JP4546379B2 - Near infrared filter glass - Google Patents

Near infrared filter glass Download PDF

Info

Publication number
JP4546379B2
JP4546379B2 JP2005285926A JP2005285926A JP4546379B2 JP 4546379 B2 JP4546379 B2 JP 4546379B2 JP 2005285926 A JP2005285926 A JP 2005285926A JP 2005285926 A JP2005285926 A JP 2005285926A JP 4546379 B2 JP4546379 B2 JP 4546379B2
Authority
JP
Japan
Prior art keywords
weight
glass
total amount
weather resistance
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005285926A
Other languages
Japanese (ja)
Other versions
JP2007091555A (en
Inventor
浩三 前田
真衣子 更岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2005285926A priority Critical patent/JP4546379B2/en
Priority to CN2006101261790A priority patent/CN1939855B/en
Priority to KR1020060093646A priority patent/KR100897037B1/en
Publication of JP2007091555A publication Critical patent/JP2007091555A/en
Application granted granted Critical
Publication of JP4546379B2 publication Critical patent/JP4546379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)

Description

本発明は近赤外線カット用フィルターガラス組成物に関する。より詳しくは、デジタルカメラの色補正用等のフィルターガラスとして用いることができ、600〜800nm付近でのシャープカット特性に優れた近赤外線カット用フィルターガラスに関する。   The present invention relates to a filter glass composition for cutting near infrared rays. More specifically, the present invention relates to a near-infrared cut filter glass that can be used as a filter glass for color correction of a digital camera and has excellent sharp cut characteristics in the vicinity of 600 to 800 nm.

従来、近赤外線カット用フィルターガラスにはリン酸塩系ガラスにCuOを添加したガラスが使用されてきた。しかし近年、リン酸塩系ガラスの耐候性の悪さから、これを改良するためにリン酸塩ガラスにフッ素を導入したフツリン酸塩系ガラスにCuOを添加したガラスが提供されている(特許文献1、2、3)。
特公平6−43254号公報 特公平7−80689号公報 特公平6−92259号公報
Conventionally, glass obtained by adding CuO to a phosphate glass has been used as a filter glass for cutting near infrared rays. However, in recent years, due to the poor weather resistance of phosphate glass, there has been provided a glass obtained by adding CuO to a fluorophosphate glass in which fluorine is introduced into the phosphate glass in order to improve this (Patent Document 1). 2, 3).
Japanese Examined Patent Publication No. 6-43254 Japanese Patent Publication No. 7-80689 Japanese Patent Publication No. 6-92259

ところが上記特許文献1、2に開示のガラスは、酸化物換算の組成においてPの含有量が45重量%以下となされたものであるが、ガラスの成形性がよくないという問題があった。また熱膨張係数が大きいため、ガラスブロックの作製時に割れやすいという問題があった。
また上記特許文献3に開示のガラスは、Pの含有量が46重量%以上になされたものであるが、耐候性の改善が十分にはなされていないという問題が残っていた。
更に従来のフツリン酸塩系ガラスにおいては、ガラスの粘度が低く、脈理が消失し難いという問題があった。
However, the glasses disclosed in Patent Documents 1 and 2 are those in which the content of P 2 O 5 is 45% by weight or less in the oxide conversion composition, but there is a problem that the moldability of the glass is not good. It was. In addition, since the thermal expansion coefficient is large, there is a problem that the glass block is easily broken during the production.
Further, the glass disclosed in Patent Document 3 has a P 2 O 5 content of 46% by weight or more, but the problem that the weather resistance is not sufficiently improved remains.
Furthermore, the conventional fluorophosphate glass has a problem that the viscosity of the glass is low and striae are not easily lost.

そこで本発明は上記従来のフツリン酸塩系ガラスを用いた近赤外線カット用フィルターガラスでの問題を解決し、近赤外線カット特性に優れ、耐候性が良好であり、熱膨張係数が小さく、よってブロック作製時に割れ難く、また脈理が消失しやすい近赤外線カット用フィルターガラスの提供を課題とする。   Therefore, the present invention solves the problems in the near infrared cut filter glass using the above conventional fluorophosphate glass, has excellent near infrared cut characteristics, good weather resistance, low thermal expansion coefficient, and therefore blocks It is an object of the present invention to provide a filter glass for cutting near infrared rays which is difficult to break during production and easily loses striae.

上記課題を達成する本発明の近赤外線カット用フィルターガラスは、酸化物及びフッ化物換算で、P46.7〜50重量%、Al〜11重量%、ZnF、MnF、InFの少なくとも1種を合計量:1〜10重量%、CaF、SrF、BaFの少なくとも1種を合計量:10〜45重量%、LiF:0.1〜15重量%、NaF:0.1〜15重量%、但し、NaとLiとの重量比Na/Liが0.2以上、SiO、ZrO、La、Y、Ybの少なくとも1種を合計量:0.5〜3重量%、但し、F:8〜18重量%、O:28〜40重量%を含有する基礎ガラス組成物100重量%に対し、CuO:0.5〜8重量%を含有することを第1の特徴としている。
また本発明の本発明の近赤外線カット用フィルターガラスは、酸化物及びフッ化物換算で、P46.7〜50重量%、Al:6〜10重量%、ZnF、MnF、InFの少なくとも1種を合計量:1〜5重量%、CaF、SrF、BaFの少なくとも1種を合計量:20〜40重量%、LiF:0.2〜12重量%、NaF:0.2〜12重量%、但し、NaとLiとの重量比Na/Liが0.2以上、SiO、ZrO、La、Y、Ybの少なくとも1種を合計量:0.5〜1重量%、但し、F:8〜18重量%、O:28〜40重量%を含有する基礎ガラス組成物100重量%に対し、CuO:0.5〜8重量%を含有することを第2の特徴としている。
また本発明の近赤外線カット用フィルターガラスは、酸化物及びフッ化物換算で、P:47〜49重量%、Al:6〜10重量%、ZnF、MnF、InFの少なくとも1種を合計量:1〜4重量%、CaF、SrF、BaFの少なくとも1種を合計量:30〜40重量%、LiF:0.5〜10重量%、NaF:0.5〜10重量%、但し、NaとLiとの重量比Na/Liが0.2以上、SiO、ZrO、La、Y、Ybの少なくとも1種を合計量:0.5〜1重量%、但し、F:8〜18重量%、O:28〜40重量%を含有する基礎ガラス組成物100重量%に対し、CuO:0.5〜8重量%を含有することを第3の特徴としている。
また本発明の近赤外線カット用フィルターガラスは、上記第1〜第3の何れかの特徴に加えて、基礎ガラス組成物100重量%に対し、酸化銀若しくはハロゲン化銀を1重量%以下含有することを第4の特徴としている。
The near-infrared cut filter glass of the present invention that achieves the above-mentioned problems is P 2 O 5 : 46.7 to 50 % by weight, Al 2 O 3 : 6 to 11% by weight, ZnF 2 in terms of oxide and fluoride. , MnF 2 , InF 3 at least one total amount: 1 to 10 wt%, CaF 2 , SrF 2 , BaF 2 at least one total amount: 10 to 45 wt%, LiF: 0.1 to 15 wt% %, NaF: 0.1 to 15% by weight, provided that the Na / Li weight ratio Na / Li is 0.2 or more, SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 At least one of the total amount: 0.5 to 3% by weight, provided that F: 8 to 18% by weight, O: 28 to 40% by weight, and 100% by weight of the basic glass composition, CuO: 0. The first feature is that it contains 5 to 8% by weight. That.
Moreover, the near-infrared cut filter glass of the present invention is, in terms of oxide and fluoride, P 2 O 5 : 46.7 to 50 wt%, Al 2 O 3 : 6 to 10 wt%, ZnF 2 , At least one of MnF 2 and InF 3 is total amount: 1 to 5 wt%, at least one of CaF 2 , SrF 2 and BaF 2 is total amount: 20 to 40 wt%, LiF: 0.2 to 12 wt% , NaF: 0.2 to 12% by weight, provided that the weight ratio of Na and Li, Na / Li is 0.2 or more, SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 At least one of the total amount: 0.5 to 1% by weight, provided that F: 8 to 18% by weight, O: 28 to 40% by weight, and 100% by weight of the basic glass composition containing CuO: 0.5 The second feature is that it contains ˜8% by weight.
The near-infrared cut filter glass of the present invention, oxide and fluoride terms, P 2 O 5: 47~49 wt%, Al 2 O 3: 6~10 wt%, ZnF 2, MnF 2, InF 3 At least one of the total amount: 1-4 wt%, at least one of CaF 2 , SrF 2 , BaF 2 is the total amount: 30-40 wt%, LiF: 0.5-10 wt%, NaF: 0. 5 to 10% by weight, provided that the weight ratio Na / Li of Na to Li is 0.2 or more, and at least one of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 is added Amount: 0.5 to 1% by weight, provided that F: 8 to 18 % by weight , O: 28 to 40% by weight, 100% by weight of the basic glass composition containing CuO: 0.5 to 8% by weight The third feature is the inclusion.
In addition to the first to third features, the near infrared cut filter glass of the present invention contains 1% by weight or less of silver oxide or silver halide with respect to 100% by weight of the basic glass composition. This is the fourth feature.

請求項1に記載の近赤外線カット用フィルターガラスによれば、近赤外線カット特性にすぐれ、耐候性が良好であり、熱膨張係数が小さく、よってブロック作製時に割れ難く、また脈理が消失しやすい近赤外線カット用フィルターガラスを提供することができる。またNaとLiとの重量比Na/Liが0.2以上であることにより、一層、成形性と耐候性を向上させることができる。
特に請求項1に記載の近赤外線カット用フィルターガラスによれば、P :46.7〜50重量%、Al :6〜11重量%、ZnF 、MnF 、InF の少なくとも1種を合計量:1〜10重量%、CaF 、SrF 、BaF の少なくとも1種を合計量:10〜45重量%、LiF:0.1〜15重量%、NaF:0.1〜15重量%、但し、NaとLiとの重量比Na/Liが0.2以上、SiO 、ZrO 、La 、Y 、Yb の少なくとも1種を合計量:0.5〜3重量%、但し、F:8〜18重量%、O:28〜40重量%を含有する基礎ガラス組成物100重量%に対し、CuO:0.5〜8重量%を含有することにより、耐候性において、発明者による後述の実験環境において、984時間以上を可能とした。
また請求項2に記載の近赤外線カット用フィルターガラスによれば、請求項1に記載の発明よりも更に限定した成分組成にしたことで、より確実に、耐候性が良好で、熱膨張係数が小さくてブロック作製時に割れ難く、脈理が消失しやすい近赤外線カット用フィルターガラスを提供することができる。
また請求項3に記載の近赤外線カット用フィルターガラスによれば、請求項1、請求項2に記載の発明よりも更に成分組成を限定したことで、更に確実に、耐候性が良好で、熱膨張係数が小さくてブロック作製時に割れ難く、脈理が消失しやすい近赤外線カット用フィルターガラスを提供することができる。
また請求項4に記載の近赤外線カット用フィルターガラスによれば、上記請求項1〜3の何れかに記載の構成による作用効果に加えて、基礎ガラス成分100重量%に対し、酸化銀若しくはハロゲン化銀を1重量%以下含有することにより、含有されるCuイオンが2価から1価に還元されるのが抑えられ、近赤外線カットの特性を向上させることができる。
According to the filter glass for cutting near infrared rays according to claim 1, it is excellent in near infrared ray cutting characteristics, has good weather resistance, has a small thermal expansion coefficient, and is difficult to break during block production, and the striae easily disappear. A filter glass for cutting near infrared rays can be provided. Moreover, when the weight ratio Na / Li of Na and Li is 0.2 or more, the moldability and weather resistance can be further improved.
In particular, according to the near-infrared cut filter glass according to claim 1, P 2 O 5: 46.7~50 wt%, Al 2 O 3: 6~11 wt%, of ZnF 2, MnF 2, InF 3 at least one total amount: 1 to 10 wt%, CaF 2, SrF 2, the total amount of at least one of BaF 2: 10 to 45 wt%, LiF: 0.1 to 15 wt%, NaF: 0.1 ˜15 wt%, provided that the weight ratio of Na to Li is 0.2 or more, and the total amount of at least one of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 : 0.5 to 3% by weight, provided that F: 8 to 18% by weight, O: 28 to 40% by weight of the basic glass composition containing 100% by weight, CuO: 0.5 to 8% by weight In the weather resistance, the experimental ring described later by the inventor In, it made it possible for more than 984 hours.
Further, according to the filter glass for cutting near infrared rays according to claim 2, by making the component composition more limited than that of the invention according to claim 1, the weather resistance is more reliably ensured and the thermal expansion coefficient is higher. It is possible to provide a filter glass for near-infrared cut that is small and difficult to break at the time of block production, and in which striae are easily lost.
Moreover, according to the filter glass for near-infrared cut according to claim 3, the component composition is further limited as compared with the inventions according to claim 1 and claim 2. It is possible to provide a near-infrared cut filter glass that has a small expansion coefficient, is difficult to break during block production, and easily loses striae.
Moreover, according to the filter glass for near-infrared cut of Claim 4, in addition to the effect by the structure in any one of the said Claims 1-3, it is silver oxide or halogen with respect to 100 weight% of basic glass components. By containing 1% by weight or less of silver halide, it is possible to suppress the contained Cu ions from being divalent to monovalent and to improve the near-infrared cut characteristics.

本発明の近赤外線カット用フィルターガラスは、リン酸成分を多く含むフツリン酸塩ガラスをベースとして、これにAlを導入し、且つZnF、MnF、InFの少なくとも1種を添加し、更にSiO、ZrO、La、Y、Ybの少なくとも1種を導入することにより、近赤外線カット用フィルターガラスとしての近赤外線カット特性及び熱膨張係数が小さくブロック作製時に割れ難いという特性を維持しつつ、耐候性を向上させ、また脈理を消失しやすくすることができるようにしたようにものである。 The near-infrared cut filter glass of the present invention is based on fluorophosphate glass containing a large amount of phosphoric acid component, Al 2 O 3 is introduced into this glass, and at least one of ZnF 2 , MnF 2 and InF 3 is added. Furthermore, by introducing at least one of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , the near-infrared cut characteristics and thermal expansion coefficient as a filter glass for near-infrared cut can be obtained. While maintaining the characteristics of being small and difficult to break during block production, the weather resistance is improved and the striae can be easily lost.

本発明に係る近赤外線カット用フィルターガラスの組成の範囲について説明する。
は本発明のガラスの網目を形成する酸化物である。
その成分範囲としては、46〜60重量%とする。46重量%未満の場合は、熱膨張係数が高くなりすぎる。熱膨張係数が高いと、ガラスブロックの作製時に割れやすい。また60重量%を超えると、ガラスになり難く、またガラスの耐候性が悪くなる。
の含有量は、熱膨張係数、ガラスの耐候性等を考慮すると、より好ましくは46〜50重量%とするのがよく、更に好ましくは47〜49重量%とするのがよい。
The composition range of the near-infrared cutting filter glass according to the present invention will be described.
P 2 O 5 is an oxide that forms the network of the glass of the present invention.
The component range is 46 to 60% by weight. If it is less than 46% by weight, the thermal expansion coefficient becomes too high. If the thermal expansion coefficient is high, the glass block is likely to break during the production. On the other hand, if it exceeds 60% by weight, it is difficult to form glass, and the weather resistance of the glass deteriorates.
The content of P 2 O 5 is more preferably 46 to 50% by weight and further preferably 47 to 49% by weight in consideration of the thermal expansion coefficient, the weather resistance of the glass, and the like.

Alは熱膨張係数を下げ、且つガラスの耐候性を上げる成分である。
その含有量の範囲としては、5〜11重量%とする。5重量%未満の場合は、熱膨張係数が高くなりすぎ、ガラスブロック作製時に割れやすい。またガラスの耐候性が悪くなる。一方、11重量%を超えると、溶融温度が高くなりすぎて、ガラスが得られなくなるおそれがある。
Alの含有量は、熱膨張係数、ガラスの成形性等を考慮すると、より好ましくは6〜10重量%とする。
Al 2 O 3 is a component that lowers the thermal expansion coefficient and raises the weather resistance of the glass.
The content range is 5 to 11% by weight. If it is less than 5% by weight, the coefficient of thermal expansion becomes too high, and the glass block is easily broken. Moreover, the weather resistance of glass will worsen. On the other hand, if it exceeds 11% by weight, the melting temperature becomes too high, and there is a possibility that glass cannot be obtained.
The content of Al 2 O 3 is more preferably 6 to 10% by weight in consideration of the thermal expansion coefficient, glass moldability, and the like.

ZnF、MnF、InFはアルカリハロゲン化物と同様に少量の添加でガラスの成形性を上げ、且つアルカリハロゲン化物に比べてガラスの耐候性の低下が少ない成分である。
その含有量の範囲としては、ZnFとMnFとInFの少なくとも1種を1〜10重量%含有させる。
ZnFとMnFとInFの合計量が1重量%未満の場合は、ガラスの成形性を上げる効果を十分に発揮できない。一方、ZnFとMnFとInFの合計量が10重量%を超えると、ガラスの成形性が悪くなり、結晶が析出するおそれがあるので好ましくない。
ZnFとMnFとInFの含有量の範囲は、ガラスの成形性等を考慮すると、より好ましくはZnFとMnFとInFの少なくとも1種を1〜5重量%含有させるのがよい。更に好ましくは、1〜4重量%含有させるのがよい。
ZnF 2 , MnF 2 , and InF 3 are components that increase the moldability of the glass by adding a small amount in the same manner as the alkali halide, and have less deterioration in the weather resistance of the glass compared to the alkali halide.
As the range of the content, ZnF 2 and MnF 2 and at least one InF 3 is contained 1 to 10% by weight.
When the total amount of ZnF 2 , MnF 2 and InF 3 is less than 1% by weight, the effect of improving the moldability of the glass cannot be exhibited sufficiently. On the other hand, if the total amount of ZnF 2 , MnF 2, and InF 3 exceeds 10% by weight, the glass moldability deteriorates and crystals may precipitate, which is not preferable.
Range of the content of ZnF 2 and MnF 2 and InF 3, considering moldability of the glass, more preferably ZnF 2 and MnF 2 and at least one InF 3 better to be contained 1-5 wt% . More preferably, it is contained in an amount of 1 to 4% by weight.

CaF、SrF、BaFはガラスの成形性を向上させる成分である。
その含有量の範囲としては、CaFとSrFとBaFの少なくとも1種を10〜45重量%含有させる。
CaFとSrFとBaFの合計量が10重量%未満の場合は、ガラスの成形性が悪くなる。またガラスの耐候性が悪くなるおそれがある。一方、CaFとSrFとBaFの合計量が45重量%を超えても、ガラスの成形性が悪くなるおそれがある。
CaFとSrFとBaFの含有量の範囲は、ガラスの耐候性、成形性等を考慮すると、より好ましくはCaFとSrFとBaFの少なくとも1種を20〜40重量%含有させるのがよく、更に好ましくは30〜40重量%とするのがよい。
CaF 2, SrF 2, BaF 2 is a component for improving the moldability of the glass.
As the range of the content, at least one CaF 2 and SrF 2 and BaF 2 is contained 10 to 45 wt%.
If the total amount of CaF 2 and SrF 2 and BaF 2 is less than 10 wt%, the moldability of the glass is deteriorated. Moreover, there exists a possibility that the weather resistance of glass may worsen. On the other hand, the total amount of CaF 2 and SrF 2 and BaF 2 is even greater than 45 wt%, there is a possibility that the moldability of the glass is deteriorated.
Range of the content of CaF 2 and SrF 2 and BaF 2 is weather resistance of the glass, considering the moldability, more preferably is contained 20 to 40 wt% of at least one CaF 2 and SrF 2 and BaF 2 More preferably, it is good to set it as 30 to 40 weight%.

LiFはガラスの成形性を向上させる成分である。
その含有量の範囲としては、0.1〜15重量%とする。
LiFの含有量が0.1重量%未満の場合は、ガラスの成形性を向上させる効果がでない。一方、15重量%を超えると、ガラスの耐候性が著しく悪化する。
LiFの含有量の範囲は、ガラスの成形性、耐候性等を考慮すると、より好ましくは0.2〜12重量%含有させるのがよく、更に好ましくは0.5〜10重量%とするのがよい。
LiF is a component that improves the moldability of glass.
The content range is 0.1 to 15% by weight.
When the content of LiF is less than 0.1% by weight, the effect of improving the moldability of the glass is not obtained. On the other hand, if it exceeds 15% by weight, the weather resistance of the glass is significantly deteriorated.
The range of LiF content is preferably 0.2 to 12% by weight, more preferably 0.5 to 10% by weight, considering the moldability and weather resistance of the glass. Good.

NaFはLiFと同様にガラスの成形性を向上させる成分である。
その含有量の範囲としては、0.1〜15重量%とする。NaFはLiFと共に含有させることにより、ガラスの耐候性を向上させると共に、ガラスの成形性を向上させる。
NaFの含有量が0.1重量%未満の場合は、ガラスの成形性を向上させる効果がでない。一方、15重量%を超えると、ガラスの耐候性が悪くなるか、又はガラスの成形性が悪くなるおそれがある。
NaFの含有量の範囲は、ガラスの成形性、耐候性等を考慮すると、より好ましくは0.2〜12重量%含有させるのがよく、更に好ましくは0.5〜10重量%とするのがよい。
またNaFとLiFとを共に含有させることでガラスの成形性、耐候性を向上させるが、NaとLiの重量比Na/Liを0.2以上とするのがよい。
NaF is a component which improves the moldability of glass like LiF.
The content range is 0.1 to 15% by weight. By containing NaF together with LiF, the weather resistance of the glass is improved and the moldability of the glass is improved.
When the content of NaF is less than 0.1% by weight, there is no effect of improving the moldability of the glass. On the other hand, if it exceeds 15% by weight, the weather resistance of the glass may deteriorate, or the moldability of the glass may deteriorate.
The range of the NaF content is preferably 0.2 to 12% by weight, more preferably 0.5 to 10% by weight, considering the moldability and weather resistance of the glass. Good.
Further, by containing both NaF and LiF, the moldability and weather resistance of the glass are improved, but the Na / Li weight ratio Na / Li is preferably 0.2 or more.

SiO、ZrO、La、Y、Ybは、ガラスの耐候性を向上させ、またAlと同様に粘度を上げて脈理の発生を抑える成分である。
その含有量の範囲としては、SiOとZrOとLaとYとYb
少なくとも1種を0.4〜3重量%含有させる。
SiOとZrOとLaとYとYbの含有量の合計が0.4重量%未満の場合は、ガラスの耐候性を向上させる効果がでない。一方、合計が3重量%を超えると、それらの成分がガラス融液中に融け残るおそれが生じる。
SiOとZrOとLaとYとYbの含有量の範囲は、ガラスの耐候性、成形性等を考慮すると、より好ましくはSiOとZrOとLaとYとYbの少なくとも1種を0.4〜1重量%含有させるのがよい。
SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 are components that improve the weather resistance of the glass and increase the viscosity in the same way as Al 2 O 3 to suppress the occurrence of striae. is there.
As the range of the content, 0.4 to 3 wt% of at least one of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 and Yb 2 O 3 is contained.
When the total content of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 and Yb 2 O 3 is less than 0.4% by weight, there is no effect of improving the weather resistance of the glass. On the other hand, if the total exceeds 3% by weight, the components may remain unmelted in the glass melt.
The range of the content of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 and Yb 2 O 3 is more preferably SiO 2 , ZrO 2 and La 2 in consideration of the weather resistance, moldability and the like of the glass. It is preferable to contain 0.4 to 1% by weight of at least one of O 3 , Y 2 O 3 and Yb 2 O 3 .

Agの酸化物またはハロゲン化物、例えばAgF、AgCl、AgBr、AgIを添加することにより、後述するCuOのCu2+イオンからCuイオンへの還元を抑えることができる。これによって間接的に近赤外線カット特性を向上させることができる。
Agの酸化物またはハロゲン化物の含有量の範囲は、0.1〜1.0重量%とする。0.1重量%未満ではCuイオンの還元抑制効果が少ない。1.0重量%を超えると、ガラス中にAgが析出する問題がある。
By adding an oxide or halide of Ag, for example, AgF, AgCl, AgBr, or AgI, reduction of CuO from Cu 2+ ions to Cu + ions, which will be described later, can be suppressed. As a result, the near-infrared cut characteristic can be indirectly improved.
The range of the content of the oxide or halide of Ag is 0.1 to 1.0% by weight. If it is less than 0.1% by weight, the effect of suppressing Cu ion reduction is small. If it exceeds 1.0% by weight, there is a problem that Ag precipitates in the glass.

CuOは近赤外線カット特性を付与するために必須の成分である。
その含有量の範囲としては、基礎ガラス成分100重量%に対して0.5〜8重量%とする。
CuOの含有量が基礎ガラス成分100重量%に対して0.5重量%未満の場合は、近赤外線をカットする特性が十分に発揮できない。一方、基礎ガラス成分100重量%に対して8重量%を超えると、可視光線域の透過率が著しく悪くなるおそれがある。
CuOの含有量の範囲は、近赤外線カット特性を考慮すると、より好ましくは基礎ガラス成分100重量%に対して1〜8重量%含有させるのがよい。
上記において基礎ガラス成分とは、CuO以外のガラス成分の意味である。
CuO is an essential component for imparting near-infrared cut characteristics.
The range of the content is 0.5 to 8% by weight with respect to 100% by weight of the basic glass component.
When the content of CuO is less than 0.5% by weight with respect to 100% by weight of the basic glass component, the property of cutting near infrared rays cannot be sufficiently exhibited. On the other hand, if it exceeds 8% by weight based on 100% by weight of the basic glass component, the transmittance in the visible light region may be remarkably deteriorated.
The range of CuO content is more preferably 1 to 8% by weight with respect to 100% by weight of the basic glass component, considering near-infrared cut characteristics.
In the above, the basic glass component means a glass component other than CuO.

以下に、実施例を挙げて本発明を更に説明する。ただし、本発明はこれらの実施例により何ら限定されるものではない。
以下の実施例、比較例において使用する原料は、Al(PO、Ba(PO、Zn(PO、NaPO、LiPO、ZnF、MnF、InF、BaF、CaF、SrF、NaF、LiF、SiO、ZrO、La、Y、Yb、AgCl、CuOである。
The present invention will be further described below with reference to examples. However, the present invention is not limited to these examples.
The raw materials used in the following examples and comparative examples are Al (PO 3 ) 3 , Ba (PO 3 ) 2 , Zn (PO 3 ) 2 , NaPO 3 , LiPO 3 , ZnF 2 , MnF 2 , InF 3 , BaF. 2, CaF 2, SrF 2, NaF, LiF, SiO 2, ZrO 2, La 2 O 3, Y 2 O 3, Yb 2 O 3, AgCl, is CuO.

また実施例、比較例において熱膨張係数(α)、ガラス転移温度(Tg)、ガラスの分光特性、ガラスの耐候性等は次に示す要領により測定した。
(1)熱膨張係数(α)、ガラス転移温度(Tg)
ガラスを直径約5mm、長さ15〜20mmのロッド状に加工し、熱機械分析装置(TMA)を用い、荷重を10g、石英ガラスを標準試料として室温から10℃/minで昇温して得られたTMA曲線より、50〜300℃の平均値の熱線膨張係数(α50−300)を求めた。またTMA曲線において、直線の傾きが大きく変化した時の温度をガラスの転移温度(Tg)とした。
(2)ガラスの分光特性
得られたガラスを0.3〜0.5mmの厚さになるまで鏡面研磨し、分光光度計(HITACHI社製U−4100)を用いて透過率を測定した。
(3)ガラスの耐候性
分光特性を測定した試料を約60℃、95%相対湿度の恒温恒湿機内で保持し、一定時間毎にその表面状態を観察し、ガラス表面が曇り、斑点が観察される時間により評価した。
In Examples and Comparative Examples, the thermal expansion coefficient (α), the glass transition temperature (Tg), the spectral characteristics of the glass, the weather resistance of the glass and the like were measured according to the following procedure.
(1) Thermal expansion coefficient (α), glass transition temperature (Tg)
Glass is processed into a rod shape with a diameter of about 5 mm and a length of 15 to 20 mm, using a thermomechanical analyzer (TMA), and the temperature is increased from room temperature to 10 ° C./min using a load of 10 g and quartz glass as a standard sample. From the obtained TMA curve, the thermal linear expansion coefficient (α 50-300 ) having an average value of 50 to 300 ° C. was obtained. In the TMA curve, the temperature at which the slope of the straight line changed greatly was defined as the glass transition temperature (Tg).
(2) Spectral characteristics of glass The obtained glass was mirror-polished to a thickness of 0.3 to 0.5 mm, and transmittance was measured using a spectrophotometer (U-4100 manufactured by HITACHI).
(3) Weather resistance of glass The sample whose spectral characteristics were measured was held in a constant temperature and humidity chamber at about 60 ° C and 95% relative humidity, and its surface condition was observed at regular intervals. The glass surface was cloudy and spots were observed. It was evaluated by time to be.

(実施例2)
ガラス組成が、表1に示すように、P46.7重量%、Al6.0重量%、ZnF1.0重量%、BaF29.0重量%、CaF9.0重量%、SrF6.2重量%、NaF:0.8重量%、LiF:0.8重量%、ZrO :0.5重量%からなる基礎ガラス100重量%に対して、CuO:8.0重量%を含有するように各成分原料を調合した。
その後、900℃に設定した電気炉に入れた白金ルツボ内で、調合済み原料を1時間溶融し、予め加熱しておいた鉄板型上に流し出してガラスブロックを作製した。そして作製したガラスブロックを予想されるガラス転移点よりも約50℃高い温度に設定した電気炉に入れ、除冷を行った後、切り出して研磨し、熱膨張係数、軟化点を測定するサンプルとした。
結果を表1に示すが、熱膨張係数(α50−300)は140×10−7/℃であった。またガラス転移温度(Tg)は333℃であった。ガラスを切り出し、0.3mm厚にして分光特性を測定し、その後、その試料を使用して耐候性試験を実施したところ、984時間までガラス表面に斑点が見られなかった。
(Example 2)
As shown in Table 1, the glass composition was P 2 O 5 : 46.7 wt%, Al 2 O 3 : 6.0 wt%, ZnF 2 : 1.0 wt%, BaF 2 : 29.0 wt% CaF 2 : 9.0 wt%, SrF 2 : 6.2 wt%, NaF: 0.8 wt%, LiF: 0.8 wt%, ZrO 2 : 0.5 wt% 100% by weight of the basic glass On the other hand, each component raw material was prepared so as to contain 8.0 % by weight of CuO.
Then, the prepared raw material was melted for 1 hour in a platinum crucible placed in an electric furnace set at 900 ° C., and poured onto a preheated iron plate mold to produce a glass block. Then, the prepared glass block is put in an electric furnace set to a temperature about 50 ° C. higher than the expected glass transition point, and after cooling, cut out and polished, and a sample for measuring a thermal expansion coefficient and a softening point; did.
The results are shown in Table 1, and the thermal expansion coefficient (α 50-300 ) was 140 × 10 −7 / ° C. The glass transition temperature (Tg) was 333 ° C. The glass was cut out, 0.3 mm thick and the spectral characteristics were measured. Then, when the weather resistance test was performed using the sample, no spots were observed on the glass surface until 984 hours.

(比較例1)
比較例1及び後述の比較例2は本発明のガラス組成を逸脱するガラス組成を有するが、表4に示すように、重量%で、P:46.0重量%、Al:9.0重量%、BaF:14.7重量%、CaF:10.1重量%、SrF:6.8重量%、NaF:4.0重量%、LiF:9.4重量%からなる基礎ガラス100重量%に対して、CuO:6.0重量%を含有するように各成分原料を調合した。
実施例1と同様に、900℃に設定した電気炉に入れた白金ルツボ内で、調合済み原料を1時間溶融し、予め加熱しておいた鉄板型上に流し出してガラスブロックを作製した。そして作製したガラスブロックを予想されるガラス転移点よりも約50℃高い温度に設定した電気炉に入れ、徐冷を行った後、切り出して研磨し、熱膨張係数、軟化点を測定するサンプルとした。
結果を表4に示すが、熱膨張係数(α50−300)は145×10−7/℃であった。またガラス転移温度(Tg)は336℃であった。ガラスを切り出し、0.3mm厚にして分光特性を測定し、その後、その試料を使用して耐候性試験を実施したところ、834時間でガラス表面に斑点が見られた。
(Comparative Example 1)
Comparative Example 1 and Comparative Example 2 to be described later have a glass composition that deviates from the glass composition of the present invention, but as shown in Table 4, by weight%, P 2 O 5 : 46.0 wt%, Al 2 O 3 : 9.0 wt%, BaF 2 : 14.7 wt%, CaF 2 : 10.1 wt%, SrF 2 : 6.8 wt%, NaF: 4.0 wt%, LiF: 9.4 wt% Each component raw material was prepared so as to contain 6.0% by weight of CuO with respect to 100% by weight of the basic glass.
In the same manner as in Example 1, the prepared raw material was melted for 1 hour in a platinum crucible placed in an electric furnace set at 900 ° C., and poured onto a preheated iron plate mold to produce a glass block. Then, the prepared glass block is put in an electric furnace set to a temperature about 50 ° C. higher than the expected glass transition point, and after slow cooling, cut out and polished, and a sample for measuring a thermal expansion coefficient and a softening point; did.
The results are shown in Table 4, and the thermal expansion coefficient (α 50-300 ) was 145 × 10 −7 / ° C. The glass transition temperature (Tg) was 336 ° C. When the glass was cut out and the spectral characteristics were measured with a thickness of 0.3 mm, and the weather resistance test was performed using the sample, spots were observed on the glass surface in 834 hours.

(比較例2)
ガラス組成が、表4に示すように、重量%で、P:70.0重量%、Al:10.0重量%、BaF:5.2重量%、CaF:4.9重量%、SrF:5.0重量%、NaF:3.4重量%、LiF:1.5重量%からなる基礎ガラス100重量%に対して、CuO:6.0重量%が含有するように各成分原料を調合した。
その後1000℃に設定した電気炉に入れた白金ルツボ内で、調合済み原料を1時間溶融し、予め加熱しておいた鉄板型上に流し出してガラスブロックを作製した。そして作製したガラスブロックを予想されるガラス転移点よりも約50℃高い温度に設定した電気炉に入れ、徐冷を行った後、切り出して研磨し、熱膨張係数、軟化点を測定するサンプルとした。
結果を表4に示すが、熱膨張係数(α50−300)は100×10−7/℃であった。またガラス転移温度(Tg)は460℃であった。ガラスを切り出し、0.3mm厚にして分光特性を測定し、その後、その試料を使用して耐候性試験を実施したところ、264時間でガラス表面に斑点が見られた。
(Comparative Example 2)
Glass composition, as shown in Table 4, in weight%, P 2 O 5: 70.0 wt%, Al 2 O 3: 10.0 wt%, BaF 2: 5.2 wt%, CaF 2: 4 CuO: 6.0% by weight with respect to 100% by weight of the base glass composed of 9.9% by weight, SrF 2 : 5.0% by weight, NaF: 3.4% by weight, LiF: 1.5% by weight Each component raw material was prepared as follows.
Thereafter, the prepared raw material was melted for 1 hour in a platinum crucible placed in an electric furnace set at 1000 ° C., and poured onto a preheated iron plate mold to produce a glass block. Then, the prepared glass block is put in an electric furnace set to a temperature about 50 ° C. higher than the expected glass transition point, and after slow cooling, cut out and polished, and a sample for measuring a thermal expansion coefficient and a softening point; did.
The results are shown in Table 4, and the thermal expansion coefficient (α 50-300 ) was 100 × 10 −7 / ° C. The glass transition temperature (Tg) was 460 ° C. The glass was cut out, 0.3 mm thick and the spectral characteristics were measured, and then a weather resistance test was performed using the sample. Spots were observed on the glass surface in 264 hours.

実施例1、3〜27
表1〜4に示すガラス組成となるように、実施例2の場合と同様に各成分原料を調合し、ガラスブロックを作製し、除冷後に切り出して研磨し、熱膨張係数、軟化点を測定するサンプルとした。
なお実施例1は、P :46.0重量%であり、本発明におけるP :46.7〜50重量%という要件を満たしていない。このため耐候性も926時間で、本発明における最低値984時間に劣る。実施例1は実施例というより参考例である
実施例4は、La :0.4重量%で、本発明におけるSiO 、ZrO 、La 、Y 、Yb の少なくとも1種を合計量:0.5〜3重量%という要件を満たしていない。このため耐候性も926時間で、本発明における最低値984時間に劣る。実施例4は実施例というより参考例である
実施例6も、La :0.4重量%で、本発明におけるSiO 、ZrO 、La 、Y 、Yb の少なくとも1種を合計量:0.5〜3重量%という要件を満たしていない。またNa/Li:0.1で、本発明におけるNa/Li:0.2以上という要件を満たしていない。このため耐候性も926時間で、本発明における最低値984時間に劣る。実施例6は実施例というより参考例である。
実施例21は、Na/Li:0.02であり、本発明の要件Na/Li:0.2以上を満たしていない。このため耐候性も960時間で、本発明における最低値984時間に劣る。実施例21は実施例というより参考例である。
実施例23は、P :50.7重量%であり、本発明におけるP :46.7〜50重量%という要件を満たしていない。このため耐候性も960時間で、本発明における最低値984時間に劣る。実施例23は実施例というより参考例である
実施例24は、P :53.5重量%であり、本発明におけるP :46.7〜50重量%という要件を満たしていない。またAl :5.0重量%であり、本発明におけるAl :6〜11重量%という要件を満たしていない。このため耐候性も840時間で、本発明における最低値984時間にかなり劣る。実施例24は実施例というより参考例である
実施例25は、P :53.5重量%であり、本発明におけるP :46.7〜50重量%という要件を満たしていない。またAl :5.0重量%であり、本発明におけるAl :6〜11重量%という要件を満たしていない。このため耐候性も840時間で、本発明における最低値984時間にかなり劣る。実施例25は実施例というより参考例である
実施例26は、P :56.3重量%であり、本発明におけるP :46.7〜50重量%という要件を満たしていない。このため耐候性も960時間で、本発明における最低値984時間に劣る。実施例26は実施例というより参考例である
実施例27は、P :60.0重量%であり、本発明におけるP :46.7〜50重量%という要件を満たしていない。耐候性も840時間で、本発明における最低値984時間にかなり劣る。実施例27は実施例というより参考例である
( Examples 1, 3 to 27 )
Each component raw material is prepared in the same manner as in Example 2 so that the glass composition shown in Tables 1 to 4 is obtained, a glass block is prepared, cut out after being cooled and polished, and the thermal expansion coefficient and softening point are measured. A sample to be used.
Note Example 1, P 2 O 5: 46.0 on a weight%, P 2 O 5 in the present invention: does not meet the requirement of 46.7 to 50 wt%. Therefore, the weather resistance is also 926 hours, which is inferior to the minimum value of 984 hours in the present invention. Example 1 is a reference example rather than an example .
In Example 4, La 2 O 3 : 0.4 wt%, and at least one of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , and Yb 2 O 3 in the present invention is a total amount: 0. It does not meet the requirement of 5 to 3% by weight. Therefore, the weather resistance is also 926 hours, which is inferior to the minimum value of 984 hours in the present invention. Example 4 is a reference example rather than an example .
In Example 6 as well, La 2 O 3 : 0.4 wt%, and at least one of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , and Yb 2 O 3 in the present invention was added in a total amount of 0. It does not meet the requirement of 5 to 3% by weight. Further, Na / Li: 0.1, which does not satisfy the requirement of Na / Li: 0.2 or more in the present invention. Therefore, the weather resistance is also 926 hours, which is inferior to the minimum value of 984 hours in the present invention. Example 6 is a reference example rather than an example.
Example 21 is Na / Li: 0.02 and does not satisfy the requirement Na / Li: 0.2 or more of the present invention. Therefore, the weather resistance is also 960 hours, which is inferior to the minimum value of 984 hours in the present invention. Example 21 is a reference example rather than an example.
Example 23, P 2 O 5: 50.7 on a weight%, P 2 O 5 in the present invention: does not meet the requirement of 46.7 to 50 wt%. Therefore, the weather resistance is also 960 hours, which is inferior to the minimum value of 984 hours in the present invention. Example 23 is a reference example rather than an example .
Example 24, P 2 O 5: 53.5 on a weight%, P 2 O 5 in the present invention: does not meet the requirement of 46.7 to 50 wt%. The Al 2 O 3: 5.0 are weight%, Al 2 O 3 in the present invention: does not meet the requirement of 6-11 wt%. For this reason, the weather resistance is also 840 hours, which is considerably inferior to the minimum value of 984 hours in the present invention. Example 24 is a reference example rather than an example .
Example 25, P 2 O 5: 53.5 on a weight%, P 2 O 5 in the present invention: does not meet the requirement of 46.7 to 50 wt%. The Al 2 O 3: 5.0 are weight%, Al 2 O 3 in the present invention: does not meet the requirement of 6-11 wt%. For this reason, the weather resistance is also 840 hours, which is considerably inferior to the minimum value of 984 hours in the present invention. Example 25 is a reference example rather than an example .
Example 26, P 2 O 5: 56.3 on a weight%, P 2 O 5 in the present invention: does not meet the requirement of 46.7 to 50 wt%. Therefore, the weather resistance is also 960 hours, which is inferior to the minimum value of 984 hours in the present invention. Example 26 is a reference example rather than an example .
Example 27, P 2 O 5: a 60.0 wt%, P 2 O 5 in the present invention: does not meet the requirement of 46.7 to 50 wt%. The weather resistance is also 840 hours, which is considerably inferior to the minimum value of 984 hours in the present invention. Example 27 is a reference example rather than an example .

実施例9、14、比較例2についての分光透過率曲線を図1に示す。   The spectral transmittance curves for Examples 9 and 14 and Comparative Example 2 are shown in FIG.

以上の実施例1〜27と比較例1、2とから明らかなように、本発明に係る実施例のガラスは、比較例に比べて、耐候性が良好であり、また熱膨張係数が小さいため割れにくいことがわかる。また図1に示す分光透過曲線において、本発明の実施例のガラスは比較例に比べて、波長が350〜600nmにおける透過率が高く、一方、600〜800nmにかけてのカット特性に優れていることがわかる。なお、本発明に係る実施例の何れにおいても脈理発生はなかった。   As is clear from Examples 1 to 27 and Comparative Examples 1 and 2, the glass of the examples according to the present invention has better weather resistance and a smaller thermal expansion coefficient than the comparative examples. It turns out that it is hard to break. Moreover, in the spectral transmission curve shown in FIG. 1, the glass of the Example of this invention has the high transmittance | permeability in the wavelength of 350-600 nm compared with a comparative example, On the other hand, it is excellent in the cut characteristic over 600-800 nm. Recognize. No striae occurred in any of the examples according to the present invention.

Figure 0004546379
Figure 0004546379

Figure 0004546379
Figure 0004546379

Figure 0004546379
Figure 0004546379

Figure 0004546379
Figure 0004546379

実施例のガラスと比較例のガラスにおける透過率曲線を示す図である。It is a figure which shows the transmittance | permeability curve in the glass of an Example and the glass of a comparative example.

Claims (4)

酸化物及びフッ化物換算で、
46.7〜50重量%
Al〜11重量%
ZnF、MnF、InFの少なくとも1種を合計量:1〜10重量%
CaF、SrF、BaFの少なくとも1種を合計量:10〜45重量%
LiF :0.1〜15重量%
NaF :0.1〜15重量%
但し、NaとLiとの重量比Na/Liが0.2以上
SiO、ZrO、La、Y、Ybの少なくとも1種を合計量:0.5〜3重量%
但し、F:8〜18重量%、O:28〜40重量%
を含有する基礎ガラス組成物100重量%に対し、
CuO :0.5〜8重量%
を含有することを特徴とする近赤外線カット用フィルターガラス。
In terms of oxide and fluoride,
P 2 O 5: 46.7~50 weight%
Al 2 O 3 : 6 to 11% by weight
ZnF 2, MnF 2, the total amount of at least one of InF 3: 1 to 10 wt%
CaF 2, SrF 2, the total amount of at least one of BaF 2: 10 to 45 wt%
LiF: 0.1 to 15% by weight
NaF: 0.1 to 15% by weight
However, the weight ratio Na / Li of Na and Li is 0.2 or more. The total amount of at least one of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 is 0.5 to 3 weight%
However, F: 8 to 18% by weight, O: 28 to 40% by weight
100% by weight of the basic glass composition containing
CuO: 0.5 to 8% by weight
A filter glass for cutting near infrared rays, comprising:
酸化物及びフッ化物換算で、
46.7〜50重量%
Al:6〜10重量%
ZnF、MnF、InFの少なくとも1種を合計量:1〜5重量%
CaF、SrF、BaFの少なくとも1種を合計量:20〜40重量%
LiF :0.2〜12重量%
NaF :0.2〜12重量%
但し、NaとLiとの重量比Na/Liが0.2以上
SiO、ZrO、La、Y、Ybの少なくとも1種を合計量:0.5〜1重量%
但し、F:8〜18重量%、O:28〜40重量%
を含有する基礎ガラス組成物100重量%に対し、
CuO :0.5〜8重量%
を含有することを特徴とする近赤外線カット用フィルターガラス。
In terms of oxide and fluoride,
P 2 O 5: 46.7 ~50% by weight
Al 2 O 3 : 6 to 10% by weight
Total amount: 1 to 5% by weight of at least one of ZnF 2 , MnF 2 and InF 3
CaF 2, SrF 2, the total amount of at least one of BaF 2: 20 to 40 wt%
LiF: 0.2 to 12% by weight
NaF: 0.2 to 12% by weight
However, the weight ratio Na / Li of Na and Li is 0.2 or more. The total amount of at least one of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 : 0.5 to 1 weight%
However, F: 8 to 18% by weight, O: 28 to 40% by weight
100% by weight of the basic glass composition containing
CuO: 0.5 to 8% by weight
A filter glass for cutting near infrared rays, comprising:
酸化物及びフッ化物換算で、
:47〜49重量%
Al:6〜10重量%
ZnF、MnF、InFの少なくとも1種を合計量:1〜4重量%
CaF、SrF、BaFの少なくとも1種を合計量:30〜40重量%
LiF :0.5〜10重量%
NaF :0.5〜10重量%
但し、NaとLiとの重量比Na/Liが0.2以上
SiO、ZrO、La、Y、Ybの少なくとも1種を合計量:0.5〜1重量%
但し、F:8〜18重量%、O:28〜40重量%
を含有する基礎ガラス組成物100重量%に対し、
CuO :0.5〜8重量%
を含有することを特徴とする近赤外線カット用フィルターガラス。
In terms of oxide and fluoride,
P 2 O 5 : 47 to 49% by weight
Al 2 O 3 : 6 to 10% by weight
Total amount: 1 to 4 wt% of at least one of ZnF 2 , MnF 2 and InF 3
CaF 2, SrF 2, the total amount of at least one of BaF 2: 30 to 40 wt%
LiF: 0.5 to 10% by weight
NaF: 0.5 to 10% by weight
However, the weight ratio Na / Li of Na and Li is 0.2 or more. The total amount of at least one of SiO 2 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 : 0.5 to 1 weight%
However, F: 8 to 18 % by weight , O: 28 to 40% by weight
100% by weight of the basic glass composition containing
CuO: 0.5 to 8% by weight
A filter glass for cutting near infrared rays, comprising:
基礎ガラス組成物100重量%に対し、酸化銀若しくはハロゲン化銀を1重量%以下含有することを特徴とする請求項1〜3の何れかに記載の近赤外線カット用フィルターガラス。   The filter glass for cutting near infrared rays according to any one of claims 1 to 3, further comprising 1% by weight or less of silver oxide or silver halide with respect to 100% by weight of the basic glass composition.
JP2005285926A 2005-09-30 2005-09-30 Near infrared filter glass Expired - Fee Related JP4546379B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005285926A JP4546379B2 (en) 2005-09-30 2005-09-30 Near infrared filter glass
CN2006101261790A CN1939855B (en) 2005-09-30 2006-08-29 Filter glass for cutting fore infrared rays
KR1020060093646A KR100897037B1 (en) 2005-09-30 2006-09-26 Filter glass for cutting fore infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285926A JP4546379B2 (en) 2005-09-30 2005-09-30 Near infrared filter glass

Publications (2)

Publication Number Publication Date
JP2007091555A JP2007091555A (en) 2007-04-12
JP4546379B2 true JP4546379B2 (en) 2010-09-15

Family

ID=37958430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285926A Expired - Fee Related JP4546379B2 (en) 2005-09-30 2005-09-30 Near infrared filter glass

Country Status (3)

Country Link
JP (1) JP4546379B2 (en)
KR (1) KR100897037B1 (en)
CN (1) CN1939855B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106171A (en) * 2016-12-26 2018-07-05 旭硝子株式会社 Near-infrared cut filter glass and near-infrared cut filter

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991140B2 (en) * 2005-11-11 2012-08-01 富士フイルム株式会社 Optical glass and manufacturing method thereof
JP5445197B2 (en) * 2010-02-12 2014-03-19 旭硝子株式会社 Near-infrared cut filter glass and method for producing near-infrared cut filter glass
JP2013151410A (en) * 2011-12-28 2013-08-08 Ohara Inc Optical glass, optical element and preform
CN103553348A (en) * 2013-09-27 2014-02-05 成都光明光电股份有限公司 Method for improving bending strength of glass
WO2016098554A1 (en) * 2014-12-15 2016-06-23 日本電気硝子株式会社 Glass for near infrared absorption filter
CN105800927B (en) * 2014-12-31 2019-07-05 盈盛科技股份有限公司 Improvement type near infrared ray filter glass
CN106517773A (en) * 2016-10-20 2017-03-22 南通向阳光学元件有限公司 High-transmissivity cyanine polycrystalline glass
CN111149025B (en) * 2017-09-27 2022-08-12 日本电气硝子株式会社 Glass plate with optical film and method for producing same
CN110734222B (en) * 2018-07-20 2022-07-29 白金光学科技(苏州)有限公司 Fluorophosphate glasses
CN109704575B (en) * 2019-03-11 2021-06-18 江苏师范大学 Photo-thermal sensitive catadioptric mid-infrared glass and preparation method thereof
CN110040967B (en) * 2019-05-14 2021-10-01 哈尔滨工程大学 Transparent microcrystalline glass with monochromatic up-conversion luminescence characteristic and preparation method thereof
CN110204192B (en) * 2019-06-28 2021-09-28 中国建筑材料科学研究总院有限公司 Deep ultraviolet transparent phosphate glass and preparation method and application thereof
CN110698062B (en) * 2019-10-25 2020-11-17 中国科学院西安光学精密机械研究所 Radiation-resistant fluorophosphate glass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081041A (en) * 1983-10-06 1985-05-09 Hoya Corp Glass absorbing near infrared-rays
JPH0616451A (en) * 1991-06-18 1994-01-25 Toshiba Glass Co Ltd Filter glass for cutting near-infrared rays
JPH11209144A (en) * 1998-01-21 1999-08-03 Hoya Corp Glass for near infrared ray absorbing filter and near infrared ray absorbing filter using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643360B1 (en) * 1989-02-02 1992-11-20 Centre Nat Rech Scient PROCESS FOR VAPOR PHASE DEPOSITION OF A FLUORINATED GLASS ON A SUBSTRATE, AND VITREOUS COMPOSITION DEPOSITED THUS OBTAINED
CN1242946C (en) * 2004-05-18 2006-02-22 中国科学院上海光学精密机械研究所 High-stability high-refractive-index infrared-transmitting fluorophosphate glass and preparation method thereof
KR20060003832A (en) * 2005-12-17 2006-01-11 이창훈 Low expansion glass-ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081041A (en) * 1983-10-06 1985-05-09 Hoya Corp Glass absorbing near infrared-rays
JPH0616451A (en) * 1991-06-18 1994-01-25 Toshiba Glass Co Ltd Filter glass for cutting near-infrared rays
JPH11209144A (en) * 1998-01-21 1999-08-03 Hoya Corp Glass for near infrared ray absorbing filter and near infrared ray absorbing filter using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106171A (en) * 2016-12-26 2018-07-05 旭硝子株式会社 Near-infrared cut filter glass and near-infrared cut filter
JP6992494B2 (en) 2016-12-26 2022-01-13 Agc株式会社 Near infrared cut filter glass and near infrared cut filter

Also Published As

Publication number Publication date
KR100897037B1 (en) 2009-05-14
KR20070037337A (en) 2007-04-04
JP2007091555A (en) 2007-04-12
CN1939855B (en) 2011-07-06
CN1939855A (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP4546379B2 (en) Near infrared filter glass
KR102099471B1 (en) Coloured glasses
JP5921877B2 (en) Fluorophosphate glass
JP6448835B2 (en) Filter glass
TWI545098B (en) Optical glass, prefabricated and optical components
JP5744492B2 (en) High refractive and highly transparent optical glass
JP5672300B2 (en) Manufacturing method of near infrared cut filter glass
JP6664823B2 (en) Infrared transmitting glass, optical element and preform
JP2011121792A (en) Near infrared ray cutting filter glass
JP6537806B2 (en) Infrared transmitting glass, optical element and preform
WO2011158774A1 (en) Optical glass
JP2009001439A (en) Optical glass for molding
JP6913364B2 (en) Glass for near infrared absorption filter
JP2006248850A (en) Glass for near-infrared absorbing filter
JP6233563B2 (en) Glass for IR cut filter
JP5251365B2 (en) Near-infrared cut filter glass
WO2019039202A1 (en) Near-infrared radiation absorption glass
JP4469634B2 (en) Optical glass and optical glass lens
JPH0616451A (en) Filter glass for cutting near-infrared rays
JP5270973B2 (en) Near infrared absorption filter glass
JP6962322B2 (en) Near infrared cut filter glass
JP2011093721A (en) Method for producing optical glass
JP2006182584A (en) Filter glass for cutting near-infrared ray
JPH10194776A (en) Filter glass for cutting near infrared light
TW201827373A (en) Near infrared ray absorbing glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees