重管型等のように内管壁のみを伝熱部材とする熱交換の場合に比べて著しく増加し、その結果として各管外室内の空気と各管内室内の空気との間の熱伝達、熱交換が促進されると共に、ヒータから生じる熱の前記有効利用が促進される。
【0010】
前記ヒータとして、空気中の感染性飛沫や塵埃等との加熱下の衝突及び接触を促進させて前記作用をより効果的に奏し得るように、微粒子を捕捉し得るフィルター機能と該微粒子の加熱燃焼によるフィルター再生機能を備えた抵抗加熱ヒータを用いることが好ましい。
【0011】
前記のような抵抗加熱ヒータとして、例えば特開平9−245938号公報及び特開平11−257048号公報に開示されるように、金属シート材料に波形状又は凹凸形状のプレス成形を施すと同時に周縁に破断状突起を有する多数の貫通孔を前記波形状又は凹凸形状の山部及び/又は谷部に穿設させてなる多孔性金属シートを多重に積層すると共に、積層された多孔性金属シートの対向面間に多孔性電気絶縁膜を介在させ、且つ前記多孔性金属シートに通電による抵抗加熱可能に電気配線を施してなるものを好適に使用することができる。前記の場合、加熱室内への抵抗加熱ヒータの設置に際して、抵抗加熱ヒータは、空気が積層された多孔性金属シートの対向面間にその一端側から他端側へと通過し得るように配向させられる。
【0012】
前記構造の多孔性抵抗加熱ヒータによれば、積層された多孔性金属シートの対向面間に、波形状又は凹凸形状の山部及び谷部、並びにそれらに穿設された、周縁に破断状突起を有する貫通孔による複雑に屈曲した流路空間が形成されているので、このような対向面間に流入した空気は前記流路空間内部で複雑に拡散、衝突し、その間に空気中の微粒子や感染性飛沫及び塵埃等が高温に抵抗加熱された多孔性金属シートとの複雑な衝突、接触により一部捕捉されつつ加熱、燃焼させられる。
【0013】
前記多孔性抵抗加熱ヒータは、例えば、多孔性金属シートを渦巻き状に多孔性電気絶縁膜を介して積層してなるものでもよく、また多孔性金属シートをジグザグ状に多孔性電気絶縁膜を介して積層してなるものでもよい。前記多孔性金属シートには、耐熱性のステンレス鋼が好適に使用可能である。また、前記多孔性電気絶縁膜は、積層された多孔性金属シートの対向面間が通電加熱時に電気接触しないようにするものであり、多孔性金属シート表面に形成された絶縁皮膜であってもよいが、好ましくは例えば耐熱性の無機繊維のように、排気微粒子のフィルター機能を有するものが好適に介設される。前記多孔性抵抗加熱ヒータにおける多孔性金属シート及び/又は多孔性電気絶縁膜に、酸化触媒等の触媒を、必要に応じて所要の坦持層を介して坦持させてもよい。
【0014】
なお、前記構造の多孔性金属シートは、周縁に破断状突起を有する多数の貫通孔を有することから、隣接する両管外室及び隣接する両管内室の各間に介設される伝熱性多孔板としても好適に使用することができ、それによって、前記貫通孔を通過する空気の流れをより激しく撹拌させることが可能である。
【0015】
また、既述のように、各管外室を通過する空気と各管内室を通過する空気との間の熱交換を促進させるべく、各管外室及び各管内室における各空気分子が伝熱部材である各分割内管壁及び各多孔板とさらに複雑に衝突し得るように、各管外室及び/又は各管内室内に、前記構造の多孔性金属シートを渦巻き状やジグザグ状等に多孔性電気絶縁膜の介設なしに積層してなるものを、空気が積層された多孔性金属シートの対向面間にその一端側から他端側へと通過し得るように配設することもできる。
【0016】
【実施例】
〔実施例1〕
図1は本発明の実施例に係る空気浄化装置の縦断面図である。
同図において、複合管1は、分割外套管2内に伝熱性分割内管3が同心に配置された12個の短い二重円管ユニットをそれらの各端面に伝熱性多孔板4を当接させつつ上下の軸線方向に積層して構成されている。各分割内管3の外側に環状の管外室5が形成されると共に各分割内管3の内側には円形の管内室6が画成され、各多孔板4を挟んで隣接する両管外室5、5及び両管内室6、6が該多孔板4の各各細孔群7、8を介して各々互いに連通させられている。
【0017】
前記の各分割外套管2は、内径172mm、高さ50mmのステンレス製パイプからなり、上下面にフランジを有している。各分割内管3は、内径100mm、高さ50mmのステンレス製パイプからなり、上下面にフランジを有している。また、各多孔板4は、縦260mm、横260mm、厚さ2mmの矩形銅板からなり、それには、前記管外室5及び管内室6と各々対向する各区域に直径2.0mmの細孔が約10%の穿孔率で穿設されると共に各細孔群7、8が形成されている。
【0018】
複合管1の一端に位置する第12段目の管外室5及び管内室6には、それらと多孔板4の各細孔群7、8を介して各々連通するように吸気室11及び排気室12が連結され、それらの吸気室11及び排気室12は二重円管構造により画成されている。前記吸気室11には、外部から空気を導入するための吸気口13と吸気ファン14が側部に設けられ、前記排気室12には、外部に空気を排出するための排気口15と排気ファン16が頂部に設けられている。
【0019】
複合管1の他端に位置する第1段目の管外室5及び管内室6には、それらを互いに連通させるように二重円管状の端室21が延設されている。前記端室21において、管外室5及び管内室6と多孔板4の各細孔群7、8を介して各々連通するように空気流転向路22及び加熱室23が設けられ、それら両者は端室21内で連通している。前記端室21の基端には、端室21の基端開口部を閉塞すると共に端室21及び複合管1等の部材を支持するようにステンレス製基台24が設けられている。また、第1段目、第4段目、第8段目及び第12段目の各管外室5及び各管内室6には、温度計測点として熱電対からなる温度計25が挿入されている。
【0020】
前記端室21における加熱室23内には、厚さ50μmのステンレス鋼からなる金属シート材料に波形ピッチ1.8mm、振幅(波の深さ)0.6mmの波形状のプレス成形を施すと同時に周縁に高さ0.2mmの破断状突起(バリ)を有する多数の貫通孔を前記波形状の山部及び谷部に穿設させてなる多孔性金属シートを渦巻き状に膜厚0.2mmのシリカ系多孔性電気絶縁膜を介して外径100mm、高さ50mmとなるように積層してなる既述形態の多孔性抵抗加熱ヒータからなるヒータ26が設置され、ヒータ26は電源装置27に接続されている。
【0021】
前記構成の空気浄化装置において、前記ヒータ26を電源装置27からの500Wの電力供給により約400℃に加熱すると共に、吸気室11に吸気口13から流量約2.2m3/分の空気を導入し、その状態下に各温度計測点における定常状態での温度を各温度計25で計測して、各管外室5内の空気と各管内室6内の空気との間の熱交換状況を試験した。図2の図表は、図1に示す空気浄化装置を用いた熱交換試験の試験結果を示している。
【0022】
前記試験結果によれば、吸気室11から最上位における第12段目の管外室5に流入した23.3℃の温度(tb1)の低温空気は、各管内室6内の空気と熱交換しつつ各管外室5を下方に通過し、最下位における第1段目の管外室5では111.6℃の温度(tb2)にまで加温されている。第1段目の管外室5内の前記加温空気は加熱室23内のヒータ26で加熱され、第1段目の管内室6に流入する。第1段目の管内室6における201.3℃の温度(ta1)の高温空気は、各管外室5内の空気と熱交換しつつ各管内室6を上方に通過し、第12段目の管内室6では、前記23.3℃の温度(tb1)に比較的近い32.2℃の温度(ta2)にまで冷却されている。
【0023】
管外室5内の低温側空気の温度効率(ηc)及び管内室6内の高温側空気の温度効率(ηh)は各々下記のように算出され、それによれば高温側空気の温度効率が0.95という極めて高い数値を示した。
ηc =(tb2−tb1)/(ta1−tb1)=0.5
ηh =(ta1−ta2)/(ta1−tb1)=0.95
【0024】
〔実施例2〕
図3は本発明の別の実施例に係る空気浄化装置の要部縦断面図である。
同図に示す複合管1では、共通の長い外套管2’内に複数の短い伝熱性分割内管3がそれらの各端面に外套管2’内壁に達する伝熱性多孔板4を当接させつつ軸線方向に積層配置され、それによって各分割内管3の外側及び内側に各管外室5及び管内室6が画成されると共に各多孔板4を挟んで隣接する両管外室5、5及び両管内室6、6が該多孔板4の各細孔群7、8を介して各々互いに連通させられている。
【0025】
【発明の効果】
本発明に係る空気浄化装置は以上のように構成されるので、医療施設内等の空気中に浮遊する結核菌その他の細菌を含む感染性飛沫や塵埃等を加熱、燃焼により確実に減少させると共に前記細菌を死滅させることができ、しかも従来技術にみられる使用済みフィルターの交換のように危険且つ工数を要する作業を必要としない。
【0026】
ヒータが、微粒子を捕捉し得るフィルター機能と該微粒子の加熱燃焼によるフィルター再生機能を備えた抵抗加熱ヒータからなるものでは、空気中の感染性飛沫や塵埃等との加熱下の衝突及び接触を促進させて前記作用をより効果的に奏することが可能である。
【図面の簡単な説明】
【図1】本発明の実施例に係る空気浄化装置の縦断面図である。
【図2】図1に示す空気浄化装置を用いた熱交換試験の試験結果を示す図表である。
【図3】本発明の別の実施例に係る空気浄化装置の要部縦断面図である。
【符号の説明】
1 複合管
2 分割外套管
3 分割内管
4 多孔板
5 管外室
6 管内室
7、8 細孔群
11 吸気室
12 排気室
21 端室
23 加熱室
26 ヒータ
[0001]
[Industrial application fields]
In particular, the present invention relates to an air purification device useful for heating and burning infectious droplets and dust containing tuberculosis bacteria and other bacteria floating in the air at high temperatures and killing the bacteria.
[0002]
[Prior art]
Recently, tuberculosis nosocomial infections in medical facilities have become a major social problem, but such nosocomial infections are caused by inhaling infectious droplets containing bacteria such as tuberculosis bacteria floating in the air in medical facilities. It is what happens.
[0003]
As a means for solving the above problem, an air purifier equipped with a filter capable of capturing the infectious droplets is installed in a medical facility, and the air in the medical facility is circulated through the filter so that it is contained in the air. Methods are known for reducing the amount of infectious droplets produced. However, in the above method, it is necessary to replace a used filter with reduced sterilization efficiency with an unused one, and at the time of the replacement, a droplet containing infectious bacteria generated from a used filter contaminated with infectious bacteria. In addition, there is a risk that a replacement operator may accidentally inhale or disperse the dust in the air in a medical facility, and the used filter must be stored in a sealed condition and require special disinfection. There was a problem.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that infectious droplets and dust containing tuberculosis bacteria and other bacteria floating in the air in medical facilities and the like can be reliably reduced by heating and burning, and the bacteria can be killed. In addition, an object of the present invention is to provide an air purifying apparatus that does not require a dangerous and man-hour-intensive operation such as replacement of a used filter found in the prior art.
[0005]
[Means for Solving the Problems]
The air purifying device according to the present invention is formed by laminating and arranging a plurality of short heat transfer divided inner pipes in the outer tube in the axial direction while abutting a heat conductive perforated plate that reaches at least the inner wall of the outer tube to each end face thereof, As a result, a tube outer chamber and a tube inner chamber are defined on the outer and inner sides of each divided inner tube, and both the tube outer chambers and the tube inner chambers adjacent to each other sandwiching each porous plate define each pore group of the porous plate. A composite pipe that is communicated with each other through the pipe, an intake chamber and an exhaust chamber that are connected to the pipe outer chamber and the pipe inner chamber located at one end of the composite pipe, and the other end of the composite pipe, respectively. An end chamber connected to the outer chamber and the inner chamber located in the pipe so as to communicate with each other, and a heater installed as a heating chamber in the end chamber and / or the inner pipe chamber adjacent thereto,
Air introduced into the intake chamber sequentially passes through each tube outer chamber through the pore groups of each porous plate and reaches the end chamber, and from each end chamber to each tube inner chamber through the pore groups of each porous plate. While sequentially passing and being discharged from the exhaust chamber, it is heated by a heater in the heating chamber, and between the air passing through each outer tube chamber and the air passing through each inner tube chamber, in a countercurrent state, The heat exchange is performed through each divided inner tube wall and each perforated plate.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the air purification device having the above-described configuration, as described above, the air introduced into the intake chamber sequentially passes through the outer chambers through the pore groups of the perforated plates and reaches the end chambers. While sequentially passing through each tube inner chamber through the pore group of each perforated plate and being discharged from the exhaust chamber, the heater is heated in the heating chamber and the air passing through each tube outer chamber and each tube inner chamber Heat exchange is performed with the passing air through each divided inner tube wall and each perforated plate in a countercurrent state.
[0007]
The heat exchange performance between the airs as described above can be easily adjusted by increasing or decreasing the number of stacking stages of the divided inner pipes. In order to facilitate the increase / decrease operation of the number of stacked inner pipes, the outer tube is composed of a plurality of short divided outer tubes surrounding each divided inner tube, and the composite tube includes a plurality of pairs of divided outer tubes and The divided inner pipes may be laminated in the axial direction with the heat transfer perforated plates coming into contact with their respective end faces, and in this case, the divided outer tube corresponding to the number of laminated stages of the divided inner pipes when adjusting the heat exchange performance It will be increased or decreased in pairs. Further, in order to improve the heat exchange performance, a plurality of divided inner pipes are arranged in parallel in the outer tube or the divided outer tube in the composite pipe, and the air from the end chamber is divided and arranged in parallel. It is also possible to sequentially pass through each of the pipe inner chambers and discharge from the exhaust chamber.
[0008]
The air introduced into the intake chamber sequentially passes through the outer chambers of the tubes and is heated to a high temperature of preferably 400 ° C. or higher by the heater in the heating chamber, so that infectious droplets and dust contained in the air are burned. Be made. The hot air after passing through the heating chamber sequentially passes through the inner chambers to reach the exhaust chamber, and is gradually cooled by heat exchange with the low-temperature air passing through the outer chambers in the meantime. When the air is discharged from the air, it is preferably returned to a temperature close to that of the air introduced into the intake chamber. On the other hand, the air passing through the outer chambers is gradually heated by heat exchange with the high-temperature air passing through the inner chambers and reaches the heating chamber. Will be used.
[0009]
During the heat exchange, each flow of air passing through each tube outer chamber and each air passing through each tube inner chamber is vigorously stirred as it passes through each pore group of each perforated plate, whereby each tube outer chamber and Each air molecule in each tube chamber collides with each divided inner tube wall and each perforated plate which are heat transfer members in a complicated manner, and the number of collisions between each air molecule and the heat transfer member is as in the conventional double tube type etc. As compared with the case of heat exchange using only the inner tube wall as the heat transfer member, the heat transfer and heat exchange between the air in the outer chamber and the air in the inner tube are promoted. At the same time, the effective use of the heat generated from the heater is promoted.
[0010]
As the heater, a filter function capable of trapping fine particles and heating combustion of the fine particles so as to promote collision and contact with infectious droplets and dust in the air under heating to achieve the above effect more effectively. It is preferable to use a resistance heater having a filter regeneration function.
[0011]
As the resistance heater as described above, for example, as disclosed in Japanese Patent Application Laid-Open No. 9-24559 and Japanese Patent Application Laid-Open No. 11-257048, the metal sheet material is subjected to press forming of a corrugated shape or a concavo-convex shape and at the periphery A porous metal sheet is formed by laminating a plurality of through-holes having break-like projections in the corrugated or uneven peaks and / or valleys, and the laminated porous metal sheets are opposed to each other. It is possible to suitably use a material in which a porous electrical insulating film is interposed between the surfaces and electrical wiring is applied to the porous metal sheet so as to allow resistance heating by energization. In the above case, when the resistance heater is installed in the heating chamber, the resistance heater is oriented so that it can pass from one end side to the other end side between the opposed surfaces of the porous metal sheet on which the air is laminated. It is done.
[0012]
According to the porous resistance heater having the above-described structure, the corrugated or concave and convex ridges and valleys between the opposed surfaces of the laminated porous metal sheets, and the rupture-like protrusions formed in the periphery are formed. Since a complicatedly bent flow path space is formed by the through-holes having the above, the air that flows between the facing surfaces diffuses and collides in the flow path space in a complicated manner, and fine particles in the air Infectious droplets, dust, and the like are heated and burned while being partially captured by a complicated collision and contact with a porous metal sheet heated to a high temperature.
[0013]
The porous resistance heater may be formed by, for example, laminating a porous metal sheet in a spiral shape with a porous electrical insulating film interposed therebetween, or zigzag the porous metal sheet with a porous electrical insulating film interposed therebetween. And may be laminated. As the porous metal sheet, heat-resistant stainless steel can be suitably used. In addition, the porous electrical insulating film is for preventing electrical contact between the opposed surfaces of the laminated porous metal sheets during energization heating, and an insulating film formed on the surface of the porous metal sheet. Preferably, however, those having a filter function of exhaust particulates, such as heat-resistant inorganic fibers, are preferably interposed. A catalyst such as an oxidation catalyst may be supported on the porous metal sheet and / or the porous electrical insulating film in the porous resistance heater through a required supporting layer as necessary.
[0014]
The porous metal sheet having the above structure has a large number of through-holes having ruptured protrusions on the periphery, so that the heat transfer porous material interposed between each of the adjacent tube outer chambers and the adjacent tube inner chambers is provided. It can also be suitably used as a plate, whereby it is possible to stir the air flow passing through the through hole more vigorously.
[0015]
Further, as described above, in order to promote heat exchange between the air passing through each tube outer chamber and the air passing through each tube inner chamber, each air molecule in each tube outer chamber and each tube inner chamber conducts heat. The porous metal sheet having the above structure is perforated in a spiral or zigzag shape in each outer chamber and / or each inner chamber so that it can collide with each divided inner tube wall and each porous plate which are members in a more complicated manner. It is also possible to dispose the layers laminated without the interposition of the electrically conductive film so that air can pass from one end side to the other end side between the opposed surfaces of the laminated porous metal sheet. .
[0016]
【Example】
[Example 1]
FIG. 1 is a longitudinal sectional view of an air purification device according to an embodiment of the present invention.
In the figure, a composite pipe 1 is composed of 12 short double circular tube units in which a heat conductive divided inner pipe 3 is concentrically arranged in a divided outer tube 2 and a heat conductive porous plate 4 in contact with each end face thereof. In this way, the upper and lower axial directions are stacked. An annular tube outer chamber 5 is formed outside each divided inner tube 3, and a circular tube inner chamber 6 is defined inside each divided inner tube 3. The chambers 5 and 5 and the inner tube chambers 6 and 6 are communicated with each other through the respective pore groups 7 and 8 of the perforated plate 4.
[0017]
Each of the divided mantle tubes 2 is made of a stainless steel pipe having an inner diameter of 172 mm and a height of 50 mm, and has flanges on the upper and lower surfaces. Each divided inner pipe 3 is made of a stainless steel pipe having an inner diameter of 100 mm and a height of 50 mm, and has flanges on the upper and lower surfaces. Each perforated plate 4 is made of a rectangular copper plate having a length of 260 mm, a width of 260 mm, and a thickness of 2 mm, and there are pores having a diameter of 2.0 mm in each area facing the outer tube chamber 5 and the inner tube chamber 6. Each of the pore groups 7 and 8 is formed with a perforation rate of about 10%.
[0018]
An intake chamber 11 and an exhaust gas are connected to the twelfth-stage tube outer chamber 5 and the tube inner chamber 6 positioned at one end of the composite tube 1 so as to communicate with them through the respective pore groups 7 and 8 of the porous plate 4. The chambers 12 are connected, and the intake chamber 11 and the exhaust chamber 12 are defined by a double tube structure. The intake chamber 11 is provided with an intake port 13 and an intake fan 14 for introducing air from outside, and the exhaust chamber 12 has an exhaust port 15 and an exhaust fan for discharging air to the outside. 16 is provided on the top.
[0019]
A double-circular tubular end chamber 21 extends from the first-stage outer tube chamber 5 and the inner tube chamber 6 located at the other end of the composite tube 1 so as to communicate with each other. In the end chamber 21, an air flow diverting path 22 and a heating chamber 23 are provided so as to communicate with the outer tube chamber 5 and the inner tube chamber 6 through the pore groups 7 and 8 of the porous plate 4, respectively. It communicates in the end chamber 21. A stainless steel base 24 is provided at the base end of the end chamber 21 so as to close the base end opening of the end chamber 21 and support members such as the end chamber 21 and the composite pipe 1. In addition, thermometers 25 made of thermocouples are inserted as temperature measurement points in the outer chambers 5 and the inner chambers 6 of the first, fourth, eighth and twelfth stages. Yes.
[0020]
In the heating chamber 23 in the end chamber 21, a metal sheet material made of stainless steel having a thickness of 50 μm is subjected to wave-shaped press molding with a wave pitch of 1.8 mm and an amplitude (wave depth) of 0.6 mm. A porous metal sheet in which a plurality of through-holes having rupture-shaped protrusions (burrs) having a height of 0.2 mm on the periphery are formed in the corrugated peaks and valleys in a spiral shape with a film thickness of 0.2 mm A heater 26 composed of the porous resistance heater of the above-described form, which is laminated so as to have an outer diameter of 100 mm and a height of 50 mm through a silica-based porous electrical insulating film, is installed, and the heater 26 is connected to a power supply device 27. Has been.
[0021]
In the air purification apparatus having the above-described configuration, the heater 26 is heated to about 400 ° C. by supplying 500 W of power from the power supply device 27, and air is introduced into the intake chamber 11 from the intake port 13 at a flow rate of about 2.2 m 3 / min. Under these conditions, the temperature in the steady state at each temperature measurement point is measured by each thermometer 25, and the heat exchange status between the air in each tube outer chamber 5 and the air in each tube inner chamber 6 is determined. Tested. The chart of FIG. 2 shows the test results of the heat exchange test using the air purifier shown in FIG.
[0022]
According to the test results, the low-temperature air having a temperature (tb1) of 23.3 ° C. flowing into the twelfth-stage tube outer chamber 5 at the uppermost position from the intake chamber 11 exchanges heat with the air in each tube inner chamber 6. However, each tube outer chamber 5 passes downward, and the first-stage tube outer chamber 5 at the lowest level is heated to a temperature (tb2) of 111.6 ° C. The heated air in the first-stage tube outer chamber 5 is heated by the heater 26 in the heating chamber 23 and flows into the first-stage tube inner chamber 6. The high-temperature air having a temperature (ta1) of 201.3 ° C. in the first-stage pipe inner chamber 6 passes through each of the pipe inner chambers 6 while exchanging heat with the air in each of the outer pipe chambers 5, and the twelfth stage Is cooled to a temperature (ta2) of 32.2 ° C. that is relatively close to the temperature (tb1) of 23.3 ° C.
[0023]
The temperature efficiency (η c ) of the low temperature side air in the pipe outer chamber 5 and the temperature efficiency (η h ) of the high temperature side air in the pipe inner chamber 6 are respectively calculated as follows. Showed an extremely high value of 0.95.
η c = (tb2-tb1) / (ta1-tb1) = 0.5
η h = (ta1-ta2) / (ta1-tb1) = 0.95
[0024]
[Example 2]
FIG. 3 is a longitudinal sectional view of an essential part of an air purification device according to another embodiment of the present invention.
In the composite pipe 1 shown in the figure, a plurality of short heat conductive divided inner pipes 3 are in contact with a heat conductive perforated plate 4 that reaches the inner wall of the outer pipe 2 'in the respective long outer pipes 2'. The tube outer chambers 5 and the tube inner chambers 6 are defined on the outer side and the inner side of each divided inner tube 3 by being stacked in the axial direction, and both the tube outer chambers 5, 5 adjacent to each other with the perforated plate 4 interposed therebetween. The inner chambers 6 and 6 are communicated with each other through the pore groups 7 and 8 of the perforated plate 4.
[0025]
【The invention's effect】
Since the air purification apparatus according to the present invention is configured as described above, infectious droplets and dust containing tuberculosis bacteria and other bacteria floating in the air in medical facilities and the like are reliably reduced by heating and combustion. The bacteria can be killed, and a dangerous and man-hour-intensive operation such as replacement of a used filter found in the prior art is not required.
[0026]
When the heater consists of a resistance heater that has a filter function that can trap particulates and a filter regeneration function that heats and burns the particulates, it promotes collision and contact under heating with infectious droplets and dust in the air. Thus, it is possible to achieve the above action more effectively.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an air purification device according to an embodiment of the present invention.
2 is a chart showing test results of a heat exchange test using the air purifier shown in FIG. 1. FIG.
FIG. 3 is a longitudinal sectional view of a main part of an air purification device according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Composite pipe 2 Divided outer tube 3 Divided inner tube 4 Perforated plate 5 Outer tube chamber 6 Inner tube chamber 7, 8 Fine pore group 11 Intake chamber 12 Exhaust chamber 21 End chamber 23 Heating chamber 26 Heater

Claims (4)

外套管内に複数の短い伝熱性分割内管がそれらの各端面に少なくとも外套管内壁に達する伝熱性多孔板を当接させつつ軸線方向に積層配置されてなり、それによって各分割内管の外側及び内側に各々管外室及び管内室が画成されると共に各多孔板を挟んで隣接する両管外室及び両管内室が該多孔板の各細孔群を介して各々互いに連通させられるようにした複合管と、複合管の一端に位置する管外室及び管内室にそれらと各々連通するように連結された吸気室及び排気室と、複合管の他端に位置する管外室及び管内室にそれらを互いに連通させるように連結された端室と、端室及び/又はそれに近接した管内室内にそれらを加熱室として設置されたヒータとからなり、
吸気室に導入された空気が、各多孔板の細孔群を介して各管外室を順次通過すると共に端室に至り、端室から各多孔板の細孔群を介して各管内室を順次通過すると共に排気室から排出される間に、加熱室内においてヒータで加熱されると共に、各管外室を通過する空気と各管内室を通過する空気との間で、向流状態下に、各分割内管壁及び各多孔板を介して熱交換が行われるようにしたことを特徴とする空気浄化装置。
A plurality of short heat conductive divided inner pipes are laminated in the axial direction while abutting a heat conductive perforated plate that reaches at least the inner wall of the outer tube at their respective end faces in the outer tube, whereby the outer side of each divided inner pipe and A tube outer chamber and a tube inner chamber are defined on the inside, and both the tube outer chambers and the tube inner chambers adjacent to each other with the perforated plates interposed therebetween are communicated with each other through the pore groups of the perforated plates. A composite pipe, an intake chamber and an exhaust chamber connected to the pipe outer chamber and the pipe inner chamber located at one end of the composite pipe, and an outer tube chamber and a pipe inner chamber located at the other end of the composite pipe, respectively. An end chamber connected so as to make them communicate with each other, and a heater installed as a heating chamber in the end chamber and / or in the pipe chamber adjacent to the end chamber,
Air introduced into the intake chamber sequentially passes through each tube outer chamber through the pore groups of each porous plate and reaches the end chamber, and from each end chamber to each tube inner chamber through the pore groups of each porous plate. While sequentially passing and being discharged from the exhaust chamber, it is heated by a heater in the heating chamber, and between the air passing through each outer tube chamber and the air passing through each inner tube chamber, in a countercurrent state, An air purification device characterized in that heat exchange is performed through each divided inner tube wall and each perforated plate.
外套管が、各分割内管の周囲を囲む複数の短い分割外套管からなり、複合管は、複数対の分割外套管及び分割内管がそれらの各端面に伝熱性多孔板を当接させつつ軸線方向に積層配置されてなる請求項1に記載の空気浄化装置。The outer tube is composed of a plurality of short divided outer tubes surrounding each divided inner tube, and the composite tube is composed of a plurality of pairs of divided outer tubes and divided inner tubes with the heat transfer perforated plate abutting on their respective end faces. The air purifier according to claim 1, wherein the air purifier is laminated in an axial direction. ヒータが、微粒子を捕捉し得るフィルター機能と該微粒子の加熱燃焼によるフィルター再生機能を備えた抵抗加熱ヒータからなる請求項1に記載の空気浄化装置。The air purifier according to claim 1, wherein the heater comprises a resistance heating heater having a filter function capable of capturing fine particles and a filter regeneration function by heating and burning the fine particles. 抵抗加熱ヒータが、金属シート材料に波形状又は凹凸形状のプレス成形を施すと同時に周縁に破断状突起を有する多数の貫通孔を前記波形状又は凹凸形状の山部及び/又は谷部に穿設させてなる多孔性金属シートを多重に積層すると共に、積層された多孔性金属シートの対向面間に多孔性電気絶縁膜を介在させ、且つ前記多孔性金属シートに通電による抵抗加熱可能に電気配線を施してなり、
加熱室内への抵抗加熱ヒータの設置に際して、積層された多孔性金属シートの対向面間にその一端側から他端側へと空気が通過し得るように抵抗加熱ヒータを配向させた請求項3に記載の空気浄化装置。
A resistance heater performs corrugated or uneven press forming on a metal sheet material, and at the same time, a number of through-holes having fractured protrusions on the periphery are formed in the corrugated or uneven peak and / or trough. The porous metal sheets are laminated in multiple layers, a porous electrical insulating film is interposed between the opposed surfaces of the laminated porous metal sheets, and the porous metal sheets can be heated by resistance by energization. And
The resistance heater is oriented so that air can pass from one end side to the other end side between opposing faces of the laminated porous metal sheets when the resistance heater is installed in the heating chamber. The air purification apparatus as described.
JP2000199327A 2000-06-30 2000-06-30 Air purification device Expired - Lifetime JP4547072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000199327A JP4547072B2 (en) 2000-06-30 2000-06-30 Air purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000199327A JP4547072B2 (en) 2000-06-30 2000-06-30 Air purification device

Publications (2)

Publication Number Publication Date
JP2002011083A JP2002011083A (en) 2002-01-15
JP4547072B2 true JP4547072B2 (en) 2010-09-22

Family

ID=18697366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000199327A Expired - Lifetime JP4547072B2 (en) 2000-06-30 2000-06-30 Air purification device

Country Status (1)

Country Link
JP (1) JP4547072B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003289370A1 (en) * 2002-12-17 2004-07-22 Naka Engineering Co., Ltd. Air-purifying system and smoke-processing device
JP7381080B2 (en) * 2020-05-13 2023-11-15 有限会社アーキネット air purification device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898875A (en) * 1994-09-30 1996-04-16 Mugen Eng Kk Sterilization/deodorization and device therefor
JPH09245938A (en) * 1996-03-11 1997-09-19 Nisshin Steel Co Ltd Electric resistance heater of porous body
JPH11223368A (en) * 1998-02-10 1999-08-17 Matsushita Electric Ind Co Ltd Air cleaner
JPH11257048A (en) * 1998-03-12 1999-09-21 Nisshin Steel Co Ltd Metal filter for diesel engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898875A (en) * 1994-09-30 1996-04-16 Mugen Eng Kk Sterilization/deodorization and device therefor
JPH09245938A (en) * 1996-03-11 1997-09-19 Nisshin Steel Co Ltd Electric resistance heater of porous body
JPH11223368A (en) * 1998-02-10 1999-08-17 Matsushita Electric Ind Co Ltd Air cleaner
JPH11257048A (en) * 1998-03-12 1999-09-21 Nisshin Steel Co Ltd Metal filter for diesel engine

Also Published As

Publication number Publication date
JP2002011083A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
EP0559907B1 (en) Self-heating filter
KR930000473B1 (en) Exhaust emission purifier for diesel engines
ES2494790T3 (en) Particle filtration device
JP2008157592A (en) Stacked integrated self heat exchange structure
JP4547072B2 (en) Air purification device
JP5679457B2 (en) Heat exchanger integrated reactor with reciprocating duct in reaction section
JP4559011B2 (en) Fluid catalyst treatment equipment
JP3334897B2 (en) Exhaust gas purification device
JPH0647620U (en) Exhaust gas purification device
US20080314035A1 (en) Temperature Ladder and Applications Thereof
JPS5910255B2 (en) Plate heat exchange reactor
JP2789871B2 (en) Catalyst purification device
JP2743641B2 (en) Catalyst purification device
JP4155542B2 (en) Exhaust gas treatment apparatus having a honeycomb molded body and method for preventing clogging thereof
WO2016166781A1 (en) Heat exchanger and voc treatment apparatus using same
WO2011028725A2 (en) Reduced backpressure combustion purifier
JP3329104B2 (en) Deodorizing heater and deodorizing device
CN218459095U (en) Flue gas purification device and fume extractor
JP2000154712A (en) Engine-exhaust emission control device
JP2003155911A (en) Exhaust gas treatment device and exhaust gas treatment method
JPH10299457A (en) Method and device for purifying exhaust gas filter
JPH10148402A (en) Catalytic combustion heater
JP4013812B2 (en) Deodorizing device
JPH0739880B2 (en) Fluid heating device
JP2002047915A (en) Exhaust particulate removing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4547072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term