JP4543825B2 - Storage method of fuel cell membrane electrode assembly - Google Patents

Storage method of fuel cell membrane electrode assembly Download PDF

Info

Publication number
JP4543825B2
JP4543825B2 JP2004245566A JP2004245566A JP4543825B2 JP 4543825 B2 JP4543825 B2 JP 4543825B2 JP 2004245566 A JP2004245566 A JP 2004245566A JP 2004245566 A JP2004245566 A JP 2004245566A JP 4543825 B2 JP4543825 B2 JP 4543825B2
Authority
JP
Japan
Prior art keywords
electrode assembly
membrane electrode
fuel cell
gas
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004245566A
Other languages
Japanese (ja)
Other versions
JP2006066140A5 (en
JP2006066140A (en
Inventor
貴嗣 中川
正俊 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004245566A priority Critical patent/JP4543825B2/en
Priority to US11/071,468 priority patent/US7364815B2/en
Priority to CN2008100022791A priority patent/CN101217199B/en
Priority to DE200510010896 priority patent/DE102005010896A1/en
Priority to CNB2005100541291A priority patent/CN100442584C/en
Publication of JP2006066140A publication Critical patent/JP2006066140A/en
Priority to US11/980,604 priority patent/US7579104B2/en
Publication of JP2006066140A5 publication Critical patent/JP2006066140A5/ja
Application granted granted Critical
Publication of JP4543825B2 publication Critical patent/JP4543825B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体高分子電解質膜に酸素極、および燃料極の触媒層が積層された燃料電池用膜電極接合体の保管方法に関するものである。 The present invention relates to coercive tube method for a solid polymer electrolyte membrane to the oxygen electrode, and a fuel cell catalyst layer is stacked on the fuel electrode membrane electrode assembly.

燃料電池用膜電極接合体は、スルホン酸基を持つフッ素樹脂系イオン交換膜のような高分子イオン交換膜からなる電解質と、電解質の両側にそれぞれ積層して配置された触媒電極および多孔質カーボン電極からなる構造になっている。燃料極となるアノード触媒層には例えば白金とルテニウムの合金が用いられ、酸素極となるカソード触媒層には例えば白金が用いられている。   A membrane electrode assembly for a fuel cell includes an electrolyte composed of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group, and a catalyst electrode and porous carbon disposed on both sides of the electrolyte. It has a structure consisting of electrodes. For example, an alloy of platinum and ruthenium is used for the anode catalyst layer serving as the fuel electrode, and platinum is used for the cathode catalyst layer serving as the oxygen electrode.

このような構造を持つ燃料電池用膜電極接合体において、燃料極側に供給された水素ガスは、前記アノード触媒電極上で、水素イオン化され、水素イオンは前記電解質膜中を水の存在のもと水和状態で酸素極へ移動する。前記カソード触媒電極上で、酸素および電子と反応して水を生成する。   In the fuel cell membrane electrode assembly having such a structure, the hydrogen gas supplied to the fuel electrode side is hydrogen ionized on the anode catalyst electrode, and the hydrogen ions are present in the presence of water in the electrolyte membrane. And move to the oxygen electrode in a hydrated state. On the cathode catalyst electrode, it reacts with oxygen and electrons to produce water.

前記燃料電池用膜電極接合体が高い耐久性能や初期特性を有するためには、触媒層中の構造や高分子電解質膜の構造が、製造時の状態を維持することが必要である。触媒層中の金属触媒が長期保管中に酸化や溶出により欠損したり、高分子電解質膜の構造が損傷したりした場合は、電圧電流特性などの初期特性や長期の耐久特性の低下が見られる。高分子電解質膜の分解を加速させるような不純物の付着等も膜電極接合体の耐久特性の低下を引き起こす要因である。   In order for the membrane electrode assembly for a fuel cell to have high durability performance and initial characteristics, it is necessary to maintain the structure in the catalyst layer and the structure of the polymer electrolyte membrane at the time of production. If the metal catalyst in the catalyst layer is lost due to oxidation or elution during long-term storage or the structure of the polymer electrolyte membrane is damaged, the initial characteristics such as voltage-current characteristics and long-term durability characteristics may be degraded. . The adhesion of impurities that accelerate the decomposition of the polymer electrolyte membrane is also a factor that causes the durability characteristics of the membrane electrode assembly to deteriorate.

従来の燃料電池用膜電極接合体の単体としての保管方法としては、単に保護用のポリエチレンシートに梱包された状態で保管するようにしていた。また、燃料電池電極に多孔質カーボン電極を積層し、セパレータで挟み込み、スタックとして組み立てた状態において、セパレータの流路に残留する酸素を不活性ガスでパージする方式や、水でパージする方式で酸素を除いた雰囲気にして保管しているものがあった(例えば、特許文献1および特許文献2参照)。   As a conventional storage method of a membrane electrode assembly for a fuel cell as a single unit, the membrane electrode assembly was simply packed in a protective polyethylene sheet. In addition, when a porous carbon electrode is stacked on the fuel cell electrode, sandwiched between separators, and assembled as a stack, oxygen remaining in the separator flow path is purged with an inert gas, or oxygen is purged with water. Some have been stored in an atmosphere that excludes (see, for example, Patent Document 1 and Patent Document 2).

また、酸素の除いた雰囲気で保管する技術として、酸素吸収物を用いたものがあった(例えば特許文献3参照)。
特開2002−93448号公報 特開平6−251788号公報 特開2000−289380号公報
In addition, as a technique for storing in an atmosphere excluding oxygen, there has been a technique using an oxygen absorbent (see, for example, Patent Document 3).
JP 2002-93448 A JP-A-6-251788 JP 2000-289380 A

しかしながら、単に保護用のビニルシートに梱包された状態で保管する方式においては、保護用のビニルシートは、酸素や湿度の透過を防止するほどの機能はなく、膜電極接合体は、保管状態においては、空気中の酸素に長時間暴露されている。また、周囲の湿度変動により、膜電極接合体が吸湿や乾燥を繰り返すため、高分子電解質膜が損傷してしまう。長時間の酸素暴露においては、アノード触媒層、カソード触媒層が1V近くまでの高電位状態に保たれるため、触媒層中の担体カーボン、白金やルテニウムが酸化したり、溶出したりしていた。   However, in the method of storing in a state where it is simply packed in a protective vinyl sheet, the protective vinyl sheet does not have a function to prevent permeation of oxygen and humidity, and the membrane electrode assembly is not stored in the storage state. Is exposed to oxygen in the air for a long time. In addition, the membrane / electrode assembly repeatedly absorbs and dries due to ambient humidity fluctuations, so that the polymer electrolyte membrane is damaged. In the long-term oxygen exposure, the anode catalyst layer and the cathode catalyst layer are kept at a high potential state up to about 1 V, so that the carrier carbon, platinum and ruthenium in the catalyst layer were oxidized or eluted. .

前記従来の構成では、燃料電池用膜電極接合体を単体で保管する際に酸素等による触媒層や高分子電解質膜の酸化、高分子電解質膜の水分変動、有機物等の不純物の付着で、長期間の保管により、膜電極接合体の発電性能が低下しやすく、長期間の保管が困難という課題を有していた。また、膜電極接合体は、高湿度の状況に置かれた場合や、低湿度の状況に置かれた場合は、吸湿や乾燥により膨張、収縮するため、寸法変動を起こし、セルの組立が困難もしくは不可能になるという課題も有していた。   In the conventional configuration, when the membrane electrode assembly for a fuel cell is stored alone, the catalyst layer and the polymer electrolyte membrane are oxidized by oxygen or the like, the moisture in the polymer electrolyte membrane is changed, and impurities such as organic substances are attached. Due to storage for a period, the power generation performance of the membrane electrode assembly is likely to be lowered, and there is a problem that long-term storage is difficult. In addition, the membrane electrode assembly expands and contracts due to moisture absorption and drying when placed in a high humidity condition or in a low humidity condition, resulting in dimensional variations and difficult cell assembly. Or it had the problem of becoming impossible.

燃料電池用膜電極接合体をスタックとして組み立てた後においては、前記従来例の構成により、安定した保管が可能となるが、膜電極接合体単体としての保管としては、不適切であり、燃料電池単体の保管時や流通時に発電特性を劣化させる課題や寸法変動による不良品を生じる課題を有していた。   After the fuel cell membrane electrode assembly is assembled as a stack, the configuration of the conventional example enables stable storage, but it is inappropriate for storage as a membrane electrode assembly alone, and the fuel cell There were problems of deteriorating power generation characteristics during storage and distribution of a single unit, and problems of producing defective products due to dimensional variations.

また、酸素透過度および透湿度が低い包装容器内に酸素吸収物を封入した状態で保管した場合は、酸素濃度の低い状態で保管することは可能であるが、酸素吸収物から不純物が放出されることがあり、また、酸素吸収時に水分も吸収してしまうことがあるため、膜電極接合体の長期の保管には不適切である。   Also, if the oxygen absorbent is stored in a packaging container with low oxygen permeability and moisture permeability, it can be stored in a low oxygen concentration state, but impurities will be released from the oxygen absorbent. In addition, since moisture may be absorbed when oxygen is absorbed, it is unsuitable for long-term storage of membrane electrode assemblies.

本発明は、前記従来の課題を解決するもので、燃料電池用膜電極接合体の発電特性の低下や寸法変動を防止する長期間保管可能とした燃料電池用膜電極接合体の保管方法を提供することを目的とする。 The present invention is the one that solves the conventional problems, long-term retention tube method storable and fuel cell membrane electrode assembly to prevent the degradation or dimensional variation of the power generation characteristics of the membrane electrode assembly for a fuel cell The purpose is to provide.

上記目的を達成するために、本発明の燃料電池用膜電極接合体の保管装置および保管方法は、膜電極接合体単体の保管装置および保管方法において、発電特性の劣化に影響を与える酸素による触媒層の酸化、高分子電解質膜中の水分量変動および不純物の接触を防止するために、外部からの酸素、水分および不純物の透過を防止する容器に密閉された状態で保管されることを特徴とする。   In order to achieve the above object, a storage device and storage method for a membrane electrode assembly for a fuel cell according to the present invention is a catalyst by oxygen that affects the degradation of power generation characteristics in the storage device and storage method for a single membrane electrode assembly. It is stored in a sealed state in a container that prevents permeation of oxygen, moisture, and impurities from the outside in order to prevent oxidation of the layers, moisture content fluctuations in the polymer electrolyte membrane, and contact of impurities. To do.

また、上記目的を達成するために、本発明の保管装置および保管方法は、酸素を除いた雰囲気、および水分変動を防止した雰囲気、および不純物との接触を防止した密閉容器内に保管され、不活性ガスを容器内にパージし、同時に水素ガスを容器内に封入することで容器内部に残留もしくは外部より流入する微量な酸素を膜電極接合体の触媒層中での燃焼反応により酸素を除去することを特徴とする。   In order to achieve the above object, the storage device and storage method of the present invention are stored in an atmosphere excluding oxygen, in an atmosphere in which moisture fluctuation is prevented, and in a sealed container in which contact with impurities is prevented. By purging the active gas into the container and simultaneously enclosing hydrogen gas in the container, a small amount of oxygen remaining inside the container or flowing from the outside is removed by a combustion reaction in the catalyst layer of the membrane electrode assembly. It is characterized by that.

また、上記目的を達成するために、密閉容器内にパージする不活性ガスおよび燃料ガスは、パージ前の密閉容器内のガスと同じ湿度を持たせることで、ガスパージ時における湿度変動を防止することを特徴とする。   In order to achieve the above object, the inert gas and the fuel gas purged in the sealed container have the same humidity as the gas in the sealed container before purging, thereby preventing humidity fluctuations during the gas purge. It is characterized by.

これにより、密閉容器内は酸素を除いた雰囲気になり、容器内に残留する水素ガスの効果により、容器内に触媒層の電位を水素基準電位となる0V付近まで低下させることができ、触媒層が高電位に保持されることによる触媒層への損傷や劣化を防止することや、密閉容器内の水分量の変動を低減することで、膜電極接合体の湿度変動による寸法変動を防止することが可能となり、膜電極接合体の長期間の保管による初期特性や耐久特性などの性能劣化を防止することができる。   As a result, the inside of the sealed container has an atmosphere excluding oxygen, and due to the effect of hydrogen gas remaining in the container, the potential of the catalyst layer in the container can be lowered to around 0 V that is the hydrogen reference potential. Prevents the catalyst layer from being damaged or deteriorated due to being held at a high potential, and prevents fluctuations in the amount of moisture in the sealed container to prevent dimensional fluctuations due to humidity fluctuations in the membrane electrode assembly. Therefore, it is possible to prevent performance deterioration such as initial characteristics and durability characteristics due to long-term storage of the membrane electrode assembly.

以上のように、本発明の燃料電池用膜電極接合体の保管方法によれば、燃料電池用膜電極接合体の発電特性の低下と寸法変動の要因となる酸素、水分量変動および不純物との接触を、長期間に渡って防止した機能を持つ保管装置および保管方法を提供することができる。 As described above, according to the holding tube method for a fuel cell membrane electrode assembly of the present invention, oxygen which is a factor of lowering the dimensional variation of the power generation characteristics of the membrane electrode assembly for a fuel cell, the water content varies and impurities Thus, it is possible to provide a storage device and a storage method having a function of preventing contact with each other over a long period of time.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における燃料電池用膜電極接合体の保管をおこなう保管装置の概略図である。
(Embodiment 1)
FIG. 1 is a schematic view of a storage device for storing a membrane electrode assembly for a fuel cell according to Embodiment 1 of the present invention.

図1において、11は燃料電池用膜電極接合体であり、固体高分子電解質膜12にアノード触媒層13およびカソード触媒層14が両面に積層され、それぞれの触媒層に多孔質カーボン電極15が接着された構造を有している。両側の多孔質カーボン電極にはそれぞれ保護膜16が付着されている。保護膜を付着することにより、触媒表面が外部からの不純物との接触を防ぐ役割とともに、触媒表面が損傷するのを防ぐ役割があり、材料としては高分子系のフィルム樹脂が用いられる。このような構成を持つ燃料電池電極は、酸素、水分、および不純物の透過を防止するシール性の高い密閉容器21に封入された状態で保管される。密閉容器は、酸素透過量、透湿度の低いフィルムシールが望ましく、Kコート(ポリ塩化ビニリデンコート)フィルムにラミネートした包材、EVOHなど酸素透過量の低いフィルムにラミネートした包材、アルミ蒸着したフィルムにラミネートした包材、またはアルミ箔にラミネートした包材などを用いることができる。特にアルミ箔にラミネートした包材が望ましいが、酸素透過量が0.01ml/(m2・day・atm)以下および透湿度が0.01g/(m2・day)以下であれば、アルミ箔にラミネートした包材に限るものではない。密閉包装にすることにより容器内部から漏れ出す水蒸気を防止することが可能であり、容器内部の水分量の変動を防止することができる。これにより高分子電解質中の水分量の変動を防ぐことができ、高分子電解質膜の劣化を防止することができる。また、外部からの不純物の混入も防ぐことができ、不純物による燃料電池電極の劣化を防止することができる。 In FIG. 1, reference numeral 11 denotes a fuel cell membrane electrode assembly, in which an anode catalyst layer 13 and a cathode catalyst layer 14 are laminated on both sides of a solid polymer electrolyte membrane 12, and a porous carbon electrode 15 is bonded to each catalyst layer. Has a structured. A protective film 16 is attached to each of the porous carbon electrodes on both sides. By attaching the protective film, the catalyst surface has a role of preventing contact with impurities from the outside and a role of preventing the catalyst surface from being damaged. A polymer film resin is used as a material. The fuel cell electrode having such a configuration is stored in a state of being sealed in a sealed container 21 having a high sealing property that prevents permeation of oxygen, moisture, and impurities. The sealed container is preferably a film seal with low oxygen permeability and moisture permeability. Packaging material laminated to K coat (polyvinylidene chloride coat) film, packaging material laminated to a film with low oxygen permeability such as EVOH, aluminum vapor deposited film For example, a packaging material laminated on aluminum foil or a packaging material laminated on aluminum foil can be used. A packaging material laminated to an aluminum foil is particularly desirable, but if the oxygen permeation amount is 0.01 ml / (m 2 · day · atm) or less and the moisture permeability is 0.01 g / (m 2 · day) or less, the aluminum foil It is not limited to the packaging material laminated. By making hermetic packaging, it is possible to prevent water vapor leaking from the inside of the container, and to prevent fluctuations in the amount of water inside the container. Thereby, the fluctuation | variation of the moisture content in a polymer electrolyte can be prevented, and deterioration of a polymer electrolyte membrane can be prevented. In addition, it is possible to prevent impurities from entering from the outside, and it is possible to prevent deterioration of the fuel cell electrode due to the impurities.

また、燃料電池用膜電極接合体は多孔質カーボン電極が接着されていない構造を有した膜電極接合体の組立途中の状態で保管することも可能である。その際も、保護膜を付着することにより、触媒層が外部からの不純物との接触を防がれるため、長期間の保存による膜電極接合体の発電性能の低下をより防ぐことができる。このような構成の燃料電池用膜電極接合体も、酸素、水分、および不純物の透過を防止するシール性の高い密閉容器に封入された状態で保管される。   Further, the membrane electrode assembly for a fuel cell can be stored in the middle of the assembly of the membrane electrode assembly having a structure in which the porous carbon electrode is not bonded. At this time, since the catalyst layer is prevented from coming into contact with impurities from the outside by adhering the protective film, it is possible to further prevent the power generation performance of the membrane electrode assembly from being deteriorated by long-term storage. The fuel cell membrane electrode assembly having such a configuration is also stored in a sealed state in a hermetically sealed container that prevents permeation of oxygen, moisture, and impurities.

図2は、複数個の燃料電池用膜電極接合体の保管をおこなう保管方法の概略図である。密閉容器の内部には、複数個の膜電極接合体が重ねられて封入されており、アノード触媒層およびカソード触媒層のそれぞれに付着された保護膜により、個々の膜電極接合体が接触し、損傷することなく、複数個の膜電極接合体を保管することができる。個々の燃料電池用膜電極接合体は多孔質カーボン電極が接着されていない状態もしくは接着された状態のどちらでもよい。   FIG. 2 is a schematic view of a storage method for storing a plurality of membrane electrode assemblies for fuel cells. Inside the sealed container, a plurality of membrane electrode assemblies are stacked and sealed, and the individual membrane electrode assemblies are in contact with each other by protective films attached to the anode catalyst layer and the cathode catalyst layer, A plurality of membrane electrode assemblies can be stored without being damaged. Each membrane electrode assembly for a fuel cell may be in a state in which the porous carbon electrode is not bonded or in a bonded state.

密閉容器の内部には、酸素を除いた雰囲気に保持するため、予め、燃料ガスを含んだ不活性ガスでパージした状態にする。不活性ガスには、窒素ガスを使用することが望ましいが、その他の不活性ガスを使用することもできる。燃料ガスには水素ガスを用いる。図3は密閉容器に燃料ガスを含んだ不活性ガスでパージする方式の一例を示す。密閉容器の封入口を押さえつけながら、容器内部のガスを排気かつ供給する管を挿入する。ガス排気管はガス排気装置に接続され、排気弁で開閉される。ガス供給管はガス供給装置に接続され、供給弁で開閉される。容器内部の空気を吸引し、真空状態にした後に、弁を切り替え、燃料ガスを含んだ不活性ガスを容器内に封入し、管を抜くと同時に、封入口を熱シールすることで容器内を、燃料ガスを含んだ不活性ガスでパージし、密閉することができる。ガス排気管とガス供給管は、同一の管を用いることもでき、それぞれ独立した管を用いることもできる。同一の管を用いた場合は、管にガス排気用とガス供給用のラインを切り替える弁を使用する。   In order to keep the inside of the sealed container in an atmosphere excluding oxygen, it is previously purged with an inert gas containing a fuel gas. Nitrogen gas is preferably used as the inert gas, but other inert gases can also be used. Hydrogen gas is used as the fuel gas. FIG. 3 shows an example of a method of purging an airtight container with an inert gas containing a fuel gas. Insert a tube that exhausts and supplies the gas inside the container while holding down the sealing port of the sealed container. The gas exhaust pipe is connected to a gas exhaust device and is opened and closed by an exhaust valve. The gas supply pipe is connected to a gas supply device and is opened and closed by a supply valve. After the air inside the container is sucked and evacuated, the valve is switched, an inert gas containing fuel gas is sealed in the container, the pipe is pulled out, and at the same time, the sealing port is heat-sealed to heat the container. It can be purged with an inert gas containing fuel gas and sealed. The gas exhaust pipe and the gas supply pipe may be the same pipe, or may be independent pipes. When the same pipe is used, a valve for switching a gas exhaust line and a gas supply line is used for the pipe.

シールには熱圧着による方式、チャックによる方式、加圧による方式を用いることができるが、熱圧着による方式はシール性が高く、簡易的であるため、方式として望ましい。   For sealing, a thermocompression bonding method, a chucking method, and a pressurizing method can be used. However, the thermocompression bonding method is preferable because it has high sealing performance and is simple.

また、不活性ガスをパージした後に、燃料ガスを封入する方式、もしくは、燃料ガスを封入した後に、不活性ガスをパージする方式を用いることで、容器内部を、燃料ガスを含んだ不活性ガスでパージすることもできる。このときは、不活性ガスを封入する管と燃料ガスを封入する管を別々に用いて、密閉容器への封入時に弁を切り替えることにより、個々にガスを封入することができる。   Further, the inert gas containing the fuel gas can be formed inside the container by using a method of sealing the fuel gas after purging the inert gas or a method of purging the inert gas after sealing the fuel gas. Can also be purged. At this time, it is possible to individually enclose the gas by separately using a tube that encloses the inert gas and a tube that encloses the fuel gas, and switching the valve at the time of enclosing in the sealed container.

供給する不活性ガスおよび燃料ガスもしくは、不活性ガスと燃料ガスの混合ガスには、膜電極接合体の製造時における湿度と同等の湿度を持たせることで、ガスパージ時に湿度変動が生じることを防止できる。   The supplied inert gas and fuel gas, or the mixed gas of inert gas and fuel gas, has a humidity equivalent to the humidity at the time of manufacturing the membrane electrode assembly, thereby preventing humidity fluctuations during gas purge. it can.

パージガス中に含まれる燃料ガスと、密閉容器内に微量に残留する、もしくは、容器外部から微量ながら流入してくる酸素ガスは、膜電極接合体の触媒層において燃焼反応により消費される。そのため、酸素ガスが容器内部に残留することはなく、膜電極接合体の酸化や酸素により触媒層が高電位に保持されることがなく、膜電極接合体の機能低下を防止することができる。   The fuel gas contained in the purge gas and the oxygen gas remaining in a minute amount in the sealed container or flowing in from a small amount from the outside of the container are consumed by the combustion reaction in the catalyst layer of the membrane electrode assembly. Therefore, oxygen gas does not remain inside the container, and the catalyst layer is not held at a high potential due to oxidation of the membrane electrode assembly or oxygen, and the function deterioration of the membrane electrode assembly can be prevented.

次に、図4に基づいて、本発明による燃料電池用膜電極接合体の保管装置および保管方法により保管された膜電極接合体の発電性能の低下および耐久性能の低下の防止を実現できることを検証した結果を説明する。尚、図6は、セル電圧の経時変化を示し、各図において、実線Aは、本発明による保管機能を持つ燃料電池電極を約1年間放置した後、発電させた結果を示し、実線Bは従来の単なるポリエチレンシートに包装された燃料電池電極を約1年間放置した後、発電させた結果を示す。比較のため、製造直後の燃料電池電極を発電させた結果を破線で示している。検証試験においては、アノード電極に燃料として水素ガスを供給し、カソード電極に酸化剤を含むガスとして、空気を供給した。運転条件は、セルの温度70℃程度、燃料利用率は70%程度、空気利用率は40%程度および電流密度は0.2A/cm2程度である。 Next, based on FIG. 4, it is verified that it is possible to realize a reduction in power generation performance and a decrease in durability performance of the membrane electrode assembly stored by the storage device and storage method for a fuel cell membrane electrode assembly according to the present invention. The results will be described. FIG. 6 shows the change in cell voltage over time. In each figure, solid line A shows the result of generating electricity after leaving the fuel cell electrode having a storage function according to the present invention for about one year, and solid line B is The result of generating electricity after leaving a conventional fuel cell electrode packaged in a simple polyethylene sheet for about one year is shown. For comparison, the result of power generation of the fuel cell electrode immediately after manufacture is shown by a broken line. In the verification test, hydrogen gas was supplied as fuel to the anode electrode, and air was supplied as a gas containing an oxidant to the cathode electrode. The operating conditions are a cell temperature of about 70 ° C., a fuel utilization of about 70%, an air utilization of about 40%, and a current density of about 0.2 A / cm 2 .

図5は、運転時間が3000時間に達するまでのセル電圧の経時変化を示したものである。本発明の保管方法による燃料電池電極と従来の保管方法による燃料電池電極のセル電圧は初期において、本発明の方法によるものの方のセル電圧が高く、製造直後の燃料電池電極を発電させた場合のセル電圧と同等であった。また、3000時間までの電圧低下率を見ても、本発明の方法によるものの方がセル電圧の電圧低下率が低く、製造直後の燃料電池電極を発電させたセル電圧の電圧低下率と同等であった。さらに長時間の発電を続けた場合、通常の保管方法による燃料電池電極を用いたセルは高分子電解質膜の劣化が通常よりも早く進み、製造直後の燃料電池電極を用いたセルを発電させた場合よりも、かなり早い時間で、急激な電圧低下を起こし、発電不能になる現象も確認された。したがって、本発明の方法による保管機能を持つ固体高分子電解質燃料電池を用いた方が、従来の方法による保管よりも、長期間の保管による燃料電池電極の発電性能および耐久性能の低下を防止することができることが分かった。   FIG. 5 shows the change over time of the cell voltage until the operation time reaches 3000 hours. The cell voltage of the fuel cell electrode according to the storage method of the present invention and that of the fuel cell electrode according to the conventional storage method are initially higher in the cell voltage of the method according to the present invention, and the fuel cell electrode immediately after production is generated. It was equivalent to the cell voltage. Moreover, even when looking at the voltage drop rate up to 3000 hours, the voltage drop rate of the cell voltage is lower with the method of the present invention, which is equivalent to the voltage drop rate of the cell voltage generated by the fuel cell electrode immediately after production. there were. Furthermore, when power generation was continued for a long time, the cell using the fuel cell electrode by the normal storage method progressed faster than usual, and the cell using the fuel cell electrode immediately after production was generated. It was confirmed that a sudden voltage drop occurred in a much earlier time than in the case, and power generation became impossible. Therefore, the use of the solid polymer electrolyte fuel cell having the storage function according to the method of the present invention prevents the deterioration of the power generation performance and durability performance of the fuel cell electrode due to long-term storage, as compared with the storage by the conventional method. I found out that I could do it.

かかる構成によれば、燃料電池用膜電極接合体単体を酸素、水分および不純物の透過を防止した密閉容器内に酸素を除去した雰囲気の状態および容器中の水分量の変動を防止した状態で保管をおこなう保管方法を用いることにより、燃料電池用膜電接合体の保管時において発電性能の低下を防止することが可能となり、膜電極接合体単体を長期間に渡って、性能劣化させることのない保管装置および保管方法を提供することができる。   According to this configuration, the fuel cell membrane electrode assembly alone is stored in a sealed container that prevents permeation of oxygen, moisture, and impurities, in an oxygen-removed atmosphere state, and in a state that prevents fluctuations in the moisture content in the container. It is possible to prevent a decrease in power generation performance during storage of the membrane electrode assembly for fuel cells by using a storage method that performs the process, and the performance of the membrane electrode assembly alone is not deteriorated over a long period of time. A storage device and a storage method can be provided.

(実施の形態2)
図4は、本発明の実施の形態2における燃料電池用膜電極接合体の保管をおこなう保管装置の概略図である。
(Embodiment 2)
FIG. 4 is a schematic diagram of a storage device for storing a fuel cell membrane electrode assembly according to Embodiment 2 of the present invention.

実施の形態1と同様に、燃料電池用膜電極接合体は保護膜が付着された状態で、保管容器内に保管される。膜電極接合体は、多孔質カーボン電極が接着された状態もしくは、高分子電解質膜に触媒層が積層されたのみの状態でもよい。   Similar to Embodiment 1, the fuel cell membrane electrode assembly is stored in a storage container with a protective film attached thereto. The membrane / electrode assembly may be in a state in which a porous carbon electrode is adhered, or a state in which a catalyst layer is only laminated on a polymer electrolyte membrane.

保管容器は、外部からの酸素、水分や不純物の透過を防止する金属製もしくは樹脂製の密閉容器を用いることができる。実施の形態1に比べ、酸素透過度、透湿度ともに低い金属容器であれば、より安定な保管状態を実現できる。また、容器の体積を大きくすることが可能であり、内部に多量の膜電極接合体を保管することができる。   As the storage container, a metal or resin sealed container that prevents permeation of oxygen, moisture, and impurities from the outside can be used. If it is a metal container with low oxygen permeability and moisture permeability compared with Embodiment 1, a more stable storage state is realizable. Further, the volume of the container can be increased, and a large amount of the membrane electrode assembly can be stored inside.

保管容器は、密閉された状態で、容器内部のガスを脱気するためのガス排気口、不活性ガスおよび燃料ガスをパージするためのガス供給口を備える。ガス排気口およびガス供給口には、ガス排気管およびガス供給管が接続され、それぞれの開閉弁を用いて、容器内部のガス排気およびガス供給を行うことができる。ガス排気口およびガス供給口は同一のものでもよく、このときは、弁を用いて排気管および供給管との接続を変更する。ガス排気管は、ガス排気装置に接続される。ガス供給管は、不活性ガスと燃料ガスの混合ガスを供給する装置に接続される。また、不活性ガスをパージした後に、燃料ガスを封入する方式、もしくは、燃料ガスを封入した後に、不活性ガスをパージする方式を用いることで、容器内部を、燃料ガスを含んだ不活性ガスでパージすることもできる。このときは、不活性ガスを封入する管と燃料ガスを封入する管を別々に用いて、ガス供給管へのガス供給時に弁を切り替えることにより、個々にガスを封入することができる。   In a sealed state, the storage container includes a gas exhaust port for degassing the gas inside the container, and a gas supply port for purging inert gas and fuel gas. A gas exhaust pipe and a gas supply pipe are connected to the gas exhaust port and the gas supply port, and gas exhaust and gas supply inside the container can be performed using the respective on-off valves. The gas exhaust port and the gas supply port may be the same. In this case, the connection between the exhaust pipe and the supply pipe is changed using a valve. The gas exhaust pipe is connected to a gas exhaust device. The gas supply pipe is connected to a device that supplies a mixed gas of an inert gas and a fuel gas. Further, the inert gas containing the fuel gas can be formed inside the container by using a method of sealing the fuel gas after purging the inert gas or a method of purging the inert gas after sealing the fuel gas. Can also be purged. At this time, it is possible to individually enclose the gas by separately using a tube that encloses the inert gas and a tube that encloses the fuel gas, and switching the valves when supplying the gas to the gas supply tube.

本発明の燃料電池用膜電極接合体の保管方法は、燃料電池電極の長期間の保管による発電性能の低下を防止した保管機能を有し、燃料ガスと酸化剤を含むガスを反応させる電気化学デバイスの長期間における保管による性能劣化の防止した保管方法の用途にも適用できる。 Holding tube method for a fuel cell membrane electrode assembly of the present invention has a storage function to prevent the deterioration of power generation performance due to long-term storage of the fuel cell electrodes, electrical reacting a gas containing a fuel gas an oxidant It can be applied in applications preventing coercive tube method in performance degradation due to storage in the long term chemical devices.

本発明の実施の形態1における膜電極接合体の保管装置を示す概略図Schematic which shows the storage apparatus of the membrane electrode assembly in Embodiment 1 of this invention. 本発明の実施の形態1における複数の膜電極接合体の保管装置を示す概略図Schematic which shows the storage apparatus of the several membrane electrode assembly in Embodiment 1 of this invention 本発明の実施の形態1における保管装置のガスパージ方法を示す概略図Schematic which shows the gas purge method of the storage apparatus in Embodiment 1 of this invention 本発明の実施の形態2における保管装置のガスパージ方法を示す概略図Schematic which shows the gas purge method of the storage apparatus in Embodiment 2 of this invention. セル電圧の経時変化を示す図Diagram showing changes in cell voltage over time

符号の説明Explanation of symbols

11 燃料電池用膜電極接合体
12 固体高分子電解質膜
13 アノード触媒層
14 カソード触媒層
15 多孔質カーボン電極
16 保護膜
21 密閉容器
31 ガス排気管
32 ガス供給管
33 ガス排気装置
34 ガス排気開閉弁
35 ガス供給装置
36 ガス供給開閉弁
51 密閉コンテナ装置
DESCRIPTION OF SYMBOLS 11 Membrane electrode assembly for fuel cells 12 Solid polymer electrolyte membrane 13 Anode catalyst layer 14 Cathode catalyst layer 15 Porous carbon electrode 16 Protective membrane 21 Sealed vessel 31 Gas exhaust pipe 32 Gas supply pipe 33 Gas exhaust device 34 Gas exhaust on-off valve 35 Gas supply device 36 Gas supply on / off valve 51 Sealed container device

Claims (7)

固体高分子電解質膜の一方の面の面内及び他方の面の面内のそれぞれに触媒層が形成された燃料電池用膜電極接合体において、
前記接合体は透湿度0.01g/(m2・day)以下、かつ、酸素透過量0.01ml/(m2・day・atm)以下の密閉容器内に保管されるこ
を特徴とする燃料電池用膜電極接合体の保管方法。
In a membrane electrode assembly for a fuel cell in which a catalyst layer is formed in each of one surface and the other surface of a solid polymer electrolyte membrane,
The conjugate moisture permeability 0.01g / (m 2 · day) or less, and wherein the benzalkonium stored in oxygen permeability of 0.01ml / (m 2 · day · atm) or less in the closed container Storage method of membrane electrode assembly for fuel cell.
前記密閉容器内を不活性ガスでパージすると共に水素ガスを前記容器内に封入し、前記密閉容器内の酸素を除去した状態とする、
請求項1記載の燃料電池用膜電極接合体の保管方法。
Purging the inside of the sealed container with an inert gas and enclosing hydrogen gas in the container to remove oxygen in the sealed container,
The storage method of the membrane electrode assembly for fuel cells of Claim 1.
記触媒層のそれぞれの表面には多孔質カーボン電極が接着されている請求項1又は2に記載の燃料電池用膜電極接合体の保管方法。 Storage method of a fuel cell membrane electrode assembly according to claim 1 or 2 porous carbon electrode is bonded to the respective surfaces of the front Kisawa medium layer. 前記多孔質カーボン電極のそれぞれの表面には更に高分子系のフィルム樹脂が付着されてなる請求項記載の燃料電池用膜電極接合体の保管方法。 The method for storing a membrane electrode assembly for a fuel cell according to claim 3, wherein a polymer film resin is further attached to each surface of the porous carbon electrode. 前記電解質膜の最外に積層された層のうち前記電解質膜側とは反対の表面は、前記密閉容器と密着している請求項1〜の何れか一項に記載の燃料電池用膜電極接合体の保管方法。 The membrane electrode for a fuel cell according to any one of claims 1 to 4 , wherein a surface of the outermost layer of the electrolyte membrane that is opposite to the electrolyte membrane side is in close contact with the sealed container. Storage method of the joined body. 前記不活性ガスは窒素ガスである請求項の何れか一項に記載の燃料電池用膜電極接合体の保管方法。 The method for storing a membrane electrode assembly for a fuel cell according to any one of claims 2 to 5 , wherein the inert gas is nitrogen gas. 前記不活性ガスはパージ前の容器内のガスと同じ湿度である請求項の何れか一項に記載の燃料電池用膜電極接合体の保管方法。 The method for storing a membrane electrode assembly for a fuel cell according to any one of claims 2 to 6 , wherein the inert gas has the same humidity as the gas in the container before purging.
JP2004245566A 2004-03-09 2004-08-25 Storage method of fuel cell membrane electrode assembly Expired - Fee Related JP4543825B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004245566A JP4543825B2 (en) 2004-08-25 2004-08-25 Storage method of fuel cell membrane electrode assembly
US11/071,468 US7364815B2 (en) 2004-03-09 2005-03-04 Method of preserving fuel cell membrane electrode assembly
DE200510010896 DE102005010896A1 (en) 2004-03-09 2005-03-09 Method for storing a membrane electrode assembly of a fuel cell
CNB2005100541291A CN100442584C (en) 2004-03-09 2005-03-09 Method of preserving fuel cell membrane electrode assembly
CN2008100022791A CN101217199B (en) 2004-03-09 2005-03-09 Method of preserving fuel cell membrane electrode assembly
US11/980,604 US7579104B2 (en) 2004-03-09 2007-10-31 Method of preserving fuel cell membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245566A JP4543825B2 (en) 2004-08-25 2004-08-25 Storage method of fuel cell membrane electrode assembly

Publications (3)

Publication Number Publication Date
JP2006066140A JP2006066140A (en) 2006-03-09
JP2006066140A5 JP2006066140A5 (en) 2007-11-01
JP4543825B2 true JP4543825B2 (en) 2010-09-15

Family

ID=36112461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245566A Expired - Fee Related JP4543825B2 (en) 2004-03-09 2004-08-25 Storage method of fuel cell membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP4543825B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558521B (en) 2006-12-11 2012-07-18 日本电气株式会社 Solid polymer fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139375A (en) * 1988-11-18 1990-05-29 Nippon Shokubai Kagaku Kogyo Co Ltd Storing of green sheet
JPH10507305A (en) * 1994-10-11 1998-07-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Method of coining catalytically active particles on a membrane
JP2003034552A (en) * 2001-07-19 2003-02-07 Asahi Glass Co Ltd Protection method of substrate surface and functional thin film, and electro-conductive antireflection material with protective film
JP2003272640A (en) * 2002-03-13 2003-09-26 Samsung Sdi Co Ltd Fuel cell unit body, its manufacturing method and fuel cell adopting the same
JP2003273189A (en) * 2002-03-14 2003-09-26 Nippon Zeon Co Ltd Precise substrate protective film and method for stocking or carrying precise substrate
JP2005536862A (en) * 2002-08-30 2005-12-02 ペメアス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for transferring a thin film from a source position to a target position

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139375A (en) * 1988-11-18 1990-05-29 Nippon Shokubai Kagaku Kogyo Co Ltd Storing of green sheet
JPH10507305A (en) * 1994-10-11 1998-07-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Method of coining catalytically active particles on a membrane
JP2003034552A (en) * 2001-07-19 2003-02-07 Asahi Glass Co Ltd Protection method of substrate surface and functional thin film, and electro-conductive antireflection material with protective film
JP2003272640A (en) * 2002-03-13 2003-09-26 Samsung Sdi Co Ltd Fuel cell unit body, its manufacturing method and fuel cell adopting the same
JP2003273189A (en) * 2002-03-14 2003-09-26 Nippon Zeon Co Ltd Precise substrate protective film and method for stocking or carrying precise substrate
JP2005536862A (en) * 2002-08-30 2005-12-02 ペメアス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for transferring a thin film from a source position to a target position

Also Published As

Publication number Publication date
JP2006066140A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
KR100767910B1 (en) Storing method and storably treated body of high polymer electolyte fuel cell stack
US7579104B2 (en) Method of preserving fuel cell membrane electrode assembly
JP3297125B2 (en) Shutdown storage method of solid polymer electrolyte fuel cell
JP3977862B2 (en) Polymer electrolyte fuel cell stack storage method and polymer electrolyte fuel cell stack storage
JP5261999B2 (en) Fuel cell power generator
JP4543825B2 (en) Storage method of fuel cell membrane electrode assembly
JP3766911B2 (en) Polymer electrolyte fuel cell stack storage method and polymer electrolyte fuel cell stack storage
JP4543708B2 (en) Membrane electrode assembly of polymer electrolyte fuel cell
JP6699892B2 (en) Fuel cell sealing component, fuel cell and method of storing fuel cell stack
TWI342081B (en)
JP5252812B2 (en) Preservation method of polymer electrolyte fuel cell stack
CN100440600C (en) Preservation method of polyelectrolyte type fuel cell stack and preservation treatment object of polyelectrolyte type fuel cell stack
JP2000021431A (en) Method of stopping reforming equipment for fuel cell
JP2020087773A (en) Gas purging method for fuel cell
JP5130627B2 (en) Fuel cell power generator
JP2006085931A (en) Fuel cell
JP2007180050A5 (en)
JP4501550B2 (en) Catalyst production method
JPH027372A (en) Liquid electrolyte fuel cell
JP2008108562A (en) Fuel cell device
JP2006012475A (en) Fuel cell system
JP2009117238A (en) Solid polymer electrolyte fuel cell power generation device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4543825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees