JP4542464B2 - Grid interconnection system - Google Patents

Grid interconnection system Download PDF

Info

Publication number
JP4542464B2
JP4542464B2 JP2005127180A JP2005127180A JP4542464B2 JP 4542464 B2 JP4542464 B2 JP 4542464B2 JP 2005127180 A JP2005127180 A JP 2005127180A JP 2005127180 A JP2005127180 A JP 2005127180A JP 4542464 B2 JP4542464 B2 JP 4542464B2
Authority
JP
Japan
Prior art keywords
current
breaker
voltage
overcurrent alarm
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005127180A
Other languages
Japanese (ja)
Other versions
JP2006304579A (en
Inventor
浩道 井上
毅 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2005127180A priority Critical patent/JP4542464B2/en
Publication of JP2006304579A publication Critical patent/JP2006304579A/en
Application granted granted Critical
Publication of JP4542464B2 publication Critical patent/JP4542464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Distribution Board (AREA)

Description

本発明は、設定値以上の電流が流れた場合に過電流警報を出力する過電流警報器を備えて、単相3線式商用電源と外部電源とを系統連系する系統連系システムに関するものである。   The present invention relates to a grid interconnection system that includes an overcurrent alarm device that outputs an overcurrent alarm when a current exceeding a set value flows, and that interconnects a single-phase three-wire commercial power source and an external power source. It is.

近年、過電流によって電流制限器または主幹ブレーカがトリップする前に過電流警報を出力する過電流警報器が住宅分電盤内に配設されている。(例えば、特許文献1参照)。   In recent years, an overcurrent alarm device that outputs an overcurrent alarm before a current limiter or a main breaker trips due to an overcurrent is disposed in a residential distribution board. (For example, refer to Patent Document 1).

この過電流警報器は、2つの電圧極と1つの中性極とからなる単相3線式商用電源からの配線路に介在する主幹ブレーカの2つの電圧極に変流器を各々介在させ、各変流器で測定した電流値が設定値を超えたときに警報を発するものである。   This overcurrent alarm device has current transformers interposed between two voltage electrodes of a main breaker interposed in a wiring path from a single-phase three-wire commercial power source consisting of two voltage electrodes and one neutral electrode, An alarm is issued when the current value measured by each current transformer exceeds the set value.

そして、この過電流警報器を備えた住宅分電盤を用いて単相3線式商用電源と外部電源とを連系させる系統連系システムがある。
特開2002−10470号公報
There is a grid interconnection system that links a single-phase three-wire commercial power source and an external power source using a residential distribution board equipped with this overcurrent alarm.
JP 2002-10470 A

ここで、単相3線式商用電源と外部電源とを連系させる系統連系システムにおいては、単相3線式商用電源とは別系統の外部電源からも負荷に電流が流れており、各電圧極と中性極との間に接続される負荷のバランスが崩れた不平衡時に、中性極に流れる電流が各電圧極に流れる電流よりも大きくなることがあり得る。この場合、中性極を流れる電流が主幹ブレーカの定格電流以上になると、過電流警報器で過電流警報を出力する前に主幹ブレーカがトリップしてしまうという問題があった。   Here, in a grid-connected system that links a single-phase three-wire commercial power source and an external power source, current flows from an external power source different from the single-phase three-wire commercial power source to each load. When the load connected between the voltage electrode and the neutral electrode is unbalanced, the current flowing through the neutral electrode may be larger than the current flowing through each voltage electrode. In this case, when the current flowing through the neutral electrode exceeds the rated current of the main breaker, there is a problem that the main breaker trips before the overcurrent alarm is output by the overcurrent alarm.

本発明は、上記事由に鑑みてなされたものであり、その目的は、単相3線式配線路において負荷バランスが崩れている不平衡時であっても主幹ブレーカがトリップする前に過電流警報を確実に出力する系統連系システムを提供することにある。   The present invention has been made in view of the above-described reasons, and its object is to provide an overcurrent alarm before the main breaker trips even in an unbalanced state where the load balance is lost in the single-phase three-wire wiring path. It is to provide a grid interconnection system that reliably outputs power.

請求項1の発明は、2つの電圧極と1つの中性極とからなる単相3線式商用電源に1次側を接続した電流制限器と、電流制限器の2次側で各極に1次側を接続した主幹ブレーカと、外部電源に1次側を接続し主幹ブレーカの2次側で各極に2次側を接続して単相3線式商用電源に外部電源を連系する連系ブレーカと、主幹ブレーカと連系ブレーカとの間でいずれかの電圧極と中性極とに1次側を接続した1乃至複数の分岐ブレーカと、電流制限器と分岐ブレーカとの間の各電圧極を流れる電流を測定する2つの変流器と、2つの変流器で測定した各電流値に基づいて過電流警報を出力する過電流警報器とを備え、過電流警報器は、各電圧極を流れる瞬時電流のベクトル和を演算し、該ベクトル和が電流制限器の定格電流から決まる第1基準値以上となった場合に過電流警報を出力し、前記ベクトル和が第1基準値未満の場合は各電圧極を流れる電流の位相差を測定し、該位相差が90度を超えて270度以下の場合に各電圧極を流れる実効電流の和を演算して、該実効電流の和が主幹ブレーカの定格電流から決まる第2基準値以上となった場合に過電流警報を出力することを特徴とする。   The invention of claim 1 includes a current limiter having a primary side connected to a single-phase three-wire commercial power source composed of two voltage poles and one neutral pole, and each pole on the secondary side of the current limiter. A primary breaker connected to the primary side and a primary side connected to an external power source, and a secondary side connected to each pole on the secondary side of the main breaker to connect the external power source to a single-phase three-wire commercial power source Between the interconnection breaker, one or more branch breakers having a primary side connected to any voltage pole and neutral pole between the main breaker and the interconnection breaker, and between the current limiter and the branch breaker Two current transformers that measure the current flowing through each voltage electrode, and an overcurrent alarm that outputs an overcurrent alarm based on each current value measured by the two current transformers, Calculates the vector sum of instantaneous currents flowing through each voltage pole, and the vector sum is determined from the rated current of the current limiter. An overcurrent alarm is output when the value is above, and when the vector sum is less than the first reference value, the phase difference of the current flowing through each voltage electrode is measured, and the phase difference exceeds 90 degrees and is less than 270 degrees In this case, the sum of the effective currents flowing through the respective voltage electrodes is calculated, and an overcurrent alarm is output when the sum of the effective currents exceeds a second reference value determined from the rated current of the main breaker. To do.

この発明によれば、各電圧極を流れる瞬時電流のベクトル和を演算して過電流警報を出力するべきか否かを判別することで、負荷平衡時の過電流警報を電流制限器がトリップする前に出力できる。さらに、各電圧極を流れる電流の位相差が90度を超えて270度以下の場合に各電圧極を流れる実効電流の和を演算して過電流警報を出力するべきか否かを判別することで、負荷バランスが崩れた不平衡時のように中性極を流れる電流が各電圧極を流れる電流より大きい場合でも、主幹ブレーカがトリップする前に過電流警報を出力できる。   According to the present invention, the current limiter trips the overcurrent alarm at the time of load balancing by calculating whether the overcurrent alarm should be output by calculating the vector sum of the instantaneous current flowing through each voltage pole. Can output before. Further, when the phase difference of the current flowing through each voltage electrode exceeds 90 degrees and is 270 degrees or less, it is determined whether or not an overcurrent alarm should be output by calculating the sum of the effective currents flowing through each voltage electrode. Thus, even when the current flowing through the neutral pole is larger than the current flowing through each voltage pole as in the case of an unbalanced load balance, an overcurrent alarm can be output before the main breaker trips.

請求項2の発明は、2つの電圧極と1つの中性極とからなる単相3線式商用電源に1次側を接続した主幹ブレーカと、外部電源に1次側を接続し主幹ブレーカの2次側で各極に2次側を接続して単相3線式商用電源に外部電源を連系する連系ブレーカと、主幹ブレーカと連系ブレーカとの間でいずれかの電圧極と中性極とに1次側を接続した1乃至複数の分岐ブレーカと、主幹ブレーカと分岐ブレーカとの間の各電圧極を流れる電流を測定する2つの変流器と、2つの変流器で測定した各電流値に基づいて過電流警報を出力する過電流警報器とを備え、過電流警報器は、各電圧極を流れる電流の位相差を測定し、該位相差が90度を超えて270度以下の場合に各電圧極を流れる実効電流の和を演算して、該実効電流の和が各電圧極を流れる実効電流よりも大きく且つ主幹ブレーカの定格電流から決まる基準値以上となった場合に過電流警報を出力し、前記位相差が90度以下の場合、あるいは前記位相差が270度を超えた場合、あるいは前記位相差が90度を超えて270度以下であって前記実効電流の和がいずれかの電圧極を流れる実効電流以下の場合、各電圧極を流れる実効電流のうちいずれか大きい実効電流が主幹ブレーカの定格電流から決まる基準値以上となれば過電流警報を出力することを特徴とする。   The invention of claim 2 includes a main circuit breaker in which a primary side is connected to a single-phase three-wire commercial power source composed of two voltage electrodes and a neutral electrode, and a primary circuit is connected to an external power source. On the secondary side, connect the secondary side to each pole and connect the external power source to the single-phase three-wire commercial power supply, and any voltage pole between the main breaker and the connected breaker Measured with one or more branch breakers with primary side connected to the active pole, two current transformers that measure the current flowing through each voltage pole between the main breaker and the branch breaker, and two current transformers An overcurrent alarm that outputs an overcurrent alarm based on each of the current values, and the overcurrent alarm measures the phase difference of the current flowing through each voltage pole, and the phase difference exceeds 90 degrees and is 270. The sum of the effective currents that flow through each voltage electrode when the degree is less than or equal to the degree, and the sum of the effective currents flows through each voltage electrode An overcurrent alarm is output when the current is larger than the active current and the reference value determined from the rated current of the main breaker is exceeded, and when the phase difference is 90 degrees or less, or when the phase difference exceeds 270 degrees, Alternatively, when the phase difference exceeds 90 degrees and is 270 degrees or less, and the sum of the effective currents is equal to or less than the effective current flowing through one of the voltage electrodes, the larger effective current among the effective currents flowing through the voltage electrodes is An overcurrent alarm is output when the value exceeds a reference value determined from the rated current of the main breaker.

この発明によれば、各電圧極を流れる電流の位相差が90度を超えて270度以下の場合に各電圧極を流れる実効電流の和を演算して過電流警報を出力するべきか否かを判別することで、負荷バランスが崩れた不平衡時のように中性極を流れる電流が各電圧極を流れる電流より大きい場合でも、主幹ブレーカがトリップする前に過電流警報を出力できる。さらに、各電圧極を流れる実効電流のいずれか大きい値を基準値と比較して過電流警報を出力するべきか否かを判別することで、負荷平衡時でも主幹ブレーカがトリップする前に過電流警報を出力できる。   According to the present invention, when the phase difference between the currents flowing through the voltage electrodes exceeds 90 degrees and is equal to or less than 270 degrees, whether or not an overcurrent alarm should be output by calculating the sum of the effective currents flowing through the voltage electrodes Thus, even when the current flowing through the neutral pole is larger than the current flowing through each voltage pole as in the unbalanced state where the load balance is lost, an overcurrent alarm can be output before the main breaker trips. In addition, by comparing the larger of the effective currents flowing through each voltage pole with the reference value to determine whether or not to output an overcurrent alarm, the overcurrent is detected before the main breaker trips even during load balancing. An alarm can be output.

以上説明したように、本発明では、単相3線式配線路において負荷バランスが崩れている不平衡時であっても主幹ブレーカがトリップする前に過電流警報を確実に出力することができるという効果がある。   As described above, according to the present invention, it is possible to reliably output an overcurrent alarm before the main breaker trips even in the unbalanced state where the load balance is lost in the single-phase three-wire wiring path. effective.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本実施形態の系統連系システムは、図1,図2に示すように、2つの電圧極L1,L2と1つの中性極Nとからなる単相3線式商用電源ACと、内蔵した燃料電池で発生させた直流電力を交流電力に変換して出力する燃料電池ユニットBとを連系させる住宅分電盤Aとから構成され、住宅分電盤A内には、電流制限器1と、主幹ブレーカ2と、連系ブレーカ3と、複数の分岐ブレーカ4と、2つの変流器5a,5bと、過電流警報器6とを配設している。また、燃料電池ユニットBは電力発生時に熱エネルギーも発生しており、この熱エネルギーを利用して温水を生成する貯湯ユニットD(図2参照)を設置している。
(Embodiment 1)
As shown in FIGS. 1 and 2, the grid interconnection system according to the present embodiment includes a single-phase three-wire commercial power supply AC including two voltage electrodes L1 and L2 and one neutral electrode N, and a built-in fuel. It is composed of a residential distribution board A that connects a fuel cell unit B that converts DC power generated by a battery into alternating current power and outputs it. In the residential distribution board A, a current limiter 1, A main breaker 2, an interconnection breaker 3, a plurality of branch breakers 4, two current transformers 5a and 5b, and an overcurrent alarm 6 are arranged. The fuel cell unit B also generates thermal energy when power is generated, and a hot water storage unit D (see FIG. 2) that generates hot water using this thermal energy is installed.

まず、電流制限器1は、1次側に単相3線式商用電源ACからの電圧極L1,L2と中性極Nとを接続し、2次側に主幹ブレーカ2の1次側を接続して、2つの電圧極L1,L2のみに過電流検出素子を設けており、電圧極L1,L2を流れる電流I1,I2のベクトル和が電流制限器1の定格電流(本実施形態では50A)以上となった場合にトリップして電路を遮断する。   First, the current limiter 1 connects the voltage poles L1 and L2 and the neutral pole N from the single-phase three-wire commercial power supply AC to the primary side, and connects the primary side of the main breaker 2 to the secondary side. The overcurrent detection element is provided only in the two voltage poles L1 and L2, and the vector sum of the currents I1 and I2 flowing through the voltage poles L1 and L2 is the rated current of the current limiter 1 (50 A in this embodiment). When it becomes above, it trips and cuts off the electric circuit.

主幹ブレーカ2は、1次側に電流制限器1の2次側からの各極を接続し、2次側に連系ブレーカ3,分岐ブレーカ4を接続して、各極に過電流検出素子を設けており、1次側−2次側間の各極を流れる電流(線電流)が主幹ブレーカ2の定格電流(本実施形態では50A)以上となった場合にトリップして電路を遮断する。   The main breaker 2 connects each pole from the secondary side of the current limiter 1 to the primary side, connects the interconnection breaker 3 and the branch breaker 4 to the secondary side, and an overcurrent detection element is connected to each pole. When the current (line current) flowing through each pole between the primary side and the secondary side becomes equal to or higher than the rated current (50 A in the present embodiment) of the main breaker 2, it trips and cuts off the electric circuit.

連系ブレーカ3は、1次側に燃料電池ユニットBからの出力を接続し、2次側を主幹ブレーカ2の2次側で各極に接続して、単相3線式商用電源ACに燃料電池ユニットBを連系させている。   The interconnection breaker 3 connects the output from the fuel cell unit B to the primary side, connects the secondary side to each pole on the secondary side of the main breaker 2, and supplies fuel to the single-phase three-wire commercial power supply AC. Battery unit B is linked.

分岐ブレーカ4は、主幹ブレーカ2と連系ブレーカ3との2次側で、1次側に電圧極L1またはL2と中性極Nを接続し、2次側に負荷Zを接続して、1次側−2次側間の各極を流れる電流が分岐ブレーカ4の定格電流以上となった場合にトリップして電路を遮断する。本実施形態では、負荷Z1を電圧極L1と中性極Nとの間に、負荷Z2を電圧極L2と中性極Nとの間に分岐ブレーカ4を介して接続している。   The branch breaker 4 is a secondary side of the main breaker 2 and the interconnection breaker 3, the voltage pole L1 or L2 and the neutral pole N are connected to the primary side, and the load Z is connected to the secondary side. When the current flowing through each pole between the secondary side and the secondary side becomes equal to or higher than the rated current of the branch breaker 4, it trips and interrupts the electric circuit. In the present embodiment, the load Z1 is connected between the voltage electrode L1 and the neutral electrode N, and the load Z2 is connected between the voltage electrode L2 and the neutral electrode N via the branch breaker 4.

変流器5aは、電流制限器1の2次側で電圧極L1の配線路が挿通し、変流器5bは、電流制限器1の2次側で電圧極L2の配線路が挿通して、単相3線式商用電源ACから電圧極L1,L2を流れる電流I1,I2を測定し、その瞬時値を出力する。   The current transformer 5a is inserted through the wiring line of the voltage pole L1 on the secondary side of the current limiter 1, and the current transformer 5b is inserted through the wiring line of the voltage electrode L2 on the secondary side of the current limiter 1. The currents I1 and I2 flowing through the voltage electrodes L1 and L2 are measured from the single-phase three-wire commercial power supply AC, and the instantaneous value is output.

過電流警報器6は、変流器5a,5bからの電流測定値に基づいて過電流警報を出力するもので、図3に示すように、回路構成として、電流検出部61、電流制限器有無設定部62、定格電流設定部63(感度電流設定部)、表示部64、音声出力部65、および制御部66などを備えている。   The overcurrent alarm device 6 outputs an overcurrent alarm based on the current measurement values from the current transformers 5a and 5b. As shown in FIG. 3, the circuit configuration includes a current detector 61, a current limiter presence / absence. A setting unit 62, a rated current setting unit 63 (sensitivity current setting unit), a display unit 64, an audio output unit 65, a control unit 66, and the like are provided.

電流検出部61は、上述の電圧極L1,L2が挿通した変流器5a,5bで検出された電流信号を電圧信号にそれぞれ変換する一対のIV変換器61aと、これら一対のIV変換器61aの出力信号をそれぞれ増幅する一対の増幅器61bと、これら一対の増幅器61bの出力信号を加算する加算器61cとにより構成され、各変流器5a,5bを通じて、増幅器61bで電圧極L1,L2の瞬時電流を個別に検出するとともに、加算器61cで電圧極L1,L2の両瞬時電流のベクトル和を検出するものである。   The current detector 61 includes a pair of IV converters 61a that convert the current signals detected by the current transformers 5a and 5b through which the voltage electrodes L1 and L2 are inserted into voltage signals, and the pair of IV converters 61a. The output signals of the pair of amplifiers 61b and the adder 61c for adding the output signals of the pair of amplifiers 61b are respectively added to the voltage poles L1 and L2 through the current transformers 5a and 5b. The instantaneous current is individually detected, and the adder 61c detects the vector sum of both instantaneous currents of the voltage electrodes L1 and L2.

電流制限器有無設定部62は、切替スイッチなどにより構成され、電流制限器1の有無を設定するためのものである。本実施形態では電流制限器:有に設定される。   The current limiter presence / absence setting unit 62 is configured by a changeover switch or the like, and is for setting the presence / absence of the current limiter 1. In this embodiment, the current limiter is set to “present”.

定格電流設定部63は、例えばボリューム式のスイッチなどにより構成され、電流制限器1の定格電流、および主幹ブレーカ2の定格電流を設定するためのものである。本実施形態では、電流制限器1の定格電流:50A、主幹ブレーカ2の定格電流:50Aに設定される。   The rated current setting unit 63 is constituted by, for example, a volume switch, and is for setting the rated current of the current limiter 1 and the rated current of the main breaker 2. In the present embodiment, the rated current of the current limiter 1 is set to 50A, and the rated current of the main breaker 2 is set to 50A.

表示部64はLED等で構成され、音声出力部65は増幅器および内蔵スピーカ等で構成されて、制御部66からの指示によって、LEDの点灯、スピーカからの音声による過電流警報を出力するものである。   The display unit 64 is configured by an LED or the like, and the audio output unit 65 is configured by an amplifier, a built-in speaker, or the like, and outputs an overcurrent alarm based on the lighting of the LED and the audio from the speaker according to an instruction from the control unit 66. is there.

制御部66は、例えばCPUなどを含むICにより構成され、過電流警報器6全般の制御などの処理を行うもので、例えば、電流制限器有無設定部62で設定された電流制限器1の有無情報を読み込む(取り込む)処理や、定格電流設定部63で設定された電流制限器1および主幹ブレーカ2の定格電流値を読み込む処理を行い、さらに、読み込んだ上記有無情報、定格電流値の設定条件下で、電流検出部61による検出結果に応じて、表示部64、音声出力部65による過電流警報出力などの処理を行う。   The control unit 66 is configured by an IC including a CPU, for example, and performs processing such as control of the overcurrent alarm device 6 in general. For example, the presence / absence of the current limiter 1 set by the current limiter presence / absence setting unit 62 A process of reading (loading) information, a process of reading the rated current values of the current limiter 1 and the main breaker 2 set by the rated current setting unit 63, and further setting conditions for the read presence information and rated current value Below, according to the detection result by the electric current detection part 61, processes, such as an overcurrent alarm output by the display part 64 and the audio | voice output part 65, are performed.

また、図2に示すように、電流制限器1の2次側で電圧極L1,L2の配線路を挿通させた変流器7a,7bの電流測定値を燃料電池ユニットBに伝達して、燃料電池ユニットBで逆流防止制御を行う場合もある。   Further, as shown in FIG. 2, the current measurement values of the current transformers 7a and 7b inserted through the wiring paths of the voltage electrodes L1 and L2 on the secondary side of the current limiter 1 are transmitted to the fuel cell unit B, The fuel cell unit B may perform backflow prevention control.

そして、単相3線式商用電源ACと燃料電池ユニットBとを連系させて負荷Z1,Z2に電力を供給するのであるが、負荷Z1,Z2の平衡時の動作について図4を用いて、不平衡時の動作について図5を用いて以下説明する。なお、平衡時、不平衡時ともに燃料電池ユニットBからの電力供給は、燃料電池ユニットB→連系ブレーカ3→電圧極L1→分岐ブレーカ4,負荷Z1→分岐ブレーカ4,負荷Z2→電圧極L2→連系ブレーカ3→燃料電池ユニットBの経路K1で電流5Aが流れるものとする。このとき、燃料電池ユニットBの中性極に電流は流れない。   Then, the single-phase three-wire commercial power supply AC and the fuel cell unit B are connected to supply power to the loads Z1 and Z2, and the operation at the time of equilibrium of the loads Z1 and Z2 will be described with reference to FIG. The operation at the time of unbalance will be described below with reference to FIG. Note that the electric power supply from the fuel cell unit B at both equilibrium and unbalance is as follows: fuel cell unit B → linkage breaker 3 → voltage electrode L1 → branch breaker 4, load Z1 → branch breaker 4, load Z2 → voltage electrode L2. → Current breaker 3 → Current 5A flows through path K1 of fuel cell unit B. At this time, no current flows through the neutral electrode of the fuel cell unit B.

まず、図4に示す経路K2は、負荷Z1,Z2平衡時の単相3線式商用電源ACからの電流経路を示しており、単相3線式商用電源AC→電圧極L1→電流制限器1→主幹ブレーカ2→分岐ブレーカ4,負荷Z1→分岐ブレーカ4,負荷Z2→電圧極L2→主幹ブレーカ2→電流制限器1→単相3線式商用電源ACの経路K2で電流30Aが流れ、負荷Z1,Z2には、5A(経路K1)+30A(経路K2)=35Aの負荷電流が流れる。ここで、単相3線式商用電源ACから電圧極L1,L2を流れる電流I1,I2はともに30Aであり、中性極Nを流れる電流INは0Aである。この電流I1,I2は同位相であり、電流I1,I2のベクトル和I3は30A+30A=60Aとなって、電流制限器1の定格電流50Aを超えてしまう。   First, a path K2 shown in FIG. 4 shows a current path from the single-phase three-wire commercial power supply AC when the loads Z1 and Z2 are balanced, and the single-phase three-wire commercial power supply AC → voltage pole L1 → current limiter. 1 → main circuit breaker 2 → branch breaker 4, load Z1 → branch breaker 4, load Z2 → voltage pole L2 → main circuit breaker 2 → current limiter 1 → current 30A flows through the path K2 of the single-phase three-wire commercial power supply AC, A load current of 5 A (path K1) +30 A (path K2) = 35 A flows through the loads Z1 and Z2. Here, the currents I1 and I2 flowing through the voltage electrodes L1 and L2 from the single-phase three-wire commercial power supply AC are both 30A, and the current IN flowing through the neutral electrode N is 0A. The currents I1 and I2 have the same phase, and the vector sum I3 of the currents I1 and I2 is 30A + 30A = 60A, which exceeds the rated current 50A of the current limiter 1.

また、負荷Z1,Z2不平衡時においては、図5に示すように、単相3線式商用電源AC→電圧極L1→電流制限器1→主幹ブレーカ2→分岐ブレーカ4,負荷Z1→中性極N→主幹ブレーカ2→電流制限器1→単相3線式商用電源ACの経路K3で電流45Aが流れ、さらに単相3線式商用電源AC→電圧極L2→電流制限器1→主幹ブレーカ2→分岐ブレーカ4,負荷Z2→中性極N→主幹ブレーカ2→電流制限器1→単相3線式商用電源ACの経路K4で電流5Aが流れ、負荷Z1には、5A(経路K1)+45A(経路K3)=50Aの負荷電流が流れて、負荷Z2には、5A(経路K1)−5A(経路K4)=0Aとなり負荷電流は流れない。ここで、単相3線式商用電源ACから電圧極L1を流れる電流I1は45Aであり、電圧極L2を流れる電流I2は5Aであり、このとき、電流I1,I2には位相差が生じている。また、中性極Nを流れる電流INは電流I1,I2の和であり、45A+5A=50Aとなって電流I1,I2よりも大きく、主幹ブレーカ2の定格電流50Aと同等レベルになってしまう。   When the loads Z1 and Z2 are unbalanced, as shown in FIG. 5, the single-phase three-wire commercial power supply AC → voltage pole L1 → current limiter 1 → main breaker 2 → branch breaker 4, load Z1 → neutral Pole N → Master breaker 2 → Current limiter 1 → Single-phase three-wire commercial power supply AC current 45A flows along path K3, and single-phase three-wire commercial power supply AC → Voltage pole L2 → Current limiter 1 → Master breaker 2 → branch breaker 4, load Z2 → neutral pole N → main circuit breaker 2 → current limiter 1 → current 5A flows through path K4 of single-phase three-wire commercial power supply AC, and load Z1 has 5A (path K1) A load current of +45 A (path K3) = 50 A flows, and 5 A (path K1) -5 A (path K4) = 0 A flows through the load Z2, so that no load current flows. Here, the current I1 flowing through the voltage electrode L1 from the single-phase three-wire commercial power supply AC is 45A, and the current I2 flowing through the voltage electrode L2 is 5A. At this time, there is a phase difference between the currents I1 and I2. Yes. Further, the current IN flowing through the neutral pole N is the sum of the currents I1 and I2, and is 45A + 5A = 50A, which is larger than the currents I1 and I2, and is at the same level as the rated current 50A of the main breaker 2.

そこで、上記のように定格電流以上の電流が通電する電流制限器1、主幹ブレーカ2がトリップする前に過電流警報器6で過電流警報を出力するために、本実施形態の過電流警報器6は図6のフローチャートに示す過電流警報の出力制御を行う。   Therefore, in order to output an overcurrent alarm with the overcurrent alarm device 6 before the main current breaker 2 and the main breaker 2 are tripped as described above, the overcurrent alarm device of this embodiment is used. 6 performs output control of the overcurrent alarm shown in the flowchart of FIG.

まず、変流器5a,5bで電圧極L1,L2を流れる電流I1,I2の瞬時値を測定し(ステップS1)、電流I1,I2の瞬時値のベクトル和I3を演算して(ステップS2)、このベクトル和I3が電流制限器1の定格電流(50A)以上か否かを判別する(ステップS3)。ベクトル和I3が電流制限器1の定格電流以上であれば過電流警報を出力する(ステップS4)。なお、ステップS3でベクトル和I3と比較する値は電流制限器1の定格電流から決まる基準値であればよい。   First, the instantaneous values of the currents I1 and I2 flowing through the voltage electrodes L1 and L2 are measured by the current transformers 5a and 5b (step S1), and the vector sum I3 of the instantaneous values of the currents I1 and I2 is calculated (step S2). Then, it is determined whether or not the vector sum I3 is greater than or equal to the rated current (50 A) of the current limiter 1 (step S3). If the vector sum I3 is greater than or equal to the rated current of the current limiter 1, an overcurrent alarm is output (step S4). Note that the value to be compared with the vector sum I3 in step S3 may be a reference value determined from the rated current of the current limiter 1.

ベクトル和I3が電流制限器1の定格電流未満であれば、電流I1,I2の位相差を測定し(ステップS5)、この位相差が90度を超えて270度以下であるか否かを判別する(ステップS6)。位相差が90度を超えて270度以下である場合、負荷が不平衡状態であると判別して電流I1,I2の実効電流I1e,I2eの和INeを演算し(ステップS7)、この実効電流の和INeが主幹ブレーカ2の定格電流以上であるか否かを判別して(ステップS8)、実効電流の和INeが主幹ブレーカ2の定格電流以上であれば過電流警報を出力する(ステップS9)。なお、ステップS8で実効電流の和INeと比較する値は主幹ブレーカ2の定格電流から決まる基準値であればよい。   If the vector sum I3 is less than the rated current of the current limiter 1, the phase difference between the currents I1 and I2 is measured (step S5), and it is determined whether or not the phase difference exceeds 90 degrees and is 270 degrees or less. (Step S6). When the phase difference exceeds 90 degrees and is 270 degrees or less, it is determined that the load is in an unbalanced state, and the effective currents I1e and I2e of the currents I1 and I2 are calculated (step S7). Is determined to be greater than or equal to the rated current of the main breaker 2 (step S8). If the effective current sum INe is equal to or greater than the rated current of the main breaker 2, an overcurrent alarm is output (step S9). ). In addition, the value compared with the sum of effective currents INe in step S8 should just be a reference value determined from the rated current of the main breaker 2.

ステップS6で位相差が90度を超えて270度以下でない場合、またはステップS8で実効電流の和INeが主幹ブレーカ2の定格電流未満であれば、ステップS1に戻って上記動作を繰り返す。   If the phase difference exceeds 90 degrees and is not less than 270 degrees in step S6, or if the effective current sum INe is less than the rated current of the main breaker 2 in step S8, the process returns to step S1 and the above operation is repeated.

すなわち、電流制限器1に対しては、電流I1,I2の瞬時値のベクトル和I3を演算して過電流警報を出力するべきか否かを判別することで、負荷平衡時に電流制限器1がトリップする前に過電流警報を出力可能である。   That is, for the current limiter 1, by calculating the vector sum I3 of the instantaneous values of the currents I1 and I2 and determining whether or not an overcurrent alarm should be output, the current limiter 1 An overcurrent alarm can be output before tripping.

また、主幹ブレーカ2に対しては、電流I1,I2の位相差が90度を超えて270度以下の場合に電流I1,I2の実効電流I1e,I2eの和INeを演算して過電流警報を出力するべきか否かを判別することで、負荷バランスが崩れた不平衡時のように中性極Nを流れる電流INが電流I1,I2より大きい場合でも、主幹ブレーカ2がトリップする前に過電流警報を出力可能である。   For the main breaker 2, when the phase difference between the currents I1 and I2 exceeds 90 degrees and is 270 degrees or less, the sum INe of the effective currents I1e and I2e of the currents I1 and I2 is calculated to generate an overcurrent alarm. By determining whether or not to output, even when the current IN flowing through the neutral pole N is larger than the currents I1 and I2 as in an unbalanced state in which the load balance is lost, it is excessive before the main breaker 2 trips. A current alarm can be output.

したがって、過電流警報器6は、負荷平衡時、不平衡時ともに、電流制限器1、主幹ブレーカ2がトリップする前に確実に過電流警報を出力することができる。   Therefore, the overcurrent alarm device 6 can reliably output an overcurrent alarm before the current limiter 1 and the main breaker 2 are tripped both when the load is balanced and unbalanced.

(実施形態2)
本実施形態の系統連系システムは、図7に示すように、実施形態1の住宅分電盤Aから電流制限器1を削除したものであり、過電流警報器6の電流制限器有無設定部62は、電流制限器:無に設定される。また、変流器5a,5bは主幹ブレーカ2と分岐ブレーカ4との間の電圧極L1,L2を流れる電流I1,I2を測定する。他の構成は実施形態1と同様であり説明は省略する。
(Embodiment 2)
As shown in FIG. 7, the grid interconnection system of the present embodiment is obtained by deleting the current limiter 1 from the residential distribution board A of the first embodiment, and the current limiter presence / absence setting unit of the overcurrent alarm device 6. 62 is set to Current Limiter: None. The current transformers 5a and 5b measure currents I1 and I2 flowing through the voltage electrodes L1 and L2 between the main breaker 2 and the branch breaker 4. Other configurations are the same as those of the first embodiment, and a description thereof is omitted.

そして、定格電流以上の電流が通電する主幹ブレーカ2がトリップする前に過電流警報器6で過電流警報を出力するために、本実施形態の過電流警報器6は図8のフローチャートに示す過電流警報の出力制御を行う。   Since the overcurrent alarm 6 outputs an overcurrent alarm before the main breaker 2 that is energized with a current higher than the rated current trips, the overcurrent alarm 6 of the present embodiment is an overcurrent alarm shown in the flowchart of FIG. Performs output control of current alarm.

まず、変流器5a,5bで電圧極L1,L2を流れる電流I1,I2の瞬時値を測定し(ステップS11)、電流I1,I2の位相差を測定して(ステップS12)、この位相差が90度を超えて270度以下であるか否かを判別する(ステップS13)。位相差が90度を超えて270度以下である場合、負荷が不平衡状態であると判別して電流I1,I2の実効電流I1e,I2eの和INeを演算し(ステップS14)、この実効電流の和INeが実効電流I1eより大きく且つ実効電流I2eより大きいか否かを判別する(ステップS15)。実効電流の和INeが実効電流I1eおよびI2eより大きければ、実効電流の和INeが主幹ブレーカ2の定格電流以上であるか否かを判別し(ステップS16)、実効電流の和INeが主幹ブレーカ2の定格電流以上であれば過電流警報を出力する(ステップS17)。なお、ステップS16で実効電流の和INeと比較する値は主幹ブレーカ2の定格電流から決まる基準値であればよい。   First, the instantaneous values of the currents I1 and I2 flowing through the voltage electrodes L1 and L2 are measured by the current transformers 5a and 5b (step S11), and the phase difference between the currents I1 and I2 is measured (step S12). Is greater than 90 degrees and less than 270 degrees (step S13). When the phase difference exceeds 90 degrees and is 270 degrees or less, it is determined that the load is in an unbalanced state, and the effective currents I1e and I2e of the currents I1 and I2 are calculated (step S14). It is determined whether or not the sum INe is greater than the effective current I1e and greater than the effective current I2e (step S15). If the sum of the effective currents INe is larger than the effective currents I1e and I2e, it is determined whether or not the sum of the effective currents INe is greater than or equal to the rated current of the main breaker 2 (step S16), and the sum of the effective currents INe is determined. If it is equal to or higher than the rated current, an overcurrent alarm is output (step S17). In addition, the value compared with the sum INe of effective currents at step S16 should just be a reference value determined from the rated current of the main breaker 2.

また、ステップS13において位相差が90度以下の場合、あるいは位相差が270度を超えた場合、ステップS15において実効電流の和INeが実効電流I1eまたはI2e以下の場合、負荷が平衡状態であると判別して、まず実効電流I1eが実効電流I2eより大きいか否かを判別する(ステップS18)。実効電流I1eが実効電流I2eより大きければ、実効電流I1eが主幹ブレーカ2の定格電流以上であるか否かを判別し(ステップS19)、実効電流I1eが主幹ブレーカ2の定格電流以上であれば過電流警報を出力する(ステップS20)。   If the phase difference is 90 degrees or less in step S13, or if the phase difference exceeds 270 degrees, or if the sum of effective currents INe is less than or equal to effective current I1e or I2e in step S15, the load is in an equilibrium state. First, it is determined whether or not the effective current I1e is larger than the effective current I2e (step S18). If the effective current I1e is larger than the effective current I2e, it is determined whether or not the effective current I1e is equal to or higher than the rated current of the main breaker 2 (step S19). A current alarm is output (step S20).

また実効電流I2eが実効電流I1eより大きければ、実効電流I2eが主幹ブレーカ2の定格電流以上であるか否かを判別し(ステップS21)、実効電流I2eが主幹ブレーカ2の定格電流以上であれば過電流警報を出力する(ステップS22)。なお、ステップS19,S21で実効電流の和INeと比較する値は主幹ブレーカ2の定格電流から決まる基準値であればよい。   If the effective current I2e is larger than the effective current I1e, it is determined whether or not the effective current I2e is equal to or higher than the rated current of the main breaker 2 (step S21). If the effective current I2e is equal to or higher than the rated current of the main breaker 2 An overcurrent alarm is output (step S22). In addition, the value compared with the sum of effective currents INe in steps S19 and S21 may be a reference value determined from the rated current of the main breaker 2.

ステップS16で実効電流の和INeが主幹ブレーカ2の定格電流未満である場合、ステップS19で実効電流I1eが主幹ブレーカ2の定格電流未満である場合、ステップS21で実効電流I2eが主幹ブレーカ2の定格電流未満である場合は、ステップS1に戻って上記動作を繰り返す。   If the effective current sum INe is less than the rated current of the main breaker 2 in step S16, if the effective current I1e is less than the rated current of the main breaker 2 in step S19, the effective current I2e is rated for the main breaker 2 in step S21. If the current is less than the current, the process returns to step S1 and the above operation is repeated.

すなわち、電流I1,I2の位相差が90度を超えて270度以下の場合、電流I1,I2の実効電流I1e,I2eの和INeを演算して過電流警報を出力するべきか否かを判別しており、負荷バランスが崩れた不平衡時のように中性極Nを流れる電流INが電流I1,I2より大きい場合でも、主幹ブレーカ2がトリップする前に過電流警報を出力可能である。   That is, when the phase difference between the currents I1 and I2 exceeds 90 degrees and is 270 degrees or less, it is determined whether or not an overcurrent alarm should be output by calculating the sum INe of the effective currents I1e and I2e of the currents I1 and I2. Thus, even when the current IN flowing through the neutral pole N is larger than the currents I1 and I2 as in the case of unbalance where the load balance is lost, an overcurrent alarm can be output before the main breaker 2 trips.

また、負荷平衡時には実効電流I1e,I2eのいずれか大きい値を主幹ブレーカ2の定格電流と比較することで過電流警報を出力するべきか否かを判別しており、負荷平衡時でも主幹ブレーカ2がトリップする前に過電流警報を出力可能である。   Further, when the load is balanced, it is determined whether or not an overcurrent alarm should be output by comparing any of the effective currents I1e and I2e with the rated current of the main breaker 2, and the main breaker 2 is determined even when the load is balanced. An overcurrent alarm can be output before the trip.

したがって、過電流警報器6は、負荷平衡時、不平衡時ともに、主幹ブレーカ2がトリップする前に確実に過電流警報を出力することができる。   Therefore, the overcurrent alarm device 6 can reliably output an overcurrent alarm before the main breaker 2 trips both when the load is balanced and unbalanced.

本発明の実施形態1の系統連系システムのブロック図である。It is a block diagram of the grid connection system of Embodiment 1 of this invention. 同上の系統連系システムの概略構成図である。It is a schematic block diagram of a grid connection system same as the above. 同上の過電流警報器のブロック図である。It is a block diagram of an overcurrent alarm device same as the above. 同上の負荷平衡時の電流経路を示す図である。It is a figure which shows the electric current path at the time of load balance same as the above. 同上の負荷不平衡時の電流経路を示す図である。It is a figure which shows the electric current path at the time of load unbalance same as the above. 同上の過電流警報の出力制御を示すフローチャート図である。It is a flowchart figure which shows the output control of an overcurrent warning same as the above. 本発明の実施形態2の系統連系システムのブロック図である。It is a block diagram of the grid connection system of Embodiment 2 of this invention. 同上の過電流警報の出力制御を示すフローチャート図である。It is a flowchart figure which shows the output control of an overcurrent warning same as the above.

符号の説明Explanation of symbols

AC 単相3線式商用電源
L1,L2 電圧極
N 中性極
B 燃料電池ユニット
A 住宅分電盤
1 電流制限器
2 主幹ブレーカ
3 連系ブレーカ
4 分岐ブレーカ
5a,5b 変流器
6 過電流警報器
Z1,Z2 負荷
AC Single-phase three-wire commercial power supply L1, L2 Voltage pole N Neutral pole B Fuel cell unit A Residential distribution board 1 Current limiter 2 Master breaker 3 Interconnection breaker 4 Branch breaker 5a, 5b Current transformer 6 Overcurrent alarm Z1, Z2 load

Claims (2)

2つの電圧極と1つの中性極とからなる単相3線式商用電源に1次側を接続した電流制限器と、電流制限器の2次側で各極に1次側を接続した主幹ブレーカと、外部電源に1次側を接続し主幹ブレーカの2次側で各極に2次側を接続して単相3線式商用電源に外部電源を連系する連系ブレーカと、主幹ブレーカと連系ブレーカとの間でいずれかの電圧極と中性極とに1次側を接続した1乃至複数の分岐ブレーカと、電流制限器と分岐ブレーカとの間の各電圧極を流れる電流を測定する2つの変流器と、2つの変流器で測定した各電流値に基づいて過電流警報を出力する過電流警報器とを備え、
過電流警報器は、各電圧極を流れる瞬時電流のベクトル和を演算し、該ベクトル和が電流制限器の定格電流から決まる第1基準値以上となった場合に過電流警報を出力し、前記ベクトル和が第1基準値未満の場合は各電圧極を流れる電流の位相差を測定し、該位相差が90度を超えて270度以下の場合に各電圧極を流れる実効電流の和を演算して、該実効電流の和が主幹ブレーカの定格電流から決まる第2基準値以上となった場合に過電流警報を出力することを特徴とする系統連系システム。
A current limiter with the primary side connected to a single-phase three-wire commercial power source consisting of two voltage poles and one neutral pole, and a main with the primary side connected to each pole on the secondary side of the current limiter A breaker, a primary breaker connected to an external power supply, a secondary breaker connected to each pole on the secondary side of the main breaker, and an external power supply connected to a single-phase three-wire commercial power supply, and a main breaker Current flowing through each voltage electrode between the current limiter and the branch breaker, and one or a plurality of branch breakers in which the primary side is connected to one of the voltage and neutral electrodes between Two current transformers to be measured, and an overcurrent alarm device that outputs an overcurrent alarm based on each current value measured by the two current transformers,
The overcurrent alarm calculates a vector sum of instantaneous currents flowing through the respective voltage electrodes, and outputs an overcurrent alarm when the vector sum exceeds a first reference value determined from the rated current of the current limiter, When the vector sum is less than the first reference value, the phase difference of the current flowing through each voltage electrode is measured, and when the phase difference exceeds 90 degrees and is 270 degrees or less, the sum of the effective currents flowing through each voltage electrode is calculated. An overcurrent alarm is output when the sum of the effective currents is equal to or greater than a second reference value determined from the rated current of the main breaker.
2つの電圧極と1つの中性極とからなる単相3線式商用電源に1次側を接続した主幹ブレーカと、外部電源に1次側を接続し主幹ブレーカの2次側で各極に2次側を接続して単相3線式商用電源に外部電源を連系する連系ブレーカと、主幹ブレーカと連系ブレーカとの間でいずれかの電圧極と中性極とに1次側を接続した1乃至複数の分岐ブレーカと、主幹ブレーカと分岐ブレーカとの間の各電圧極を流れる電流を測定する2つの変流器と、2つの変流器で測定した各電流値に基づいて過電流警報を出力する過電流警報器とを備え、
過電流警報器は、各電圧極を流れる電流の位相差を測定し、該位相差が90度を超えて270度以下の場合に各電圧極を流れる実効電流の和を演算して、該実効電流の和が各電圧極を流れる実効電流よりも大きく且つ主幹ブレーカの定格電流から決まる基準値以上となった場合に過電流警報を出力し、前記位相差が90度以下の場合、あるいは前記位相差が270度を超えた場合、あるいは前記位相差が90度を超えて270度以下であって前記実効電流の和がいずれかの電圧極を流れる実効電流以下の場合、各電圧極を流れる実効電流のうちいずれか大きい実効電流が主幹ブレーカの定格電流から決まる基準値以上となれば過電流警報を出力することを特徴とする系統連系システム。
Main breaker with primary side connected to single-phase three-wire commercial power source consisting of two voltage poles and one neutral pole, and primary side to external power source with primary side connected to each pole on secondary side of main breaker Connect the secondary side and connect the external power source to the single-phase three-wire commercial power source, and the primary side to either the voltage pole or neutral pole between the main breaker and the connected breaker Based on one or more branch breakers connected to each other, two current transformers for measuring the current flowing through each voltage pole between the main breaker and the branch breaker, and each current value measured by the two current transformers With an overcurrent alarm that outputs an overcurrent alarm,
The overcurrent alarm measures the phase difference of the current flowing through each voltage electrode, and calculates the sum of the effective currents flowing through each voltage electrode when the phase difference exceeds 90 degrees and is 270 degrees or less. An overcurrent alarm is output when the sum of the currents is greater than the effective current flowing through each voltage electrode and exceeds a reference value determined from the rated current of the main breaker, and when the phase difference is 90 degrees or less, or When the phase difference exceeds 270 degrees, or when the phase difference exceeds 90 degrees and is 270 degrees or less, and the sum of the effective currents is equal to or less than the effective current flowing through one of the voltage electrodes, the effective current flowing through each voltage electrode A grid interconnection system that outputs an overcurrent alarm when the larger effective current out of the current exceeds a reference value determined from the rated current of the main breaker.
JP2005127180A 2005-04-25 2005-04-25 Grid interconnection system Active JP4542464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005127180A JP4542464B2 (en) 2005-04-25 2005-04-25 Grid interconnection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005127180A JP4542464B2 (en) 2005-04-25 2005-04-25 Grid interconnection system

Publications (2)

Publication Number Publication Date
JP2006304579A JP2006304579A (en) 2006-11-02
JP4542464B2 true JP4542464B2 (en) 2010-09-15

Family

ID=37472207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005127180A Active JP4542464B2 (en) 2005-04-25 2005-04-25 Grid interconnection system

Country Status (1)

Country Link
JP (1) JP4542464B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201448B2 (en) * 2008-02-28 2013-06-05 テンパール工業株式会社 Distribution board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618572A (en) * 1992-06-30 1994-01-25 Matsushita Electric Works Ltd Current detecting device
JPH11308774A (en) * 1998-04-23 1999-11-05 Matsushita Electric Works Ltd Linked self-sustaining automatic switcher
JP2001183399A (en) * 1999-12-24 2001-07-06 Matsushita Electric Works Ltd Power monitoring system
JP2002010470A (en) * 2000-06-19 2002-01-11 Matsushita Electric Works Ltd Current monitor
JP2002199573A (en) * 2000-12-25 2002-07-12 Matsushita Electric Works Ltd Overcurrent alarm system
JP2004297865A (en) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Overcurrent warning device and family cooperation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618572A (en) * 1992-06-30 1994-01-25 Matsushita Electric Works Ltd Current detecting device
JPH11308774A (en) * 1998-04-23 1999-11-05 Matsushita Electric Works Ltd Linked self-sustaining automatic switcher
JP2001183399A (en) * 1999-12-24 2001-07-06 Matsushita Electric Works Ltd Power monitoring system
JP2002010470A (en) * 2000-06-19 2002-01-11 Matsushita Electric Works Ltd Current monitor
JP2002199573A (en) * 2000-12-25 2002-07-12 Matsushita Electric Works Ltd Overcurrent alarm system
JP2004297865A (en) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Overcurrent warning device and family cooperation system

Also Published As

Publication number Publication date
JP2006304579A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US9190836B2 (en) Potential arc fault detection and suppression
KR100822988B1 (en) Fault type selection system for identifying faults in an electric power system
US8775104B2 (en) Method and system for protecting an electrical power transmission network
US20120113554A1 (en) Dc feeder protection system
US8254072B2 (en) Electrical load center
US9343895B2 (en) Protection relay for sensitive earth fault protection
US7764473B2 (en) Method of detecting a ground fault and electrical switching apparatus employing the same
US10283955B2 (en) Circuit breaker with current monitoring
JP4908245B2 (en) Circuit breaker
JP4542464B2 (en) Grid interconnection system
JP4948316B2 (en) limiter
US20170331232A1 (en) Residual current monitor
JPS62173707A (en) Current detector for circuit breaker
JPH0538041A (en) Detecting device for abnormality of differential relay
JP2005102432A (en) System interconnection system
JP4463936B2 (en) Solar panel ground fault detector
JP2003037940A (en) Wiring apparatus for system linking system
JP3627948B2 (en) Independent operation prevention device for grid interconnection inverter
JP6907167B2 (en) High-voltage insulation monitoring device and high-voltage insulation monitoring method
KR100849464B1 (en) A protection relay for preventing over-current caused by harmonic wave
KR20220078489A (en) Method and system for detecting faults in a low voltage three-phase network
JP5922423B2 (en) Circuit breaker
JP2011078293A (en) Disconnection protective relay device
JPH08153455A (en) Circuit breaker
JP2002281675A (en) Apparatus for discriminating independent operation of generator, when power consumer having power generating facility fitted with the generator system- interconnects with electrical enterpriser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100625

R150 Certificate of patent or registration of utility model

Ref document number: 4542464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250