JP4542460B2 - Cutting tool and cutting method using the cutting tool - Google Patents

Cutting tool and cutting method using the cutting tool Download PDF

Info

Publication number
JP4542460B2
JP4542460B2 JP2005105117A JP2005105117A JP4542460B2 JP 4542460 B2 JP4542460 B2 JP 4542460B2 JP 2005105117 A JP2005105117 A JP 2005105117A JP 2005105117 A JP2005105117 A JP 2005105117A JP 4542460 B2 JP4542460 B2 JP 4542460B2
Authority
JP
Japan
Prior art keywords
cutting
tool
air
workpiece
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005105117A
Other languages
Japanese (ja)
Other versions
JP2006281378A (en
Inventor
芳明 江崎
信夫 小松
千代次 岡本
勝行 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005105117A priority Critical patent/JP4542460B2/en
Publication of JP2006281378A publication Critical patent/JP2006281378A/en
Application granted granted Critical
Publication of JP4542460B2 publication Critical patent/JP4542460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軸線周りに回転しながらワークの表面を切削加工する切削工具およびその切削工具を用いた切削方法に関する。   The present invention relates to a cutting tool that cuts the surface of a workpiece while rotating around an axis, and a cutting method using the cutting tool.

従来、図8に示すように、軸線Y周りに回転する略円盤状の工具本体部31と、その工具本体部31のワーク(図示せず)と対面する先端面31bの外周に所定間隔に配置される切削部32とを備える切削工具30が提案されていた。また、その切削工具30を用いた切削方法としては、以下の方法がとられていた。   Conventionally, as shown in FIG. 8, a substantially disk-shaped tool body 31 that rotates around the axis Y and an outer periphery of a tip surface 31 b that faces a workpiece (not shown) of the tool body 31 are arranged at predetermined intervals. The cutting tool 30 provided with the cutting part 32 to be performed has been proposed. Moreover, as a cutting method using the cutting tool 30, the following method was taken.

(1)工具本体部31の基端面31aの中央から突出して形成された装着部33に、図7に示すような工作機械20の回転軸21aを装着する。例えば、治具Jの一端を装着部33の上面に設けられたキー溝に嵌合し、治具Jの他端を工作機械20の回転駆動部21に嵌合する。
(2)工具本体部31をワークWの上に移動し、工具本体部31の先端面31bに配置された切削部32をワークWの表面に当接させる。
(3)工作機械20を駆動して工具本体部31を軸線Y周りに回転させると共に、ワークWの形状に応じて、工具本体部31および/またはワークWを水平方向に所定の距離だけ移動して、ワークWの表面を切削加工する。その際、工具本体部31の外側から切削液等を供給し、ワークWの加工面(切削部32とワークWの当接面)および工具本体部31を冷却しながら、ワークWの表面を切削していた。
(1) The rotating shaft 21a of the machine tool 20 as shown in FIG. 7 is mounted on the mounting portion 33 formed so as to protrude from the center of the base end surface 31a of the tool main body portion 31. For example, one end of the jig J is fitted into a key groove provided on the upper surface of the mounting portion 33, and the other end of the jig J is fitted into the rotation drive unit 21 of the machine tool 20.
(2) The tool body 31 is moved onto the workpiece W, and the cutting portion 32 disposed on the tip surface 31b of the tool body 31 is brought into contact with the surface of the workpiece W.
(3) The machine tool 20 is driven to rotate the tool main body 31 around the axis Y, and the tool main body 31 and / or the work W are moved in the horizontal direction by a predetermined distance according to the shape of the work W. Then, the surface of the workpiece W is cut. At that time, cutting fluid or the like is supplied from the outside of the tool main body 31 to cut the surface of the work W while cooling the processing surface of the work W (the contact surface between the cutting portion 32 and the work W) and the tool main body 31. Was.

しかしながら、工具本体部31の外側からの切削液等の供給だけでは加工面の冷却効果が低いため、加工の際の熱によってワークWが熱膨張し、この熱膨張によってワークWに歪が発生し、ワークWの加工精度が低下するという問題があった。加えて、切削部32の磨耗が促進され、切削工具30の寿命が短くなるという問題もあった。また、工具本体部31の冷却効果も低くなるため、工具本体部31の耐久性が低下し、このことも切削工具30の短寿命の原因となっていた。   However, since the cooling effect of the machining surface is low only by supplying cutting fluid or the like from the outside of the tool main body 31, the workpiece W is thermally expanded by heat during machining, and the workpiece W is distorted by this thermal expansion. There is a problem that the processing accuracy of the workpiece W is lowered. In addition, there is a problem that wear of the cutting portion 32 is promoted and the life of the cutting tool 30 is shortened. Moreover, since the cooling effect of the tool main body 31 is also lowered, the durability of the tool main body 31 is lowered, which also causes the short life of the cutting tool 30.

また、工具本体部31の外側からの切削液等の供給によって、加工の際に発生する切屑が、先端面31bとワークWとの間の隙間Sから工具本体部31の内側に入り込み、切屑当たり、切屑絡みおよび切屑巻込み等が発生していた。このような切屑当たり、切屑巻込みによってワークWの加工面の面粗度が極端に低下したり、切屑絡みによって切屑が団子状態となり切削加工が困難になり、作業効率が低下するという問題があった。   Further, by supplying cutting fluid or the like from the outside of the tool body 31, chips generated during machining enter the inside of the tool body 31 from the gap S between the tip surface 31 b and the workpiece W, and hit the chips. Chip entanglement and chip entrainment occurred. There is a problem that the surface roughness of the work surface of the workpiece W is extremely lowered due to such chip contact, or the chip becomes bunched due to chip entanglement, making the cutting difficult and cutting efficiency. It was.

前記の問題を解決するために、特許文献1には、軸線周りに回転する略円盤状をなす工具本体部(特許文献1では工具本体)と、その工具本体部のワークと対面する先端面の外周に所定間隔に配置された切削部とを備え、工具本体部が略円筒状の内周面をなす内部空間を有すると共に、工具本体部の外周面に、工具本体部の内周面まで貫通して、工具本体部の内部空間に空気を導入する空気導入孔を設けた切削工具(特許文献1では転削工具)が提案されている。なお、この切削工具においては、空気導入孔を、軸線直交断面において工具本体部の外周側に向かうにしたがい工具回転方向の前方側に所定角度傾斜させたり、軸線平行断面において軸線に対して所定角度傾斜させたりしている。   In order to solve the above-mentioned problem, Patent Document 1 discloses a tool main body portion (a tool main body in Patent Document 1) that rotates around an axis and a tip surface that faces the workpiece of the tool main body portion. And a cutting portion arranged at a predetermined interval on the outer periphery, the tool main body portion has an inner space forming a substantially cylindrical inner peripheral surface, and penetrates the outer peripheral surface of the tool main body portion to the inner peripheral surface of the tool main body portion. A cutting tool (a rolling tool in Patent Document 1) provided with an air introduction hole for introducing air into the internal space of the tool body has been proposed. In this cutting tool, the air introduction hole is inclined at a predetermined angle toward the front side in the tool rotation direction toward the outer peripheral side of the tool body in the cross section orthogonal to the axis, or at a predetermined angle with respect to the axis in the cross section parallel to the axis. It is tilted.

そして、特許文献1に提案された切削工具では、工具本体部が軸線周りに回転すると、空気導入孔から工具本体部の内部空間に空気が導入される。そして、内部空間に導入された空気は、工具本体部の先端面とワークとの間に形成される隙間を介して、工具本体部の切削部に向かって排出される。このように導入、排出される空気によって、工具本体部およびワークの加工面が冷却されると共に、切削部で発生する切屑が工具本体部の内部空間へ侵入するのを防止している。
特開20002−321114号公報(段落番号0006〜0008、図1〜図4)
And in the cutting tool proposed by patent document 1, when a tool main-body part rotates around an axis line, air will be introduced into the internal space of a tool main-body part from an air introduction hole. And the air introduce | transduced into internal space is discharged | emitted toward the cutting part of a tool main-body part through the clearance gap formed between the front end surface of a tool main-body part, and a workpiece | work. The air thus introduced and discharged cools the tool main body and the work surface of the workpiece, and prevents chips generated in the cutting portion from entering the internal space of the tool main body.
JP 20002-321114 A (paragraph numbers 0006 to 0008, FIGS. 1 to 4)

しかしながら、特許文献1の切削工具においては、空気導入孔から導入される空気量、および隙間から排出される空気量(風力)が少ないため、ワークの熱膨張、切屑当たり、切屑絡みおよび切屑巻込み等を完全に防止するまでには至っていなかった。   However, in the cutting tool of Patent Document 1, since the amount of air introduced from the air introduction hole and the amount of air discharged from the gap (wind power) is small, the thermal expansion of the workpiece, per chip, chip entanglement and chip entrainment It has not yet been completely prevented.

また、特許文献1の切削工具は、切削液を使用する場合については、切削工具外部から供給すると、回転する工具本体部の遠心力に、供給した切削液が跳ね返され、十分な冷却効果を得ることができない。そして、空気の流れと同様に空気導入孔を利用して切削液を供給することも考えられるが、高速で回転して遠心力が働いている状態で、外部から与えられた切削液を空気導入孔から適切に導入して切削部に供給することは困難である。   In addition, in the case of using the cutting fluid, the cutting tool of Patent Document 1 is supplied from the outside of the cutting tool, and the supplied cutting fluid is rebounded by the centrifugal force of the rotating tool body, thereby obtaining a sufficient cooling effect. I can't. As with air flow, it is conceivable to supply cutting fluid using the air introduction hole, but the cutting fluid supplied from the outside is introduced into the air while rotating at high speed and the centrifugal force is working. It is difficult to appropriately introduce from the hole and supply it to the cutting part.

さらに、切削工具は、そのほとんどが鉄鋼材から形成されているため重量が大きく、高速で回転したときに、何らかの原因による外乱等が加えられた場合に、重量バランスが悪かった。   Furthermore, most of the cutting tools are made of a steel material, so that the weight is large. When a disturbance due to some cause is applied when rotating at a high speed, the weight balance is poor.

本発明は前記問題に鑑みてなされたものであり、ワーク加工面の加工精度、面粗度に優れると共に、切削加工の作業能率も低下せず、かつ、工具寿命が長く、また、加工時の切削液の供給もスムーズで、さらに、動バランスに優れた切削工具およびその切削工具を用いた切削方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is excellent in machining accuracy and surface roughness of a workpiece machining surface, and does not reduce the work efficiency of cutting, and has a long tool life. An object of the present invention is to provide a cutting tool in which the cutting fluid is smoothly supplied and has an excellent dynamic balance and a cutting method using the cutting tool.

前記課題を解決するために、請求項1に記載の発明は、軸線周りに回転する円盤形状をなし、ワークと対面する側に形成される先端面と、前記先端面のワークと反対側に形成される基端面と、外周面とを有する工具本体部と、前記先端面側の外周面に所定間隔に配置される複数の切削部とを備える切削工具において、前記基端面の中央に突出して形成され、工作機械の回転軸に装着される装着部と、前記装着部の周りで、前記基端面を凹設して周方向に形成される溝部と、前記基端面側の外周面に所定間隔で形成される空気の吸入口を有すると共に、前記溝部の外周側の側面に所定間隔で形成される空気の排出口を有し、前記吸入口と前記排出口とを連通して形成される空気の導入流路と、前記溝部の底面に所定間隔で形成される空気の取入口を有すると共に、前記先端面の周方向に所定間隔で形成される空気の吹出口を有し、前記取入口と前記吹出口とを連通して形成される空気の供給流路と、前記吹出口の間で、前記先端面の中央から外周に向かって放射状に、かつ前記先端面から突出して形成されると共に、前記外周に前記切削部が配置される複数の羽根部とを備え、前記吸入口が、前記排出口に対して径方向に、または、軸線中心と前記排出口の中心を通る直線より工具回転方向に対して前方側に形成され、かつ、前記吹出口が、前記取入口に対して径方向に、または、軸線中心と前記取入口の中心を通る直線より工具回転方向に対して後方側に形成される切削工具として構成したものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is formed in a disk shape that rotates around an axis, and is formed on a tip surface formed on a side facing the workpiece and on a side opposite to the workpiece on the tip surface. In a cutting tool comprising a tool main body having a base end surface and an outer peripheral surface, and a plurality of cutting portions arranged at predetermined intervals on the outer peripheral surface on the distal end surface side, the base end surface is formed so as to protrude from the center. A mounting portion to be mounted on the rotating shaft of the machine tool, a groove portion formed in the circumferential direction by recessing the base end surface around the mounting portion, and an outer peripheral surface on the base end surface side at predetermined intervals. An air suction port formed, and an air discharge port formed at a predetermined interval on the outer peripheral side surface of the groove, and the air formed by communicating the suction port and the discharge port. Air intake formed at predetermined intervals on the introduction channel and the bottom surface of the groove And an air supply passage formed at a predetermined interval in the circumferential direction of the tip end surface, the air supply passage formed by communicating the intake port and the blowout port, and the blowout port A plurality of blade portions that are radially formed from the center of the tip end surface toward the outer periphery and project from the tip end surface, and the cutting portion is disposed on the outer periphery. Is formed in the radial direction with respect to the discharge port or on the front side with respect to the tool rotation direction with respect to a straight line passing through the center of the axis and the center of the discharge port, and the blow-out port is formed with respect to the intake port. The cutting tool is formed on the rear side in the radial direction or with respect to the tool rotation direction from a straight line passing through the axis center and the center of the intake port.

前記構成によれば、装着部に装着した工作機械の回転軸を駆動することにより工具本体部が回転し、工具本体部の先端面に配置される切削部によってワークの表面が切削加工される。その際、工具本体部の回転により、基端面側の外周面に形成される導入流路の吸入口から空気が吸入され、吸入された空気は導入流路の排出口から溝部に排出される。排出された空気は、溝部に形成される取入口から吸入される空気の供給流路への取入を容易にし、取入口から吸入される空気と共に供給流路に取り入れられる。取り入れられた空気は供給流路の吹出口からワークと対面する工具本体部の先端面に吹き出される。また、羽根部の回転によって発生する吸込力も作用して、吹出口からの空気の吹出が容易となる。   According to the said structure, a tool main-body part rotates by driving the rotating shaft of the machine tool with which the mounting part was mounted | worn, and the surface of a workpiece | work is cut by the cutting part arrange | positioned at the front end surface of a tool main-body part. At that time, by the rotation of the tool main body, air is sucked from the inlet of the introduction channel formed on the outer peripheral surface on the base end face side, and the sucked air is discharged from the outlet of the introduction channel to the groove. The discharged air facilitates the intake of the air sucked from the intake port formed in the groove portion into the supply flow channel, and is taken into the supply flow channel together with the air sucked from the intake port. The taken-in air is blown out from the outlet of the supply flow channel to the tip surface of the tool body facing the workpiece. In addition, the suction force generated by the rotation of the blade portion also acts, and air can be easily blown out from the outlet.

前記吸入口が、前記排出口に対して径方向に、または、軸線中心と前記排出口の中心を通る直線より工具回転方向に対して前方側に形成されていることにより、空気の吸入および排出がスムーズに行われると共に、前記吹出口が、前記取入口に対して径方向に、または、軸線中心と前記取入口の中心を通る直線より工具回転方向に対して後方側に形成されていることにより、溝部に排出された空気および取入口から吸入される空気の供給流路への取入および先端面への吹出がスムーズに行われる。そして、このような導入流路および供給流路を空気が流れることにより、空気の流速(風力)が増幅され、工具本体部における切削加工の際に発生する熱を抑制する。   The suction port is formed in the radial direction with respect to the discharge port or on the front side with respect to the tool rotation direction from the straight line passing through the center of the axis and the center of the discharge port. The air outlet is formed in a radial direction with respect to the intake port or on the rear side with respect to the tool rotation direction from a straight line passing through the center of the axis and the center of the intake port. As a result, the air discharged into the groove and the air sucked from the intake port are smoothly taken into the supply channel and blown out to the front end surface. And when air flows through such an introduction flow path and a supply flow path, the flow velocity (wind power) of air is amplified and the heat | fever generate | occur | produced in the case of the cutting process in a tool main-body part is suppressed.

さらに、風力が増幅された空気は、先端面に放射状に形成される羽根部に沿って、羽根部の外周に配置される切削部に集中的に吹き出され、発生する切屑を工具本体部の外側に吹き飛ばす。先端面では、空気が、工具本体部の内側(吹出口)から外周方向(切削部)に吹き出されるため、工具本体部が遠心力とは逆方向(軸線中心)に押されることとなり、動バランスが向上する。   Further, the air from which the wind force has been amplified is blown intensively along the blades radially formed on the tip surface to the cutting unit disposed on the outer periphery of the blades, and the generated chips are removed from the outside of the tool body. Blow away. At the tip, air is blown from the inside of the tool body (outlet) to the outer peripheral direction (cutting part), so the tool body is pushed in the direction opposite to the centrifugal force (axis center) Balance is improved.

また、請求項2に記載の発明は、前記導入流路が、前記吸入口および前記排出口の少なくとも一方で拡径する切削工具として構成したものである。前記構成によれば、空気の吸入および排出がスムーズに行われることにより、吸入および排出される空気の風力がより一層増幅され、供給流路に送る空気の風力が増幅すると共に、工具本体部における切削加工の際に発生する熱を抑制する。   According to a second aspect of the present invention, the introduction flow path is configured as a cutting tool that expands the diameter of at least one of the suction port and the discharge port. According to the above configuration, the air suction and discharge are smoothly performed, so that the wind force of the air that is sucked and discharged is further amplified, and the wind force of the air that is sent to the supply flow path is amplified. Suppresses heat generated during cutting.

また、請求項3に記載の発明は、前記供給流路は、前記取入口および前記吹出口の少なくとも一方で拡径する切削工具として構成したものである。前記構成によれば、空気の取入および吹出がスムーズに行われ、取り入れおよび吹き出される空気の風力がより一層増幅され、発生する切屑を工具本体部の外側に吹き飛ばすと共に、切削加工の際に発生する熱を抑制する。   According to a third aspect of the present invention, the supply flow path is configured as a cutting tool that expands the diameter of at least one of the intake port and the air outlet. According to the above-described configuration, the air is smoothly taken in and blown out, the wind force of the air taken in and blown out is further amplified, and the generated chips are blown out to the outside of the tool body, and at the time of cutting The generated heat is suppressed.

また、請求項4に記載の発明は、前記基端面側の外周面が、前記先端面から前記基端面の方向となる上方に向かって縮径するように傾斜した傾斜面であり、前記吸入口が前記傾斜面に形成される切削工具として構成したものである。前記構成によれば、導入流路の入口である吸入口の断面積が増大し、吸入および排出される空気の風力がより一層増幅され、供給流路に送る空気の風力が増幅すると共に、空気との接触面積が大きくなることも併せて工具本体部における切削加工の際に発生する熱を抑制する。   According to a fourth aspect of the present invention, the outer peripheral surface on the base end surface side is an inclined surface that is inclined so as to decrease in diameter toward the upper direction in the direction of the base end surface from the front end surface, and the suction port Is configured as a cutting tool formed on the inclined surface. According to the above configuration, the cross-sectional area of the inlet that is the inlet of the introduction channel is increased, the wind power of the air that is sucked and discharged is further amplified, the wind power of the air that is sent to the supply channel is amplified, and the air In addition, the heat generated during cutting in the tool main body is also suppressed.

また、請求項5に記載の発明は、前記羽根部が、前記先端面の中央から外周に向かって、工具回転方向の後方側に湾曲した切削工具として構成したものである。前記構成によれば、吹出口から吹き出る空気が切削部に集中的に供給されることとなり、切削部に当たる空気の風力が増幅され、切削加工の際に発生する熱を抑制する。また、工具本体部とワークの間から外側に排出される増幅された空気の風力により、発生する切屑を工具本体部の外側に吹き飛ばす。 The invention according to claim 5 is configured as a cutting tool in which the blade portion is curved toward the rear side in the tool rotation direction from the center of the tip surface toward the outer periphery. According to the said structure, the air which blows off from a blower outlet will be supplied intensively to a cutting part, the wind force of the air which hits a cutting part is amplified, and the heat | fever generate | occur | produced in the case of a cutting process is suppressed. Further, the generated chips are blown off to the outside of the tool body by the wind of the amplified air discharged to the outside from between the tool body and the workpiece.

また、請求項6に記載の発明は、前記工具本体部がアルミニウムまたはアルミニウム合金からなる切削工具として構成したものである。前記構成によれば、工具本体部が軽量化されると共に、動バランスがより一層良好となり、ワーク加工面のビビリ、切削工具の欠け等が発生せず、また、工作機械の回転軸に悪影響を与えることがない。   The invention according to claim 6 is configured as a cutting tool in which the tool body is made of aluminum or an aluminum alloy. According to the above configuration, the weight of the tool body is reduced, the dynamic balance is further improved, chattering of the work surface, chipping of the cutting tool does not occur, and the rotating shaft of the machine tool is adversely affected. Never give.

また、請求項7に記載の発明は、請求項1ないし請求項7のいずれか一項に記載の切削工具を用いて板状のワークの表面を切削する切削方法であって、工作機械の回転軸に前記工具本体部を装着する第1ステップと、前記工具本体部を前記ワークの上に移動し、前記工具本体部の前記切削部を前記ワークの表面に当接させる第2ステップと、前記工作機械を駆動して前記工具本体部を軸線周りに回転させると共に、前記ワークの形状に応じて前記工具本体部および/または前記ワークを水平方向に所定の距離だけ移動して、前記ワークの表面を切削加工する第3ステップとを含む切削方法として構成したものである。   The invention according to claim 7 is a cutting method for cutting the surface of a plate-like workpiece using the cutting tool according to any one of claims 1 to 7, wherein the rotation of the machine tool is performed. A first step of mounting the tool main body on a shaft; a second step of moving the tool main body onto the workpiece and bringing the cutting portion of the tool main body into contact with the surface of the workpiece; A machine tool is driven to rotate the tool main body about an axis, and the tool main body and / or the workpiece is moved by a predetermined distance in the horizontal direction in accordance with the shape of the workpiece, and the surface of the workpiece And a third step of cutting.

前記構成によれば、工具本体部が軸線周りに回転することにより、工具本体部の導入流路および供給流路に空気が流れ、風力が増幅された空気が先端面の切削部に向かって吹き出される。それにより、ワークの加工面が冷却され切削加工の際に発生する熱が減少し、ワーク加工面の熱膨張による歪および切削部の磨耗が防止されると共に、工具本体部も冷却されることとなり、耐久性が向上する。   According to the above configuration, when the tool main body rotates around the axis, air flows through the introduction flow path and the supply flow path of the tool main body, and the air in which the wind force is amplified blows out toward the cutting portion of the tip surface. Is done. As a result, the work surface of the workpiece is cooled and the heat generated during cutting is reduced, so that distortion due to thermal expansion of the work surface and wear of the cutting portion are prevented, and the tool body is also cooled. , Durability is improved.

また、請求項8に記載の発明は、前記第3ステップにおいて、前記工具本体部の前記溝部に切削液を供給しながら、前記工具本体部を軸線周りに回転させる切削方法として構成したものである。   The invention according to claim 8 is configured as a cutting method in which, in the third step, the tool body is rotated about an axis while supplying a cutting fluid to the groove of the tool body. .

前記構成によれば、排出口から排出される空気および取入口から吸入される空気と共に、切削液が供給流路の取入口に取り入れられ、吹出口から先端面の羽根部に沿って、切削部に吹き出される。その際、切削液が工具本体部およびワーク加工面を冷却することにより、切削加工の際に発生する熱が減少する。それにより、ワーク加工面の熱膨張による歪および切削部(切削刃)の磨耗を防止する作用が向上すると共に、工具本体部の耐久性がより一層向上する。また、切屑に切削液が付着し、その重量が増加するため、切屑に作用する遠心力が増加する。それにより、工具本体部の外側への切屑飛散速度が増加することとなり、切屑当たり、切屑絡み、切屑巻込み等を防止する作用が向上する。さらに、吹出口から空気と共に切削液が吹き出すことにより、吹出力が増幅され、工具本体部の軸線中心に押される力も増幅する。それにより、工具本体部の動バランスがより一層良好となる。   According to the above configuration, the cutting fluid is taken into the intake of the supply flow path along with the air discharged from the discharge port and the air sucked from the intake port, and the cutting portion extends along the blade portion of the tip surface from the blowout port. Is blown out. At that time, the cutting fluid cools the tool main body and the workpiece machining surface, thereby reducing the heat generated during the machining. Thereby, the effect | action which prevents the distortion by the thermal expansion of a workpiece | work processing surface and abrasion of a cutting part (cutting blade) improves, and durability of a tool main-body part improves further. Moreover, since the cutting fluid adheres to the chip and the weight thereof increases, the centrifugal force acting on the chip increases. Thereby, the chip scattering speed to the outside of the tool body is increased, and the effect of preventing chip contact, chip entanglement, chip entrainment, and the like is improved. Furthermore, when cutting fluid blows out with air from a blower outlet, a blow output is amplified and the force pushed on the axis center of a tool main-body part is also amplified. Thereby, the dynamic balance of the tool main body is further improved.

本発明に係る切削工具は、空気の導入流路、供給流路および羽根部を介して工具本体部の切削部に空気あるいは切削液を的確に供給できるため、工具本体部から確実に切屑を吹き飛ばし、かつ、切削加工の際に発生する熱を抑制する。そのため、ワーク加工面の加工精度、面粗度に優れると共に、切削加工の作業能率も向上し、かつ、工具寿命が長いものとなる。
また、切削工具は、ワークの加工面を確実に冷却し、切削加工の際に発生する熱を減少させ、ワーク加工面の熱膨張による歪および切削部(切削刃)の磨耗が防止されると共に、切削加工によって発生する切屑を工具本体部の外側に吹き飛ばし、切屑当たり、切屑絡み、切屑巻込み等が防止される。
さらに、切削工具は、工具本体部の動バランスが良好となり、ワーク加工面のビビリ、切削工具の欠け等が発生せず、工作機械の回転軸に悪影響を与えることがない。
また、本発明の切削方法によれば、工具の寿命が長く、切削加工の作業能率も低下しない、かつ、工作機械の回転軸に悪影響を与えることがない切削方法となる。加えて、使用する切削工具のワーク加工面の加工精度、面粗度が優れる切削方法となる。
The cutting tool according to the present invention can accurately supply air or a cutting fluid to the cutting portion of the tool body through the air introduction passage, the supply passage, and the blade portion, so that chips can be reliably blown off from the tool body. And the heat | fever which generate | occur | produces in the case of cutting is suppressed. Therefore, the machining accuracy and surface roughness of the workpiece machining surface are excellent, the working efficiency of the cutting work is improved, and the tool life is long.
In addition, the cutting tool reliably cools the work surface of the workpiece, reduces the heat generated during the cutting process, prevents distortion due to thermal expansion of the work surface and prevents wear of the cutting part (cutting blade). Then, chips generated by the cutting process are blown off to the outside of the tool main body, so that chip contact, chip entanglement, chip entrainment, and the like are prevented.
Furthermore, the cutting tool has a good dynamic balance of the tool body, does not cause chattering of the work surface, chipping of the cutting tool, etc., and does not adversely affect the rotating shaft of the machine tool.
Further, according to the cutting method of the present invention, the cutting method has a long tool life, does not reduce the work efficiency of the cutting process, and does not adversely affect the rotating shaft of the machine tool. In addition, it is a cutting method with excellent machining accuracy and surface roughness of the workpiece machining surface of the cutting tool to be used.

本発明の実施形態について図面を参照して詳細に説明する。図1(a)は切削工具の上方側(基端面側)から見た一部破断斜視図、(b)は下方側(先端面側)から見た斜視図、図2(a)は切削工具の平面図、(b)は側面図、図3(a)は図1の切削工具の導入流路の変形例の軸線直交方向の断面図、(b)は供給流路の変形例の軸線平行方向の断面図。図4(a)は切削工具の底面図、(b)は他の切削工具の底面図、図5は他の切削工具の一部平面図、図6(a)は他の切削工具の平面図、(b)は(a)の切削工具の導入流路の斜視図、(c)は導入流路の軸線平行方向の端面図、図7は切削工具を装着する工作機械の概略を示す斜視図である。   Embodiments of the present invention will be described in detail with reference to the drawings. 1A is a partially broken perspective view seen from the upper side (base end side) of the cutting tool, FIG. 1B is a perspective view seen from the lower side (tip end side), and FIG. 2A is the cutting tool. FIG. 3B is a side view, FIG. 3A is a cross-sectional view in the direction perpendicular to the axis of the modification of the introduction flow path of the cutting tool of FIG. 1, and FIG. 3B is an axis parallel of the modification of the supply flow path. Sectional drawing of a direction. 4A is a bottom view of the cutting tool, FIG. 4B is a bottom view of another cutting tool, FIG. 5 is a partial plan view of the other cutting tool, and FIG. 6A is a plan view of the other cutting tool. (B) is a perspective view of the introduction flow path of the cutting tool of (a), (c) is an end view of the introduction flow path in the axis parallel direction, and FIG. 7 is a perspective view showing an outline of a machine tool on which the cutting tool is mounted. It is.

まず、本発明の切削工具について説明する。
図1(a)、(b)に示すように、切削工具1は、軸線Y周りに回転する円盤形状をなし、ワークと対面する側に形成される先端面2bと、先端面2bのワークと反対側に形成される基端面2aと、外周面5を有する工具本体部2と、先端面2b側の外周面5に所定間隔に配置される複数の切削部3とを備える。
<工具本体部>
図1(a)、(b)に示すように、工具本体部2は、装着部4と、溝部6と、導入流路7と、供給流路8と、羽根部9とを備える。そして、工具本体部2はアルミニウムまたはアルミニウム合金からなることが好ましく、JIS規定の7000系合金がより好ましい。工具本体部2は、アルミニウムまたはアルミニウム合金により構成することで、工具本体部2が軽量化すると共に、動バランスが良好となり、切削加工の際、加工面のビビリ、切削部の欠け等が発生せず、また、切削加工の際に装着する工作機械20の回転軸21aに悪影響を与えることがない(図7参照)。
First, the cutting tool of the present invention will be described.
As shown in FIGS. 1 (a) and 1 (b), the cutting tool 1 has a disk shape that rotates around the axis Y, a tip surface 2b formed on the side facing the workpiece, and a workpiece on the tip surface 2b. A base end surface 2a formed on the opposite side, a tool main body portion 2 having an outer peripheral surface 5, and a plurality of cutting portions 3 arranged at predetermined intervals on the outer peripheral surface 5 on the distal end surface 2b side are provided.
<Tool body>
As shown in FIGS. 1A and 1B, the tool main body 2 includes a mounting part 4, a groove part 6, an introduction flow path 7, a supply flow path 8, and a blade part 9. The tool body 2 is preferably made of aluminum or an aluminum alloy, and more preferably a JIS-defined 7000 series alloy. The tool body 2 is made of aluminum or an aluminum alloy, so that the tool body 2 is lighter and has a good dynamic balance. In addition, the rotating shaft 21a of the machine tool 20 to be mounted at the time of cutting is not adversely affected (see FIG. 7).

(装着部)
図1(a)に示すように、装着部4は、工具本体部2の基端面2aの中央に形成されると共に、基端面2aから上方に突出して形成されている。この装着部4は、中央に取付け用のキー溝と、貫通穴が形成されており、図7に示すような工作機械20の回転軸21aに治具Jを介して装着されるものである。装着部4は、略円筒形状をなすことが好ましいが、回転軸21aに装着可能であれば円筒形状に限定されない。また、装着部4の回転軸21aへの装着方法は、装着部4の上面に設けたキー溝で行うことが好ましいが、回転軸21aの回転が装着部4(工具本体部2)に伝達できればキー溝に限定されない。
(Mounting part)
As shown in FIG. 1A, the mounting portion 4 is formed at the center of the base end surface 2 a of the tool main body 2 and protrudes upward from the base end surface 2 a. The mounting portion 4 is formed with a mounting key groove and a through hole in the center, and is mounted on a rotating shaft 21a of a machine tool 20 as shown in FIG. The mounting portion 4 preferably has a substantially cylindrical shape, but is not limited to a cylindrical shape as long as it can be mounted on the rotating shaft 21a. Further, the mounting method of the mounting portion 4 to the rotating shaft 21a is preferably performed by a keyway provided on the upper surface of the mounting portion 4, but if the rotation of the rotating shaft 21a can be transmitted to the mounting portion 4 (tool body portion 2). It is not limited to the keyway.

(溝部)
溝部6は、装着部4の周りで、工具本体部2の基端面2aを凹設して周方向に形成されるものである。そして、溝部6の底面6aには、後記する空気の供給流路8の取入口8aが形成され、溝部6の外周側の側面6bには空気の導入流路7の排出口7bが形成されている。溝部6の溝幅は、後記する供給流路8の流路径の1.5倍以下が好ましい。溝幅が流路径の1.5倍を超えると、後記する供給流路8の取入口8aに取り入れられる空気量が減少し、流速(風力)が減少する。
(Groove)
The groove portion 6 is formed in the circumferential direction by recessing the proximal end surface 2a of the tool main body portion 2 around the mounting portion 4. An intake port 8a of an air supply channel 8 to be described later is formed on the bottom surface 6a of the groove portion 6, and a discharge port 7b of the air introduction channel 7 is formed on the side surface 6b on the outer peripheral side of the groove portion 6. Yes. The groove width of the groove 6 is preferably 1.5 times or less the flow path diameter of the supply flow path 8 to be described later. When the groove width exceeds 1.5 times the flow path diameter, the amount of air taken into the intake port 8a of the supply flow path 8 described later decreases, and the flow velocity (wind power) decreases.

溝部6は、加工が容易な点で、周方向に連続して形成されることが好ましいが、後記する空気の導入流路7(排出口7b)および供給流路8(取入口8a)が形成でき、導入流路7から供給流路8に空気を導くことが可能であれば、不連続に形成してもよい。また、図1(a)、図2(a)においては、装着部4の外周面を溝部6の内周側の側面とした構成として、溝部6と装着部4が連続した形態を示したが、溝部6と装着部4との間に所定幅の平面を基端面2aと同一高さで形成したものでもよい。   The groove 6 is preferably formed continuously in the circumferential direction in terms of easy processing, but an air introduction channel 7 (discharge port 7b) and a supply channel 8 (intake port 8a) described later are formed. If the air can be guided from the introduction flow path 7 to the supply flow path 8, it may be formed discontinuously. Further, in FIGS. 1A and 2A, the configuration in which the groove portion 6 and the mounting portion 4 are continuous is shown as the configuration in which the outer peripheral surface of the mounting portion 4 is the side surface on the inner peripheral side of the groove portion 6. In addition, a plane having a predetermined width may be formed between the groove 6 and the mounting portion 4 at the same height as the base end surface 2a.

(導入流路)
導入流路7は、図2(a)に示すように、基端面2a側の外周面5に所定間隔で形成される吸入口7aを有すると共に、溝部6の外周側の側面6bに所定間隔で形成される排出口7bを有し、吸入口7aと排出口7bとを連通して形成される。そして、吸入口7aが、排出口7bに対して径方向(直線L2上)に、または、軸線中心と排出口7bの中心を通る直線L2より工具回転方向に対して前方側に形成されている。その結果、工具本体部2が回転した際、吸入口7aから空気が吸入され、排出口7bから溝部6に空気が排出される。このとき、導入流路7を流れる空気は、風力が増幅されると共に、工具本体部2を冷却する。また、排出される空気によって、後記する取入口8aから吸入される空気の供給流路8への取入が容易となる。
(Introduction channel)
As shown in FIG. 2A, the introduction flow path 7 has suction ports 7a formed at a predetermined interval on the outer peripheral surface 5 on the base end surface 2a side, and at a predetermined interval on a side surface 6b on the outer peripheral side of the groove portion 6. A discharge port 7b is formed, and the suction port 7a is connected to the discharge port 7b. The suction port 7a is formed in the radial direction (on the straight line L2) with respect to the discharge port 7b or on the front side with respect to the tool rotation direction from the straight line L2 passing through the center of the axis and the center of the discharge port 7b. . As a result, when the tool body 2 rotates, air is sucked from the suction port 7a and air is discharged from the discharge port 7b to the groove portion 6. At this time, the air flowing through the introduction flow path 7 amplifies the wind force and cools the tool body 2. Further, the discharged air facilitates the intake of the air sucked from the intake port 8a described later into the supply flow path 8.

ここで、吸入口7aの好ましい形成位置は、吸入口7aと排出口7bの中心を通る直線L1と、軸線中心と排出口7bの中心を通る直線L2とが、工具回転方向に対して前方側になす角度αで定義され、工具回転方向に対して前方側をプラス角度としたとき、角度αは0≦α≦60°が好ましく、30≦α≦45°がより好ましい。角度αがマイナス角度(0°未満)であると吸入口7aが直線L2より工具回転方向に対して後方側に位置することとなり、導入流路7に空気を吸入することができなくなる。また、角度αが60°を超えると、吸入口7a、排出口7bのサイズが大きくなり、外周面5および溝部6の外周側の側面6bに導入流路7を形成する位置を確保し難くなる。ここで、角度αが0°は、吸入口7aが排出口7bに対して径方向に形成されていることを意味する(図5参照)。   Here, the preferable formation position of the suction port 7a is that the straight line L1 passing through the centers of the suction port 7a and the discharge port 7b and the straight line L2 passing through the center of the axis and the center of the discharge port 7b are on the front side with respect to the tool rotation direction. The angle α is preferably 0 ≦ α ≦ 60 °, more preferably 30 ≦ α ≦ 45 °, when the front side is a positive angle with respect to the tool rotation direction. If the angle α is a minus angle (less than 0 °), the suction port 7a is positioned on the rear side with respect to the tool rotation direction from the straight line L2, and air cannot be sucked into the introduction flow path 7. When the angle α exceeds 60 °, the sizes of the suction port 7a and the discharge port 7b increase, and it is difficult to secure a position for forming the introduction flow path 7 on the outer peripheral surface 5 and the outer peripheral side surface 6b. . Here, the angle α of 0 ° means that the suction port 7a is formed in the radial direction with respect to the discharge port 7b (see FIG. 5).

吸入口7aの外周面5における所定間隔は、軸線中心と、吸入口7a、7aとがなす角度θ1で設定され、工具本体部2の外径によって異なるが、例えば、外径200mm程度の場合、10≦θ1≦30°が好ましく、22.5≦θ1≦30°がより好ましい。また、360°等配とすることによって、工具本体部2の重量バランスが保たれる。また排出口7bの溝部6の外周側の側面6bにおける所定間隔も、軸線中心と、排出口7b、7bとがなす角度で設定され、前記角度θ1と同一となる。角度θ1が10°未満であると外周面5および側面6bに導入流路7を形成する位置を確保し難くなる。また、角度θ1が30°を超えると導入流路7に吸入される空気量が減少しやすくなる。 The predetermined interval on the outer peripheral surface 5 of the suction port 7a is set by an angle θ 1 formed by the center of the axis and the suction ports 7a and 7a, and varies depending on the outer diameter of the tool main body 2. For example, when the outer diameter is about 200 mm 10 ≦ θ 1 ≦ 30 ° is preferable, and 22.5 ≦ θ 1 ≦ 30 ° is more preferable. Moreover, the weight balance of the tool main-body part 2 is maintained by setting it as 360 degrees equidistant. Predetermined interval in the groove 6 the outer peripheral side surface 6b of the outlet 7b also, and the axis center, the discharge port 7b, is set at an angle formed between 7b, the same as the angle theta 1. If the angle θ 1 is less than 10 °, it is difficult to secure a position for forming the introduction flow path 7 on the outer peripheral surface 5 and the side surface 6b. Further, when the angle θ 1 exceeds 30 °, the amount of air sucked into the introduction flow path 7 tends to decrease.

導入流路7の流路径d1(図3(a)参照)は、工具本体部2の外径によって異なるが、例えば、外径200mm程度の場合、8〜15mmが好ましい。流路径d1が8mm未満であると導入流路7に空気を吸入し難くなり、15mmを超えると外周面5および側面6bに導入流路7を形成する位置を確保し難くなる。ここで、流路径d1は、導入流路7が貫通孔の場合には孔径、後記する貫通溝の場合には溝幅を意味する。また、貫通孔は楕円を含む円形状の貫通孔であって、孔径は最長径を意味する。なお、図2(a)では、導入流路7が直線路で記載されているが、曲線路であってもよい。 Although the flow path diameter d 1 (see FIG. 3A) of the introduction flow path 7 varies depending on the outer diameter of the tool main body 2, for example, when the outer diameter is about 200 mm, 8 to 15 mm is preferable. If the flow path diameter d 1 is less than 8 mm, it is difficult to suck air into the introduction flow path 7, and if it exceeds 15 mm, it is difficult to secure a position for forming the introduction flow path 7 on the outer peripheral surface 5 and the side surface 6 b. Here, the flow path diameter d 1 means the hole diameter when the introduction flow path 7 is a through hole, and the groove width when the introduction flow path 7 is a through groove described later. The through hole is a circular through hole including an ellipse, and the hole diameter means the longest diameter. In FIG. 2A, the introduction flow path 7 is described as a straight path, but may be a curved path.

導入流路7は、吸入口7aおよび排出口7bの少なくとも一方で拡径することが好ましい。そして、図3(a)に示すように、吸入口7aは工具回転方向の前方側に拡径、排出口7bは工具回転方向の後方側に拡径することがより好ましい。このような拡径を行うことにより、空気の吸入および排出がしやすくなり、導入流路7を流れる空気の量が増大すると共に風力が増幅される。また、拡径率は、前記角度αおよび工具本体部2の外径によって異なるが、例えば、角度0<α≦60°、工具本体部2の外径200mm程度の場合、流路径d1の2倍以下が好ましい。拡径率が2倍を超えると、外周面5および側面6bに導入流路7を形成する位置を確保し難くなる。 The introduction flow path 7 is preferably enlarged in diameter at least one of the suction port 7a and the discharge port 7b. And as shown to Fig.3 (a), it is more preferable that the inlet 7a is diameter-expanded to the front side of a tool rotation direction, and the discharge port 7b is diameter-expanded to the rear side of a tool rotation direction. By performing such a diameter expansion, it becomes easy to inhale and discharge air, and the amount of air flowing through the introduction flow path 7 increases and wind power is amplified. The diameter expansion rate varies depending on the angle α and the outer diameter of the tool body 2. For example, when the angle 0 <α ≦ 60 ° and the outer diameter of the tool body 2 is about 200 mm, the flow path diameter d 1 is 2 Double or less is preferable. When the diameter expansion rate exceeds twice, it is difficult to secure a position where the introduction flow path 7 is formed on the outer peripheral surface 5 and the side surface 6b.

(供給流路)
供給流路8は、図2(a)、(b)、図4(a)に示すように、溝部6の底面6aの周方向に所定間隔で形成される取入口8aを有すると共に、先端面2bの周方向に所定間隔で形成される吹出口8bを有し、取入口8aと吹出口8bとを連通して形成される。そして、吹出口8bが、取入口8aに対して径方向(直線L4上)に、または、軸線中心と取入口8aの中心を通る直線L4より工具回転方向に対して後方側に形成されている。その結果、工具本体部2が回転した際、導入流路7から排出される空気と共に、取入口8aから吸入される空気が供給流路8に取り入れられ、吹出口8bから先端面2bに空気が吹き出される。このとき、供給流路8を流れる空気は、風力が増幅されると共に、工具本体部2を冷却する。
(Supply channel)
As shown in FIGS. 2 (a), 2 (b), and 4 (a), the supply flow path 8 has intake ports 8a formed at predetermined intervals in the circumferential direction of the bottom surface 6a of the groove portion 6, and a distal end surface. It has the blower outlet 8b formed in the circumferential direction of 2b at predetermined intervals, and is formed by connecting the intake port 8a and the blower outlet 8b. And the blower outlet 8b is formed in the radial direction (on the straight line L4) with respect to the intake port 8a, or the back side with respect to the tool rotation direction from the straight line L4 passing through the axis center and the center of the intake port 8a. . As a result, when the tool main body 2 rotates, the air sucked from the intake port 8a is taken into the supply flow channel 8 together with the air discharged from the introduction flow channel 7, and the air flows from the blower outlet 8b to the front end surface 2b. Blown out. At this time, the air flowing through the supply flow path 8 amplifies the wind force and cools the tool body 2.

ここで、吹出口8bの好ましい形成位置は、以下の2つの角度β、γで定義される。
角度βは、吹出口8bと取入口8aの中心を通る直線L3と、取入口8aの中心を通る軸線と平行な直線L5とが、工具回転方向に対して後方側になす角度で、工具回転方向に対して後方側をプラス角度としたとき、角度βは0≦β≦45°が好ましい。ここで、角度βがマイナス角度(0°未満)であると吹出口8bが直線L4より工具回転方向に対して前方側に位置することとなり、導入流路7から排出された空気を取り入れ難くなる。また、角度βが45°を超えると、取入口8a、吹出口8bのサイズが大きくなり、溝部6の底面6aおよび先端面2bに供給流路8(取入口8aおよび吹出口8b)を形成する位置を確保し難くなる。なお、角度βが0°は、軸線平行断面において、吹出口8bが取入口8aに対して垂直方向に位置することを意味する。
Here, the preferable formation position of the blower outlet 8b is defined by the following two angles β and γ.
The angle β is an angle formed by a straight line L3 passing through the center of the air outlet 8b and the intake port 8a and a straight line L5 parallel to an axis passing through the center of the intake port 8a on the rear side with respect to the tool rotation direction. When the rear side is a plus angle with respect to the direction, the angle β is preferably 0 ≦ β ≦ 45 °. Here, when the angle β is a minus angle (less than 0 °), the air outlet 8b is positioned on the front side with respect to the tool rotation direction from the straight line L4, and it is difficult to take in air discharged from the introduction flow path 7. . In addition, when the angle β exceeds 45 °, the sizes of the intake port 8a and the air outlet 8b are increased, and the supply flow path 8 (the intake port 8a and the air outlet 8b) is formed on the bottom surface 6a and the front end surface 2b of the groove 6. It becomes difficult to secure the position. An angle β of 0 ° means that the outlet 8b is positioned in a direction perpendicular to the intake 8a in the axial parallel section.

角度γは、吹出口8bと取入口8aの中心を通る直線L3と、軸線中心と取入口8aの中心を通る直線L4とが、工具回転方向側になす角度で、工具回転方向側をプラス角度としたとき、0≦γ≦180°となる。角度γがマイナス角度(0°未満)であると、吹出口8bが直線L4より工具回転方向に対して前方側に位置することとなり、導入流路7から排出された空気を取り入れ難くなる。また、角度γは、取入口8aより吹出口8bが外周側に配置される、90<γ≦180°が好ましい。取入口8aより吹出口8bが外周側に配置されると、工具回転方向に沿って内側から外側に空気を吹き出す流路となり、後記する羽根部9にスムーズに空気あるいは切削液(潤滑液、冷却液)を吹き出すことができる。   The angle γ is an angle formed by the straight line L3 passing through the center of the blowout port 8b and the intake port 8a and the straight line L4 passing through the center of the axis and the center of the intake port 8a on the tool rotation direction side, and the tool rotation direction side is a plus angle. In this case, 0 ≦ γ ≦ 180 °. If the angle γ is a minus angle (less than 0 °), the air outlet 8b is positioned on the front side with respect to the tool rotation direction from the straight line L4, and it becomes difficult to take in air discharged from the introduction flow path 7. Further, the angle γ is preferably 90 <γ ≦ 180 ° at which the outlet 8b is disposed on the outer peripheral side from the intake port 8a. When the blowout port 8b is arranged on the outer peripheral side from the intake port 8a, it becomes a flow path for blowing air from the inside to the outside along the direction of rotation of the tool. Liquid).

取入口8aの底面6aの周方向における所定間隔は、軸線中心と、取入口8a、8aとがなす角度θ2で設定され、工具本体部2の外径によって異なるが、例えば、外径200mm程度の場合、10≦θ2≦45°が好ましい。また吹出口8bの先端面2b(図4(a)参照)の周方向における所定間隔も、軸線中心と、吹出口8b、8bとがなす角度で設定され、前記角度θ2と同一となる。さらに、吹出口8bの数が、後記する羽根部9(切削部3)の枚数より少ない場合には空気の吹出量が不足となるため、同数以上となるように角度θ2が設定される。角度θ2が10°未満であると底面6aおよび先端面2bに供給流路8(取入口8aおよび吹出口8b)を形成する位置を確保し難くなる。また、角度θ2が45°を超えると供給流路8に取り入れられる空気量が減少しやすくなる。また、取入口8aは、底面6aの外周近傍、すなわち、溝部6の側面6bに接する位置に形成されるのがより好ましい。このような位置に取入口8aが形成されることにより、導入流路7の排出口7bから排出される空気をより一層取り込みやすくなる。 The predetermined interval in the circumferential direction of the bottom surface 6a of the intake port 8a is set by an angle θ 2 formed by the center of the axis and the intake ports 8a and 8a, and varies depending on the outer diameter of the tool main body 2. For example, the outer diameter is about 200 mm. In this case, 10 ≦ θ 2 ≦ 45 ° is preferable. The predetermined intervals in the circumferential direction of the distal end face 2b of the air outlet 8b (see FIG. 4 (a)) also, and the axis center, outlet 8b, are set in angle between 8b, the same as the angle theta 2. Further, when the number of the outlets 8b is smaller than the number of blade portions 9 (cutting portions 3) to be described later, the amount of air blown is insufficient, so the angle θ 2 is set to be equal to or greater than the number. If the angle θ 2 is less than 10 °, it is difficult to secure a position for forming the supply flow path 8 (the intake port 8a and the outlet port 8b) on the bottom surface 6a and the front end surface 2b. If the angle θ 2 exceeds 45 °, the amount of air taken into the supply flow path 8 tends to decrease. Further, the intake port 8a is more preferably formed in the vicinity of the outer periphery of the bottom surface 6a, that is, at a position in contact with the side surface 6b of the groove portion 6. By forming the intake port 8a at such a position, it becomes easier to take in the air discharged from the discharge port 7b of the introduction flow path 7.

供給流路8の流路径d2(図3(b)参照)は、工具本体部2の外径によって異なるが、例えば、外径200mm程度の場合、8〜15mmが好ましい。流路径d2が8mm未満であると供給流路8に空気を取り込み難くなり、15mmを超えると溝部6の底面6aないし工具本体部2の先端面2bに供給流路8を形成する位置を確保し難くなる。ここで、流路径d2は、楕円を含む円形状の貫通孔の最長の孔径を意味する。なお、図2(a)、(b)では、供給流路8は直線路で形成されているが、曲線路であってもよい。 The flow path diameter d 2 (see FIG. 3B) of the supply flow path 8 varies depending on the outer diameter of the tool main body 2, but is preferably 8 to 15 mm, for example, when the outer diameter is about 200 mm. If the flow path diameter d 2 is less than 8 mm, it is difficult to take air into the supply flow path 8, and if it exceeds 15 mm, a position for forming the supply flow path 8 on the bottom surface 6 a of the groove 6 or the tip surface 2 b of the tool body 2 is secured. It becomes difficult to do. Here, the channel diameter d 2 means the longest hole diameter of a circular through hole including an ellipse. In FIGS. 2A and 2B, the supply flow path 8 is formed as a straight path, but may be a curved path.

供給流路8は、取入口8aおよび吹出口8bの少なくとも一方で拡径することが好ましい。そして、図3(b)に示すように、取入口8aは工具回転方向の前方側に拡径、吹出口8bは工具回転方向の後方側に拡径することがより好ましい。このような拡径を行うことにより、導入流路7から排出された空気の取入および吹出がしやすくなり、供給流路8を流れる空気の量が増大すると共に風力が増幅される。また、拡径率は、前記角度β、γおよび工具本体部2の外径によって異なるが、10≦β≦45°、90<γ≦180°、外径200mm程度の場合、流路径d2の2倍以下が好ましい。拡径率が2倍を超えると、底面6aないし先端面2bに供給流路8を形成する位置を確保し難くなる。 The supply flow path 8 preferably expands in diameter at least one of the intake port 8a and the air outlet 8b. And as shown in FIG.3 (b), it is more preferable that the inlet 8a is diameter-expanded to the front side of a tool rotation direction, and the blower outlet 8b is diameter-expanded to the back side of a tool rotation direction. By performing such diameter expansion, it becomes easy to take in and blow out the air discharged from the introduction flow path 7, and the amount of air flowing through the supply flow path 8 increases and the wind force is amplified. The diameter expansion rate varies depending on the angles β and γ and the outer diameter of the tool body 2, but when 10 ≦ β ≦ 45 °, 90 <γ ≦ 180 °, and the outer diameter is about 200 mm, the flow diameter d 2 Two times or less is preferable. When the diameter expansion rate exceeds twice, it is difficult to secure a position where the supply flow path 8 is formed on the bottom surface 6a or the tip surface 2b.

導入流路7および供給流路8の配置は、図2(a)に示すように、導入流路7から供給流路8に空気がスムーズに流れるように、溝部6の側面6bに形成される排出口7bの所定間隔(前記の角度θ1)、導入流路7の角度αおよび溝部6の底面6aに形成される取入口8aの所定間隔(前記の角度θ2)を調整することにより決定される。なお、排出口7bから排出された空気が直ぐに取入口8aに入るように、排出口7bと取入口8aとが対面するように略同一半径方向に形成する配置が好ましい。 As shown in FIG. 2A, the arrangement of the introduction channel 7 and the supply channel 8 is formed on the side surface 6b of the groove portion 6 so that air smoothly flows from the introduction channel 7 to the supply channel 8. It is determined by adjusting the predetermined interval (the angle θ 1 ) of the discharge port 7 b, the angle α of the introduction channel 7 and the predetermined interval (the angle θ 2 ) of the intake port 8 a formed in the bottom surface 6 a of the groove 6. Is done. In addition, the arrangement | positioning formed in the substantially same radial direction so that the discharge port 7b and the intake port 8a may face so that the air discharged | emitted from the discharge port 7b may enter into the intake port 8a immediately is preferable.

(羽根部)
羽根部9は、図1(b)、図4(a)に示すように、供給流路8の吹出口8bの間で、先端面2bの中央から外周に向かって放射状に、かつ先端面2bから下方に突出して形成されるものである。そして、羽根部9の外周側には切削部3が着脱自在に設けられている。このような羽根部9を備えることにより、ワークと先端面2bとの間に放射状の吹出流路が形成されることとなり、吹出口8bから吹き出される風力の増幅された空気は、吹出流路(羽根部9)に沿って切削部3に集中的に吹き出される。また、羽根部9の枚数は、前記吹出口8bの個数と同数であることが好ましいが、切削部3への空気の集中的な吹出が可能であれば、吹出口8bの個数より少なくてもよい。その結果、ワークの加工面が冷却され、切削加工の際に発生する熱を抑制し、ワーク加工面の熱膨張による歪および切削部3の磨耗が防止されると共に、切削加工によって発生する切屑が工具本体部2の外側に吹き飛ばされ、切屑当たり、切屑絡み、切屑巻込み等の発生が防止される。また、空気の流れと同様に、切削液を使用した場合においても、溝部6から供給流路8および羽根部9を介して適切に切削部3に供給される。
(Feather)
As shown in FIGS. 1 (b) and 4 (a), the blade portion 9 is formed radially between the outlet 8b of the supply flow path 8 from the center of the tip surface 2b toward the outer periphery, and the tip surface 2b. Is formed so as to protrude downward. And the cutting part 3 is provided in the outer peripheral side of the blade | wing part 9 so that attachment or detachment is possible. By providing such a blade portion 9, a radial blowing channel is formed between the workpiece and the tip surface 2b, and the amplified air of the wind force blown from the blowing port 8b is blown out. It is blown out intensively to the cutting part 3 along the (blade part 9). Further, the number of blades 9 is preferably the same as the number of the air outlets 8b, but may be less than the number of air outlets 8b as long as air can be intensively blown to the cutting part 3. Good. As a result, the work surface of the workpiece is cooled, the heat generated during cutting is suppressed, distortion due to thermal expansion of the work surface and wear of the cutting part 3 are prevented, and chips generated by the cutting work are prevented. It is blown off to the outside of the tool body 2 to prevent the occurrence of chip hit, chip entanglement, chip entrainment and the like. Similarly to the air flow, even when a cutting fluid is used, the cutting fluid 3 is appropriately supplied from the groove portion 6 through the supply flow path 8 and the blade portion 9.

また、羽根部9においては、工具本体部2の回転によって、工具本体部2(先端面2b)の外径方向に空気を吹き出すが、羽根部9の正面では吸い込みとなる。羽根部9の端面とワークとの隙間(後記する切削刃の突出量)が1〜2mmに設定されているため、ワーク切削中はワーク側からの吸込ができず、先端面2bの吹出口8bからの吸込が発生し、取入口8aから取り入れられた空気の吹出口8bからの吹出を容易にする。したがって、羽根部9の高さh(図2(b)参照)は、後記する切削部3の切削刃の突出量との合計で、ワークと先端面2bとの間の隙間S(図1(a)参照)の高さを決定するもので、3〜15mmが好ましい。高さhが3mm未満であると、吸込量が減少すると共に、吹出流路も狭くなるため、供給流路8への空気の逆流が生じやすく、切削部3への空気の吹き出しがスムーズでなくなる恐れがある。高さhが15mmを超えると、吸込量は増大するが、吹出流路が縦広幅となり、吹出流路内で空気が拡散し、切削部3への空気の集中的な吹き出しが阻害され、切削部3に当たる空気の風力が低くなりやすい。   In the blade portion 9, air is blown out in the outer diameter direction of the tool main body portion 2 (tip surface 2 b) by the rotation of the tool main body portion 2, but is sucked in front of the blade portion 9. Since the gap between the end face of the blade portion 9 and the workpiece (projection amount of the cutting blade described later) is set to 1 to 2 mm, suction from the workpiece side cannot be performed during workpiece cutting, and the air outlet 8b of the tip surface 2b Is generated, and the air taken in from the intake port 8a is easily blown out from the air discharge port 8b. Accordingly, the height h (see FIG. 2B) of the blade portion 9 is the sum of the protrusion amount of the cutting blade of the cutting portion 3 described later, and the clearance S between the workpiece and the tip surface 2b (FIG. 1 ( a) is determined, and is preferably 3 to 15 mm. When the height h is less than 3 mm, the suction amount is reduced and the blowout flow path is also narrowed. Therefore, the air flows easily into the supply flow path 8 and the air blowout to the cutting part 3 is not smooth. There is a fear. When the height h exceeds 15 mm, the amount of suction increases, but the blowout flow path becomes wider and wide, air diffuses in the blowout flow path, and intensive blowing of air to the cutting part 3 is hindered, cutting The wind force of the air hitting part 3 tends to be low.

羽根部9は、先端面2bの中央から外周に向かって、工具回転方向の後方側に湾曲した形状が好ましい。羽根部9を湾曲させることにより、吹出口8bから吹き出る空気が切削部3に集中的に供給されやすくなり、切削部3に当たる空気の風力が増幅される。 The blade portion 9 preferably has a shape curved toward the rear side in the tool rotation direction from the center of the tip surface 2b toward the outer periphery. By curving the blade portion 9, the air blown from the outlet 8 b is easily supplied to the cutting portion 3 intensively, and the wind force of the air hitting the cutting portion 3 is amplified.

<切削部>
図1(b)に示すように、切削部3は、工具本体部2の先端面2b側の外周面5に所定間隔に配置されるもので、前記羽根部9の外周側に配置される。切削部3の配置方法としては、例えば、先端面2b側の外周面5(羽根部9の外周側)に所定の切欠部2cを設け、その切欠部2cに切削部3をネジ止め等で固定する方法が挙げられる。
<Cutting part>
As shown in FIG. 1B, the cutting part 3 is arranged at a predetermined interval on the outer peripheral surface 5 of the tool main body 2 on the tip surface 2 b side, and is arranged on the outer peripheral side of the blade part 9. As a method for arranging the cutting portion 3, for example, a predetermined notch portion 2c is provided on the outer peripheral surface 5 (the outer peripheral side of the blade portion 9) on the tip end surface 2b side, and the cutting portion 3 is fixed to the notch portion 2c with screws or the like. The method of doing is mentioned.

切削部3は、図示しないが、切削刃と、切削刃をワークと当接する方向に数mm突出させて固定するカートリッジとを備える。そして、切削刃は、耐久性を考慮して、例えば超硬製のものを使用することが好ましく、また、カートリッジは、ワーク切削時に発生する衝撃を考慮して鋼材とする。また、工具本体部2への固定を考慮して、工具本体部2と同材質の、例えば、アルミニウムまたはアルミニウム合金製のものを使用してもよい。   Although not shown, the cutting unit 3 includes a cutting blade and a cartridge that protrudes and fixes the cutting blade by several mm in a direction in contact with the workpiece. In consideration of durability, the cutting blade is preferably made of, for example, cemented carbide, and the cartridge is made of steel in consideration of an impact generated during workpiece cutting. In consideration of fixing to the tool body 2, the same material as the tool body 2, for example, aluminum or aluminum alloy may be used.

次に、本発明の切削方法について、図1(a)、図7を参照して説明する。
本発明は、切削工具1を用いて板状のワークWの表面を切削する切削方法であって、以下の3つのステップを含むものである。
Next, the cutting method of this invention is demonstrated with reference to Fig.1 (a) and FIG.
The present invention is a cutting method for cutting the surface of a plate-like workpiece W using a cutting tool 1, and includes the following three steps.

ここでは、切削工具1が装着される工作機械として、図7に示す、ワークWを載置するテーブル24と、テーブル24を長手方向に往復移動させるテーブル移動機構部27が設けられる凹陥部26を有するベッド23と、ベッド23の上部側に門形状を形成するように配置される工具移動機構部22と、工具移動機構部22に併設され切削工具1が装着される回転駆動部21とを備え、工具移動機構部22が、工具本体部2を昇降移動させる昇降機構部22aと、工具本体部2をテーブル24の移動方向と直交する方向に往復移動させる往復機構部22bとからなる工作機械20を例に挙げて、本発明の切削方法を説明する。   Here, as a machine tool to which the cutting tool 1 is mounted, a recess 24 provided with a table 24 on which a workpiece W is placed and a table moving mechanism 27 that reciprocates the table 24 in the longitudinal direction is provided as shown in FIG. Provided with a bed 23, a tool moving mechanism 22 arranged to form a gate shape on the upper side of the bed 23, and a rotation driving unit 21 attached to the tool moving mechanism 22 to which the cutting tool 1 is mounted. The machine tool 20 is composed of a lifting mechanism part 22a for moving the tool body part 2 up and down and a reciprocating mechanism part 22b for reciprocating the tool body part 2 in a direction perpendicular to the moving direction of the table 24. As an example, the cutting method of the present invention will be described.

(第1ステップ)
治具Jの一端を切削工具1(工具本体部2)の装着部4の上面に設けられたキー溝に嵌合し、治具Jの他端を工作機械20の回転駆動部21に装着することによって、工作機械20の回転軸21aに工具本体部2を装着する。
(First step)
One end of the jig J is fitted into a key groove provided on the upper surface of the mounting portion 4 of the cutting tool 1 (tool body portion 2), and the other end of the jig J is mounted on the rotation drive unit 21 of the machine tool 20. Thus, the tool body 2 is mounted on the rotating shaft 21a of the machine tool 20.

(第2ステップ)
工作機械20の往復機構部22bを駆動し、回転軸21aに装着された工具本体部2を、工作機械20のテーブル24に載置されたワークWの上に移動させる。そして、工作機械20の昇降機構部22aを駆動して、工具本体部2の切削部3がワークWの表面と当接するまで、工具本体部2を降下させる。
(Second step)
The reciprocating mechanism 22b of the machine tool 20 is driven to move the tool body 2 mounted on the rotating shaft 21a onto the workpiece W placed on the table 24 of the machine tool 20. And the raising / lowering mechanism part 22a of the machine tool 20 is driven, and the tool main-body part 2 is lowered | hung until the cutting part 3 of the tool main-body part 2 contact | abuts the surface of the workpiece | work W. FIG.

(第3ステップ)
工作機械20の回転駆動部21を駆動して回転軸21aを回転させ、工具本体部2を軸線周りに回転させる。この工具本体部2の回転により、工具本体部2の先端面2bに配置される切削部3によってワークWの表面が切削加工される。
(Third step)
The rotary drive part 21 of the machine tool 20 is driven to rotate the rotary shaft 21a, and the tool body part 2 is rotated around the axis. Due to the rotation of the tool body 2, the surface of the workpiece W is cut by the cutting part 3 disposed on the tip surface 2 b of the tool body 2.

そして、図2(a)、図4(a)に示すように、工具本体部2の回転によって、工具本体部2の導入流路7の吸入口7aから空気が吸入され、吸入された空気は、導入流路7の排出口7bから溝部6に排出される。排出された空気は、溝部6に形成され工具回転方向の後方側に形成される取入口8aから吸入される空気の供給流路8への取込を容易にし、取入口8aから吸入される空気と共に供給流路8に取り入れられる。取り入れられた空気は、供給流路8の吹出口8bからワークWと対面する先端面2bおよび羽根部9側に吹き出される。このとき、羽根部9の回転によって発生する吸込力によって、吹出口8bからの吹出が容易となる。そして、このような導入流路7および供給流路8を空気が流れることにより、空気の流速(風力)が増幅されると共に、ワークWの加工部分および工具本体部2も冷却される。   As shown in FIGS. 2 (a) and 4 (a), air is sucked from the suction port 7a of the introduction flow path 7 of the tool body 2 by the rotation of the tool body 2, and the sucked air is Then, the gas is discharged from the discharge port 7 b of the introduction flow path 7 to the groove portion 6. The discharged air facilitates the intake of the air sucked from the intake port 8a formed in the groove 6 and formed on the rear side in the tool rotation direction into the supply flow path 8, and the air sucked from the intake port 8a. Together with the supply flow path 8. The taken-in air is blown out from the blowout port 8b of the supply flow path 8 to the tip surface 2b facing the workpiece W and the blade portion 9 side. At this time, the blow-out from the air outlet 8b is facilitated by the suction force generated by the rotation of the blade portion 9. Then, when air flows through the introduction flow path 7 and the supply flow path 8, the air flow velocity (wind force) is amplified, and the processed portion of the workpiece W and the tool main body 2 are also cooled.

また、図4(a)に示すように、吹出口8bから吹き出された、風力が増幅された空気は、先端面2bに放射状に形成される羽根部9に沿って、羽根部9の外周側に配置される切削部3に集中的に吹き出される。それにより、ワークWの加工面が冷却され、切削加工の際に発生する熱が減少する。その結果、ワーク加工面の熱膨張による歪および切削部の磨耗が防止される。また、切削加工によって発生する切屑を工具本体部2の外側に吹き飛ばし、吹き飛ばされた切屑は、工作機械20(ベッド23)の凹陥部26の長手方向両側部に形成される側溝25に排出され、ワークWの表面上の切屑がなくなる。その結果、切屑当たり、切屑絡み、切屑巻込み等が防止される。   As shown in FIG. 4 (a), the air from which the wind force is blown out from the outlet 8b is amplified along the blades 9 formed radially on the front end surface 2b. Is blown out intensively to the cutting part 3 arranged in Thereby, the processing surface of the workpiece | work W is cooled and the heat | fever generate | occur | produced in the case of a cutting process reduces. As a result, distortion due to thermal expansion of the workpiece surface and wear of the cutting portion are prevented. Further, chips generated by cutting are blown off to the outside of the tool body 2, and the blown chips are discharged into the side grooves 25 formed on both sides in the longitudinal direction of the recessed portion 26 of the machine tool 20 (bed 23), Chips on the surface of the workpiece W are eliminated. As a result, chip contact, chip entanglement, chip entrainment, and the like are prevented.

また、空気が先端面2bの内側から外周方向(切削部3)に吹き出されるため、工具本体部2が遠心力とは逆方向(軸線中心)に押されることとなる。それにより、工具本体部2の動バランスが良好となり、ワーク加工面のビビリ、切削工具の欠け等が発生せず、かつ、工作機械20の回転軸21aに悪影響を与えることがない。   Moreover, since air is blown out from the inner side of the front end surface 2b in the outer peripheral direction (cutting portion 3), the tool main body portion 2 is pushed in the direction opposite to the centrifugal force (axial center). As a result, the dynamic balance of the tool body 2 is improved, chattering of the workpiece machining surface, chipping of the cutting tool, and the like do not occur, and the rotating shaft 21a of the machine tool 20 is not adversely affected.

次に、ワークWの形状に応じて、往復機構部22bの駆動により工具本体部2を水平方向に所定の距離だけ移動する。または、テーブル移動機構部27の駆動により、テーブル24を所定の距離だけ移動して、ワークWを水平方向に移動する。さらに、工具本体部2の移動、ワークWの移動を連続して行ってもよい。それにより、ワークWの表面全体が切削加工される。   Next, according to the shape of the workpiece W, the tool body 2 is moved in the horizontal direction by a predetermined distance by driving the reciprocating mechanism 22b. Alternatively, the table moving mechanism 27 is driven to move the table 24 by a predetermined distance and move the workpiece W in the horizontal direction. Furthermore, the movement of the tool body 2 and the movement of the workpiece W may be performed continuously. Thereby, the entire surface of the workpiece W is cut.

また、本発明の切削方法は、図2(a)、図4(a)に示すように、前記第3ステップにおいて、工具本体部2の溝部6に切削液を供給しながら、工具本体部2を軸線周りに回転させる切削方法が好ましい。ここで、図2(a)では切削液の記載は省略したが、切削液は、導入流路7の排出口7bから溝部6に排出された空気および取入口8aから吸入された空気と共に、供給流路8に取り入れられる。取り入れられた空気および切削液は、吹出口8bから先端面2bに吹き出される。それにより、工具本体部2がより一層冷却される。また、切削液の温度上昇も減少し、切削液の劣化を防ぐことができる。   Further, as shown in FIGS. 2A and 4A, the cutting method of the present invention supplies the cutting fluid to the groove 6 of the tool body 2 in the third step, while the tool body 2 A cutting method is preferred in which is rotated around the axis. Here, although the description of the cutting fluid is omitted in FIG. 2A, the cutting fluid is supplied together with the air discharged from the discharge port 7b of the introduction flow path 7 to the groove portion 6 and the air sucked from the intake port 8a. It is taken into the flow path 8. The taken-in air and cutting fluid are blown out from the blowout port 8b to the front end surface 2b. Thereby, the tool main body 2 is further cooled. Moreover, the temperature rise of the cutting fluid is also reduced, and deterioration of the cutting fluid can be prevented.

そして、吹き出された空気および切削液は、羽根部9に沿って、羽根部9の外周側に配置される切削部3に集中的に吹き出される。それにより、ワーク加工面の冷却効果が増すため、ワーク加工面の熱膨張による歪および切削部の磨耗がより一層防止される。また、切屑に切削液が付着し、その重量が増加するため、工具本体部の外側への切屑の飛散速度が増加し、切屑当たり、切屑絡み、切屑巻込み等がより一層防止される。さらに、空気および切削液が工具本体部2の内側から外周方向(切削部3)に吹き出されるため、工具本体部2を軸線中心に押す力も増加し、工具本体部2の動バランスがより一層良好となる。   The blown air and the cutting fluid are intensively blown along the blade portion 9 to the cutting portion 3 disposed on the outer peripheral side of the blade portion 9. Thereby, since the cooling effect of the workpiece machining surface is increased, distortion due to thermal expansion of the workpiece machining surface and wear of the cutting part are further prevented. Further, since the cutting fluid adheres to the chips and the weight thereof increases, the scattering speed of the chips to the outside of the tool main body portion increases, and the chip contact, chip entanglement, chip entrainment, and the like are further prevented. Furthermore, since air and the cutting fluid are blown out from the inside of the tool main body 2 in the outer peripheral direction (cutting portion 3), the force that pushes the tool main body 2 about the axis increases, and the dynamic balance of the tool main body 2 is further increased. It becomes good.

次に、本発明の実施例について説明する。なお、本発明はこの実施例に限定されるものではない。
(実施例)
図1(a)、(b)、図2(a)、(b)に示す切削工具1を図7に示す工作機械20に装着し、ワーク(800×800×8mmのアルミニウム合金製板)の切削加工を行った。その際、切削工具1の回転の際に発生する風速を測定し、工具本体部2およびワーク加工面の冷却効果、切屑の飛散効果を確認した。
Next, examples of the present invention will be described. In addition, this invention is not limited to this Example.
(Example)
The cutting tool 1 shown in FIGS. 1 (a), 1 (b), 2 (a) and 2 (b) is mounted on the machine tool 20 shown in FIG. 7, and the workpiece (800 × 800 × 8 mm aluminum alloy plate) is mounted. Cutting was performed. At that time, the wind speed generated during the rotation of the cutting tool 1 was measured, and the cooling effect of the tool main body 2 and the workpiece processing surface and the effect of scattering chips were confirmed.

なお、風速測定は、工具本体部2の外周から外側に10〜30mm離れた位置に風速測定器(株式会社佐藤計量器製作所製、ベーン式風速計SK−93F)を置き、ワークと切削工具1の先端面2bとの間の隙間Sを約12mm〔(羽根部9の高さ10mm)+(切削刃の突出量約2mm)〕に設定し、切削工具1の回転数を400ないし2000rpmの間の13条件に変化させた際の風速を測定した。その結果を表1に示す。また、切削工具1の各構成の寸法は以下のとおりとした。   Note that the wind speed measurement is performed by placing a wind speed measuring instrument (manufactured by Sato Keiki Seisakusho Co., Ltd., vane type anemometer SK-93F) at a position 10 to 30 mm away from the outer periphery of the tool body 2. Is set to about 12 mm ((the height of the blade 9 is 10 mm) + (the cutting blade protrusion is about 2 mm)), and the rotational speed of the cutting tool 1 is between 400 and 2000 rpm. The wind speed when changing to the 13 conditions was measured. The results are shown in Table 1. Moreover, the dimension of each structure of the cutting tool 1 was as follows.

<工具本体部>
アルミニウム合金からなる外径202mm、高さ30mmの円盤体で構成し、その外周に傾斜角度45°の傾斜面5aを形成した。
(溝部)
外周径140mm、幅20mmの円環状の溝部とした。
(導入流路)
外周面5の傾斜面5aを周方向に角度θ1=30°で12等分した位置に外径10mmの吸入口7aを形成した。そして、排出口7bと吸入口7aの中心を通る直線L1と、軸線中心と排出口7bの中心を通る直線L2とがなす角度α=40°となるように、溝部6の側面6bを周方向に角度θ1=30°で12等分した位置に外径10mmの排出口7bを形成した。
<Tool body>
A disc body having an outer diameter of 202 mm and a height of 30 mm made of an aluminum alloy was formed, and an inclined surface 5 a having an inclination angle of 45 ° was formed on the outer periphery thereof.
(Groove)
An annular groove having an outer diameter of 140 mm and a width of 20 mm was used.
(Introduction channel)
A suction port 7a having an outer diameter of 10 mm was formed at a position obtained by dividing the inclined surface 5a of the outer peripheral surface 5 into 12 parts at an angle θ 1 = 30 ° in the circumferential direction. Then, the side surface 6b of the groove 6 is circumferentially set so that an angle α = 40 ° formed by a straight line L1 passing through the centers of the discharge port 7b and the suction port 7a and a straight line L2 passing through the center of the axis and the center of the discharge port 7b. A discharge port 7b having an outer diameter of 10 mm was formed at a position equally divided into 12 at an angle θ 1 = 30 °.

(供給流路)
溝部6の底面6aを周方向に角度θ=60°で6等分した位置に外径12mmの取入口8aを形成した。そして、吹出口8bと取入口8aの中心を通る直線L3と、取入口8aの中心を通る軸線と平行な直線L5とがなす角度β=45°、また、直線L3と、軸線中心と取入口8aの中心を通る直線L4とがなす角度γ=90°となるように、工具本体部2の先端面2bを周方向に角度θ=60°で6等分した位置に外径12mmの吹出口8bを形成した。
(羽根部)
先端面2bの各吹出口8bの間に、高さh=10mmで、工具回転方向の後方側に湾曲して6本形成した。
<切削部>
カートリッジ下面(羽根部9の下面)から超硬製の切削刃が約1mm突出する構成とした。
(Supply channel)
An intake port 8a having an outer diameter of 12 mm was formed at a position obtained by dividing the bottom surface 6a of the groove 6 into 6 parts in the circumferential direction at an angle θ 2 = 60 °. An angle β = 45 ° formed by a straight line L3 passing through the center of the air outlet 8b and the intake port 8a and a straight line L5 parallel to the axis passing through the center of the intake port 8a. The tip surface 2b of the tool main body 2 is blown with an outer diameter of 12 mm at a position obtained by dividing the tip end surface 2b of the tool body 2 into the circumferential direction at an angle θ 2 = 60 ° so that the angle γ = 90 ° formed by the straight line L4 passing through the center of 8a. An outlet 8b was formed.
(Feather)
Between the air outlets 8b of the front end surface 2b, six were formed with a height h = 10 mm and curved backward in the tool rotation direction.
<Cutting part>
The carbide cutting blade protruded from the cartridge lower surface (the lower surface of the blade portion 9) by about 1 mm.

(比較例)
工具本体部が溝部、導入流路、供給流路および羽根部を備えていない、図8に示すような切削工具30を用いて、前記実施例と同様に風速を測定した。その結果を表1に示す。なお、工具本体部31は、アルミニウム合金からなる外径202mm、高さ30mmの円盤体で構成し、その外周に傾斜角度45°の傾斜面を形成した。また、切削部32は実施例1と同様とし、ワークと切削工具30の先端面31bとの間の隙間Sは約12mmとした。
(Comparative example)
Using a cutting tool 30 as shown in FIG. 8 in which the tool main body part does not include a groove part, an introduction flow path, a supply flow path, and a blade part, the wind speed was measured in the same manner as in the above example. The results are shown in Table 1. In addition, the tool main-body part 31 was comprised with the disk body which is 202 mm in outer diameter which consists of aluminum alloys, and 30 mm in height, and formed the inclined surface of 45 degrees of inclination angles in the outer periphery. Moreover, the cutting part 32 was made the same as that of Example 1, and the clearance gap S between the workpiece | work and the front end surface 31b of the cutting tool 30 was about 12 mm.

Figure 0004542460
Figure 0004542460

表1の結果から、実施例の切削工具1は、比較例の切削工具30と比べて、風速が約5倍に増加した。したがって、実施例の切削工具1は、比較例の切削工具30と比べて、工具本体部2およびワーク加工面の冷却効果、切屑の飛散効果が優れていることが確認された。また、実施例の切削工具1において、導入流路7を設けない場合についても風速を測定したが、比較例と比べて風速が増加するようなことはなかった。   From the results of Table 1, the wind speed of the cutting tool 1 of the example increased about five times compared to the cutting tool 30 of the comparative example. Therefore, it was confirmed that the cutting tool 1 of an Example was excellent in the cooling effect of the tool main-body part 2 and a workpiece processing surface, and the scattering effect of a chip compared with the cutting tool 30 of a comparative example. Further, in the cutting tool 1 of the example, the wind speed was measured even when the introduction flow path 7 was not provided, but the wind speed did not increase as compared with the comparative example.

なお、本発明では、例えば、以下の構成であっても構わないものである。
図2(b)に示すように、基端面2a側の外周面5が、先端面2bから基端面2aの方向となる上方に向かって縮径するように傾斜した傾斜面5aを有し、導入流路7の吸入口7aを傾斜面5aに形成したものが好ましい。傾斜面5aに吸入口7aを形成することにより、吸入口7aの開口面積が増大し、空気を吸入しやすくなり、導入流路7を流れる空気量が増大すると共に風力が増幅される。図4(b)に示すように、羽根部9は、先端面2bの中央から外周に向かって直線路で形成される構成であってもよい。
In the present invention, for example, the following configuration may be used.
As shown in FIG. 2 (b), the outer peripheral surface 5 on the base end surface 2a side has an inclined surface 5a inclined so as to reduce in diameter upward from the front end surface 2b toward the base end surface 2a. What formed the inlet 7a of the flow path 7 in the inclined surface 5a is preferable. By forming the suction port 7a on the inclined surface 5a, the opening area of the suction port 7a increases, it becomes easy to suck air, the amount of air flowing through the introduction flow path 7 increases, and the wind force is amplified. As shown in FIG. 4B, the blade portion 9 may be formed by a straight path from the center of the front end surface 2b toward the outer periphery.

図1(a)〜図4(b)示す本発明の切削工具1では、導入流路7が外周面5から溝部6の側面6bまで貫通する貫通孔で形成される例を示しているが、図6(a)〜(c)に示すように、本発明は、上方(基端面2a側)が開口される貫通溝で構成される導入流路10を備える切削工具1bであってもよい。
なお、図6ではすでに説明した構成は同じ符号を付して説明を省略する。図6に示すように、この切削工具1bは、吸入口10aが、軸線中心と排出口10bの中心を通る直線より工具回転方向に対して前方側に形成されるもの以外に、図示しないが、吸入口10aが排出口10bに対して径方向に形成されるものも含まれる。
In the cutting tool 1 of the present invention shown in FIGS. 1 (a) to 4 (b), an example in which the introduction flow path 7 is formed as a through hole penetrating from the outer peripheral surface 5 to the side surface 6b of the groove 6 is shown. As shown in FIGS. 6 (a) to 6 (c), the present invention may be a cutting tool 1b including an introduction flow path 10 constituted by a through groove that opens upward (on the base end face 2a side).
In FIG. 6, the components already described are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 6, this cutting tool 1b is not shown, except that the suction port 10a is formed on the front side with respect to the tool rotation direction from the straight line passing through the center of the axis and the center of the discharge port 10b. What includes the suction port 10a formed in the radial direction with respect to the discharge port 10b is also included.

図6(c)に示すように、導入流路10は、基端面2a側から先端面2b側に向かって工具回転方向の前方に傾斜する方向に形成されていることが好ましい。また、導入流路10は、吸入口10aおよび排出口10bの少なくとも一方で拡径することが好ましく、吸入口10aが工具回転方向の前方側に拡径、排出口10bが工具回転方向の後方側に拡径することがより好ましい(図3の吸入口7aおよび排出口7b参照)。このような導入流路10により、吸入口10aからの空気の吸入および排出口10bからの空気の排出が容易となる。   As shown in FIG. 6C, the introduction flow path 10 is preferably formed in a direction inclined forward in the tool rotation direction from the base end face 2a side toward the front end face 2b side. In addition, it is preferable that the diameter of the introduction channel 10 is increased at least at one of the suction port 10a and the discharge port 10b. The suction port 10a has a larger diameter on the front side in the tool rotation direction, and the discharge port 10b is on the rear side in the tool rotation direction. It is more preferable to expand the diameter (see the suction port 7a and the discharge port 7b in FIG. 3). Such an introduction channel 10 facilitates the intake of air from the suction port 10a and the discharge of air from the discharge port 10b.

(a)は本発明に係る切削工具の上方側(基端面側)から見た一部破断斜視図、(b)は下方側(先端面側)から見た斜視図である。(A) is the partially broken perspective view seen from the upper side (base end surface side) of the cutting tool which concerns on this invention, (b) is the perspective view seen from the downward side (front end surface side). (a)は本発明に係る切削工具の平面図、(b)は側面図である。(A) is a top view of the cutting tool which concerns on this invention, (b) is a side view. (a)は図1の切削工具の導入流路の変形例の軸線直交方向の断面図、(b)は供給流路の変形例の軸線平行方向の断面図である。(A) is sectional drawing of the axial orthogonal direction of the modification of the introduction flow path of the cutting tool of FIG. 1, (b) is sectional drawing of the axial parallel direction of the modification of a supply flow path. (a)は本発明に係る切削工具の底面図、(b)は他の切削工具の底面図である。(A) is a bottom view of the cutting tool which concerns on this invention, (b) is a bottom view of another cutting tool. 本発明に係る他の切削工具の一部平面図である。It is a partial top view of the other cutting tool which concerns on this invention. (a)は本発明に係る他の切削工具の平面図、(b)は(a)の切削工具の導入流路の斜視図、(c)は導入流路の軸線平行方向の端面図である。(A) is a top view of the other cutting tool which concerns on this invention, (b) is a perspective view of the introduction flow path of the cutting tool of (a), (c) is an end elevation of the introduction flow path in the axial parallel direction. . 切削工具を装着する工作機械の概略を示す斜視図である。It is a perspective view which shows the outline of the machine tool which mounts a cutting tool. 従来の切削工具の斜視図である。It is a perspective view of the conventional cutting tool.

符号の説明Explanation of symbols

1、1a、1b 切削工具
2 工具本体部
2a 基端面
2b 先端面
3 切削部
4 装着部
5 外周面
5a 傾斜面
6 溝部
6a 底面
6b 側面
7 導入流路
7a 吸入口
7b 排出口
8 供給流路
8a 取入口
8b 吹出口
9 羽根部
DESCRIPTION OF SYMBOLS 1, 1a, 1b Cutting tool 2 Tool main-body part 2a Base end surface 2b Front end surface 3 Cutting part 4 Mounting part 5 Outer peripheral surface 5a Inclined surface 6 Groove part 6a Bottom face 6b Side surface 7 Introducing flow path 7a Intake port 7b Discharge port 8 Supply flow path 8a Intake port 8b Outlet port 9 Blade

Claims (8)

軸線周りに回転する円盤形状をなし、ワークと対面する側に形成される先端面と、前記先端面のワークと反対側に形成される基端面と、外周面とを有する工具本体部と、前記先端面側の外周面に所定間隔に配置される複数の切削部とを備える切削工具において、
前記基端面の中央に突出して形成され、工作機械の回転軸に装着される装着部と、
前記装着部の周りで、前記基端面を凹設して周方向に形成される溝部と、
前記基端面側の外周面に所定間隔で形成される空気の吸入口を有すると共に、前記溝部の外周側の側面に所定間隔で形成される空気の排出口を有し、前記吸入口と前記排出口とを連通して形成される空気の導入流路と、
前記溝部の底面に所定間隔で形成される空気の取入口を有すると共に、前記先端面の周方向に所定間隔で形成される空気の吹出口を有し、前記取入口と前記吹出口とを連通して形成される空気の供給流路と、
前記吹出口の間で、前記先端面の中央から外周に向かって放射状に、かつ前記先端面から突出して形成されると共に、前記外周に前記切削部が配置される複数の羽根部とを備え、
前記吸入口が、前記排出口に対して径方向に、または、軸線中心と前記排出口の中心を通る直線より工具回転方向に対して前方側に形成され、かつ、前記吹出口が、前記取入口に対して径方向に、または、軸線中心と前記取入口の中心を通る直線より工具回転方向に対して後方側に形成されることを特徴とする切削工具。
A tool body having a disk shape rotating around an axis, a tip surface formed on a side facing the workpiece, a base end surface formed on the side opposite to the workpiece of the tip surface, and an outer peripheral surface; In a cutting tool comprising a plurality of cutting portions arranged at a predetermined interval on the outer peripheral surface on the distal end surface side,
A projecting portion that projects from the center of the base end surface and is mounted on the rotating shaft of the machine tool;
Around the mounting portion, a groove formed in the circumferential direction by recessing the base end surface;
An air suction port formed at a predetermined interval on the outer peripheral surface on the base end surface side, and an air discharge port formed at a predetermined interval on a side surface on the outer peripheral side of the groove portion. An air introduction flow path formed in communication with the outlet;
In addition to having air intakes formed at predetermined intervals on the bottom surface of the groove portion, air inlets formed at predetermined intervals in the circumferential direction of the distal end surface, and communicating the intake and the air outlets An air supply flow path formed by:
A plurality of blade portions are formed between the air outlets, radially from the center of the tip surface toward the outer periphery and projecting from the tip surface, and the cutting portion is disposed on the outer periphery,
The suction port is formed in the radial direction with respect to the discharge port, or on the front side with respect to the tool rotation direction with respect to a straight line passing through the center of the axis and the center of the discharge port, and the blowout port is provided with the intake port. A cutting tool characterized in that it is formed in a radial direction with respect to the inlet or on a rear side with respect to the tool rotation direction from a straight line passing through the center of the axis and the center of the inlet.
前記導入流路は、前記吸入口および前記排出口の少なくとも一方で拡径することを特徴とする請求項1に記載の切削工具。   The cutting tool according to claim 1, wherein the introduction flow path has a diameter that is enlarged at least one of the suction port and the discharge port. 前記供給経路は、前記取入口および前記吹出口の少なくとも一方で拡径すること特徴とする請求項1または請求項2に記載の切削工具。   The cutting tool according to claim 1, wherein the supply path has a diameter that is enlarged at least one of the intake port and the air outlet. 前記基端面側の外周面が、前記先端面から前記基端面の方向となる上方に向かって縮径するように傾斜した傾斜面を有し、前記吸入口が前記傾斜面に形成されることを特徴とする請求項1ないし請求項3のいずれか一項に記載の切削工具。   The outer peripheral surface on the base end surface side has an inclined surface that is inclined so as to reduce in diameter upward from the distal end surface in the direction of the base end surface, and the suction port is formed in the inclined surface. The cutting tool according to any one of claims 1 to 3, wherein the cutting tool is characterized. 前記羽根部が、前記先端面の中央から外周に向かって、工具回転方向の後方側に湾曲したことを特徴とする請求項1ないし請求項4のいずれか一項に記載の切削工具。 The cutting tool according to any one of claims 1 to 4, wherein the blade portion is curved rearward in the tool rotation direction from the center of the tip surface toward the outer periphery. 前記工具本体部がアルミニウムまたはアルミニウム合金からなることを特徴とする請求項1ないし請求項5のいずれか一項に記載の切削工具。   The cutting tool according to any one of claims 1 to 5, wherein the tool body is made of aluminum or an aluminum alloy. 請求項1ないし請求項6のいずれか一項に記載の切削工具を用いて板状のワークの表面を切削する切削方法であって、
工作機械の回転軸に前記工具本体部を装着する第1ステップと、
前記工具本体部を前記ワークの上に移動し、前記工具本体部の前記切削部を前記ワークの表面に当接させる第2ステップと、
前記工作機械を駆動して前記工具本体部を軸線周りに回転させると共に、前記ワークの形状に応じて前記工具本体部および/または前記ワークを水平方向に所定の距離だけ移動して、前記ワークの表面を切削加工する第3ステップとを含むことを特徴とする切削方法。
A cutting method for cutting the surface of a plate-like workpiece using the cutting tool according to any one of claims 1 to 6,
A first step of mounting the tool body on a rotating shaft of a machine tool;
A second step of moving the tool body on the workpiece and bringing the cutting portion of the tool body into contact with the surface of the workpiece;
The machine tool is driven to rotate the tool body around the axis, and the tool body and / or the workpiece is moved in a horizontal direction by a predetermined distance according to the shape of the workpiece, And a third step of cutting the surface.
前記第3ステップにおいて、前記工具本体部の前記溝部に切削液を供給しながら、前記工具本体部を軸線周りに回転させることを特徴とする請求項7に記載の切削方法。   The cutting method according to claim 7, wherein in the third step, the tool body is rotated about an axis while supplying a cutting fluid to the groove of the tool body.
JP2005105117A 2005-03-31 2005-03-31 Cutting tool and cutting method using the cutting tool Active JP4542460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105117A JP4542460B2 (en) 2005-03-31 2005-03-31 Cutting tool and cutting method using the cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105117A JP4542460B2 (en) 2005-03-31 2005-03-31 Cutting tool and cutting method using the cutting tool

Publications (2)

Publication Number Publication Date
JP2006281378A JP2006281378A (en) 2006-10-19
JP4542460B2 true JP4542460B2 (en) 2010-09-15

Family

ID=37403810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105117A Active JP4542460B2 (en) 2005-03-31 2005-03-31 Cutting tool and cutting method using the cutting tool

Country Status (1)

Country Link
JP (1) JP4542460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110153475A (en) * 2019-06-20 2019-08-23 张秋龙 A kind of NC milling tooling reducing workpiece deformation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023655B2 (en) * 2006-10-24 2012-09-12 三菱マテリアル株式会社 Cutting tools
JP5650470B2 (en) * 2010-08-31 2015-01-07 Dmg森精機株式会社 Cutting holder and cutting apparatus
JP5633739B2 (en) 2010-10-29 2014-12-03 アイシン精機株式会社 Impeller molding equipment
CN102000845B (en) * 2010-11-05 2012-09-05 株洲钻石切削刀具股份有限公司 Balance-adjustable cutting tool
DE102017109369A1 (en) * 2017-05-02 2018-11-08 Komet Group Gmbh Cutting tool with coolant diverter
CN109663962A (en) * 2018-12-29 2019-04-23 张家港中天达工具有限公司 It is a kind of for processing the cutter of sharp mouth sharp-tooth shaped structure
CN113600892B (en) * 2021-07-27 2024-01-30 李日新 Self-adjusting milling cutter adapting to temperature change
CN114670400B (en) * 2022-02-28 2023-05-12 歌尔光学科技有限公司 Injection molding material gate processing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650722U (en) * 1992-12-21 1994-07-12 三菱マテリアル株式会社 Rolling tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650722U (en) * 1992-12-21 1994-07-12 三菱マテリアル株式会社 Rolling tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110153475A (en) * 2019-06-20 2019-08-23 张秋龙 A kind of NC milling tooling reducing workpiece deformation
CN110153475B (en) * 2019-06-20 2020-06-30 靖江市永固汽配制造有限公司 Numerical control milling tool capable of reducing workpiece deformation

Also Published As

Publication number Publication date
JP2006281378A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4542460B2 (en) Cutting tool and cutting method using the cutting tool
US7530788B2 (en) Hollow turbomachine blade
CN1920258A (en) Skewed tip hole turbine blade
US5040341A (en) Rotary cutter wheel
RU2577688C2 (en) Blade for turbine machine and turbine machine with such blade
JP2010112374A (en) Method and apparatus involving shroud cooling
US7704021B2 (en) Method and tooling for machining the annulus of gas-turbine rotor provided with integrally formed-on blades
JP2003522038A (en) Machine tool
US7658575B2 (en) Machine reamer
US20070009359A1 (en) Industrial gas turbine blade assembly
WO2011142370A1 (en) Deep-hole-boring drill head and guide pad therefor
JP2019519718A (en) Exhaust gas turbocharger impeller, exhaust gas turbocharger, and method for correcting the balance of rotor assembly of exhaust gas turbocharger
KR20220154217A (en) Drill system and method with coolant supply
JP2003106167A (en) Method and backing insert for blocking backwall water jet strike
JP2007038330A (en) Cutting cartridge and cutting tool
JP3850000B2 (en) Drill
JP2674487B2 (en) Machine tool coolant supply device
CN108995054A (en) A kind of high-efficient heat-dissipating diamond bit
JP4135868B2 (en) Air self-contained rotary cutting tool
JP5675080B2 (en) Wing body and gas turbine provided with this wing body
JP5036487B2 (en) Cutting tool and cutting method using the same
JP2005057160A (en) Dicing device
JP4360659B2 (en) Air spindle unit
JP2009066682A (en) Cutting tool, and cutting method using the same
JPH03104608A (en) Cutter blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100625

R150 Certificate of patent or registration of utility model

Ref document number: 4542460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3