JP4543665B2 - Method and apparatus for detecting surface defects - Google Patents

Method and apparatus for detecting surface defects Download PDF

Info

Publication number
JP4543665B2
JP4543665B2 JP2003397708A JP2003397708A JP4543665B2 JP 4543665 B2 JP4543665 B2 JP 4543665B2 JP 2003397708 A JP2003397708 A JP 2003397708A JP 2003397708 A JP2003397708 A JP 2003397708A JP 4543665 B2 JP4543665 B2 JP 4543665B2
Authority
JP
Japan
Prior art keywords
inspection
light
camera
optical axis
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003397708A
Other languages
Japanese (ja)
Other versions
JP2004191370A (en
Inventor
明徳 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003397708A priority Critical patent/JP4543665B2/en
Publication of JP2004191370A publication Critical patent/JP2004191370A/en
Application granted granted Critical
Publication of JP4543665B2 publication Critical patent/JP4543665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、光沢を有する材料、例えば磁気テープ等の磁気記録媒体の磁性層表面やバックコート層表面、圧延材、研磨した金属等の表面、光反射率の高い樹脂の表面、ガラス表面、等の、各種材料の表面における非常に微細な塗布時の欠陥、付着物、押し傷等の表面欠陥を検出することができるようにした表面欠陥検出方法及び装置に関する。   The present invention provides a glossy material, for example, a magnetic layer surface or backcoat layer surface of a magnetic recording medium such as a magnetic tape, a surface of a rolled material, a polished metal, a surface of a resin with a high light reflectance, a glass surface, etc. The present invention relates to a surface defect detection method and apparatus that can detect surface defects such as defects, deposits, and scratches at the time of very fine coating on the surfaces of various materials.

従来の磁気記録媒体、例えば磁気テープの検査方法は、磁気ヘッドにより信号を磁気テープに記録し、且つ、再生し、その再生レベルから磁気テープの欠陥の有無を判定するものが一般的であった。   Conventional methods for inspecting magnetic recording media, such as magnetic tape, generally record signals on the magnetic tape using a magnetic head and reproduce them, and determine the presence or absence of defects in the magnetic tape from the reproduction level. .

このような検査方法は、磁気記録媒体の傷と再生信号に表われる実害との相関が大きいので、最も信頼性の高い検査方法とされていた。   Such an inspection method has been considered to be the most reliable inspection method because there is a large correlation between the scratches on the magnetic recording medium and the actual damage appearing in the reproduction signal.

この従来の磁気記録媒体の検査方法は、具体的には、磁気記録媒体を高速で走行させて多チャンネル固定磁気ヘッドを信号再生ヘッドとして使用することにより、高速、且つ、高能率に検査するようにしていた。   Specifically, this conventional method of inspecting a magnetic recording medium is designed to inspect at high speed and high efficiency by running the magnetic recording medium at high speed and using a multi-channel fixed magnetic head as a signal reproducing head. I was doing.

このような磁気記録媒体の欠陥検査の分野においては、近年の、磁気記録媒体における記録情報の高密度化に対応するために、従来よりも微細・微小な欠陥までも検出可能な高分解能が要求されている。   In the field of defect inspection of such magnetic recording media, in order to cope with the recent increase in the density of recorded information on magnetic recording media, high resolution capable of detecting even finer and minute defects than before is required. Has been.

ところが、上記のような多チャンネル固定磁気ヘッドによる磁気記録媒体表面の欠陥検査方法では、その磁気ヘッドの製作技術上の限界から、検出の分解能を高くすることが容易でなく、この分解能は、磁気記録媒体幅方向で50μm程度が実用上の限界であり、装置の条件を調整して熟練者が検査を行なったとしても20μm程度が限界であった。しかも、チャンネル数が多くなるほど装置が大掛かりとなり、コスト増大の原因となっていた。   However, in the defect inspection method on the surface of the magnetic recording medium using the multi-channel fixed magnetic head as described above, it is not easy to increase the detection resolution due to the limitations in the manufacturing technology of the magnetic head. The practical limit is about 50 μm in the width direction of the recording medium, and about 20 μm is the limit even if an expert performs an inspection by adjusting the conditions of the apparatus. In addition, the larger the number of channels, the larger the apparatus, which causes an increase in cost.

又、上記のような多チャンネル固定磁気ヘッドを利用した場合よりも高い検査分解能を得られる磁気記録媒体検査方法としては、特許文献1あるいは特許文献2に開示されるような、光学的に磁気記録媒体の表面欠陥を検査する方法がある。   Further, as a magnetic recording medium inspection method capable of obtaining a higher inspection resolution than when using the multi-channel fixed magnetic head as described above, an optical magnetic recording as disclosed in Patent Document 1 or Patent Document 2 is used. There is a method for inspecting a surface defect of a medium.

特許文献1の磁気テープ検査方法は、赤色LED(発光ダイオード)光源から照射した光を磁気テープ表面で反射させ、これをセンサヘッドで受光・検出するに際して、センサヘッドの受光軸方向を磁気テープの主面法線方向に対して一定角度傾けることにより、欠陥部分の信号を高SNで検出できるようにしたものである。   In the magnetic tape inspection method of Patent Document 1, light irradiated from a red LED (light emitting diode) light source is reflected on the surface of the magnetic tape, and when the light is received and detected by the sensor head, the light receiving axis direction of the sensor head is set to the magnetic tape. By inclining a certain angle with respect to the normal direction of the principal surface, the signal of the defective portion can be detected with high SN.

又、特許文献2の磁気記録媒体の表面検査方法は、ハロゲン光を磁性層表面に照射して、その反射光をCCDカメラで受光・検出するに際し、投受光角度を特定範囲とし、更に入射光の光軸位置を反射点から偏倚させることにより、信号出力レベルを最大、システムノイズを最小とするようにしたものである。   The method for inspecting the surface of a magnetic recording medium disclosed in Patent Document 2 is that when the surface of the magnetic layer is irradiated with halogen light and the reflected light is received and detected by a CCD camera, the light projection / reception angle is set to a specific range, and the incident light By deviating the optical axis position from the reflection point, the signal output level is maximized and the system noise is minimized.

更に、特許文献3の磁気ディスクの光学的検査方法は、磁気ディスク面の垂直線に対して傾斜角を有する方向から光線を入射し、ディスクの面上方に散乱された光を結像して暗視野像を得ると共に、該暗視野像を受光素子を列設したラインセンサで受光して散乱光強度を測定するものであって、入射する光線をディスク面の検査領域を走査せしめ、ラインセンサの1又は複数の素子が所定レベル以上の強度の信号を所定時間以上取得したとき欠陥部として検出するようにしたものである。   Furthermore, the optical inspection method for a magnetic disk disclosed in Patent Document 3 is such that a light beam is incident from a direction having an inclination angle with respect to a vertical line of the magnetic disk surface, and light scattered above the disk surface is imaged and darkened. In addition to obtaining a field image, the dark field image is received by a line sensor in which light receiving elements are arranged, and the scattered light intensity is measured. The incident light beam is scanned over the inspection area of the disk surface, and the line sensor One or a plurality of elements are detected as a defective portion when a signal having an intensity of a predetermined level or higher is acquired for a predetermined time or more.

特に、近年の高密度記録技術を駆使した磁気記録媒体装置等では、例えば磁性層塗布時の欠陥、付着物、押し傷等の欠陥の場合は、その高さが低く、全体としてなだらかな形状であるため再生信号に及ぼす影響は比較的ゆるやかではあるものの、欠陥が多く集中するとエラレートが増加する。又、その大きさが10〜20μmの場合には再生信号にエラーレートの増加が認められる。このような大きさが10〜20μm程度の欠陥を安定して、且つ、簡単に検出できる方法や装置が望まれている。   In particular, in the case of a magnetic recording medium device or the like that makes full use of recent high-density recording technology, for example, in the case of a defect such as a defect at the time of applying a magnetic layer, a deposit, a scratch, etc., its height is low, and the entire shape is gentle. For this reason, the influence on the reproduction signal is relatively gradual, but if many defects are concentrated, the error rate increases. When the size is 10 to 20 μm, an increase in error rate is recognized in the reproduction signal. There is a demand for a method and apparatus that can stably and easily detect defects having a size of about 10 to 20 μm.

特開平8−201309号公報Japanese Patent Application Laid-Open No. 8-201309 特開平8−233560号公報JP-A-8-233560 特開平10−143801号公報Japanese Patent Laid-Open No. 10-143801

しかしながら、上記特許文献1に開示される方法は、LED光源の光量が少なく、又全反射方式の検出であるため大きな異物等の検出は可能であるものの、大きさが10〜20μmの欠陥を安定して検出することは困難であった。   However, although the method disclosed in Patent Document 1 has a small amount of light from the LED light source and is capable of detecting a large foreign matter or the like because of the total reflection method, it can stably detect a defect having a size of 10 to 20 μm. It was difficult to detect.

又、特許文献2の磁気記録媒体の表面検査方法も、全反射方式の検出であるために、大きさが10〜20μmの欠陥を安定して検出することが困難であったという問題点がある。   Further, the surface inspection method of the magnetic recording medium of Patent Document 2 also has a problem that it is difficult to stably detect a defect having a size of 10 to 20 μm because it is a total reflection detection. .

更に、特許文献3の磁気ディスクの光学的検査方法では、照射光による直接照射領域からの散乱光を結像して暗視野像を得るようにしているので、微小欠陥に対しては、欠陥部からの散乱光の強い波光値が低いレベルであり、SN比が低いという問題点がある。   Furthermore, in the optical disk inspection method disclosed in Patent Document 3, since a dark field image is obtained by forming an image of scattered light from a direct irradiation region by irradiation light, a defect portion is detected for a minute defect. There is a problem that the strong wave value of scattered light from the light source is at a low level and the SN ratio is low.

又、上記各特許文献に開示されているような表面欠陥検査方法は、磁気記録媒体の表面以外の分野、例えば圧延過程におけるストリップ表面の欠陥検査、メッキ表面の欠陥検査、ガラス基板等のガラス製品の表面欠陥検査、機械加工工程における研磨金属表面の検査等に用いられているが、いずれの場合でも、欠陥部での散乱光とそのバックグラウンド光との比が小さいため、検出が困難であることが多かった。   Further, the surface defect inspection method disclosed in each of the above patent documents is applicable to fields other than the surface of the magnetic recording medium, for example, a defect inspection of the strip surface in the rolling process, a defect inspection of the plating surface, and a glass product such as a glass substrate. It is used for inspection of surface defects, inspection of polished metal surfaces in machining processes, etc., but in any case, it is difficult to detect because the ratio of scattered light at the defect portion and its background light is small There were many things.

この発明は、上記従来の問題点に鑑みてなされたものであって、微小欠陥でも高SN比で確実に検出することができるようにした光学的な、表面欠陥検出方法及び装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and provides an optical surface defect detection method and apparatus capable of reliably detecting even a minute defect with a high S / N ratio. With the goal.

本発明者は、磁気テープ等の表面の検査方法について鋭意研究を重ね、検査対象物の表面の垂線に対して一定角度傾斜したカメラ光軸のカメラによる検査領域、及び、この領域から僅かにずらして、平行光の出射口の鏡像が位置する光源像領域を設定し、該領域よりも暗い領域、即ちバックグラウンドの光量が小さい領域での、表面欠陥からの散乱光をカメラにより受光し、高SN比で表面欠陥を検出できることが分かった。   The present inventor has conducted extensive research on a method for inspecting the surface of a magnetic tape or the like, and has inspected the camera optical axis tilted at a fixed angle with respect to the normal of the surface of the object to be inspected, and slightly shifted from this area Then, a light source image area where the mirror image of the parallel light exit is located is set, and the scattered light from the surface defect in an area darker than the area, that is, an area where the amount of background light is small is received by the camera. It was found that surface defects can be detected by the S / N ratio.

即ち、以下の本発明により上記目的が達成可能となる。   That is, the above object can be achieved by the following present invention.

(1)検査対象物表面に、カメラによる検査領域を設定し、且つ、この検査領域の中心を通るカメラ光軸を、前記検査対象物表面の法線に対する傾斜角βが0<β≦10°となるように傾けて設定し、前記検査領域を含む照射領域に、光を入射したとき、この照射領域中であって前記検査領域の外側に隣接する位置に、前記光の出射口の鏡像が位置するように、該光の出射口を設定し、且つ、この光の出射口の中心と前記検査領域の中心とを通る設定直線が、前記法線に対する前記カメラ光軸のカメラ対称光軸とのなす傾斜角αを0<α<25°に設定し、前記検査領域からの散乱光を前記カメラにより受光して、受光信号に変換し、この受光信号が前記検査領域の無欠陥部からの受光信号の強度よりも一定値以上大きいとき、前記検査対象物の表面欠陥として検出し、前記検査対象物の表面における、前記光の出射口の鏡像が位置する光源像領域の、前記検査領域からの隣接方向の全長をWとしたとき、前記光源像領域の前記隣接方向中心位置から前記検査領域までの距離Dを、W/2<D≦3W/2としたことを特徴とする表面欠陥の検出方法。 (1) An inspection area by a camera is set on the surface of the inspection object, and a camera optical axis passing through the center of the inspection area has an inclination angle β with respect to the normal of the inspection object surface is 0 <β ≦ 10 ° When the light is incident on the irradiation area including the inspection area, a mirror image of the light emission port is located at a position in the irradiation area and adjacent to the outside of the inspection area. The light exit port is set so as to be positioned, and a set straight line passing through the center of the light exit port and the center of the inspection region is a camera symmetric optical axis of the camera optical axis with respect to the normal line. Is set to 0 <α <25 °, and the scattered light from the inspection region is received by the camera and converted into a light reception signal, which is received from a defect-free portion of the inspection region. When the intensity of the received light signal is greater than a certain value, Detecting a surface defect on the surface of the test object, the light source image area mirror image of the exit port of the light is positioned, when the total length of the adjacent direction from the examination region and is W, the said light source image area A method for detecting a surface defect, wherein a distance D from the center position in the adjacent direction to the inspection region is set to W / 2 <D ≦ 3W / 2 .

(2)前記傾斜角αを、0<α<5°としたことを特徴とする(1)に記載の表面欠陥の検方法。 (2) the angle of inclination α, 0 <α <How to detect surface defects according to the above wherein the 5 ° and the fact (1).

(3)前記傾斜角αを、5°≦α<10°、10°≦α<15°、又は、15°≦α<25°のいずれかに設定したことを特徴とする(1)に記載の表面欠陥の検方法。 (3) The inclination angle α is set to any one of 5 ° ≦ α <10 °, 10 ° ≦ α <15 °, or 15 ° ≦ α <25 °. how to detect surface defects.

)前記光を、前記カメラにより前記光の出射口の鏡像が位置する光源像領域が直線帯形状となると共に、照射光軸が、前記光源像領域の幅方向中心線と平行な平面内にあるように設定し、且つ、前記検査領域が、前記直線状の光源像領域と平行な直線帯形状になると共に、前記カメラ光軸が、前記法線に対して、前記光の出射口を通る前記設定直線と反対側に傾斜角βで傾斜され、前記直線帯形状の検査領域における幅方向中心線を含む平面内にあるように設定したことを特徴とする(1)乃至()のいずれかに記載の表面欠陥の検出方法。 ( 4 ) The light source image area where the mirror image of the light exit port is positioned by the camera has a linear band shape, and the irradiation optical axis is in a plane parallel to the center line in the width direction of the light source image area. And the inspection area has a linear band shape parallel to the linear light source image area, and the camera optical axis has the light exit port with respect to the normal line. (1) to ( 3 ), characterized in that they are inclined at an inclination angle β on the opposite side of the set straight line, and are within a plane including a center line in the width direction in the inspection region of the straight band shape. The surface defect detection method according to any one of the above.

)前記光源像領域及び検査領域それぞれの幅方向中心線と平行、且つ、検査対象物表面と垂直な第1の仮想平面に対して、この第1の仮想平面及び前記検査対象物表面に垂直な第2の仮想平面内で、前記平行光の照射光軸を前記カメラ対称光軸に対して傾斜角αに傾け、且つ、前記カメラ光軸を、照射光軸とは反対側に前記第1の仮想平面に対して傾斜角βに傾けて設定したことを特徴とする()に記載の表面欠陥の検出方法。 ( 5 ) With respect to the first virtual plane parallel to the center line in the width direction of each of the light source image area and the inspection area and perpendicular to the surface of the inspection object, the first virtual plane and the surface of the inspection object In a second vertical virtual plane, the irradiation optical axis of the parallel light is inclined at an inclination angle α with respect to the camera symmetric optical axis, and the camera optical axis is opposite to the irradiation optical axis. ( 4 ) The method for detecting a surface defect according to ( 4 ), wherein the surface defect is set at an inclination angle β with respect to one virtual plane.

)前記検査対象物が帯状材のとき、前記光源像領域及び検査領域を、該帯状材を幅方向に横断する直線帯形状に設定すると共に、該帯状材を長手方向に走行させつつ表面欠陥を検出することを特徴とする()又は()に記載の表面欠陥の検出方法。 ( 6 ) When the inspection object is a belt-like material, the light source image region and the inspection region are set to a straight belt shape that traverses the belt-like material in the width direction, and the belt is run in the longitudinal direction. The method for detecting a surface defect according to ( 4 ) or ( 5 ), wherein a defect is detected.

)前記カメラをCCDラインカメラとし、このCCDラインカメラの複数の入射光軸を含む入射光軸面を、前記検査領域の幅方向中心線を含む平面と一致して設定したことを特徴とする(乃至のいずれかに記載の表面欠陥の検出方法。 ( 7 ) The camera is a CCD line camera, and an incident optical axis plane including a plurality of incident optical axes of the CCD line camera is set to coincide with a plane including a center line in the width direction of the inspection region. to (4) to the detection method of surface defects according to any one of (6).

)検査対象物を、その少なくとも一部の表面が、厚さ方向定位置で検査位置を通過又は検査位置に静止するように支持する支持装置と、前記検査位置における前記表面に検査領域が設定され、且つ、カメラ光軸が、前記表面での法線に対して、傾斜角βが、0<β≦10°となるように傾けて配置され、入射光強度に比例する強度の受光信号を出力するカメラと、前記検査領域を含む照射領域に光を照射するとともに、この照射領域中であって、前記検査領域の外側に隣接する位置に、前記光の出射口の鏡像が位置する光源像領域を形成し、且つ、この光の出射口の中心と前記検査領域の中心とを通る直線が、前記カメラ光軸の、前記法線に対するカメラ対称光軸となす傾斜角αが0°<α<25°に設定された検査光照射装置と、前記カメラからの前記受光信号の強度が前記検査領域における無欠陥部分からの入射光による受光信号の強度よりも一定値以上大きいとき欠陥検出信号を出力する判定装置と、を有してなり、前記カメラは、前記検査領域から見て前記光源像領域の中心に向かう方向における該光源像領域の全長をWとしたとき、前記光源像領域の前記方向の中心位置から前記検査領域までの距離Dが、W/2<D≦3W/2となるように設定されたことを特徴とする表面欠陥検出装置。 ( 8 ) A support device that supports the inspection object so that at least a part of the surface thereof passes through the inspection position at a fixed position in the thickness direction or stops at the inspection position, and an inspection area is provided on the surface at the inspection position. A received light signal having an intensity proportional to the incident light intensity is set and the camera optical axis is inclined with respect to the normal on the surface so that the inclination angle β is 0 <β ≦ 10 °. And a light source in which a mirror image of the light emission port is located in a position adjacent to the outside of the inspection region in the irradiation region. An inclination angle α formed by a straight line that forms an image area and passes through the center of the light exit port and the center of the inspection area, and the camera symmetric optical axis of the camera optical axis with respect to the normal line is 0 ° < The inspection light irradiation device set to α <25 ° and the camera Ri intensity of the received light signal from the LA is Na a, a determination unit that outputs a defect detection signal is greater than a predetermined value than the intensity of the received signal due to incident light from the defect-free portion in the examination region, wherein The camera has a distance D from the center position in the direction of the light source image area to the inspection area, where W is the total length of the light source image area in the direction toward the center of the light source image area when viewed from the inspection area. , W / 2 <surface defect detection apparatus you characterized in that it is set to be D ≦ 3W / 2.

)前記検査光照射装置における前記傾斜角αを、0<α<5°としたことを特徴とする()に記載の表面欠陥検出装置。 (9) the angle of inclination alpha in the inspection light irradiation device, 0 <a surface defect detection apparatus according to (8) that it has the alpha <5 °.

(1)前記検査光照射装置における前記傾斜角αを、5°≦α<10°、10°≦α<15°、又は、15°≦α<25°のいずれかに設定したことを特徴とする()に記載の表面欠陥検出装置。 (1 0 ) The inclination angle α in the inspection light irradiation apparatus is set to any one of 5 ° ≦ α <10 °, 10 ° ≦ α <15 °, or 15 ° ≦ α <25 °. surface defect detection apparatus according to (8) and.

(1)前記検査光照射装置は、前記光源像領域が直線帯形状となると共に、前記光の照射光軸が、前記光源像領域の幅方向中心線と平行な平面内にあるように設定され、且つ、前記カメラは、前記検査領域が、前記直線帯形状の光源像領域と平行な直線帯形状になると共に、前記カメラ光軸が、前記法線に対して、前記光の出射口を通る前記設定直線と反対側に傾斜角βで傾斜され、前記直線帯形状の検査領域における幅方向中心線を含む平面内にあるように設定されたことを特徴とする()乃至(1)のいずれかに記載の表面欠陥検出装置。 (1 1 ) The inspection light irradiation apparatus is set so that the light source image region has a linear band shape and the irradiation optical axis of the light is in a plane parallel to the center line in the width direction of the light source image region. In the camera, the inspection area has a linear band shape parallel to the light source image area having the linear band shape, and the optical axis of the camera has an exit of the light with respect to the normal line. ( 8 ) to (1 0 ) characterized in that they are inclined at an inclination angle β on the opposite side of the set straight line, and are within a plane including the center line in the width direction in the inspection region of the straight band shape. The surface defect detection device according to any one of the above.

(1)前記検査光照射装置は、前記光源像領域及び検査領域それぞれの幅方向中心線と平行、且つ、検査対象物表面と垂直な第1の仮想平面に対して、この第1の仮想平面及び前記検査対象物表面に垂直な第2の仮想平面内で、前記光の出射口を通る前記設定直線が傾斜角αに傾けて設けられ、且つ、前記カメラは、前記カメラ光軸を、前記設定直線とは反対側に傾斜角βに傾けて設けられたことを特徴とする(1)に記載の表面欠陥検出装置。 (1 2 ) The inspection light irradiation apparatus uses the first virtual plane with respect to a first virtual plane that is parallel to the center line in the width direction of each of the light source image area and the inspection area and perpendicular to the surface of the inspection object. In the second virtual plane perpendicular to the plane and the surface of the inspection object, the set straight line passing through the light exit port is inclined at an inclination angle α, and the camera has the camera optical axis, The surface defect detection device according to (1 1 ), wherein the surface defect detection device is provided at an inclination angle β on the opposite side to the set straight line.

(1)前記検査対象物が帯状材であり、前記支持装置は、該帯状材を長手方向に走行させる構成とされ、前記検査光照射装置及び前記カメラは、前記光源像領域及び検査領域が、該帯状材を幅方向に横断する直線帯形状となるように設定されたことを特徴とする(1)又は(1)に記載の表面欠陥検出装置。 (1 3 ) The inspection object is a strip-shaped material, and the support device is configured to travel the strip-shaped material in the longitudinal direction, and the inspection light irradiation device and the camera include the light source image region and the inspection region. The surface defect detection device according to (1 1 ) or (1 2 ), wherein the surface defect detection device is set so as to have a linear strip shape that traverses the strip in the width direction.

(1)前記カメラはCCDラインカメラであり、このCCDラインカメラの複数の入射光軸を含む入射光軸面が、前記検査領域の幅方向中心線を含む平面と一致して設定されたことを特徴とする(1乃至(1のいずれかに記載の表面欠陥検出装置。 (1 4 ) The camera is a CCD line camera, and an incident optical axis plane including a plurality of incident optical axes of the CCD line camera is set to coincide with a plane including a center line in the width direction of the inspection area. the constitution (1 1) to the surface defect detection apparatus according to any one of (1 3).

上記のように、検査光である光の照射光軸及びカメラの検査領域とそのカメラ光軸を設定すると、高SN比で欠陥部からの散乱光に基づく受光信号を得ることができる。   As described above, when the irradiation optical axis of light that is inspection light, the inspection region of the camera, and the camera optical axis thereof are set, a light reception signal based on scattered light from the defect portion can be obtained with a high SN ratio.

本発明は上記のように構成したので、磁気テープ等の表面欠陥を高SNRで検出することができるという優れた効果を有する。   Since the present invention is configured as described above, it has an excellent effect that surface defects such as magnetic tape can be detected with high SNR.

検査対象物表面に、カメラによる検査領域を設定し、且つ、この検査領域の中心を通るカメラ光軸を、前記検査対象物表面の法線に対する傾斜角βが0<β≦10°となるように傾けて設定し、前記検査領域を含む照射領域に光を入射したとき、この照射領域中であって前記検査領域の外側に隣接する位置に、前記光の出射口の鏡像が位置するように、該光の出射口を設定し、且つ、この光の出射口の中心と前記検査領域の中心とを通る設定直線が、前記法線に対する前記カメラ光軸のカメラ対称光軸とのなす傾斜角αを0<α<5°に設定し、前記検査領域からの散乱光を前記カメラにより受光して、受光信号に変換し、この受光信号が前記検査領域の無欠陥部からの受光信号の強度よりも一定値以上大きいとき、前記検査対象物の表面欠陥として検出することにより上記目的を達成する。   An inspection region by a camera is set on the surface of the inspection object, and the camera optical axis passing through the center of the inspection region is set such that the inclination angle β with respect to the normal of the surface of the inspection object is 0 <β ≦ 10 °. When the light is incident on the irradiation area including the inspection area, the mirror image of the light emission port is positioned in the irradiation area and adjacent to the outside of the inspection area. And an inclination angle formed by a setting straight line passing through the center of the light exit port and the center of the inspection region with the camera symmetric optical axis of the camera optical axis with respect to the normal line. α is set to 0 <α <5 °, and the scattered light from the inspection region is received by the camera and converted into a light reception signal. This light reception signal is the intensity of the light reception signal from the defect-free portion of the inspection region. When the surface defect of the inspection object is larger than a certain value To achieve the above object by detecting Te.

以下本発明の実施例1を図面を参照して詳細に説明する。この実施例1は、検査対象物を磁気記録媒体としたものである。   Embodiment 1 of the present invention will be described below in detail with reference to the drawings. In the first embodiment, the inspection object is a magnetic recording medium.

この実施例1に係る表面欠陥検出装置10は、図1に示されるように、磁気記録媒体である磁気テープ12の検査部12Aを直平面状に支持する支持装置14と、この支持装置14の、前記直平面状に支持される磁気テープ12の表面との法線16A(図2参照)を含み、且つ、磁気テープ12を幅方向に横断する第1の仮想平面16(図2参照)と磁気テープ12の表面との交線上に設定された帯状検査領域22Aの幅方向中心線22B(図4参照)を通るカメラ光軸21が、前記第1の仮想平面16に対して傾斜角βが、0<β≦10°となるように傾けて配置されたCCDラインカメラ22と、前記帯状検査領域22Aを含む照射領域30に光18を照射し、照射領域30内で、帯状検査領域22Aから見てその幅方向一方の外側(図2において左側)に隣接して接近した位置に、磁気テープ12を幅方向に横断する帯状の光源像領域(光18の出射口である光出射口18Bの鏡像が位置する領域)18Aを形成する検査光照射装置20と、前記CCDラインカメラ22からの前記受光信号の強度が、前記帯状検査領域22Aにおける無欠陥部分からの入射光による受光信号の強度よりも一定値以上大きいとき欠陥信号を出力する判定装置24と、を備えて構成されている。   As shown in FIG. 1, the surface defect detection device 10 according to the first embodiment includes a support device 14 that supports the inspection unit 12 </ b> A of the magnetic tape 12 that is a magnetic recording medium in a plane shape, and the support device 14. A first virtual plane 16 (see FIG. 2) that includes a normal line 16A (see FIG. 2) with the surface of the magnetic tape 12 supported in the shape of a straight plane and crosses the magnetic tape 12 in the width direction. The camera optical axis 21 passing through the widthwise center line 22B (see FIG. 4) of the strip-shaped inspection region 22A set on the intersection with the surface of the magnetic tape 12 has an inclination angle β with respect to the first virtual plane 16. Irradiate light 18 to the irradiation area 30 including the CCD line camera 22 and the belt-shaped inspection area 22A arranged so as to satisfy 0 <β ≦ 10 °, and within the irradiation area 30 from the belt-shaped inspection area 22A. As seen, one outer side in the width direction (Fig. A strip-like light source image region (region where a mirror image of the light exit port 18B, which is the exit port of the light 18) is formed, which crosses the magnetic tape 12 in the width direction at a position adjacent to the left side). A defect signal is output when the intensity of the received light signal from the inspection light irradiation device 20 and the CCD line camera 22 is larger than the intensity of the received light signal by the incident light from the defect-free portion in the strip-shaped inspection area 22A. And a determination device 24.

前記傾斜角βは、前記法線16Aを含み、且つ、前記第1の仮想面16と検査部12Aの表面とに直角な第2の仮想平面17内での角度である。   The inclination angle β is an angle in the second imaginary plane 17 that includes the normal 16A and is perpendicular to the first imaginary plane 16 and the surface of the inspection unit 12A.

前記カメラ光軸21の、前記第1の仮想平面16を対称面とするカメラ対称光軸23は、前記第1の仮想平面16に対して第2の仮想平面17内で、カメラ光軸21と反対側に角度β傾斜している。前記光18の照射光軸19は、前記検査部12Aの表面を対称面とする前記CCDラインカメラ22の鏡像を観察するための仮想位置22Mと、光出射口18Bとを結ぶように設定され、且つ、検査光照射装置20の光出射口18Bは、その中心と前記帯状検査領域22Aの幅方向中心線22Bとを通る設定直線19Bが前記カメラ対称光軸23と傾斜角αで交わるように設定されている。   The camera symmetric optical axis 23 of the camera optical axis 21 with the first virtual plane 16 as a symmetric plane is within the second virtual plane 17 with respect to the first virtual plane 16 and the camera optical axis 21. The angle β is inclined to the opposite side. An irradiation optical axis 19 of the light 18 is set so as to connect a virtual position 22M for observing a mirror image of the CCD line camera 22 with the surface of the inspection unit 12A as a symmetry plane, and a light exit port 18B. Further, the light exit port 18B of the inspection light irradiation device 20 is set so that a setting straight line 19B passing through the center thereof and the center line 22B in the width direction of the strip-shaped inspection region 22A intersects the camera symmetric optical axis 23 at an inclination angle α. Has been.

前記支持装置14は、図3に示されるように、平行に配置された一対の円筒状ガイド部材26A、26Bを備え、これら円筒状ガイド部材26A、26Bの、磁気テープ12が巻き掛けられる範囲では、多数のエア吹出し細孔27が形成され、ここから圧縮空気を吹出すことによって円筒状ガイド部材26A、26Bに巻き掛けられる磁気テープ12を、ガイド部材表面とは非接触の状態で且つ磁気テープ12を直平面状に維持しつつ走行させるようにしている。なお、この直平面状に維持されている磁気テープ12の部分が検出部12Aである。   As shown in FIG. 3, the support device 14 includes a pair of cylindrical guide members 26A and 26B arranged in parallel. In the range where the magnetic tape 12 is wound around the cylindrical guide members 26A and 26B. The magnetic tape 12, which is wound around the cylindrical guide members 26A and 26B by blowing compressed air therefrom, is formed in a non-contact state with the surface of the guide member. 12 is made to run while maintaining a straight plane shape. The portion of the magnetic tape 12 that is maintained in the shape of a right plane is the detection unit 12A.

前記支持装置14は、磁気テープ12を直平面状に維持しつつ走行させることができるものであればよく、磁気テープに対して非接触なものに限定されない。   The support device 14 may be any device as long as it can run while maintaining the magnetic tape 12 in a plane shape, and is not limited to a device that does not contact the magnetic tape.

前記光出射口18Bの中心と、帯状検査領域22Aの幅方向中心とを通る前記設定直線19Bは、前記カメラ対称光軸23及び帯状検査領域22Aの幅方向中心線を含むカメラ対称光軸23Aに対して、前記CCDラインカメラ22のカメラ光軸21の反対側に傾斜角αだけ傾けて配置されている。この傾斜角αは、0<α<25°の範囲で後述のように設定される。   The setting straight line 19B passing through the center of the light exit port 18B and the center in the width direction of the strip-shaped inspection region 22A is aligned with the camera-symmetric optical axis 23A including the camera-symmetric optical axis 23 and the center line in the width direction of the strip-shaped inspection region 22A. On the other hand, the CCD line camera 22 is disposed on the opposite side of the camera optical axis 21 with an inclination angle α. The inclination angle α is set in the range of 0 <α <25 ° as described later.

なお、前記照射光軸19及びカメラ光軸21は、共に磁気テープ12の幅方向に連続して複数あり、図4に示されるように、これらによって照射光軸面19A及びカメラ光軸面21Aが形成される。カメラ光軸面21Aは、前記仮想平面16に対して傾斜角βで傾斜され、照射光軸面19Aは、光源像領域18Aの幅方向中心線18Cを通って形成されている。   The irradiation optical axis 19 and the camera optical axis 21 are both continuous in the width direction of the magnetic tape 12, and as shown in FIG. 4, the irradiation optical axis plane 19A and the camera optical axis plane 21A are thereby formed. It is formed. The camera optical axis surface 21A is inclined at an inclination angle β with respect to the virtual plane 16, and the irradiation optical axis surface 19A is formed through the center line 18C in the width direction of the light source image region 18A.

又、図5に示されるように、磁気テープ12の走行方向から見て光18とカメラ光軸21は、磁気テープ12に対して垂直かつ重なり合うように設定されている。   As shown in FIG. 5, the light 18 and the camera optical axis 21 are set to be perpendicular to and overlap with the magnetic tape 12 when viewed from the traveling direction of the magnetic tape 12.

前記検査光照射装置20は、図1に示されるように、ハロゲンランプ28Aと、その光を導くための光ファイバー束28Bとを備えて構成され、前記支持装置14により直平面状に支持された磁気テープ12の表面を照射して、前述のように、磁気テープ12をその幅方向に横断する前記帯状の光源像領域18Aを含む照射領域30を形成するようにされている。この照射領域30は、中心部分となる前記光源像領域18Aと、その外側の、光源像が観察されないが光18が照射される光源像外側領域18D(図4参照、詳細後述)とからなっている。   As shown in FIG. 1, the inspection light irradiation device 20 includes a halogen lamp 28 </ b> A and an optical fiber bundle 28 </ b> B for guiding the light, and is supported by the support device 14 in a plane shape. By irradiating the surface of the tape 12, as described above, the irradiation region 30 including the band-like light source image region 18A that traverses the magnetic tape 12 in the width direction is formed. The irradiation area 30 is composed of the light source image area 18A as a central portion and a light source image outer area 18D (see FIG. 4, which will be described later in detail) outside the light source image but not irradiated with the light source image. Yes.

ここで、前記帯状の光源像領域18Aの幅方向中心線18Cに対する帯状検査領域22Aの距離Dは、図2に示されるように、前記光源像領域18Aの幅をWとしたとき、W/2<D≦3W/2の範囲とする。D≦W/2の場合は、強い照射光が、外乱光として入射することがある。D>3W/2とすると帯状検査領域22Aは、前記光源像外側領域18D内での光源像領域18Aから離れた位置となるので照射光が弱く、従って、この領域から得られる散乱光が弱くなる。なお光源像領域18Aから離れると照射光が徐々に弱くなっていくので、光源像外側領域18Dの外周縁、即ち、照射領域30の外周縁は、不明瞭である。   Here, the distance D of the strip-shaped inspection region 22A with respect to the center line 18C in the width direction of the strip-shaped light source image region 18A is W / 2 when the width of the light source image region 18A is W as shown in FIG. <D ≦ 3W / 2. In the case of D ≦ W / 2, strong irradiation light may be incident as disturbance light. If D> 3W / 2, the band-shaped inspection region 22A is located away from the light source image region 18A in the light source image outer region 18D, so that the irradiation light is weak, and therefore the scattered light obtained from this region is weak. . Note that since the irradiation light gradually weakens away from the light source image region 18A, the outer peripheral edge of the light source image outer region 18D, that is, the outer peripheral edge of the irradiation region 30, is unclear.

前記判定装置24は、前記磁気テープ12の長手方向の一定間隔、即ち、所定のライン走査周期で、テープ幅方向の分解能に対応する位置毎に、CCDラインカメラ22から同CCDラインカメラ22に入射する光エネルギーに対応して輝度信号を受けて、この輝度信号と、上記帯状検査領域22Aにおける無欠陥部分での輝度信号のレベル(ローレベル)とを比較して、一定値以上の差があるとき、欠陥信号を出力するようにされている。   The determination device 24 is incident on the CCD line camera 22 from the CCD line camera 22 at a position corresponding to the resolution in the tape width direction at a predetermined interval in the longitudinal direction of the magnetic tape 12, that is, a predetermined line scanning cycle. When a luminance signal is received corresponding to the light energy to be received, and the luminance signal is compared with the level (low level) of the luminance signal in the defect-free portion in the strip inspection region 22A, there is a difference of a certain value or more. When a defect signal is output.

詳細には、CCDラインカメラ22からは、入射する光エネルギーが蓄積して得られた積分値が輝度信号として出力され、判定装置24では、前記輝度信号を、比較器24Aで予め設定されている、前記ローレベルの輝度に所定値を加えた輝度の信号(比較値)と比較して、入力した輝度信号が比較値よりも大きい場合に、欠陥信号を出力するようにされている。   More specifically, the integrated value obtained by accumulating incident light energy is output as a luminance signal from the CCD line camera 22, and in the determination device 24, the luminance signal is preset by the comparator 24A. The defect signal is output when the input luminance signal is larger than the comparison value as compared with the luminance signal (comparison value) obtained by adding a predetermined value to the low-level luminance.

上記のような表面欠陥検出装置10により、磁気テープ12の表面の欠陥を検出する場合、帯状検査領域22Aが、光18による光源像領域18Aの外側に隣接して設定されているので、磁気テープ12表面における欠陥のない部分ではCCDラインカメラ22で得られる輝度信号はほとんど黒レベルに近く、磁気テープ12の平面性や光学系に起因して輝度が上がる度合が少ない。   When the surface defect detection apparatus 10 as described above detects a defect on the surface of the magnetic tape 12, the strip-shaped inspection area 22 </ b> A is set adjacent to the outside of the light source image area 18 </ b> A by the light 18. The luminance signal obtained by the CCD line camera 22 is almost at the black level in the portion having no defect on the surface 12, and the degree of increase in luminance due to the flatness of the magnetic tape 12 and the optical system is small.

更に詳細には、図4にも示されるように、上記帯状検査領域22Aは、光18による光源像領域18Aの外側に隣接する光源像外側領域18Dに含まれ、且つ、上述のように、カメラ光軸21のカメラ対称光軸23に対して傾斜角αの設定直線19B上に光出射口18Bがあるので、光18の前記光源像領域18Aでの正反射光はCCDラインカメラ22に入射することがない。   More specifically, as shown in FIG. 4, the band-shaped inspection region 22A is included in the light source image outer region 18D adjacent to the outside of the light source image region 18A by the light 18, and as described above, the camera Since the light exit port 18B is on the setting straight line 19B of the inclination angle α with respect to the camera symmetric optical axis 23 of the optical axis 21, the regular reflection light of the light 18 on the light source image area 18A enters the CCD line camera 22. There is nothing.

一方、磁気テープ12の表面に何らかの欠陥がある場合は上記帯状検査領域22Aで照射光が散乱し、散乱光の一部がCCDラインカメラ22に入射する。   On the other hand, if there is any defect on the surface of the magnetic tape 12, the irradiation light is scattered in the strip inspection region 22 </ b> A, and a part of the scattered light enters the CCD line camera 22.

前述のように、光源像外側領域18Dでの磁気テープ12の輝度はほとんど黒レベルに近いので、欠陥部からの散乱光がこの黒レベルに対して高い輝度となり、結果として検出信号のSNRが大幅に向上される。これに対して、従来のように帯状光源像領域と検査領域とを一致させた場合、欠陥のない部分の輝度が高く欠陥部の輝度が立ち下がってある程度の輝度差は得られるものの、欠陥検出の波高値が低いため本発明のような高いSNRは得られない。   As described above, since the brightness of the magnetic tape 12 in the light source image outer region 18D is almost close to the black level, the scattered light from the defective portion has a high brightness with respect to this black level, and as a result, the SNR of the detection signal is greatly increased. To be improved. On the other hand, when the band-like light source image area and the inspection area are matched with each other as before, the brightness of the defect-free part is high and the brightness of the defective part falls, and a certain brightness difference is obtained, but the defect detection Therefore, the high SNR as in the present invention cannot be obtained.

ここで、前記傾斜角αの設定と磁気テープ12表面の欠陥の種類との関係について説明する。   Here, the relationship between the setting of the inclination angle α and the type of defect on the surface of the magnetic tape 12 will be described.

図6に示されるように、押し疵等の凹部32が磁気テープ12の表面にあるとき、この凹部32からの散乱光量は少なくSN比のレベルがかなり小さく、且つ、特異的に散乱光量の多い角度が磁気テープ12表面の法線16A又は第1の仮想平面16に接近している。従って、SN比のレベルを高くするためには、傾斜角αを5°以下且つ可能な限り0°に近づける。   As shown in FIG. 6, when the concave portion 32 such as a pressing rod is on the surface of the magnetic tape 12, the amount of scattered light from the concave portion 32 is small, the SN ratio level is considerably small, and the amount of scattered light is specifically large. The angle is close to the normal 16 </ b> A of the surface of the magnetic tape 12 or the first imaginary plane 16. Therefore, in order to increase the level of the SN ratio, the inclination angle α is set to 5 ° or less and as close to 0 ° as possible.

傾斜角αが0に近くなると、光18の照射光軸19とカメラ対称光軸23とが平行且つ接近するので、磁気テープ12がその走行時にばたつくと誤検出を生じる。従って、検査時の磁気テープ12の平担性を保つべく、走行テンション、速度変動、テープガイド形状等を調整するとよい。   When the inclination angle α is close to 0, the irradiation optical axis 19 of the light 18 and the camera symmetric optical axis 23 are parallel and close to each other, so that erroneous detection occurs when the magnetic tape 12 flutters during its travel. Therefore, in order to maintain the flatness of the magnetic tape 12 at the time of inspection, the running tension, speed fluctuation, tape guide shape, and the like may be adjusted.

又、図7に示されるように、磁気テープ12の表面に塗布時の欠陥、付着物等の高さが高く、且つ大きい凸部34があるときは、該凸部34の側面34Aからの比較的大きい散乱光量を得ることができる。図7の符号γ、γ´は、前記光18が側面34Aにより反射されてCCDラインカメラ22に入射する場合の、側面34Aの法線に対する入射光の角度及び散乱光の角度を示す。   Further, as shown in FIG. 7, when the surface of the magnetic tape 12 is high in the height of defects, deposits, etc. during application and has a large convex portion 34, the comparison from the side surface 34A of the convex portion 34 is made. A large amount of scattered light can be obtained. Reference numerals γ and γ ′ in FIG. 7 indicate the angles of incident light and scattered light with respect to the normal of the side surface 34A when the light 18 is reflected by the side surface 34A and enters the CCD line camera 22.

従って、前述と同様に、高SN比を得るためには傾斜角αをできるだけ0°に接近させるのが好ましいが、磁気テープの走行ばたつき等により検査領域が正反射領域に入り込んでしまう危険性があるので、検査の安定性を優先して、傾斜角αは5°以上のやや大きい範囲に設定すると良い。   Therefore, as described above, in order to obtain a high S / N ratio, it is preferable to make the inclination angle α as close to 0 ° as possible. However, there is a risk that the inspection area may enter the regular reflection area due to flapping of the magnetic tape or the like. Therefore, it is preferable to set the inclination angle α in a slightly large range of 5 ° or more in consideration of the stability of inspection.

更に最も検査の安定性を優先する場合から、高SN比を優先する場合までを3段階に分けて、15°≦α<25°、10°≦α<15°、5°≦α<10°の3段階の範囲でいずれかを選択して設定すると良い。   Furthermore, from the case where priority is given to the stability of inspection to the case where high S / N ratio is prioritized, it is divided into three stages, 15 ° ≦ α <25 °, 10 ° ≦ α <15 °, 5 ° ≦ α <10 °. It is good to select and set any one of the three ranges.

βについては、β=0°では検査環境周囲からの外乱光によるノイズが集まりやすく、β>10°では、表面欠陥を斜め方向から見る度合いが大きくなるため欠陥が小さく観察されることになり検出感度が低くなってしまうので0<β≦10°が適切である。   Regarding β, noise due to ambient light from the surroundings of the inspection environment tends to gather when β = 0 °, and when β> 10 °, the degree of surface defects viewed from an oblique direction increases, so that the defects are observed small. Since sensitivity is lowered, 0 <β ≦ 10 ° is appropriate.

なお上記実施例1は、磁気テープ12の表面欠陥を検出する装置に関するものであるが、本発明はこれに限定されるものでなく、ガラス基板の表面、メッキ表面、研磨した金属表面、等の反射率が高い材料の表面における欠陥を検出する際に適用することができる。   In addition, although the said Example 1 is related with the apparatus which detects the surface defect of the magnetic tape 12, this invention is not limited to this, The surface of a glass substrate, a plating surface, a polished metal surface, etc. This can be applied when detecting defects on the surface of a material having a high reflectance.

又、上記実施の形態の例では、光18を用いているが、この光は、その照射光軸上の一定領域の外側にも照射領域を有するものであればよく、平行光線束、収束光線束、発散光線束のいずれでもよい。   In the example of the above embodiment, the light 18 is used. However, this light only needs to have an irradiation area outside a certain area on the irradiation optical axis. Either a bundle or a diverging ray bundle may be used.

又、上記表面欠陥検出装置10は、検査対象物である磁気テープ12表面に帯状光源像領域18Aを形成し、これに対してCCDラインカメラ22も、帯状検査領域22Aを有するものであるが、本発明はこれに限定されるものでなく、光源像領域及び検査領域がスポット状であってもよい。この場合、被検査面の法線を基準として傾斜角α及びβを設定する。又、光源像スポットと検査スポットとのオフセット量Dも前述のW/2<D≦3W/2の範囲で設定する。ここで、光源像スポットの幅Wは、検査スポットからみた光源像スポットの中心方向の外径となる。   The surface defect detection apparatus 10 forms a band-like light source image area 18A on the surface of the magnetic tape 12 that is the inspection object, and the CCD line camera 22 has a band-like inspection area 22A. The present invention is not limited to this, and the light source image area and the inspection area may be spot-like. In this case, the inclination angles α and β are set based on the normal line of the surface to be inspected. The offset amount D between the light source image spot and the inspection spot is also set in the range of W / 2 <D ≦ 3W / 2. Here, the width W of the light source image spot is the outer diameter in the center direction of the light source image spot as viewed from the inspection spot.

なお、前記検査光照射装置20は、光源種についてはハロゲンランプ、LED、ナトリウムランプ、レーザダイオード等の種々のものが考えられるが、絶対光量が大きく調光が容易という点から、ハロゲンランプが特に優れている。   The inspection light irradiating device 20 may be of various types such as a halogen lamp, an LED, a sodium lamp, and a laser diode as the light source type, but a halogen lamp is particularly preferable because of its large absolute light quantity and easy light control. Are better.

更に、前記帯状検査領域22Aは、磁気テープ12の表面を、送り方向に対して直角に横切るように設定されているが、本発明はこれに限定されるものでなく、これはテープの幅方向に対して±40度以内、好ましくは±20度以内で傾けてもよい。   Furthermore, the strip-shaped inspection area 22A is set so as to cross the surface of the magnetic tape 12 at a right angle to the feeding direction, but the present invention is not limited to this, and this is the width direction of the tape. The inclination may be within ± 40 degrees, preferably within ± 20 degrees.

この実施例2は1/2インチ幅のビデオ用磁気テープ(塗布型の磁性層及びバックコート層を備える)を測定対象物とし、検査光照射装置の光源種としてはハロゲンランプを用いた。   In Example 2, a 1/2 inch wide video magnetic tape (including a coating type magnetic layer and a backcoat layer) was used as a measurement object, and a halogen lamp was used as a light source type of the inspection light irradiation apparatus.

又、CCDラインカメラは、市販のライカサイズ1眼レフカメラ用のレンズ、を備え、CCDアレイはテープ幅方向の画素数が1024で、磁気テープは送り速度がV=5m/secという条件とすることにより、テープ幅方向分解能が12μm、テープ走行方向のサイズを128μmとした。   The CCD line camera has a lens for a commercially available Leica size single-lens reflex camera, the CCD array has a number of pixels in the tape width direction of 1024, and the magnetic tape has a feed speed of V = 5 m / sec. Thus, the resolution in the tape width direction was set to 12 μm, and the size in the tape running direction was set to 128 μm.

磁性層側の検出結果を、図8(A)に示し、これに対応して、図8(B)に、同じ欠陥を、帯状光源像領域と検査領域とを一致させた従来の表面結果検出装置により測定した結果を示す。なお、図8(A)、図8(B)は欠陥種が付着物の場合をそれぞれ示す。   FIG. 8A shows the detection result on the magnetic layer side. Corresponding to this, FIG. 8B shows the conventional surface result detection in which the same defect is matched with the band-like light source image region and the inspection region. The result measured by the apparatus is shown. 8A and 8B show the cases where the defect type is a deposit.

これらの図から分かるように、図8(B)では、符号Xbで示される欠陥部において輝度信号が大きく立ち下がっているが、他の部分でも輝度信号が立ち下がっていて、欠陥による立ち下がりか否かを弁別することが困難である。   As can be seen from these figures, in FIG. 8B, the luminance signal has fallen significantly at the defective portion indicated by the symbol Xb. It is difficult to discriminate whether or not.

これに対して、本発明の実施例2では、図8(A)において符号Xaで示されるように、欠陥部では輝度信号が大きく立ち上がり、他の部分にこれと紛らわしい信号が見られない。従って、表面欠陥を高SNRで検出できることが分かる。   On the other hand, in the second embodiment of the present invention, as indicated by the symbol Xa in FIG. 8A, the luminance signal rises greatly in the defective portion, and no confusing signal is seen in other portions. Therefore, it can be seen that surface defects can be detected with a high SNR.

次に、欠陥が凸部である場合と凹部である場合のそれぞれについての前記傾斜角α、及びβと、SN比(SNR)との関係について実験により得られた結果を示す。   Next, the result obtained by experiment about the relationship between the said inclination-angle (alpha) and (beta) and the SN ratio (SNR) about each when a defect is a convex part and a recessed part is shown.

表1及び図9は、前記と同様の磁気テープの磁性層側について測定したものであり、欠陥として付着物により凸部が形成された場合の、傾斜角α、βとSNRとの関係を示している。   Table 1 and FIG. 9 are measured on the magnetic layer side of the same magnetic tape as described above, and show the relationship between the inclination angles α, β and the SNR when the convex portion is formed by the deposit as a defect. ing.

なお、SNRの値は次のようにして求めた。欠陥部からの輝度信号強度をa、ローレベルの輝度信号強度をbとしたとき、SNR=a/bとした。但し、図8(B)等のようにaがbよりも小さい場合は、SNR=−(1−a/b)とした。又、αは、図2に例示したように、設定直線19Bがカメラ対称光軸23に対して法線16から離れる方向に傾いている場合をプラスの値とし、反対方向に傾いている場合をマイナスの値で表記した。このマイナスの表記は方向を示すためだけのものであり、絶対値をとったものが本発明の傾きαとなる。   The value of SNR was obtained as follows. SNR = a / b, where a is the luminance signal intensity from the defect and b is the low level luminance signal intensity. However, when a is smaller than b as shown in FIG. 8B, SNR = − (1−a / b). Further, as illustrated in FIG. 2, α is a positive value when the setting straight line 19B is inclined in the direction away from the normal 16 with respect to the camera symmetric optical axis 23, and the case where it is inclined in the opposite direction. Expressed as a negative value. This minus notation is only for indicating the direction, and the absolute value is the inclination α of the present invention.

Figure 0004543665
Figure 0004543665

表1において、○印は得られたSNRが好ましい範囲である場合、×印は設定した傾斜角度が利用できる範囲外の場合、△印は利用できる範囲をそれぞれ示す。又、無印も利用範囲外を示す。   In Table 1, ◯ indicates a range where the obtained SNR is a preferable range, X indicates a range where the set tilt angle is out of a usable range, and Δ indicates a usable range. In addition, no mark also indicates out of use range.

表1及び図9から、欠陥が付着物等の凸部の場合は、傾斜角βが0<β≦10°の範囲で、傾斜角αが5°≦α<10°が最も好ましく、以下、10°≦α<15°、15°≦α<25°の順で良好なSNRを得ることができることが分かる。   From Table 1 and FIG. 9, when the defect is a convex part such as an adherent, the inclination angle β is in the range of 0 <β ≦ 10 °, and the inclination angle α is most preferably 5 ° ≦ α <10 °, It can be seen that good SNR can be obtained in the order of 10 ° ≦ α <15 ° and 15 ° ≦ α <25 °.

なお、βが15°と20°のデータについては、SNRの値そのものは良好な場合もあるが、前記のような理由により、本発明において利用できる範囲外という意味で15°と20°の欄にX印を付した。   For data with β of 15 ° and 20 °, the SNR value itself may be good, but for the reasons described above, the 15 ° and 20 ° columns are meant to be outside the range that can be used in the present invention. Is marked with an X.

次に、表2及び図10に、前記と同様の磁気テープのバックコート側表面における欠陥が押し疵である凹部(大きさ10μm程度の微小なもの)の場合について傾斜角α、βとSNRとの関係を示す。   Next, in Table 2 and FIG. 10, the inclination angles α, β, and SNR are shown in the case of a concave portion (a minute one having a size of about 10 μm) where the defects on the backcoat side surface of the magnetic tape are the same as those described above. The relationship is shown.

Figure 0004543665
Figure 0004543665

表2において、○印、×印、無印は表1におけると同一の範囲を示す。表2からは、0<β≦10°の領域で、傾斜角αが、5°より小さく且つ限りなく0°に近いときに良好な検出結果を得られることが分かる。より詳しくは、0<β≦5°且つαが4°以下が好ましく、更には0<β≦5°且つαが3°以下が好ましい。又、5<β≦10°の範囲では、αが3°以下であれば本発明の効果が得られる。   In Table 2, ◯, x, and no marks indicate the same ranges as in Table 1. From Table 2, it can be seen that in the region of 0 <β ≦ 10 °, good detection results can be obtained when the inclination angle α is smaller than 5 ° and as close as possible to 0 °. More specifically, 0 <β ≦ 5 ° and α is preferably 4 ° or less, more preferably 0 <β ≦ 5 ° and α is 3 ° or less. In the range of 5 <β ≦ 10 °, the effect of the present invention can be obtained if α is 3 ° or less.

なお、用いた磁気テープのバックコート側表面における凹部欠陥のサイズは非常に微細であるため、欠陥部からの散乱光量が少なく、得られるSNRの値も低くなっているが、磁気テープの走行系の調整(具体的には走行スピードを低く設定し、検査部12Aの平面性を高くする)をすることにより、SNRを向上して検出可能となるように設定したものである。   In addition, since the size of the concave defect on the back coat side surface of the magnetic tape used is very fine, the amount of scattered light from the defective portion is small, and the SNR value obtained is low, but the magnetic tape running system (Specifically, the traveling speed is set low and the flatness of the inspection unit 12A is increased) so that the SNR can be improved and detected.

本発明の実施例1に係る表面欠陥検出装置を示す一部ブロック図を含む斜視図1 is a perspective view including a partial block diagram illustrating a surface defect detection apparatus according to Embodiment 1 of the present invention. FIG. 同表面欠陥検出装置における平行光の照射光軸(面)とCCDラインカメラのカメラ光軸(面)との関係を示す模式図The schematic diagram which shows the relationship between the irradiation optical axis (surface) of the parallel light in the same surface defect detection apparatus, and the camera optical axis (surface) of a CCD line camera 同表面欠陥検出装置において磁気テープを支持するための支持装置を示す斜視図The perspective view which shows the support apparatus for supporting a magnetic tape in the same surface defect detection apparatus 光による磁気テープ表面での照射領域、検査領域、光源像領域、光源像外領域の関係を拡大して示す模式図Schematic diagram showing an enlarged relationship between the irradiation area, inspection area, light source image area, and non-light source image area on the magnetic tape surface with light. 平行光の照射光軸とカメラ光軸との関係をテープ送り方向から見た模式図Schematic view of the relationship between the parallel light irradiation optical axis and the camera optical axis as seen from the tape feed direction 磁気テープ表面の欠陥部が凹部である場合の平行光と散乱光との関係を示す模式図Schematic diagram showing the relationship between parallel light and scattered light when the defect on the surface of the magnetic tape is a recess. 磁気テープ表面の欠陥部が凸部である場合の平行光と散乱光との関係を示す模式図Schematic diagram showing the relationship between parallel light and scattered light when the defects on the surface of the magnetic tape are convex. 実施例2にかかる表面欠陥検出装置によって磁気テープ表面の付着物欠陥を検出した場合の検出信号の波形を、従来例と比較して示す線図The diagram which shows the waveform of the detection signal at the time of detecting the deposit | attachment defect on the magnetic tape surface with the surface defect detection apparatus concerning Example 2 compared with a prior art example. 磁気テープ表面の欠陥部が凸部である場合の傾斜角β及びαと検出値のSNRとの関係を示す線図The diagram which shows the relationship between inclination-angle (beta) and (alpha) and the SNR of a detected value in case the defect part of the magnetic tape surface is a convex part 磁気テープ表面の欠陥部が凹部である場合の図9と同様の線図Diagram similar to FIG. 9 when the defect on the surface of the magnetic tape is a recess

符号の説明Explanation of symbols

10…表面欠陥検出装置
12…磁気テープ
12A…検査部
14…支持装置
16…第1の仮想平面
16A…法線
18…光
18A…光源像領域
18B…光出射口
18C…幅方向中心線
18D…光源像外側領域
19…照射光軸
19A…照射光軸面
19B…設定直線
20…検査光照射装置
21…カメラ光軸
21A…カメラ光軸面
22…CCDラインカメラ
22A…帯状検査領域
22B…幅方向中心線
22M…仮想位置
23…カメラ対称光軸
24…判定装置
30…凹部
32…凸部
32A…側面
DESCRIPTION OF SYMBOLS 10 ... Surface defect detection apparatus 12 ... Magnetic tape 12A ... Inspection part 14 ... Supporting device 16 ... 1st virtual plane 16A ... Normal 18 ... Light 18A ... Light source image area 18B ... Light emission port 18C ... Center line 18D in the width direction ... Light source image outer region 19 ... Irradiation optical axis 19A ... Irradiation optical axis surface 19B ... Setting straight line 20 ... Inspection light irradiation device 21 ... Camera optical axis 21A ... Camera optical axis surface 22 ... CCD line camera 22A ... Strip inspection region 22B ... Width direction Center line 22M ... Virtual position 23 ... Optical axis symmetrical to camera 24 ... Determination device 30 ... Concave portion 32 ... Convex portion 32A ... Side surface

Claims (14)

検査対象物表面に、カメラによる検査領域を設定し、且つ、この検査領域の中心を通るカメラ光軸を、前記検査対象物表面の法線に対する傾斜角βが0<β≦10°となるように傾けて設定し、前記検査領域を含む照射領域に、光を入射したとき、この照射領域中であって前記検査領域の外側に隣接する位置に、前記光の出射口の鏡像が位置するように、該光の出射口を設定し、且つ、この光の出射口の中心と前記検査領域の中心とを通る設定直線が、前記法線に対する前記カメラ光軸のカメラ対称光軸とのなす傾斜角αを0<α<25°に設定し、前記検査領域からの散乱光を前記カメラにより受光して、受光信号に変換し、この受光信号が前記検査領域の無欠陥部からの受光信号の強度よりも一定値以上大きいとき、前記検査対象物の表面欠陥として検出し、前記検査対象物の表面における、前記光の出射口の鏡像が位置する光源像領域の、前記検査領域からの隣接方向の全長をWとしたとき、前記光源像領域の前記隣接方向中心位置から前記検査領域までの距離Dを、W/2<D≦3W/2としたことを特徴とする表面欠陥の検出方法。 An inspection region by a camera is set on the surface of the inspection object, and the camera optical axis passing through the center of the inspection region is set such that the inclination angle β with respect to the normal of the surface of the inspection object is 0 <β ≦ 10 °. When the light is incident on the irradiation area including the inspection area, a mirror image of the light emission port is positioned at a position in the irradiation area and adjacent to the outside of the inspection area. And a setting straight line passing through the center of the light exit port and the center of the inspection region is inclined with respect to the normal line with the camera symmetric optical axis. The angle α is set to 0 <α <25 °, and the scattered light from the inspection region is received by the camera and converted into a light reception signal. This light reception signal is a signal received from a defect-free portion in the inspection region. If the surface is larger than the strength by a certain value or more, Detected as, the surface of the test object, the light source image area mirror image of the exit port of the light is positioned, when the total length of the adjacent direction from the examination region and is W, the neighboring direction of the light source image area A method for detecting a surface defect, wherein a distance D from a center position to the inspection region is set to W / 2 <D ≦ 3W / 2 . 請求項1において、前記傾斜角αを、0<α<5°としたことを特徴とする表面欠陥の検方法。 In claim 1, the inclination angle α, 0 <α <5 ° and then detection method of surface defects, characterized in that the. 請求項1において、前記傾斜角αを、5°≦α<10°、10°≦α<15°、又は、15°≦α<25°のいずれかに設定したことを特徴とする表面欠陥の検方法。 The surface defect according to claim 1, wherein the inclination angle α is set to any one of 5 ° ≦ α <10 °, 10 ° ≦ α <15 °, or 15 ° ≦ α <25 °. How to detect. 請求項1乃至のいずれかにおいて、前記光を、前記カメラにより前記光の出射口の鏡像が位置する光源像領域が直線帯形状となると共に、照射光軸が、前記光源像領域の幅方向中心線と平行な平面内にあるように設定し、且つ、前記検査領域が、前記直線状の光源像領域と平行な直線帯形状になると共に、前記カメラ光軸が、前記法線に対して、前記光の出射口を通る前記設定直線と反対側に傾斜角βで傾斜され、前記直線帯形状の検査領域における幅方向中心線を含む平面内にあるように設定したことを特徴とする表面欠陥の検出方法。 In any one of claims 1 to 3, the light, with the light source image area located a mirror image of the exit of the light becomes linear band shape by the camera, the illumination optical axis, the width direction of the light source image area The inspection area is set to be in a plane parallel to the center line, and the inspection area has a linear band shape parallel to the linear light source image area, and the camera optical axis is relative to the normal line. The surface is inclined so as to be opposite to the set straight line passing through the light emission port at an inclination angle β, and is set to be in a plane including a center line in the width direction in the inspection area of the straight belt shape. Defect detection method. 請求項において、前記光源像領域及び検査領域それぞれの幅方向中心線と平行、且つ、検査対象物表面と垂直な第1の仮想平面に対して、この第1の仮想平面及び前記検査対象物表面に垂直な第2の仮想平面内で、前記光の照射光軸を前記カメラ対称光軸に対して傾斜角αに傾け、且つ、前記カメラ光軸を、照射光軸とは反対側に前記第1の仮想平面に対して傾斜角βに傾けて設定したことを特徴とする表面欠陥の検出方法。 5. The first virtual plane and the inspection object with respect to a first virtual plane parallel to the center line in the width direction of each of the light source image area and the inspection area and perpendicular to the surface of the inspection object according to claim 4 . In a second virtual plane perpendicular to the surface, the irradiation optical axis of the light is inclined at an inclination angle α with respect to the camera symmetric optical axis, and the camera optical axis is opposite to the irradiation optical axis. A method for detecting a surface defect, characterized in that the surface defect is set at an inclination angle β with respect to the first virtual plane. 請求項又はにおいて、前記検査対象物が帯状材のとき、前記光源像領域及び検査領域を、該帯状材を幅方向に横断する直線帯形状に設定すると共に、該帯状材を長手方向に走行させつつ表面欠陥を検出することを特徴とする表面欠陥の検出方法。 In Claim 4 or 5 , when the inspection object is a strip-shaped material, the light source image region and the inspection region are set in a straight strip shape that crosses the strip-shaped material in the width direction, and the strip-shaped material is set in the longitudinal direction. A method for detecting a surface defect, wherein the surface defect is detected while running. 請求項4乃至6のいずれかにおいて、前記カメラをCCDラインカメラとし、このCCDラインカメラの複数の入射光軸を含む入射光軸面を、前記検査領域の幅方向中心線を含む平面と一致して設定したことを特徴とする表面欠陥の検出方法。 7. The CCD line camera according to claim 4 , wherein an incident optical axis surface including a plurality of incident optical axes of the CCD line camera coincides with a plane including a center line in the width direction of the inspection region. A method for detecting surface defects, characterized in that 検査対象物を、その少なくとも一部の表面が、厚さ方向定位置で検査位置を通過又は検査位置に静止するように支持する支持装置と、前記検査位置における前記表面に検査領域が設定され、且つ、カメラ光軸が、前記表面での法線に対して、傾斜角βが、0<β≦10°となるように傾けて配置され、入射光強度に比例する強度の受光信号を出力するカメラと、前記検査領域を含む照射領域に光を照射するとともに、この照射領域中であって、前記検査領域の外側に隣接する位置に、前記光の出射口の鏡像が位置する光源像領域を形成し、且つ、この光の出射口の中心と前記検査領域の中心とを通る直線が、前記カメラ光軸の、前記法線に対するカメラ対称光軸となす傾斜角αが0°<α<25°に設定された検査光照射装置と、前記カメラからの前記受光信号の強度が前記検査領域における無欠陥部分からの入射光による受光信号の強度よりも一定値以上大きいとき欠陥検出信号を出力する判定装置と、を有してなり、前記カメラは、前記検査領域から見て前記光源像領域の中心に向かう方向における該光源像領域の全長をWとしたとき、前記光源像領域の前記方向の中心位置から前記検査領域までの距離Dが、W/2<D≦3W/2となるように設定されたことを特徴とする表面欠陥検出装置。 A support device that supports the inspection object so that at least a part of the surface thereof passes through the inspection position at a fixed position in the thickness direction or stops at the inspection position, and an inspection region is set on the surface at the inspection position; In addition, the camera optical axis is arranged to be inclined with respect to the normal on the surface so that the inclination angle β is 0 <β ≦ 10 °, and a light reception signal having an intensity proportional to the incident light intensity is output. A light source image region in which a mirror image of the light emission port is located at a position adjacent to the outside of the inspection region in the irradiation region, while irradiating light to the camera and the irradiation region including the inspection region. The inclination angle α formed by the straight line passing through the center of the light exit port and the center of the inspection region and the camera symmetric optical axis with respect to the normal line of the camera optical axis is 0 ° <α <25. From the inspection light irradiation device set to ° and the camera A determination unit intensity of the received light signal to output a defect detection signal is greater than a predetermined value than the intensity of the received signal due to incident light from the defect-free portion in the examination region, Ri na have the camera, When the total length of the light source image area in the direction from the inspection area toward the center of the light source image area is W, a distance D from the center position of the light source image area in the direction to the inspection area is W / 2 <surface defect detection apparatus you characterized in that it is set to be D ≦ 3W / 2. 請求項において、前記検査光照射装置における前記傾斜角αを、0<α<5°としたことを特徴とする表面欠陥検出装置。 In claim 8, the inclination angle alpha in said inspection light irradiation device, 0 <α <5 ° and surface defect detecting apparatus, characterized in that the. 請求項において、前記検査光照射装置における前記傾斜角αを、5°≦α<10°、10°≦α<15°、又は、15°≦α<25°のいずれかに設定したことを特徴とする表面欠陥検出装置。 The inclination angle α in the inspection light irradiation apparatus according to claim 8 is set to any of 5 ° ≦ α <10 °, 10 ° ≦ α <15 °, or 15 ° ≦ α <25 °. surface defect detecting apparatus according to claim. 請求項乃至1のいずれかにおいて、前記検査光照射装置は、前記光源像領域が直線帯形状となると共に、前記光の照射光軸が、前記光源像領域の幅方向中心線と平行な平面内にあるように設定され、且つ、前記カメラは、前記検査領域が、前記直線帯形状の光源像領域と平行な直線帯形状になると共に、前記カメラ光軸が、前記法線に対して、前記光の出射口を通る前記設定直線と反対側に傾斜角βで傾斜され、前記直線帯形状の検査領域における幅方向中心線を含む平面内にあるように設定されたことを特徴とする表面欠陥検出装置。 In any one of claims 8 to 1 0, wherein the inspection light irradiation device, the with the light source image area is the linear band shape, the irradiation optical axis of the light, and parallel to the width direction center line of the light source image area The camera is set to be in a plane, and the camera has a linear band shape parallel to the linear band-shaped light source image area, and the camera optical axis is set to the normal line. The light beam is inclined at an inclination angle β on the opposite side of the set straight line passing through the light exit and is set to be within a plane including a center line in the width direction in the inspection region of the straight belt shape. Surface defect detection device. 請求項1において、前記検査光照射装置は、前記光源像領域及び検査領域それぞれの幅方向中心線と平行、且つ、検査対象物表面と垂直な第1の仮想平面に対して、この第1の仮想平面及び前記検査対象物表面に垂直な第2の仮想平面内で、前記光の出射口を通る前記設定直線が傾斜角αに傾けて設けられ、且つ、前記カメラは、前記カメラ光軸を、前記設定直線とは反対側に傾斜角βに傾けて設けられたことを特徴とする表面欠陥検出装置。 According to claim 1 1, wherein the inspection light irradiation device, the light source image region and the inspection region parallel to the respective width-direction center line, and, with respect to the inspection object surface perpendicular to the first virtual plane, the first In the second virtual plane perpendicular to the surface of the object to be inspected and the set straight line passing through the light exit opening is inclined at an inclination angle α, and the camera has the optical axis of the camera Is provided at an inclination angle β on the opposite side to the set straight line. 請求項1又は1において、前記検査対象物が帯状材であり、前記支持装置は、該帯状材を長手方向に走行させる構成とされ、前記検査光照射装置及び前記カメラは、前記光源像領域及び検査領域が、該帯状材を幅方向に横断する直線帯形状となるように設定されたことを特徴とする表面欠陥検出装置。 According to claim 1 1 or 1 2, wherein a test object is strip material, wherein the support device is configured to run the belt-shaped member in the longitudinal direction, the inspection light irradiation device and the camera, the light source image The surface defect detection apparatus, wherein the region and the inspection region are set to have a straight strip shape that crosses the strip in the width direction. 請求項11乃至13のいずれかにおいて、前記カメラはCCDラインカメラであり、このCCDラインカメラの複数の入射光軸を含む入射光軸面が、前記検査領域の幅方向中心線を含む平面と一致して設定されたことを特徴とする表面欠陥検出装置。 14. The camera according to claim 11, wherein the camera is a CCD line camera, and an incident optical axis plane including a plurality of incident optical axes of the CCD line camera is a plane including a center line in the width direction of the inspection region. A surface defect detection device characterized by being set to coincide.
JP2003397708A 2002-11-27 2003-11-27 Method and apparatus for detecting surface defects Expired - Fee Related JP4543665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397708A JP4543665B2 (en) 2002-11-27 2003-11-27 Method and apparatus for detecting surface defects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002344361 2002-11-27
JP2003397708A JP4543665B2 (en) 2002-11-27 2003-11-27 Method and apparatus for detecting surface defects

Publications (2)

Publication Number Publication Date
JP2004191370A JP2004191370A (en) 2004-07-08
JP4543665B2 true JP4543665B2 (en) 2010-09-15

Family

ID=32774827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397708A Expired - Fee Related JP4543665B2 (en) 2002-11-27 2003-11-27 Method and apparatus for detecting surface defects

Country Status (1)

Country Link
JP (1) JP4543665B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101926A (en) * 2006-10-17 2008-05-01 Toppan Printing Co Ltd Inspection method and inspection device for substrate having metal pattern
JP5732605B2 (en) * 2008-05-27 2015-06-10 パナソニックIpマネジメント株式会社 Appearance inspection device
CN106680207A (en) * 2017-03-17 2017-05-17 苏州富鑫林光电科技有限公司 Detection mechanism with side light source configured for annular light source and backlight source for AOI (Automated Optical Inspection) visual inspection
JP6737473B2 (en) * 2018-03-29 2020-08-12 Necプラットフォームズ株式会社 Magnetic tape device and magnetic tape inspection method
CN113390886A (en) * 2020-03-11 2021-09-14 上海宝信软件股份有限公司 Imaging device for detecting surface defects of grinded strip steel and using method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201309A (en) * 1995-01-31 1996-08-09 Sony Chem Corp Magnetic tape inspection method and magnetic tape inspection device
JPH1062354A (en) * 1996-08-20 1998-03-06 Nachi Fujikoshi Corp Device and method of inspecting transparent plate for defect
JP2000310600A (en) * 1999-04-28 2000-11-07 Yokohama Rubber Co Ltd:The Method and apparatus for detecting foreign matter of sheet material
JP2001091469A (en) * 1999-09-21 2001-04-06 Olympus Optical Co Ltd Surface defect inspection device
JP2001208702A (en) * 2000-01-31 2001-08-03 Nippon Sheet Glass Co Ltd Method and apparatus for inspecting defects
JP2002148199A (en) * 2000-11-08 2002-05-22 Tdk Corp Inspection method and apparatus for magnetic recording medium
JP2002310917A (en) * 2001-04-13 2002-10-23 Mitsubishi Chemicals Corp Defect detecting method and device thereof
JP2004301752A (en) * 2003-03-31 2004-10-28 Tdk Corp Method and apparatus for detecting surface defect

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201309A (en) * 1995-01-31 1996-08-09 Sony Chem Corp Magnetic tape inspection method and magnetic tape inspection device
JPH1062354A (en) * 1996-08-20 1998-03-06 Nachi Fujikoshi Corp Device and method of inspecting transparent plate for defect
JP2000310600A (en) * 1999-04-28 2000-11-07 Yokohama Rubber Co Ltd:The Method and apparatus for detecting foreign matter of sheet material
JP2001091469A (en) * 1999-09-21 2001-04-06 Olympus Optical Co Ltd Surface defect inspection device
JP2001208702A (en) * 2000-01-31 2001-08-03 Nippon Sheet Glass Co Ltd Method and apparatus for inspecting defects
JP2002148199A (en) * 2000-11-08 2002-05-22 Tdk Corp Inspection method and apparatus for magnetic recording medium
JP2002310917A (en) * 2001-04-13 2002-10-23 Mitsubishi Chemicals Corp Defect detecting method and device thereof
JP2004301752A (en) * 2003-03-31 2004-10-28 Tdk Corp Method and apparatus for detecting surface defect

Also Published As

Publication number Publication date
JP2004191370A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
US5389794A (en) Surface pit and mound detection and discrimination system and method
US5790247A (en) Technique for determining defect positions in three dimensions in a transparent structure
JP4943237B2 (en) 疵 inspection device and 疵 inspection method
WO1997013140A9 (en) Technique for determining defect positions in three dimensions in a transparent structure
JPH01143945A (en) Detecting method for defect in tape
JP4543665B2 (en) Method and apparatus for detecting surface defects
US6078385A (en) Method of inspecting magnetic disc and apparatus therefor and process for producing the magnetic disc
JPH09257720A (en) Flaw inspecting method and apparatus therefor
JP2002168793A (en) Surface defect inspection device and surface defect inspection method
US20100246356A1 (en) Disk surface defect inspection method and apparatus
JPH06241758A (en) Flaw inspection device
JPH09258197A (en) Method for discriminating front and rear defects of glass substrate
JP2004301752A (en) Method and apparatus for detecting surface defect
US7688435B2 (en) Detecting and classifying surface features or defects by controlling the angle of the illumination plane of incidence with respect to the feature or defect
JP3745218B2 (en) Inspection method and apparatus for magnetic recording medium
JP3108428B2 (en) Defect detection device for transparent circular work
JPS61254809A (en) Inferior shape detector
JPH10253547A (en) Visual inspection system for board
JPH10253543A (en) Instrument and method for visual examination of substrate
JPH06148088A (en) Method for detecting defect of hard disk
JP2006258662A (en) Surface inspection method
JPH10143801A (en) Optical test method of magnetic disk
JPS60228943A (en) Inspection of surface state of stainless steel plate
JP3964166B2 (en) Surface defect inspection equipment
JPH03115844A (en) Detection of surface defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees