JP4542282B2 - Method for producing heat-resistant inorganic fiber molded body - Google Patents

Method for producing heat-resistant inorganic fiber molded body Download PDF

Info

Publication number
JP4542282B2
JP4542282B2 JP2001129161A JP2001129161A JP4542282B2 JP 4542282 B2 JP4542282 B2 JP 4542282B2 JP 2001129161 A JP2001129161 A JP 2001129161A JP 2001129161 A JP2001129161 A JP 2001129161A JP 4542282 B2 JP4542282 B2 JP 4542282B2
Authority
JP
Japan
Prior art keywords
alumina
molded body
fiber
inorganic fiber
fiber molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001129161A
Other languages
Japanese (ja)
Other versions
JP2002321986A (en
Inventor
智夫 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001129161A priority Critical patent/JP4542282B2/en
Publication of JP2002321986A publication Critical patent/JP2002321986A/en
Application granted granted Critical
Publication of JP4542282B2 publication Critical patent/JP4542282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、水素,一酸化炭素等の還元雰囲気の炉の断熱材、カリウム,ナトリウム等のアルカリ成分を含む焼成物を焼成するための炉の断熱材、マイクロ波焼成炉の断熱材等として好適な、耐熱性無機繊維成形体に関する。
【0002】
【従来の技術】
従来より、耐熱性無機繊維成形体は、軽量で熱容量と熱伝導率が小さいことから省エネルギーを目的とした加熱炉の断熱材として広く使用されている。耐熱性無機繊維成形体としては、非晶質アルミノシリケート質繊維にシリカ系の焼結性バインダーを加えて成形したもの、多結晶質アルミノシリケート質繊維にシリカ系の焼結性バインダーを加え成形したもの、非晶質アルミノシリケート質繊維と多結晶質アルミノシリケート繊維を混合しシリカ系の焼結性バインダーを加え成形したものなどが知られている。更には、常温での強度を確保するため、それらの成形体に有機系バインダーを含有させたものもある。
【0003】
【発明が解決しようとする課題】
しかしながら、耐熱性無機繊維成形体の主原料であるセラミック繊維や、バインダー中に含まれるシリカ成分は、高温では水素,一酸化炭素等の還元性ガスによって還元され、酸素を放出しSiOとなって蒸発するといった問題がある。この還元反応は、1250℃以上の温度で特に激しくなり、急激な体積変化を伴って成形体の組織崩壊が起こるので、これら成形体は還元性のガスを含む高温の炉では使用できなかった。
【0004】
また、耐熱性無機繊維成形体中に含まれるシリカ成分は、高温でカリウム,ナトリウム等のアルカリ成分と反応し、カリオフィライト(KAlSiO4)、ネフェリン(NaAlSiO4)等を生成し組織崩壊を起こすため、焼成物にアルカリ成分を含む高温の炉でも使用不可能であった。
【0005】
更には、マイクロ波焼成炉の断熱材に耐熱性無機繊維成形体を用いようとした場合、シリカ成分はマイクロ波の吸収率が高いため、断熱材の方に誘電エネルギーが吸収され、誘電エネルギーの損失となるため被加熱物の温度が上がらなくなる。無理に加熱して誘電エネルギーの出力を高めた場合には、断熱材の温度が上がり過ぎて溶融し、溶融したシリカ成分は蒸気圧が低いため蒸発し、被加熱物の表面に付着し汚染するといった問題があった。
【0006】
本発明は、このような状況に鑑みてなされたものであり、その目的は、水素,一酸化炭素等の還元雰囲気の炉、カリウム,ナトリウム等のアルカリ成分を多く含む材料を焼成するための炉、マイクロ波焼成炉等の断熱材として安定に使用できる耐熱性無機繊維成形体を提供することである。
【0007】
【課題を解決するための手段】
すなわち、本発明は、アルミナ成分99〜100%のアルミナ繊維に、焼成によりアルミナ成分が残存する無機系バインダーと、有機系バインダーとを含有させてなることを特徴とする耐熱性無機繊維成形体である。好ましくは、上記アルミナ繊維の構成鉱物が、α−アルミナ及び/又は中間アルミナからなることである。
【0008】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0009】
本発明で用いられるアルミナ成分99〜100%のアルミナ繊維は、例えばアルミニウム塩水溶液及び/又はアルミナゾル分散体と有機高分子とを混合し、減圧濃縮、希釈等によって粘度が調整された紡糸原液を、押し出し法、遠心法、吹き出し法などの紡糸法で紡糸し、前駆体繊維としたものを焼成することによって得ることができる。紡糸法の一例は、粘度300〜5000mPa・sの紡糸原液を0.1〜1.0mmのノズルより液糸として押し出し、150〜600℃の乾燥気流によって乾燥固化させたものを吸引集積させる方法である。
【0010】
アルミニウム塩水溶液及び/又はアルミナゾル分散体としては、アルミニウム純度98.5%以上、好ましくは99.5%以上の金属アルミニウム地金を酸溶解して得た塩化物,硝酸塩,硫酸塩,酢酸塩、ベーマイト質のアルミナゾル,非結晶質のアルミナゾル等を用いることができる。
【0011】
有機高分子としては、ポリビニルアルコール,ポリエチレンオキサイド,ポリエチレングリコール等の水溶性高分子を用いることができる。
【0012】
本発明で用いられるアルミナ繊維の結晶は、α−アルミナ及び/又は中間アルミナであることが好ましい。このようなアルミナ繊維は、前駆体繊維を焼成する際の最高温度を980〜1500℃とすることによって製造することができる。
特に、この最高温度を1100〜1350℃とするとアルミナ繊維がある程度の強度を保持しているため、成形体とするときの作業がし易く、かつアルミナ繊維成形体の加熱収縮率を低く保持できるため好ましい。
【0013】
本発明で用いられる焼成によりアルミナ成分が残る無機系バインダーとは、温度400〜1000℃の焼成によってアルミナ成分のみが残存するものが好ましく、その具体例としては、ベーマイト質アルミナゾル、非結晶質アルミナゾル等のゾル分散液、リン酸アルミニウム、塩基性塩化アルミニウム等のアルミニウム塩水溶液などである。この無機系バインダーの使用量は、成形体の加熱収縮率を低く保持するため、質量基準で、アルミナ繊維100部に対して、有効成分であるアルミナ残存成分で2〜15部が好ましい。
【0014】
本発明で用いられる有機系バインダーとしては、エポキシ系、フェノール系、アクリル酸エステル系、ポリウレタン系、イソシアネート系、ポリイミド系、酢酸ビニル系等の接着剤、各種ゴム系接着剤、ポリビニルアルコール、でんぷんなどである。この有機系バインダーの使用量は、質量基準で、アルミナ繊維100部に対し、有効成分として3〜10部程度である。
【0015】
本発明の耐熱性無機繊維成形体を製造するには、上記アルミナ繊維と有機系バインダーとによりあらかじめ成形体を成形しておき、それに上記無機系バインダーを含浸、スプレー等により添加する方法、上記有機系バインダーと上記無機系バインダーを含む水分散体に上記アルミナ繊維を分散しておき、抄造法により成形・乾燥する方法などを採用することができる。
【0016】
本発明の耐熱性無機繊維成形体の使用に際しては、そのまま還元雰囲気炉,アルカリ成分を焼成するための炉,マイクロ波焼成炉等の断熱材として組み立て、施工することもできるし、あらかじめ1000〜1500℃程度で焼成してから適用することもできる。
【0017】
【実施例】
以下、実施例、比較例をあげてさらに具体的に本発明を説明する。
【0018】
実施例1
10%塩酸2000gにアルミニウム純度99.5%の金属アルミニウム粉298gを加え溶解した。この水溶液に水を加えて濃度調整を行い、アルミナ換算の濃度で20%のオキシ塩化アルミニウム水溶液2800gを得た。このオキシ塩化アルミニウム水溶液2800gと10%ポリビニルアルコール水溶液600gを混合した後、減圧脱水濃縮を行い、粘度1500mPa・sの紡糸原液1800gを調製した。
【0019】
この紡糸原液を、円周面に直径0.5mmの孔が300個設けられた直径250mmの中空円盤内に入れ、この円盤を回転させることによる遠心力によって紡糸原液を孔から押し出して繊維状とし、それを500℃の熱風により乾燥固化してアルミナ繊維前駆体を得た。次いで、昇温速度15℃/分、最高温度1250℃で焼成し、α−アルミナ60%、中間アルミナ40%からなる平均繊維径3.5μmのアルミナ繊維(アルミナ純度99.8%)を製造した。
【0020】
次に、このアルミナ繊維400gを水40000gに分散させ、更にアルミナ濃度20%のアルミナゾル180g、カチオン化でんぷん30gを加えて繊維濃度1%のスラリーとした。このスラリーを抄造成形し、120℃で乾燥して嵩密度0.3g/cm3、250mm×250mm、厚み25mmの耐熱性無機繊維成形体を製造した。これによって、最終的に得られた耐熱性無機繊維成形体の組成は、アルミナ繊維100部に対して無機系バインダー純分(アルミナ分)9部、有機系バインダー7.5部で配合されたものであった。
【0021】
比較例1
実施例1で得られたアルミナ換算濃度20%のオキシ塩化アルミニウム水溶液2800gとシリカ濃度20%のシリカゾル700gと10%ポリビニルアルコール水溶液750gとを混合した後、減圧脱水濃縮を行い、粘度1500mPa・sの紡糸原液2200gを用いたこと以外は、実施例1と同様にしてアルミナ繊維(α−アルミナ15%、ムライト5%、中間アルミナ型の結晶80%からなる平均繊維径3.5μm、アルミナ純度80%)を製造し、以下同様にして無機繊維成形体を製造した。
【0022】
比較例2
実施例1で得られた20%のオキシ塩化アルミニウム水溶液2800gとシリカ濃度20%のシリカゾル86gと10%ポリビニルアルコール水溶液618gとを混合した後、減圧脱水濃縮を行い、粘度1500mPa・sの紡糸原液1860gを得た後、それを1050℃で焼成したこと以外は、実施例1と同様にしてアルミナ繊維(中間アルミナ型の結晶100%からなる平均繊維径3.5μm、アルミナ純度97%)を製造し、以下同様にして無機繊維成形体を製造した。
【0023】
比較例3
アルミナ濃度20%のアルミナゾル180gの代わりに、シリカ濃度20%のシリカゾル180gとしたこと以外は、実施例1と同様にして無機繊維成形体を製造した。これによって、最終的に得られた耐熱性無機繊維成形体の組成は、アルミナ繊維100部に対して無機系バインダー純分(シリカ分)9部、有機系バインダー7.5部で配合されたものであった。
【0024】
以上の実施例1及び比較例1〜3で製造された無機繊維成形体の評価として、以下の3種の方法で耐久性試験を行った。それらの結果を表1に示す。
【0025】
(1)還元性ガスに対する耐久性試験
50mm×50mm×25mmの無機繊維成形体をタンマン電気炉中にて水素ガスを5l/minで通しながら40℃/minで1400℃まで昇温、1400℃で24時間保持した後、自然冷却して試料を取り出して外観と成分の分析を行った。
【0026】
(2)アルカリ成分に対する耐久性試験
100mm×100mm×25mmの無機繊維成形体の上面にNa2O粉をのせ、箱型抵抗加熱炉中にて10℃/minで1400℃まで昇温、1400℃で24時間保持した後、10℃/minで降温し、室温として試料を取り出して外観と成分の分析を行った。
【0027】
(3)マイクロ波加熱に対する耐久性試験
250mm×250mm×25mmの無機繊維成形体6枚を用い直方体箱型に組み合わせてマイクロ波焼成用断熱材箱とした。この箱の中に焼成用試料を入れて、28GHzマイクロ波発生装置を備えた加熱炉にて昇温し、1400℃とし、1時間保持した後、自然冷却し、断熱材の外観と成分の分析を行った。
【0028】
【表1】

Figure 0004542282
【0029】
【発明の効果】
本発明の耐熱性無機繊維成形体によれば、水素,一酸化炭素等の還元雰囲気の炉での還元性ガスに対する耐性が高く、カリウム,ナトリウム等のアルカリ成分を焼成物に含む炉でのアルカリ成分との反応性が低く、マイクロ波焼成炉におけるマイクロ波の吸収率が低いため、これら用途の断熱材として好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable as a heat insulating material for a furnace in a reducing atmosphere such as hydrogen and carbon monoxide, a heat insulating material for a furnace for baking a fired product containing an alkali component such as potassium and sodium, a heat insulating material for a microwave baking furnace, and the like. Further, the present invention relates to a heat-resistant inorganic fiber molded body.
[0002]
[Prior art]
BACKGROUND ART Conventionally, heat-resistant inorganic fiber molded bodies are widely used as heat insulating materials for heating furnaces for the purpose of energy saving because they are lightweight and have a small heat capacity and thermal conductivity. The heat-resistant inorganic fiber molded body was formed by adding a silica-based sinterable binder to amorphous aluminosilicate fiber, and molded by adding a silica-based sinterable binder to polycrystalline aluminosilicate fiber. Known are those obtained by mixing amorphous aluminosilicate fibers and polycrystalline aluminosilicate fibers and adding a silica-based sinterable binder. Furthermore, in order to ensure the intensity | strength at normal temperature, there exist some which included the organic type binder in those molded objects.
[0003]
[Problems to be solved by the invention]
However, the ceramic fiber, which is the main raw material of the heat-resistant inorganic fiber molded body, and the silica component contained in the binder are reduced by reducing gases such as hydrogen and carbon monoxide at high temperatures, releasing oxygen and becoming SiO. There is a problem of evaporation. This reduction reaction becomes particularly intense at a temperature of 1250 ° C. or higher, and the compact collapses with rapid volume change. Therefore, these compacts cannot be used in a high-temperature furnace containing a reducing gas.
[0004]
In addition, the silica component contained in the heat-resistant inorganic fiber molded body reacts with alkali components such as potassium and sodium at a high temperature to generate caryophyllite (KAlSiO 4 ), nepheline (NaAlSiO 4 ) and the like, causing tissue collapse. Therefore, it could not be used even in a high-temperature furnace containing an alkali component in the fired product.
[0005]
Furthermore, when a heat-resistant inorganic fiber molded body is used as a heat insulating material for a microwave firing furnace, the silica component has a high absorption rate of microwaves, so that the dielectric energy is absorbed by the heat insulating material, and the dielectric energy Since this is a loss, the temperature of the object to be heated will not rise. When the output of dielectric energy is increased by forcibly heating, the temperature of the heat insulating material rises too much and melts, and the fused silica component evaporates because of its low vapor pressure, and adheres to and contaminates the surface of the object to be heated. There was a problem.
[0006]
The present invention has been made in view of such a situation, and an object thereof is a furnace for reducing atmosphere such as hydrogen and carbon monoxide, and a furnace for firing a material containing a large amount of alkali components such as potassium and sodium. An object of the present invention is to provide a heat-resistant inorganic fiber molded body that can be used stably as a heat insulating material for a microwave firing furnace or the like.
[0007]
[Means for Solving the Problems]
That is, the present invention is a heat-resistant inorganic fiber molded article comprising an alumina fiber having an alumina component of 99 to 100% and an inorganic binder in which the alumina component remains upon firing and an organic binder. is there. Preferably, the constituent mineral of the alumina fiber is α-alumina and / or intermediate alumina.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0009]
The alumina fiber of 99 to 100% of the alumina component used in the present invention is, for example, a spinning stock solution in which the viscosity is adjusted by mixing, for example, an aluminum salt aqueous solution and / or an alumina sol dispersion and an organic polymer, concentration under reduced pressure, dilution, etc. It can be obtained by spinning a precursor fiber by spinning using a spinning method such as an extrusion method, a centrifugal method, or a blowing method. An example of the spinning method is a method in which a spinning stock solution having a viscosity of 300 to 5000 mPa · s is extruded as a liquid yarn from a nozzle of 0.1 to 1.0 mm, and dried and solidified by a dry air flow at 150 to 600 ° C. is sucked and accumulated. is there.
[0010]
As the aluminum salt aqueous solution and / or the alumina sol dispersion, chloride, nitrate, sulfate, acetate obtained by acid-dissolving metal aluminum metal having an aluminum purity of 98.5% or more, preferably 99.5% or more, Boehmite alumina sol, amorphous alumina sol, or the like can be used.
[0011]
As the organic polymer, water-soluble polymers such as polyvinyl alcohol, polyethylene oxide, and polyethylene glycol can be used.
[0012]
The crystals of alumina fibers used in the present invention are preferably α-alumina and / or intermediate alumina. Such an alumina fiber can be manufactured by setting the maximum temperature when firing the precursor fiber to 980 to 1500 ° C.
In particular, when the maximum temperature is 1100 to 1350 ° C., the alumina fiber retains a certain level of strength, so that the work when forming the molded body is easy and the heat shrinkage rate of the alumina fiber molded body can be kept low. preferable.
[0013]
The inorganic binder in which the alumina component remains by firing in the present invention is preferably one in which only the alumina component remains by firing at a temperature of 400 to 1000 ° C., and specific examples thereof include boehmite alumina sol, amorphous alumina sol, etc. Sol dispersions, aluminum salt aqueous solutions such as aluminum phosphate and basic aluminum chloride. The amount of the inorganic binder used is preferably 2 to 15 parts by weight of the alumina remaining component as an active ingredient with respect to 100 parts of the alumina fiber on a mass basis in order to keep the heat shrinkage rate of the molded body low.
[0014]
Examples of the organic binder used in the present invention include epoxy-based, phenol-based, acrylate-based, polyurethane-based, isocyanate-based, polyimide-based, vinyl acetate-based adhesives, various rubber-based adhesives, polyvinyl alcohol, starch, and the like. It is. The amount of the organic binder used is about 3 to 10 parts as an active ingredient with respect to 100 parts of alumina fiber on a mass basis.
[0015]
In order to produce the heat-resistant inorganic fiber molded body of the present invention, a molded body is previously formed with the alumina fiber and an organic binder, and the inorganic binder is impregnated and added by spraying or the like. A method in which the alumina fiber is dispersed in an aqueous dispersion containing a binder and the inorganic binder, and is formed and dried by a papermaking method can be employed.
[0016]
When using the heat-resistant inorganic fiber molded body of the present invention, it can be assembled and constructed as a heat insulating material such as a reducing atmosphere furnace, a furnace for firing alkali components, a microwave firing furnace, etc., or 1000-1500 in advance. It can also be applied after firing at about 0C.
[0017]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0018]
Example 1
To 2000 g of 10% hydrochloric acid, 298 g of metal aluminum powder having an aluminum purity of 99.5% was added and dissolved. The concentration was adjusted by adding water to this aqueous solution to obtain 2800 g of a 20% aluminum oxychloride aqueous solution in terms of alumina. After mixing 2800 g of this aluminum oxychloride aqueous solution and 600 g of a 10% polyvinyl alcohol aqueous solution, vacuum dehydration concentration was performed to prepare 1800 g of a spinning stock solution having a viscosity of 1500 mPa · s.
[0019]
This spinning dope is put into a hollow disc having a diameter of 250 mm having 300 holes with a diameter of 0.5 mm on the circumferential surface, and the spinning dope is extruded from the hole by a centrifugal force by rotating the disc to form a fiber. It was dried and solidified with hot air at 500 ° C. to obtain an alumina fiber precursor. Next, firing was carried out at a rate of temperature increase of 15 ° C./min and a maximum temperature of 1250 ° C. to produce alumina fibers (alumina purity 99.8%) having an average fiber diameter of 3.5 μm and comprising 60% α-alumina and 40% intermediate alumina. .
[0020]
Next, 400 g of this alumina fiber was dispersed in 40000 g of water, and 180 g of alumina sol having an alumina concentration of 20% and 30 g of cationized starch were added to form a slurry having a fiber concentration of 1%. This slurry was formed into a paper and dried at 120 ° C. to produce a heat-resistant inorganic fiber molded body having a bulk density of 0.3 g / cm 3 , 250 mm × 250 mm, and a thickness of 25 mm. As a result, the composition of the finally obtained heat-resistant inorganic fiber molded body was blended with 9 parts of inorganic binder (alumina) and 7.5 parts of organic binder to 100 parts of alumina fiber. Met.
[0021]
Comparative Example 1
After mixing 2800 g of an aluminum oxychloride aqueous solution 20% in terms of alumina obtained in Example 1, 700 g of silica sol 20% silica and 750 g of 10% polyvinyl alcohol aqueous solution, vacuum dehydration concentration was performed, and a viscosity of 1500 mPa · s was obtained. Except for using 2200 g of the spinning dope, alumina fiber (α-alumina 15%, mullite 5%, intermediate alumina type crystal 80% average fiber diameter 3.5 μm, alumina purity 80%, as in Example 1 In the same manner, an inorganic fiber molded body was manufactured.
[0022]
Comparative Example 2
After mixing 2800 g of the 20% aluminum oxychloride aqueous solution obtained in Example 1, 86 g of silica sol having a silica concentration of 20%, and 618 g of 10% polyvinyl alcohol aqueous solution, vacuum dehydration concentration was performed, and 1860 g of a spinning stock solution having a viscosity of 1500 mPa · s. After that, an alumina fiber (average fiber diameter 3.5 μm composed of 100% intermediate alumina type crystal and 97% alumina purity) was produced in the same manner as in Example 1 except that it was calcined at 1050 ° C. Thereafter, an inorganic fiber molded body was produced in the same manner.
[0023]
Comparative Example 3
An inorganic fiber molded body was produced in the same manner as in Example 1 except that 180 g of silica sol having a silica concentration of 20% was used instead of 180 g of alumina sol having an alumina concentration of 20%. As a result, the composition of the finally obtained heat-resistant inorganic fiber molded body was blended with 9 parts of inorganic binder (silica part) and 7.5 parts of organic binder with respect to 100 parts of alumina fiber. Met.
[0024]
As an evaluation of the inorganic fiber molded body produced in Example 1 and Comparative Examples 1 to 3 described above, a durability test was performed by the following three methods. The results are shown in Table 1.
[0025]
(1) Durability test against reducing gas A 50 mm × 50 mm × 25 mm inorganic fiber molded body was heated to 1400 ° C. at 40 ° C./min while passing hydrogen gas at 5 l / min in a Tamman electric furnace at 1400 ° C. After maintaining for 24 hours, the sample was naturally cooled and the sample was taken out and the appearance and components were analyzed.
[0026]
(2) Durability test against alkali component Na 2 O powder is placed on the top surface of an inorganic fiber molded body of 100 mm × 100 mm × 25 mm, heated to 1400 ° C. at 10 ° C./min in a box-type resistance heating furnace, and 1400 ° C. The sample was taken out at room temperature and analyzed for appearance and components.
[0027]
(3) Durability test for microwave heating Six inorganic fiber molded bodies having a size of 250 mm × 250 mm × 25 mm were used and combined in a rectangular parallelepiped box shape to form a heat insulating box for microwave firing. Place the sample for firing in this box, raise the temperature in a heating furnace equipped with a 28 GHz microwave generator, keep it at 1400 ° C., hold it for 1 hour, naturally cool it, and analyze the appearance and components of the heat insulating material Went.
[0028]
[Table 1]
Figure 0004542282
[0029]
【The invention's effect】
According to the heat-resistant inorganic fiber molded body of the present invention, the resistance to reducing gas in a reducing atmosphere furnace such as hydrogen or carbon monoxide is high, and the alkali in the furnace containing an alkaline component such as potassium or sodium in the fired product. Since the reactivity with a component is low and the microwave absorption rate in a microwave baking furnace is low, it is suitable as a heat insulating material for these uses.

Claims (1)

金属アルミニウムを酸溶解した水溶液と、ポリビニルアルコール水溶液とを混合してなる紡糸原液を紡糸して前駆体繊維を得、前記前駆体繊維を980〜1500℃で焼成して、α−アルミナ及び/又は中間アルミナからなるアルミナ成分99〜100%のアルミナ繊維を製造し、質量基準で100部の前記アルミナ繊維に、アルミナ純分で2〜15部のアルミナゾルと、3〜10部カチオン化でんぷんとを含有させて抄造成形してなることを特徴とする耐熱性無機繊維成形体の製造方法。Spinning stock solution obtained by mixing an aqueous solution in which metallic aluminum is dissolved in acid and a polyvinyl alcohol aqueous solution is spun to obtain a precursor fiber, and the precursor fiber is fired at 980 to 1500 ° C., and α-alumina and / or Alumina component 99-100% alumina fiber made of intermediate alumina is manufactured, and 100 parts of the above-mentioned alumina fiber on a mass basis contains 2 to 15 parts of alumina sol and 3 to 10 parts of cationized starch in pure alumina. A method for producing a heat-resistant inorganic fiber molded body, which is obtained by papermaking and molding.
JP2001129161A 2001-04-26 2001-04-26 Method for producing heat-resistant inorganic fiber molded body Expired - Fee Related JP4542282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001129161A JP4542282B2 (en) 2001-04-26 2001-04-26 Method for producing heat-resistant inorganic fiber molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001129161A JP4542282B2 (en) 2001-04-26 2001-04-26 Method for producing heat-resistant inorganic fiber molded body

Publications (2)

Publication Number Publication Date
JP2002321986A JP2002321986A (en) 2002-11-08
JP4542282B2 true JP4542282B2 (en) 2010-09-08

Family

ID=18977728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001129161A Expired - Fee Related JP4542282B2 (en) 2001-04-26 2001-04-26 Method for producing heat-resistant inorganic fiber molded body

Country Status (1)

Country Link
JP (1) JP4542282B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599579B2 (en) * 2009-05-18 2014-10-01 電気化学工業株式会社 Alumina short fiber aggregate and method for producing the same
CN113620693B (en) * 2021-09-09 2022-08-23 成都海鑫高科技有限公司 Preparation method of Gamma alumina fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835380A (en) * 1981-08-27 1983-03-02 日本アスベスト株式会社 Fibrous amorphous refractory heat insulating composition
JPS59152281A (en) * 1983-02-18 1984-08-30 東芝モノフラツクス株式会社 High temperature heat insulative structure
JPH04349177A (en) * 1991-03-04 1992-12-03 Nichias Corp Heat insulator
JPH05319949A (en) * 1992-05-15 1993-12-03 Mitsui Mining Co Ltd Production of alumina based fiber formed product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442373A (en) * 1987-08-11 1989-02-14 Nippon Steel Chemical Co Fireproof, heat insulating fibrous composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835380A (en) * 1981-08-27 1983-03-02 日本アスベスト株式会社 Fibrous amorphous refractory heat insulating composition
JPS59152281A (en) * 1983-02-18 1984-08-30 東芝モノフラツクス株式会社 High temperature heat insulative structure
JPH04349177A (en) * 1991-03-04 1992-12-03 Nichias Corp Heat insulator
JPH05319949A (en) * 1992-05-15 1993-12-03 Mitsui Mining Co Ltd Production of alumina based fiber formed product

Also Published As

Publication number Publication date
JP2002321986A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
WO2018006835A1 (en) High temperature-resistant light-weight thermal-insulating material having duel porous structure and preparation method therefor
CN104141181B (en) A kind of containing SiO2the ZrO of doping2the preparation method of fiber
CN103044065B (en) Porous oxide ceramic heat insulating material for kilns and preparation method of porous oxide ceramic heat insulating material
JPH02180631A (en) Hollow ceramic microsphere produced by sol-gel process and manufacture thereof
CN102701700A (en) SiO2 aerogel/inorganic cotton compound thermal insulation felt and preparation method thereof
CN106630978A (en) Surface-toughened aluminum oxide fiber rigid heat-insulating tile multi-layered composite material, coating composition, preparation method and application of composite material
CN112500179A (en) Carbon fiber toughened silicon carbide foamed ceramic and preparation method thereof
JP2959683B2 (en) Method for producing high-purity alumina fiber molded body
CN107954745A (en) Corrosion-resistant micro-pore mullite light fire brick and preparation method thereof
CN115160001A (en) Multi-base composite low-heat-conduction refractory brick for garbage incinerator
JP4542282B2 (en) Method for producing heat-resistant inorganic fiber molded body
US20190100464A1 (en) Thermally insulating materials including spherical, hollow inorganic particles
CN107954700A (en) Corrosion-resistant corundum refractory brick and preparation method thereof
JPH04124073A (en) Zirconia-based complex refractory and heat-insulating material
CN108505145A (en) A kind of calcium zirconate fiber and preparation method thereof
JPS63297267A (en) Zirconia composite refractory
JPWO2020146901A5 (en)
CN104529487B (en) Ultrahigh-temperature magnesium oxide fibre product and preparation method thereof
CA2561737A1 (en) Fiber-reinforced heat-resistant sound-absorbing material and process for producing the same
JPS643802B2 (en)
KR101788276B1 (en) Composition for High Temperature Insulating Refractory and High Temperature Insulating Refractory Using the Same
JPS61124626A (en) Aluminum nitride fiber and production thereof
RU2212388C2 (en) Method of manufacturing high-temperature alumina-based fiber
JP7258458B2 (en) Alumina fiber, alumina fiber assembly and gripping material for exhaust gas purifier
JPS61289130A (en) Production of zirconia fiber having high strength and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4542282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees