JP4543173B2 - Catalyst for alkylation reaction and method for producing alkyl-substituted aromatic compound - Google Patents

Catalyst for alkylation reaction and method for producing alkyl-substituted aromatic compound Download PDF

Info

Publication number
JP4543173B2
JP4543173B2 JP2005075976A JP2005075976A JP4543173B2 JP 4543173 B2 JP4543173 B2 JP 4543173B2 JP 2005075976 A JP2005075976 A JP 2005075976A JP 2005075976 A JP2005075976 A JP 2005075976A JP 4543173 B2 JP4543173 B2 JP 4543173B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
aromatic compound
substituted aromatic
alkylation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005075976A
Other languages
Japanese (ja)
Other versions
JP2006255575A (en
Inventor
克彦 山下
美穂 平野
和 奥村
幹 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University
Original Assignee
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University filed Critical Tottori University
Priority to JP2005075976A priority Critical patent/JP4543173B2/en
Publication of JP2006255575A publication Critical patent/JP2006255575A/en
Application granted granted Critical
Publication of JP4543173B2 publication Critical patent/JP4543173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、アルキル化反応用触媒およびこの触媒を用いたアルキル置換芳香族化合物の製造方法に関する。   The present invention relates to an alkylation reaction catalyst and a method for producing an alkyl-substituted aromatic compound using the catalyst.

アルキル置換芳香族は、下記化1に示す構造式を有する化合物の総称で、有用な化学材料の1つである。   Alkyl-substituted aromatic is a general term for compounds having the structural formula shown in Chemical Formula 1 below, and is one of useful chemical materials.

Figure 0004543173
Figure 0004543173

ただし、式中のR1〜R5は水素、アルキル基、アルコキシ基、フェニル基、R6〜R8は水素、アルキル基、フェニル基を示す。 However, R < 1 > -R < 5 > in a formula shows hydrogen, an alkyl group, an alkoxy group, a phenyl group, and R < 6 > -R < 8 > shows hydrogen, an alkyl group, and a phenyl group.

前記構造式のアルキル置換芳香族は、従来、例えば下記化2に示すように芳香族化合物とアルコールとを反応させてアルキル化する方法により製造されている。   The alkyl-substituted aromatic having the above structural formula is conventionally produced by a method of alkylating by reacting an aromatic compound and an alcohol as shown in the following chemical formula 2, for example.

Figure 0004543173
Figure 0004543173

ただし、式中のR1〜R8は前記化1に示す構造式と同じである。 However, R < 1 > -R < 8 > in a formula is the same as the structural formula shown to the said Chemical formula 1.

前記アルキル化反応は、一般的に無触媒条件では反応速度が遅いため、アルキル化反応用触媒が必要とされる。硫酸などブレンステッド酸は、高い触媒活性を持つことが知られており、一部では硫酸など酸性液体を触媒とするアルキル置換芳香族の製造方法が工業的に実施されている。   Since the alkylation reaction generally has a slow reaction rate under non-catalytic conditions, an alkylation reaction catalyst is required. Bronsted acids such as sulfuric acid are known to have high catalytic activity, and some methods for producing alkyl-substituted aromatics using an acidic liquid such as sulfuric acid as a catalyst have been industrially implemented.

しかしながら、前記硫酸触媒は活性が必ずしも充分でない上、反応後の生成物混合溶液からの酸性液体の分離が困難である。このため塩基水溶液を添加して中和の後に有機物を抽出し、廃塩水溶液生成し、かつ反応を繰り返す毎に新しい酸性液体や塩基水溶液を必要とする。これらは廃塩水溶液の処理や新しい酸性液体および塩基水溶液の購入・製造のための高コスト化を招く。また、資源・エネルギーの無駄な利用や、廃塩水溶液が処理後であっても環境に負荷を与えるため、環境に対して大きな損失を与える。このため、より高活性で、反応系からの分離が容易で繰り返しの使用が可能な触媒が要望されている。   However, the sulfuric acid catalyst does not necessarily have sufficient activity, and it is difficult to separate the acidic liquid from the product mixture solution after the reaction. For this reason, a basic aqueous solution is added to extract the organic matter after neutralization, a waste salt aqueous solution is formed, and a new acidic liquid or basic aqueous solution is required each time the reaction is repeated. These lead to high costs for the treatment of waste salt aqueous solutions and the purchase and production of new acidic liquids and base aqueous solutions. In addition, wasteful use of resources and energy, and even when the waste salt aqueous solution is treated, give a load to the environment, which causes a large loss to the environment. Therefore, there is a demand for a catalyst that has higher activity, can be easily separated from the reaction system, and can be used repeatedly.

このようなことから、硫酸処理モンモリロナイト触媒、ゼオライトベータ触媒、酸化ニオブ触媒のような固体触媒をアルキル置換芳香族の製造に用いることが知られている。非特許文献1には、前記硫酸処理モンモリロナイト触媒をt-ブチルアルコールとレソルシノールの反応によるアルキル置換芳香族の製造に用いることが開示されている。非特許文献2には、前記酸化ニオブ触媒をアニソールのベンジル化反応によるアルキル置換芳香族の製造に用いることが開示されている。   For these reasons, it is known to use solid catalysts such as sulfuric acid-treated montmorillonite catalysts, zeolite beta catalysts, and niobium oxide catalysts for the production of alkyl-substituted aromatics. Non-Patent Document 1 discloses that the sulfuric acid-treated montmorillonite catalyst is used for producing an alkyl-substituted aromatic by a reaction between t-butyl alcohol and resorcinol. Non-Patent Document 2 discloses that the niobium oxide catalyst is used for the production of an alkyl-substituted aromatic by the benzylation reaction of anisole.

しかしながら、前記各固体触媒においても活性が充分でなく、より高い活性を持ち、生成物混合溶液からの分離が容易で繰り返し使用が可能な固体触媒の開発が望まれている。
Applied Catalysis, A: General, Vol. 213, 273(2001) Catalysis Today, Vol. 28, 17(1996)
However, there is a demand for development of a solid catalyst that is not sufficiently active in each of the solid catalysts, has a higher activity, can be easily separated from the product mixed solution, and can be used repeatedly.
Applied Catalysis, A: General, Vol. 213, 273 (2001) Catalysis Today, Vol. 28, 17 (1996)

本発明者らは、芳香族化合物をアルコールでアルキル化してアルキル置換芳香族化合物を高収率で得られる触媒について種々研究した結果、タングステン酸アンモニウム、シュウ酸ニオブを水に溶解させ、水を蒸発除去し、焼成して得たNb1−a5/2a+3(1−a)(0.15<a<0.55)の組成を有するW−Nb複合酸化物(固体触媒)が比較的高い活性を示すことを見出し、第94回触媒討論会(予稿集発行日:平成16年9月27日)に“Nb2O5−WO3触媒によるアニソールのベンジル化反応”の題名で発表した。 As a result of various studies on a catalyst capable of obtaining an alkyl-substituted aromatic compound in a high yield by alkylating an aromatic compound with an alcohol, the present inventors dissolved ammonium tungstate and niobium oxalate in water and evaporated the water. Compared with W-Nb composite oxide (solid catalyst) having a composition of Nb a W 1-a O 5 / 2a + 3 (1-a) (0.15 <a <0.55) obtained by removing and firing And presented at the 94th Catalysis Conference (Preliminary Publication Date: September 27, 2004) under the title of “Anisole Benzylation with Nb 2 O 5 —WO 3 Catalyst” .

本発明者らは、より高い活性を示す触媒を得るために前記W−Nb複合酸化物をベースにしてさらに研究を重ねた結果、W−Nb複合酸化物にリンを添加して一般式(Nb25x(WO31-x(P25y、ただし式中のx、yは0.05≦x≦0.7、0.08≦y≦0.29を示す、にて表される複合酸化物を含む固体触媒がアルキル置換芳香族を製造する反応系においてW−Nb複合酸化物は元より、従来知られている硫酸処理モンモリロナイト、ゼオライトベータおよびジルコニア担持酸化タングステンに比べて極めて高い活性を示すことを見出し、本発明を完成した。 As a result of further research on the basis of the W-Nb composite oxide in order to obtain a catalyst exhibiting higher activity, the present inventors have added phosphorus to the W-Nb composite oxide and have the general formula (Nb 2 O 5 ) x (WO 3 ) 1-x (P 2 O 5 ) y , where x and y are 0.05 ≦ x ≦ 0.7 and 0.08 ≦ y ≦ 0.29, In the reaction system in which the solid catalyst containing the composite oxide represented by formula (1) produces an alkyl-substituted aromatic, the W-Nb composite oxide is originally converted into sulfuric acid-treated montmorillonite, zeolite beta and zirconia-supported tungsten oxide. As a result, the present invention was completed.

本発明によると、一般式(Nb25x(WO31-x(P25y、ただし式中のx、yは0.05≦x≦0.7、0.08≦y≦0.29を示す、にて表される複合酸化物を含むことを特徴とするアルキル化反応用触媒が提供される。 According to the present invention, the general formula (Nb 2 O 5 ) x (WO 3 ) 1-x (P 2 O 5 ) y , where x and y are 0.05 ≦ x ≦ 0.7, 0.08 There is provided a catalyst for alkylation reaction comprising a composite oxide represented by ≦ y ≦ 0.29.

また本発明によると、一般式(Nb25x(WO31-x(P25y、ただし式中のx、yは0.05≦x≦0.7、0.08≦y≦0.29を示す、にて表される複合酸化物を含むアルキル化反応用触媒の存在下にて芳香族化合物とアルコールを反応させてアルキル化することを特徴とするアルキル置換芳香族化合物の製造方法が提供される。 According to the present invention, the general formula (Nb 2 O 5 ) x (WO 3 ) 1-x (P 2 O 5 ) y , where x and y are 0.05 ≦ x ≦ 0.7, 0. An alkyl-substituted fragrance characterized by reacting an aromatic compound with an alcohol in the presence of an alkylation reaction catalyst containing a composite oxide represented by the following formula: 08 ≦ y ≦ 0.29 A method for producing a Group compound is provided.

本発明によれば、アルキル置換芳香族を製造する反応系において高い活性を有し、反応後の生成物混合溶液から濾過のような方法で分離でき、繰り返し使用が可能なアルキル化反応用触媒を提供できる。   According to the present invention, there is provided an alkylation reaction catalyst which has high activity in a reaction system for producing an alkyl-substituted aromatic, can be separated from a product mixture solution after the reaction by a method such as filtration, and can be used repeatedly. Can be provided.

また、本発明によれば前記アルキル化反応用触媒の存在下にて芳香族化合物とアルコールを充分な反応速度させることができ、アルキル置換芳香族を高転化率、高収率で製造することが可能なアルキル置換芳香族の製造方法を提供できる。   Further, according to the present invention, an aromatic compound and an alcohol can be sufficiently reacted in the presence of the alkylation reaction catalyst, and an alkyl-substituted aromatic can be produced with a high conversion rate and a high yield. A method for producing a possible alkyl-substituted aromatic can be provided.

以下、本発明に係るアルキル化反応用触媒およびアルキル置換芳香族化合物の製造方法を詳細に説明する。   Hereinafter, the alkylation reaction catalyst and the method for producing an alkyl-substituted aromatic compound according to the present invention will be described in detail.

この実施形態に係るアルキル化反応用触媒は、一般式(Nb25x(WO31-x(P25yにて表される複合酸化物を含む。ただし、式中のx、yは0.05≦x≦0.7、0.08≦y≦0.29を示す。 The alkylation reaction catalyst according to this embodiment includes a composite oxide represented by the general formula (Nb 2 O 5 ) x (WO 3 ) 1-x (P 2 O 5 ) y . However, x and y in a formula show 0.05 <= x <= 0.7 and 0.08 <= y <= 0.29.

前記一般式の複合酸化物において、xの値が0.05未満、0.7を超えてもアルキル化反応時に高い活性を示す触媒を得ることが困難になる。より好ましいxの値は、0.08≦x≦0.4である。   In the composite oxide of the above general formula, it becomes difficult to obtain a catalyst exhibiting high activity during the alkylation reaction even if the value of x is less than 0.05 or more than 0.7. A more preferable value of x is 0.08 ≦ x ≦ 0.4.

前記一般式の複合酸化物において、yの値が0.08未満、0.29を超えてもアルキル化反応時に高い活性を示す触媒を得ることが困難になる。より好ましいyの値は、0.1≦y≦0.2である。   In the composite oxide of the above general formula, it becomes difficult to obtain a catalyst exhibiting high activity during the alkylation reaction even if the value of y is less than 0.08 or more than 0.29. A more preferable value of y is 0.1 ≦ y ≦ 0.2.

実施形態に係る触媒は、粉末状、粒状、顆粒状、ペレット状等の固体状態である。   The catalyst according to the embodiment is in a solid state such as powder, granule, granule, or pellet.

このようなアルキル化反応用触媒に含まれる一般式で表される複合酸化物は、例えば次のような方法により製造される。   The composite oxide represented by the general formula contained in such an alkylation reaction catalyst is produced, for example, by the following method.

まず、酸化ニオブおよびシュウ酸を水に添加し、例えば40〜90℃に加熱して溶解させてシュウ酸ニオブ水溶液を調製する。また、タングステン酸アンモニウム水和物を水に添加し、例えば60〜90℃に加熱して溶解させてタングステン酸アンモニウム水溶液を調製する。つづいて、前記シュウ酸ニオブ水溶液およびタングステン酸アンモニウム水溶液を前記一般式の複合酸化物のxが前記値になる割合で混合する。この混合液に前記一般式の複合酸化物のyが前記値になる濃度のリン酸水溶液を添加する。ひきつづき、この混合液を撹拌しながら例えば80〜110℃に加熱して水を蒸発させて粉体を得る。次いで、この粉体を空気中にて100℃でさらに乾燥した後、空気中で500℃前後で焼成することにより一般式(Nb25x(WO31-x(P25y(ただし、式中のx、yは0.05≦x≦0.7、0.08≦y≦0.29を示す)にて表される複合酸化物を製造する。 First, niobium oxide and oxalic acid are added to water, for example, heated to 40 to 90 ° C. and dissolved to prepare a niobium oxalate aqueous solution. Moreover, ammonium tungstate hydrate is added to water, for example, heated to 60 to 90 ° C. and dissolved to prepare an aqueous solution of ammonium tungstate. Subsequently, the niobium oxalate aqueous solution and the ammonium tungstate aqueous solution are mixed in such a ratio that x of the composite oxide of the general formula becomes the above value. A phosphoric acid aqueous solution having a concentration at which y of the composite oxide of the general formula is the above value is added to the mixed solution. Subsequently, this mixed liquid is heated to, for example, 80 to 110 ° C. while stirring to evaporate water to obtain a powder. Next, the powder is further dried at 100 ° C. in the air, and then fired at about 500 ° C. in the air to obtain the general formula (Nb 2 O 5 ) x (WO 3 ) 1-x (P 2 O 5 ) Y (wherein x and y in the formula represent 0.05 ≦ x ≦ 0.7 and 0.08 ≦ y ≦ 0.29).

次に、前述したアルキル化反応用触媒を用いたアルキル置換芳香族化合物の製造方法を説明する。   Next, a method for producing an alkyl-substituted aromatic compound using the aforementioned alkylation reaction catalyst will be described.

まず、芳香族化合物とアルコールをいずれも液体状で反応容器に収容する。前記一般式にて表される複合酸化物を含む固体状態のアルキル化反応用触媒を前記反応容器内に入れ、目的とする反応温度で撹拌して芳香族化合物とアルコールを反応させ、芳香族化合物をアルキル化することによってアルキル置換芳香族化合物を製造する。   First, the aromatic compound and the alcohol are both stored in a liquid state in a reaction vessel. A solid-state alkylation reaction catalyst containing the composite oxide represented by the above general formula is placed in the reaction vessel and stirred at a target reaction temperature to react the aromatic compound with the alcohol, and the aromatic compound. Is alkylated to produce an alkyl-substituted aromatic compound.

前記芳香族化合物としては、例えばベンゼン、トルエン、キシレン、エチルベンゼン、アニソール等を挙げることができる。   Examples of the aromatic compound include benzene, toluene, xylene, ethylbenzene, anisole and the like.

前記アルコールとしては、例えばメチルアルコール、エチルアルコール、プロピレンアルコール、ベンジルアルコール等を挙げることができる。   Examples of the alcohol include methyl alcohol, ethyl alcohol, propylene alcohol, benzyl alcohol and the like.

前記アルキル化反応用触媒の量は、反応に用いる芳香族化合物とアルコールの種類にもよるが概ね0.1〜5重量%にすることが好ましい。   The amount of the alkylation catalyst is preferably about 0.1 to 5% by weight, although it depends on the type of aromatic compound and alcohol used in the reaction.

前記アルキル化反応用触媒は、液状の芳香族化合物とアルコールが収容された反応容器に添加するに先立って窒素ガスのような不活性ガスの流通下、150〜500℃で加熱して乾燥状態を維持させることが好ましい。乾燥時の温度を150℃未満にすると、触媒に付着する水分を十分に蒸発させることが困難になる。一方、乾燥時の温度が500℃を超えると、触媒の性状が変化する虞がある。   The catalyst for the alkylation reaction is heated at 150 to 500 ° C. under a flow of an inert gas such as nitrogen gas before being added to a reaction vessel containing a liquid aromatic compound and alcohol, and is dried. It is preferable to maintain. If the temperature at the time of drying is less than 150 ° C., it becomes difficult to sufficiently evaporate the water adhering to the catalyst. On the other hand, if the temperature during drying exceeds 500 ° C., the properties of the catalyst may change.

前記アルキル化反応用触媒は、反応後の生成物混合溶液から濾過または遠心分離のような分離方法により分離し、前記反応に繰り返し使用することを許容する。実施形態のアルキル化反応用触媒は、生成物混合溶液からその活性成分が溶出することなく容易に分離でき、繰り返し使用が可能であるばかりか、その高活性状態を保持することが可能である。   The alkylation reaction catalyst is separated from the product mixture solution after the reaction by a separation method such as filtration or centrifugation, and is allowed to be repeatedly used in the reaction. The alkylation reaction catalyst of the embodiment can be easily separated from the product mixed solution without eluting the active component, and can be used repeatedly and can maintain its high activity state.

以下、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(比較例1)
酸化ニオブ(COMPANHIA BRASILEIRA METALURGIA MINERACA社製商標名:NIOBIUMU OXIDE HYDRATE-HY340)1.271gとシュウ酸(和光純薬製)4.765gを水100mLに入れ、約80℃に加熱して溶解させた。また、タングステン酸アンモニウム5水和物(和光純薬製)1.69gを水100mLに入れ約80℃に加熱して溶解させた。これらの溶液を混合し、ホットプレート上で攪拌しながら加熱し、水を蒸発させて粉体とした。これら粉体を空気中、100℃で1時間乾燥した後、空気中、500℃で3時間焼成することにより(Nb250.37(WO30.63の組成を有するW−Nb複合酸化物からなる固体触媒を得た。
(Comparative Example 1)
1.271 g of niobium oxide (COMPANHIA BRASILEIRA METALURGIA MINERACA brand name: NIOBIUMU OXIDE HYDRATE-HY340) and 4.765 g of oxalic acid (manufactured by Wako Pure Chemical Industries, Ltd.) were placed in 100 mL of water and dissolved by heating to about 80 ° C. Further, 1.69 g of ammonium tungstate pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was placed in 100 mL of water and dissolved by heating to about 80 ° C. These solutions were mixed and heated with stirring on a hot plate to evaporate water to obtain powder. These powders are dried in air at 100 ° C. for 1 hour and then calcined in air at 500 ° C. for 3 hours to obtain a W—Nb composite oxide having a composition of (Nb 2 O 5 ) 0.37 (WO 3 ) 0.63 A solid catalyst consisting of

(実施例1〜6および比較例2〜5)
酸化ニオブ(COMPANHIA BRASILEIRA METALURGIA MINERACA社製商標名:NIOBIUMU OXIDE HYDRATE-HY340)1.271gとシュウ酸(和光純薬製)4.765gを水100mLに入れ、約80℃に加熱して溶解させた。また、タングステン酸アンモニウム5水和物(和光純薬製)1.69gを水100mLに入れ約80℃に加熱して溶解させた。これらの溶液を混合し、異なる濃度のリン酸水溶液(和光純薬製)7.5mLを加え、ホットプレート上で攪拌しながら加熱し、水を蒸発させて粉体とした。これら粉体を空気中、100℃で1時間乾燥した後、空気中、500℃で3時間焼成することにより式I:[(Nb250.37(WO30.63(P25y](y=0.036、0.050,0.052,0.064,0.086,0.103,0.122,0.137,0.171,0.282)の組成を有する10種のW−Nb−P複合酸化物からなる固体触媒を得た。なお、リンの含有量(y)は各複合酸化物の一部をフッ化水素酸に溶解してリガク社製のCIROS−120分析装置を用いてICP(誘導結合プラズマ)発光分析から同定した。
(Examples 1-6 and Comparative Examples 2-5)
1.271 g of niobium oxide (COMPANHIA BRASILEIRA METALURGIA MINERACA brand name: NIOBIUMU OXIDE HYDRATE-HY340) and 4.765 g of oxalic acid (manufactured by Wako Pure Chemical Industries, Ltd.) were placed in 100 mL of water and dissolved by heating to about 80 ° C. Further, 1.69 g of ammonium tungstate pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was placed in 100 mL of water and dissolved by heating to about 80 ° C. These solutions were mixed, 7.5 mL of phosphoric acid aqueous solutions having different concentrations (made by Wako Pure Chemical Industries, Ltd.) were added, and the mixture was heated on a hot plate while stirring to evaporate water to obtain powder. These powders were dried in air at 100 ° C. for 1 hour and then calcined in air at 500 ° C. for 3 hours to obtain the formula I: [(Nb 2 O 5 ) 0.37 (WO 3 ) 0.63 (P 2 O 5 ) y ] (y = 0.036, 0.050, 0.052, 0.064, 0.086, 0.103, 0.122, 0.137, 0.171, 0.282) 10 A solid catalyst composed of a seed W-Nb-P composite oxide was obtained. The phosphorus content (y) was identified by ICP (inductively coupled plasma) emission analysis using a CIROS-120 analyzer manufactured by Rigaku Corporation after dissolving a part of each composite oxide in hydrofluoric acid.

(比較例6)
モンモリロナイト(和光純薬社製商標名:モンモリロナイトK−10)0.25gを30重量%濃度の硫酸水溶液50mL中で80℃にて2時間攪拌した後、濾過した。得られた固体を水200gで2回洗浄、空気中、100℃で10時間乾燥し、さらに空気中、500℃で3時間焼成することにより硫酸処理モンモリロナイトからなる固体触媒を得た。
(Comparative Example 6)
0.25 g of montmorillonite (trade name: Montmorillonite K-10, manufactured by Wako Pure Chemical Industries, Ltd.) was stirred for 2 hours at 80 ° C. in 50 mL of 30 wt% sulfuric acid aqueous solution, and then filtered. The obtained solid was washed twice with 200 g of water, dried in air at 100 ° C. for 10 hours, and further calcined in air at 500 ° C. for 3 hours to obtain a solid catalyst composed of sulfuric acid-treated montmorillonite.

得られた実施例1〜6および比較例1〜6の固体触媒0.1gを窒素ガス(岩谷産業社製)の流通下にて400℃で1時間加熱し、乾燥状態を保ったままアニソール10.0gおよびベンジルアルコール0.675gが収容されたフラスコに移し、これらの混合液を60℃で3時間攪拌し、反応させた。反応後の生成物混合溶液の組成をガスクロマトグラフィーで分析した。分析にあたっては、反応後の生成物混合溶液に内部標準物質であるn−トリデカン(関東化学社製)1.0gを加え、その0.001mLをキャピラリーカラム(SUPELCO製商標名:MDN−12)を備えたガスクロマトグラフ(島津製作所製商標名:GC−2010)に注入して内部標準法によって各成分を定量した。   0.1 g of the obtained solid catalysts of Examples 1 to 6 and Comparative Examples 1 to 6 were heated at 400 ° C. for 1 hour under the flow of nitrogen gas (manufactured by Iwatani Corp.), and anisole 10 was kept dry. The flask was transferred to a flask containing 0.0 g and 0.675 g of benzyl alcohol, and the mixture was stirred at 60 ° C. for 3 hours to be reacted. The composition of the product mixed solution after the reaction was analyzed by gas chromatography. In the analysis, 1.0 g of n-tridecane (manufactured by Kanto Chemical Co., Inc.) as an internal standard substance was added to the product mixture solution after the reaction, and 0.001 mL thereof was equipped with a capillary column (trade name: MDN-12 manufactured by SUPELCO). Were injected into a gas chromatograph (trade name: GC-2010, manufactured by Shimadzu Corporation), and each component was quantified by an internal standard method.

定量結果から、各触媒におけるベンジルアルコールの転化率を求めた。また、目的生成物であるベンジルアニソール(o−ベンジルアニソール、m−ベンジルアニソール、p−ベンジルアニソールの合計)の収率を下記式から求めた。   From the quantitative results, the conversion rate of benzyl alcohol in each catalyst was determined. Moreover, the yield of the target product, benzylanisole (total of o-benzylanisole, m-benzylanisole, and p-benzylanisole) was determined from the following formula.

収率(%)=[ベンジルアニソール収量(mol)/ベンジルアルコール仕込量(mol)]×100
これらの結果を下記表1に示す。また、下記表1の結果を前記式Iのyに対するベンジルアルコールの転化率およびベンジルアニソールの収率の関係として図1に示す。
Yield (%) = [Benzylanisole yield (mol) / Benzyl alcohol charge (mol)] × 100
These results are shown in Table 1 below. The results in Table 1 below are shown in FIG. 1 as the relationship between the conversion rate of benzyl alcohol and the yield of benzylanisole with respect to y in the formula I.

Figure 0004543173
Figure 0004543173

前記表1および図1から明らかなように比較例2〜5および実施例1〜6のリンを添加したW−Nb−P複合酸化物からなる固体触媒は、比較例1のリンを添加しないW−Nb複合酸化物からなる固体触媒に比べてアルキル化反応において高い活性を示すことがわかる。特に、実施例1〜6の前記式Iのyが0.08≦y≦0.29であるW−Nb−P複合酸化物からなる固体触媒は、比較例2〜5のyが前記範囲を外れるW−Nb−P複合酸化物からなる固体触媒のみならず、比較例6の硫酸処理モンモリロナイトからなる固体触媒に比べても転化率、収率が高く、極めて高い活性を示すことがわかる。   As is apparent from Table 1 and FIG. 1, the solid catalyst composed of the W—Nb—P composite oxide to which phosphorus of Comparative Examples 2 to 5 and Examples 1 to 6 was added was not added with the phosphorus of Comparative Example 1. It can be seen that the activity is higher in the alkylation reaction than the solid catalyst made of -Nb composite oxide. In particular, in the solid catalysts composed of W—Nb—P composite oxide in which y in Formula I in Examples 1 to 6 is 0.08 ≦ y ≦ 0.29, y in Comparative Examples 2 to 5 falls within the above range. It can be seen that not only the solid catalyst composed of the W—Nb—P composite oxide that deviates but also the solid catalyst composed of the sulfuric acid-treated montmorillonite of Comparative Example 6 has a high conversion rate and yield and exhibits extremely high activity.

(比較例9)
ゼオライトベータ(PQ社製商標名:VALFOR CP811BL-25)を固体触媒とした。
(Comparative Example 9)
Zeolite beta (trade name: VALFOR CP811BL-25 manufactured by PQ) was used as the solid catalyst.

(比較例10)
タングステン酸アンモニウム5水和物(和光純薬製)1.69gを水100mLに入れ約80℃に加熱して溶解させた。この溶液に濃度0.25モル/Lのリン酸水溶液(和光純薬製)7.5mLを加え、ホットプレート上で攪拌しながら加熱し、水を蒸発させて粉体とした。この粉体を空気中、100℃で1時間乾燥した後、空気中、500℃で3時間焼成することにより(WO31(P250.122の組成を有するW−P複合酸化物からなる固体触媒を得た。
(Comparative Example 10)
1.69 g of ammonium tungstate pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was placed in 100 mL of water and dissolved by heating to about 80 ° C. 7.5 mL of a phosphoric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 0.25 mol / L was added to this solution, and the mixture was heated on a hot plate with stirring to evaporate water to obtain a powder. The powder is dried in air at 100 ° C. for 1 hour, and then calcined in air at 500 ° C. for 3 hours, whereby a WP composite oxide having a composition of (WO 3 ) 1 (P 2 O 5 ) 0.122 A solid catalyst consisting of

(比較例11)
酸化ニオブ(COMPANHIA BRASILEIRA METALURGIA MINERACA社製商標名:NIOBIUMU OXIDE HYDRATE-HY340)1.271gとシュウ酸(和光純薬製)4.765gを水100mLに入れ、約80℃に加熱して溶解させた。この溶液に濃度0.25モル/Lのリン酸水溶液(和光純薬製)7.5mLを加え、ホットプレート上で攪拌しながら加熱し、水を蒸発させて粉体とした。この粉体を空気中、100℃で1時間乾燥した後、空気中、500℃で3時間焼成することにより(Nb251(P250.122の組成を有するNb−P複合酸化物からなる固体触媒を得た。
(Comparative Example 11)
1.271 g of niobium oxide (COMPANHIA BRASILEIRA METALURGIA MINERACA brand name: NIOBIUMU OXIDE HYDRATE-HY340) and 4.765 g of oxalic acid (manufactured by Wako Pure Chemical Industries, Ltd.) were placed in 100 mL of water and dissolved by heating to about 80 ° C. 7.5 mL of a phosphoric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 0.25 mol / L was added to this solution, and the mixture was heated on a hot plate with stirring to evaporate water to obtain a powder. This powder is dried in air at 100 ° C. for 1 hour, and then calcined in air at 500 ° C. for 3 hours, whereby an Nb—P composite having a composition of (Nb 2 O 5 ) 1 (P 2 O 5 ) 0.122 A solid catalyst comprising an oxide was obtained.

実施例7(前述した実施例3と同組成:[(Nb250.37(WO30.63(P250.122])、比較例7(前述した比較例6の硫酸処理モンモリロナイト)、比較例8(前述した比較例1と同組成:[(Nb250.37(WO30.63])、比較例9〜11の固体触媒0.1gを窒素ガス(岩谷産業社製)の流通下で400℃で1時間加熱し、乾燥状態を保ったままアニソール10.0gおよびベンジルアルコール0.675gが収容されたフラスコに移し、これらの混合液を50℃、60℃、70℃および80℃で3時間攪拌し、反応させた。反応後の生成物混合溶液の組成を前述したガスクロマトグラフィーで分析し、各反応温度でのベンジルアルコールの転化率およびベンジルアニソールの収率を求めた。その結果を、下記表2に示す。また、実施例7および比較例7の固体触媒による反応温度とベンジルアニソールの収率の関係を図2に示す。 Example 7 (same composition as Example 3 described above: [(Nb 2 O 5 ) 0.37 (WO 3 ) 0.63 (P 2 O 5 ) 0.122 ]), Comparative Example 7 (Sulfuric acid-treated montmorillonite of Comparative Example 6 described above) , Comparative Example 8 (same composition as Comparative Example 1 described above: [(Nb 2 O 5 ) 0.37 (WO 3 ) 0.63 ]), 0.1 g of the solid catalysts of Comparative Examples 9 to 11 were replaced with nitrogen gas (manufactured by Iwatani Corporation). The mixture was heated at 400 ° C. for 1 hour under the flow of No. 1 and transferred to a flask containing 10.0 g of anisole and 0.675 g of benzyl alcohol while maintaining the dry state, and the mixture was mixed at 50 ° C., 60 ° C., 70 ° C. and The mixture was stirred at 80 ° C. for 3 hours to be reacted. The composition of the product mixed solution after the reaction was analyzed by the gas chromatography described above, and the conversion rate of benzyl alcohol and the yield of benzylanisole at each reaction temperature were determined. The results are shown in Table 2 below. Moreover, the relationship between the reaction temperature by the solid catalyst of Example 7 and Comparative Example 7 and the yield of benzylanisole is shown in FIG.

Figure 0004543173
Figure 0004543173

前記表2から明らかなように比較例7の硫酸処理モンモリロナイトからなる固体触媒は、反応温度80℃において比較例8のゼオライトベータからなる固体触媒、比較例9のNb−W複合酸化物からなる固体触媒、比較例10のW−P複合酸化物からなる固体触媒および比較例11のNb−P複合酸化物からなる固体触媒に比べて高い活性を示すことがわかる。   As is clear from Table 2, the solid catalyst composed of sulfuric acid-treated montmorillonite of Comparative Example 7 was a solid catalyst composed of zeolite beta of Comparative Example 8 at a reaction temperature of 80 ° C., and a solid catalyst composed of Nb—W composite oxide of Comparative Example 9. It can be seen that the activity is higher than that of the catalyst, the solid catalyst composed of the WP composite oxide of Comparative Example 10 and the solid catalyst composed of the Nb-P composite oxide of Comparative Example 11.

これに対し、前記表2および図2から明らかなように実施例7の(Nb250.37(WO30.63(P250.122の複合酸化物からなる固体触媒では、いずれの反応温度においても活性の高い比較例7の硫酸処理モンモリロナイトからなる固体触媒よりもさらに高い活性を示すことがわかる。特に、実施例7の固体触媒は反応温度80℃において、ベンジルアルコールの殆どをベンジルアニソールに転換できることがわかる。 On the other hand, as is clear from Table 2 and FIG. 2, in the solid catalyst composed of the composite oxide of (Nb 2 O 5 ) 0.37 (WO 3 ) 0.63 (P 2 O 5 ) 0.122 of Example 7, It can be seen that even at the reaction temperature, the activity is higher than that of the solid catalyst comprising the sulfuric acid-treated montmorillonite of Comparative Example 7 having high activity. In particular, it can be seen that the solid catalyst of Example 7 can convert most of benzyl alcohol to benzylanisole at a reaction temperature of 80 ° C.

(実施例8)
(Nb250.37(WO30.63(P250.122の複合酸化物からなる固体触媒0.2gを窒素ガス(岩谷産業社製)の流通下にて400℃で1時間加熱し、乾燥状態を保ったままアニソール20.0gおよびベンジルアルコール1.350gが収容されたフラスコに移し、これらの混合液を60℃および80℃で3時間攪拌し、反応させた。反応後の生成物混合溶液の組成を前述したガスクロマトグラフィーで分析し、各反応温度でのベンジルアルコールの転化率およびベンジルアニソールの収率を求めた。
(Example 8)
(Nb 2 O 5 ) 0.37 (WO 3 ) 0.63 (P 2 O 5 ) 0.2 g of solid catalyst composed of 0.122 is heated at 400 ° C. for 1 hour under the flow of nitrogen gas (Iwatani Corp.). Then, while keeping the dry state, the mixture was transferred to a flask containing 20.0 g of anisole and 1.350 g of benzyl alcohol, and the mixture was stirred at 60 ° C. and 80 ° C. for 3 hours to be reacted. The composition of the product mixed solution after the reaction was analyzed by the gas chromatography described above, and the conversion rate of benzyl alcohol and the yield of benzylanisole at each reaction temperature were determined.

次いで、60℃および80℃で反応後の生成物混合溶液から濾紙(Advantec社製商標名:No. 131)を用いて触媒を常圧濾別し、焼成や洗浄などの処理を行うことなく、アニソールおよびベンジルアルコールの反応(アルキル化反応)に繰り返し(2回)供した。   Next, the catalyst was filtered off from the product mixed solution after the reaction at 60 ° C. and 80 ° C. using a filter paper (trade name: No. 131, manufactured by Advantec) under normal pressure, and without performing treatment such as calcination and washing, The reaction (an alkylation reaction) of anisole and benzyl alcohol was repeated (twice).

すなわち、前記反応後に濾過を行い、濾紙上に残った触媒のうち0.0906gとアニソール9.0gとベンジルアルコール0.602gを混合し、これらの混合溶液を60℃および80℃の温度にて3時間攪拌して反応させた。再び濾過を行い、濾紙上に残った触媒のうち0.0449gとアニソール4.5gとベンジルアルコール0.305gを混合し、これらの混合溶液を60℃および80℃の温度にて3時間攪拌して反応させた。各反応後の生成物混合溶液の組成をそれぞれ同様にガスクロマトグラフィーで分析し、各反応温度でのベンジルアルコールの転化率およびベンジルアニソールの収率を求めた。   That is, filtration was performed after the reaction, and 0.0906 g of the catalyst remaining on the filter paper, 9.0 g of anisole, and 0.602 g of benzyl alcohol were mixed, and these mixed solutions were mixed at a temperature of 60 ° C. and 80 ° C. The reaction was stirred for an hour. Filtration was performed again, and 0.0449 g of the catalyst remaining on the filter paper, 4.5 g of anisole, and 0.305 g of benzyl alcohol were mixed, and these mixed solutions were stirred at 60 ° C. and 80 ° C. for 3 hours. Reacted. The composition of the product mixed solution after each reaction was similarly analyzed by gas chromatography to determine the conversion rate of benzyl alcohol and the yield of benzylanisole at each reaction temperature.

これらの結果を下記表3に示す。   These results are shown in Table 3 below.

Figure 0004543173
Figure 0004543173

前記表3から明らかなように(Nb250.37(WO30.63(P250.122の複合酸化物からなる固体触媒は、反応温度60℃での繰り返し使用においてやや活性の低下を示すものの、3回目でも充分に高い活性を維持できることがわかる。 As is apparent from Table 3, the solid catalyst comprising the composite oxide of (Nb 2 O 5 ) 0.37 (WO 3 ) 0.63 (P 2 O 5 ) 0.122 has a slight decrease in activity when used repeatedly at a reaction temperature of 60 ° C. However, it can be seen that a sufficiently high activity can be maintained even at the third time.

また、前記固体触媒は反応温度80℃の比較的高い温度において、3回目でも100%近いベンジルアニソールの収率を示すことがわかる。   It can also be seen that the solid catalyst exhibits a yield of benzylanisole close to 100% even at the third time at a relatively high temperature of 80 ° C.

一方、60℃、1回目の反応後に濾過した濾液について分析した結果、反応前の約68%に相当するベンジルアルコールが残留していた。この濾液を60℃で3時間攪拌する反応条件に供してベンジルアニソールの生成の有無を調べた。その結果、ベンジルアニソールの生成が確認されなかった。この事実および前記表3の結果から、前記固体触媒は濾過によって活性成分が溶出せず、容易に反応後の生成物溶液から分離できることを示している。   On the other hand, as a result of analyzing the filtrate filtered after the first reaction at 60 ° C., benzyl alcohol corresponding to about 68% before the reaction remained. The filtrate was subjected to reaction conditions of stirring at 60 ° C. for 3 hours to examine whether benzylanisole was formed. As a result, the formation of benzylanisole was not confirmed. This fact and the results in Table 3 show that the solid catalyst does not elute the active component by filtration and can be easily separated from the product solution after the reaction.

固体触媒である式Iのyに対するベンジルアルコールの転化率およびベンジルアニソールの収率の関係を示す図。The figure which shows the relationship between the conversion rate of benzyl alcohol with respect to y of the formula I which is a solid catalyst, and the yield of benzylanisole. 実施例7および比較例7の固体触媒による反応温度とベンジルアニソールの収率の関係を示す図。The figure which shows the relationship between the reaction temperature by the solid catalyst of Example 7 and Comparative Example 7, and the yield of benzylanisole.

Claims (4)

一般式(Nb25x(WO31-x(P25y、ただし式中のx、yは0.05≦x≦0.7、0.08≦y≦0.29を示す、にて表される複合酸化物を含むことを特徴とするアルキル化反応用触媒。 General formula (Nb 2 O 5 ) x (WO 3 ) 1-x (P 2 O 5 ) y , where x and y are 0.05 ≦ x ≦ 0.7, 0.08 ≦ y ≦ 0. 29. The catalyst for alkylation reaction characterized by including the complex oxide represented by (29). 請求項1記載のアルキル化反応用触媒の存在下にて芳香族化合物とアルコールを反応させてアルキル化することを特徴とするアルキル置換芳香族化合物の製造方法。   A process for producing an alkyl-substituted aromatic compound, wherein an alkylation is carried out by reacting an aromatic compound with an alcohol in the presence of the alkylation reaction catalyst according to claim 1. 前記アルキル化反応用触媒を反応後の生成物混合溶液から分離し、前記反応に繰り返し使用することを特徴とする請求項2記載のアルキル置換芳香族化合物の製造方法。   The method for producing an alkyl-substituted aromatic compound according to claim 2, wherein the alkylation reaction catalyst is separated from the product mixture solution after the reaction and is repeatedly used in the reaction. 前記芳香族化合物は、アニソールであり、前記アルコールはベンジルアルコールであることを特徴とする請求項2または3記載のアルキル置換芳香族化合物の製造方法。   The method for producing an alkyl-substituted aromatic compound according to claim 2 or 3, wherein the aromatic compound is anisole, and the alcohol is benzyl alcohol.
JP2005075976A 2005-03-16 2005-03-16 Catalyst for alkylation reaction and method for producing alkyl-substituted aromatic compound Active JP4543173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075976A JP4543173B2 (en) 2005-03-16 2005-03-16 Catalyst for alkylation reaction and method for producing alkyl-substituted aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075976A JP4543173B2 (en) 2005-03-16 2005-03-16 Catalyst for alkylation reaction and method for producing alkyl-substituted aromatic compound

Publications (2)

Publication Number Publication Date
JP2006255575A JP2006255575A (en) 2006-09-28
JP4543173B2 true JP4543173B2 (en) 2010-09-15

Family

ID=37095363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075976A Active JP4543173B2 (en) 2005-03-16 2005-03-16 Catalyst for alkylation reaction and method for producing alkyl-substituted aromatic compound

Country Status (1)

Country Link
JP (1) JP4543173B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506188A (en) * 2001-10-23 2005-03-03 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Method for in situ synthesis of heteropolyacids and salts thereof supported on a support

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246532A (en) * 1986-04-16 1987-10-27 Maruzen Petrochem Co Ltd Alkylation of phenol
JPH0524813A (en) * 1991-07-22 1993-02-02 Mitsui Petrochem Ind Ltd Production of potassium phosphotungstate
JPH09924A (en) * 1995-06-16 1997-01-07 Idemitsu Kosan Co Ltd Solid catalyst deposited with heteropolyacid
JPH10167995A (en) * 1996-12-05 1998-06-23 Cosmo Sogo Kenkyusho:Kk Production of xylenes by methylation of toluene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506188A (en) * 2001-10-23 2005-03-03 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Method for in situ synthesis of heteropolyacids and salts thereof supported on a support

Also Published As

Publication number Publication date
JP2006255575A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
CN101657256B (en) Modified Y-85 and LZ-210 zeolites
KR101772247B1 (en) Improved mixed metal oxide ammoxidation catalysts
EP2550098B1 (en) Attrition resistant mixed metal oxide ammoxidation catalysts
KR101772248B1 (en) Process for preparing improved mixed metal oxide ammoxidation catalysts
CN101289358B (en) Method for synthesizing linear alkylbenzene
RU2621707C2 (en) Method of obtaining ethylene and other olefins from water solutions of related alcohols
RU2619943C2 (en) Additives to ammoxidation catalysts based on metal oxide mixtures input before calcination
EP3148692B1 (en) Improved selective ammoxidation catalysts
JP2008000709A (en) Manufacturing method of heteropoly-acid based catalyst for manufacturing methacrylic acid
JP2007044602A (en) Catalyst carrier, metal fixed catalyst, production method thereof, and method for oxidizing alcohol using the same
JP6017386B2 (en) Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis
ZA200510251B (en) Process for producing catalyst for methacrylic acid production
KR20120099354A (en) Improved process for selective reduction of propionic acid from (meth)acrylic acid product streams
EP3233272B1 (en) Improved mixed metal oxide ammoxidation catalysts
JPS61280439A (en) Production of alkenyl aromatic hydrocarbon derivative
CN101367041A (en) Preparation of solid base catalyst, uses of the same in hydroxide aldehyde condensation reaction
CN102757306B (en) Preparation method of cyclohexanone
WO2018071166A1 (en) Ammoxidation catalyst with selective co-product hcn production
KR20170015900A (en) Improved selective ammoxidation catalysts
JP4543173B2 (en) Catalyst for alkylation reaction and method for producing alkyl-substituted aromatic compound
CN108409541A (en) The catalyst and preparation method thereof of 2,3,6- pseudocuminols is synthesized for metacresol
JP2008000710A (en) Manufacturing method of heteropolyacid based catalyst for manufacturing methacrylic acid
CN113457723B (en) Ruthenium-zirconium composite alkylation catalyst and preparation method thereof
JP7082998B2 (en) Method for producing cyclohexanone dimer
JP7171749B2 (en) Method and apparatus for catalytic conversion of substance mixtures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150