JP4540554B2 - Treatment method of fluorine-contaminated soil - Google Patents

Treatment method of fluorine-contaminated soil Download PDF

Info

Publication number
JP4540554B2
JP4540554B2 JP2005169365A JP2005169365A JP4540554B2 JP 4540554 B2 JP4540554 B2 JP 4540554B2 JP 2005169365 A JP2005169365 A JP 2005169365A JP 2005169365 A JP2005169365 A JP 2005169365A JP 4540554 B2 JP4540554 B2 JP 4540554B2
Authority
JP
Japan
Prior art keywords
soil
fluorine
calcium
compound
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005169365A
Other languages
Japanese (ja)
Other versions
JP2006341196A (en
Inventor
吉昭 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2005169365A priority Critical patent/JP4540554B2/en
Publication of JP2006341196A publication Critical patent/JP2006341196A/en
Application granted granted Critical
Publication of JP4540554B2 publication Critical patent/JP4540554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、フッ素化合物により汚染された土壌を物理化学的に浄化するフッ素汚染土壌の処理方法に関する。本発明に係るフッ素汚染土壌の処理方法は、たとえばフッ化水素酸等に汚染された土壌の浄化に好適に用いることができる。   The present invention relates to a method for treating fluorine-contaminated soil that physicochemically purifies soil contaminated with a fluorine compound. The method for treating fluorine-contaminated soil according to the present invention can be suitably used for purification of soil contaminated with hydrofluoric acid or the like, for example.

フッ素は、例えば半導体工場の洗浄工程などでフッ化水素酸等として多用されている。このようなフッ素化合物は、時として、タンクの破損やタンクへの移し変え時の事故などにより地中に漏洩して土壌のフッ素汚染を引き起こすことがある。フッ素が多量に体内に取り込まれるとたんぱく質分解酵素や解糖系の酵素を不活化することに起因する急性毒性を示すばかりでなく、骨フッ素症や斑状歯等の障害を与えることも指摘されている。このため、土壌中のフッ素溶出濃度は環境基準値として0.8mg/L以下と規定されているが、現状では掘削を伴う土壌洗浄に頼るしか手段がなかった。しかしながら近年、フッ素汚染土壌の浄化方法として従来の水処理分野で応用されていた、フッ化物イオンと共にカルシウムイオン、リン酸イオンを共存させることによりフッ素イオンを溶解度の低いフルオロアパタイトとして土壌中に固定化し、溶出を防止する技術が開発されている(例えば、特許文献1、特許文献2)。
特開2002−331272号公報 特開2004−305833号公報
Fluorine is frequently used, for example, as hydrofluoric acid in a semiconductor factory cleaning process. Such a fluorine compound sometimes leaks into the ground due to damage to the tank or an accident at the time of transfer to the tank, and may cause fluorine contamination of the soil. It has been pointed out that if a large amount of fluorine is taken into the body, it not only shows acute toxicity due to inactivation of proteolytic enzymes and glycolytic enzymes, but also causes disorders such as osteofluorosis and patchy teeth. Yes. For this reason, the fluorine elution concentration in the soil is defined as an environmental standard value of 0.8 mg / L or less, but at present, there is no other way but to rely on soil cleaning with excavation. However, in recent years, fluoride ions are immobilized in the soil as fluoroapatite with low solubility by coexisting calcium ions and phosphate ions together with fluoride ions, which has been applied in the conventional water treatment field as a purification method for fluorine-contaminated soil. A technique for preventing elution has been developed (for example, Patent Document 1 and Patent Document 2).
JP 2002-331272 A JP 2004-305833 A

上記手法においてカルシウムイオン源としては安価で溶解度の高い塩化カルシウムが多用されている。リン源としては溶解度の観点からはナトリウム塩を使用することが好ましい。リン酸のナトリウム塩としてはリン酸三ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウムが挙げられるが、リン酸三ナトリウムは水に溶解すると強アルカリ性を示すため、使用に注意が必要であり、また、塩化カルシウムとの反応後も土壌がアルカリ性を示し、フルオロアパタイトのフッ素がヒドロキシル基と置換してフッ素が溶出するため、リン酸水素二ナトリウム、リン酸二水素ナトリウムが好適に使用される。しかしながら、リン源として弱アルカリ性物質であるリン酸水素二ナトリウムやリン酸二水素ナトリウムを使用した場合、反応式は以下のようになり、塩酸を生じるため、結果として土壌のpHが低下する。
10CaCl2+6Na2HPO4+2NaF →Ca10(PO4)6F2+14NaCl+6HCl
(リン酸水素二ナトリウム使用)
10CaCl2+6NaH2PO4+2NaF →Ca10(PO4)6F2+8NaCl+12HCl
(リン酸二水素ナトリウム使用)
In the above method, calcium chloride, which is inexpensive and has high solubility, is frequently used as a calcium ion source. As a phosphorus source, it is preferable to use a sodium salt from the viewpoint of solubility. The sodium salt of phosphoric acid includes trisodium phosphate, disodium hydrogen phosphate, and sodium dihydrogen phosphate, but trisodium phosphate shows strong alkalinity when dissolved in water, so use with caution. In addition, since the soil is alkaline even after the reaction with calcium chloride and the fluorine of fluoroapatite is substituted with the hydroxyl group and the fluorine is eluted, disodium hydrogen phosphate and sodium dihydrogen phosphate are preferably used. . However, when weakly alkaline substances such as disodium hydrogen phosphate and sodium dihydrogen phosphate are used as the phosphorus source, the reaction formula is as follows, and hydrochloric acid is generated. As a result, the pH of the soil decreases.
10CaCl 2 + 6Na 2 HPO 4 + 2NaF → Ca 10 (PO 4 ) 6 F 2 + 14NaCl + 6HCl
(Uses disodium hydrogen phosphate)
10CaCl 2 + 6NaH 2 PO 4 + 2NaF → Ca 10 (PO 4 ) 6 F 2 + 8NaCl + 12HCl
(Uses sodium dihydrogen phosphate)

上記のようにpHが低下して土壌が酸性化すると、植物の成長阻害、フルオロアパタイトからのフッ素の再溶出、土壌中重金属類の溶出等、好ましくない影響を及ぼす。また、カルシウム源として水酸化カルシウムを使用した場合には、リン酸塩や土壌中共存物質、土壌のpH緩衝能力等により非常にタイトな調整を行わないと処理後の土壌pHを中性付近に調整することは非常に困難となる。土壌中の構造は一様ではなく、薬剤の注入も必ずしも設定値通りに注入することは困難である。このため、特に土壌の掘削を伴わずに土壌中に薬剤を添加して混合する原位置浄化法においては実質上、これまでの手法においてはpHのコントロールを行うことが困難であった。   When the pH is lowered and the soil is acidified as described above, undesirable effects such as inhibition of plant growth, re-elution of fluorine from fluoroapatite, and elution of heavy metals in the soil are caused. In addition, when calcium hydroxide is used as the calcium source, the soil pH after treatment should be close to neutral unless it is adjusted very tightly due to phosphate, coexisting substances in the soil, pH buffering capacity of the soil, etc. It becomes very difficult to adjust. The structure in the soil is not uniform, and it is difficult to inject the drug according to the set value. For this reason, in particular, in the in-situ purification method in which a chemical is added and mixed in soil without excavating the soil, it has been difficult to control the pH in the conventional methods.

そこで本発明の課題は、上記のような現状に鑑み、土壌のpHを適切な値に保ちつつフッ素の溶出を防止することを可能とする、フッ素汚染土壌の処理方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for treating fluorine-contaminated soil, which makes it possible to prevent the elution of fluorine while keeping the pH of the soil at an appropriate value in view of the above situation.

本発明者は、上記課題を解決するために、フッ素で汚染された土壌中にカルシウム化合物およびリン酸化合物を添加して土壌中にリン酸イオンおよびカルシウムイオンを解離状態で存在させることにより、土壌中で速やかに水に不溶性のカルシウムフルオロアパタイトを形成させて土壌からのフッ素溶出濃度を低減させることが可能であることが報告されていることに着目し、本手法においてカルシウム源としては安価で溶解度の高い塩化カルシウムが好適に使用されるが、これと共に水に対して難溶解性のカルシウム化合物を添加し、反応により生成した塩酸をこの難溶解性のカルシウム化合物と反応させることによってpHを中性付近に維持することが可能となることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventor added a calcium compound and a phosphate compound to soil contaminated with fluorine so that phosphate ions and calcium ions exist in a dissociated state in the soil. In particular, it has been reported that it is possible to reduce the concentration of fluorine elution from soil by forming water-insoluble calcium fluoroapatite in water. Highly calcium chloride is preferably used, but together with this, a calcium compound that is hardly soluble in water is added, and the hydrochloric acid produced by the reaction is reacted with this hardly soluble calcium compound to neutralize the pH. It has been found that it is possible to maintain the vicinity, and the present invention has been completed.

すなわち、本発明に係るフッ素汚染土壌の処理方法は、カルシウム化合物およびリン酸化合物をフッ素を含有する土壌中に添加してフッ素イオンの溶出を防止するフッ素汚染土壌の処理方法であって、カルシウム化合物として塩化カルシウム炭酸カルシウム混合して添加した後に、リン酸化合物としてリン酸水素二ナトリウムもしくはリン酸二水素ナトリウムを添加することを特徴とする方法からなる。 That is, the processing method of the fluorine contaminated soil according to the present invention, a calcium compound and a phosphate compound, a processing method of the fluorine contaminated soil was added to soil containing fluorine to prevent the elution of fluoride ions, calcium After mixing and adding calcium chloride and calcium carbonate as the compound , the method comprises adding disodium hydrogen phosphate or sodium dihydrogen phosphate as the phosphoric acid compound .

また、塩化カルシウム炭酸カルシウムを混合スラリーとして土壌に供給することもできる。 In addition, calcium chloride and calcium carbonate can be supplied to the soil as a mixed slurry.

本発明に係るフッ素汚染土壌の処理方法によれば、カルシウム化合物およびリン酸化合物を添加するに際し、カルシウム化合物として溶解性のカルシウム化合物と難溶解性のカルシウム化合物を組み合わせて添加することにより、反応により生成した塩酸を難溶解性のカルシウム化合物と反応させることによってpHを中性付近に維持することが可能となり、土壌の酸性化に伴う問題を回避しつつ、汚染土壌を適切に浄化することができる。   According to the method for treating fluorine-contaminated soil according to the present invention, when adding a calcium compound and a phosphate compound, by adding a combination of a soluble calcium compound and a hardly soluble calcium compound as a calcium compound, By reacting the generated hydrochloric acid with a sparingly soluble calcium compound, the pH can be maintained near neutrality, and the contaminated soil can be appropriately purified while avoiding the problems associated with soil acidification. .

このような本発明に係る方法は、土木用重機を使用することにより原位置での施工が可能であるため、既存の方法と比較してもコスト的に優位である。   Such a method according to the present invention can be constructed in-situ by using a heavy machinery for civil engineering, and therefore is superior in cost compared to existing methods.

以下に、本発明について、望ましい実施の形態とともに詳細に説明する。
本発明での浄化対象とする土壌は、フッ素化合物により汚染された土壌、底質等であり、本願ではこれらを総称してフッ素汚染土壌と呼ぶ。以下に、フッ化水素により汚染された土壌の浄化を例にとって詳細に説明する。
Hereinafter, the present invention will be described in detail together with preferred embodiments.
The soil to be purified in the present invention is soil contaminated with fluorine compounds, sediment, etc., and these are collectively referred to as fluorine-contaminated soil in the present application. Hereinafter, the purification of soil contaminated with hydrogen fluoride will be described in detail as an example.

本発明においては、例えば、フッ素に汚染された土壌部位を特定した後、浄化対象範囲を決定する。次に、処理対象となる土壌に対して、水に対して溶解性のカルシウム塩としての塩化カルシウムおよび難溶解性のカルシウム塩としての炭酸カルシウムを同時に添加する。また固体、スラリーによる添加が考えられ、いずれの方法によっても土壌中への添加が可能であるが、特に土壌の掘削を伴ず、地中混練機等を用いて原位置での施工を行う場合にはそれぞれのカルシウム塩を混合し、スラリーとして注入する方法が好適に採用される。 In the present invention, for example, after specifying a soil site contaminated with fluorine, the purification target range is determined. Next, calcium chloride as a calcium salt soluble in water and calcium carbonate as a hardly soluble calcium salt are simultaneously added to the soil to be treated. Also, solid, added by the slurry are contemplated, although it is possible to add also to the soil by any method, not I especially accompanied drilling soil, the application of in situ using underground kneader When performing, the method of mixing each calcium salt and inject | pouring as a slurry is employ | adopted suitably.

このとき、溶解性のカルシウム塩とし塩化カルシウム使用、難溶解性のカルシウム塩とし炭酸カルシウム使用る。カルシウム塩のそれぞれの添加量は、土壌中のフッ素濃度によって決定すればよいが、一般的には塩化カルシウムとしては土壌1tあたり1〜350kg (より望ましくは5〜200kg-Ca塩/t−土壌)、炭酸カルシウムとしては土壌1tあたり1〜200kg (より望ましくは5〜100kg-Ca塩/t−土壌)の範囲で添加が行われる。カルシウム塩の混合を行った後、リン酸塩の添加を行うが、ここでは中性付近のリン酸塩としてリン酸水素二ナトリウムもしくはリン酸二水素ナトリウム使用る。これらのリン酸塩固体、水溶液、スラリー等により土壌中に供給することが可能であるが、リン酸塩は比較的溶解度が高く、また、スラリーにすることが比較的困難であるため、水溶液として添加することが簡便である。リン酸塩添加量もカルシウム塩添加量と同様に土壌中のフッ素濃度により決定されるが、おおむね土壌1tあたりリン酸塩として0.5〜100kg(より望ましくは2〜50kg)の範囲で添加される。 At this time, as the solubility of the calcium salt using calcium chloride, to use calcium carbonate as a low-solubility calcium salt. The amount of each calcium salt added may be determined depending on the fluorine concentration in the soil. Generally, calcium chloride is 1 to 350 kg per 1 ton of soil (more preferably 5 to 200 kg-Ca salt / t-soil). Calcium carbonate is added in the range of 1 to 200 kg (more desirably 5 to 100 kg-Ca salt / t-soil) per 1 ton of soil. After mixing of the calcium salt, it performs the addition of phosphate, where that use of disodium hydrogen phosphate or sodium dihydrogen phosphate as the phosphate in the vicinity of neutral. Since these phosphates solid, aqueous solution, but the slurry or the like can be supplied to the soil, phosphate relatively high solubility, and it is relatively difficult to slurry, solution It is easy to add as. The amount of phosphate added is determined by the fluorine concentration in the soil in the same manner as the amount of calcium salt added, but is generally added in the range of 0.5 to 100 kg (more desirably 2 to 50 kg) as phosphate per 1 t of soil.

上記化合物の混合方法に特に限定はないが、掘削した場合には二本以上の軸を有した混合機もしくはハンマークラッシャータイプの混合機が好適に使用できる。また、本発明においては上記化合物を混合するだけで浄化が可能であるため、掘削を行わず原位置で混合を行うことがコストおよび浄化期間短縮の面で特に有効である。混合機としては一般的な土壌改良用の重機を使用することができる。   The mixing method of the above compound is not particularly limited, but when excavated, a mixer having two or more shafts or a hammer crusher type mixer can be preferably used. Further, in the present invention, purification is possible only by mixing the above compounds. Therefore, mixing in situ without drilling is particularly effective in terms of cost and shortening the purification period. A general heavy machine for soil improvement can be used as the mixer.

このようにしてカルシウム化合物およびリン酸化合物を土壌中に添加すると、可溶性のフッ素イオンと反応し、難溶性のカルシウムフルオロアパタイトCa10(PO4)6F2 を土壌中で形成する。したがって、カルシウム化合物の添加量は土壌中のフッ素含有量もしくは溶出量によって決定され、通常はカルシウムイオンとしてフッ素溶出モル濃度の10倍〜1000倍の間となるように添加される。また、リン酸化合物添加量も同様にフッ素含有量もしくは溶出量によって決定され、通常はリン酸イオンとしてフッ素溶出モル濃度の5倍〜500倍の間となるように添加される。土壌中に添加されたカルシウムイオンおよびリン酸イオンは土壌中のフッ素イオンと反応してフルオロアパタイトを形成するほか、過剰に添加された分についてはカルシウムヒドロキシアパタイトやリン酸カルシウムを形成して不溶化するが、リン酸のモル比が高い場合にはリン酸が遊離状態で存在し、容易に地下水中に溶け込み、富栄養化等の原因となるため、リン酸イオン2に対してカルシウムを3以上添加することが特に望ましい。また、これらの添加量は土壌中に予めカルシウム化合物もしくはリン酸化合物が存在する場合にはこれらの濃度を加味して決定することができる。 When the calcium compound and the phosphate compound are added to the soil in this way, it reacts with soluble fluorine ions to form hardly soluble calcium fluoroapatite Ca 10 (PO 4 ) 6 F 2 in the soil. Therefore, the addition amount of the calcium compound is determined by the fluorine content or the elution amount in the soil, and is usually added as calcium ions so as to be between 10 times and 1000 times the fluorine elution molar concentration. The addition amount of the phosphoric acid compound is similarly determined by the fluorine content or the elution amount, and is usually added as phosphate ions so as to be between 5 times and 500 times the fluorine elution molar concentration. Calcium ions and phosphate ions added to the soil react with fluorine ions in the soil to form fluoroapatite, and the excess added forms calcium hydroxyapatite and calcium phosphate, which becomes insoluble. When the molar ratio of phosphoric acid is high, phosphoric acid exists in a free state and easily dissolves in groundwater, causing eutrophication, etc., so add 3 or more calcium to phosphate ion 2 Is particularly desirable. In addition, when the calcium compound or phosphate compound is present in the soil in advance, these addition amounts can be determined by taking these concentrations into consideration.

以下に、本発明方法を用いて行った実施例を示す。なお、この実施例は本発明の範囲を限定するものではない。
実施例1、2、比較例1〜3
フッ素模擬汚染土壌を処理した。模擬汚染土壌としては、市販の川砂と粘土を混合して作製した人工土壌に対してNaFをフッ素として100mg/kgとなるように添加、混合して約1週間保存したものをフッ素の模擬汚染土壌として使用した。フッ素の固定化については、比較例1(純水添加)以外、上記の模擬汚染土壌200gに対して下記所定量のCaCl2およびCaCO3を用いて作製したスラリーと、NaH2PO4を添加してよく混合した水溶液とを使用した。
Examples carried out using the method of the present invention are shown below. Note that this example does not limit the scope of the present invention.
Examples 1 and 2 and Comparative Examples 1 to 3
Fluorine simulated contaminated soil was treated. As simulated contaminated soil, fluorine-contained soil that is prepared by adding NaF to 100 mg / kg as fluorine and mixing it with artificial soil made by mixing commercially available river sand and clay, and storing it for about 1 week after mixing. Used as. For fixation of fluorine, except for Comparative Example 1 (pure water addition), slurry prepared using the following predetermined amounts of CaCl 2 and CaCO 3 and 200H of NaH 2 PO 4 were added to 200 g of the simulated contaminated soil. And a well-mixed aqueous solution.

試験条件は以下の通りである。
1:フッ素汚染土壌200gに対して純水40mL添加(比較例1)
2:フッ素汚染土壌200gに対してスラリー状にしたCaCl2(CaCl2として5.8g)を添加後直ちにNaH2PO4溶液(NaH2PO4として2.25g)を添加し一晩静置(比較例2)
3:フッ素汚染土壌200gに対してスラリー状にしたCaCO3(CaCO3として1.0g)を混合した後、NaH2PO4溶液(NaH2PO4として2.25g)を添加して一晩静置(比較例3)
4:フッ素汚染土壌200gに対してNaH2PO4溶液(NaH2PO4として2.25g)を混合した後、スラリー状にしたCaCl2(CaCl2として5.8g)およびCaCO3(CaCO3として1.0g)を混合したものを添加して一晩静置(参考例1)
5:フッ素汚染土壌200gに対してスラリー状にしたCaCl2(CaCl2として5.8g)およびCaCO3(CaCO3として1.0g)を混合したものを添加後、NaH2PO4溶液(NaH2PO4として2.25g)を添加し一晩静置(実施例2)
The test conditions are as follows.
1: 40 mL of pure water added to 200 g of fluorine-contaminated soil (Comparative Example 1)
2: NaH 2 PO 4 solution (2.25 g as NaH 2 PO 4 ) was added immediately after adding CaCl 2 (5.8 g as CaCl 2 ) in a slurry state to 200 g of fluorine-contaminated soil and allowed to stand overnight (Comparative Example) 2)
3: After mixing CaCO 3 (1.0 g as CaCO 3 ) in slurry form with 200 g of fluorine-contaminated soil, add NaH 2 PO 4 solution (2.25 g as NaH 2 PO 4 ) and let stand overnight ( Comparative Example 3)
4: After mixing (2.25 g as NaH 2 PO 4) NaH 2 PO 4 solution to fluorine contaminated soil 200 g, as CaCl 2 (5.8 g as CaCl 2) and CaCO 3 (CaCO 3 was slurried 1.0g ) Was added and allowed to stand overnight ( Reference Example 1)
5: After adding a slurry of CaCl 2 (5.8 g as CaCl 2 ) and CaCO 3 (1.0 g as CaCO 3 ) mixed with 200 g of fluorine-contaminated soil, NaH 2 PO 4 solution (NaH 2 PO 4 2.25 g) as a mixture and let stand overnight (Example 2)

<溶出試験>
検液は、環境庁告示第46号(平成3年)に示された方法に従い、土壌を純水中に重量比で10%となるように添加し、6時間振とうして溶出させたのち、上澄み液を径45μmのメンブレンフィルターで濾過して作製した。また、フッ素濃度はJIS K0102(1998)に記載のランタン−アリザリンコンプレキソン吸光光度法により測定した。試験結果を表1に示す。
<Dissolution test>
According to the method shown in Environment Agency Notification No. 46 (Heisei 3), the sample solution was added to pure water at a weight ratio of 10% and shaken for 6 hours to elute. The supernatant was prepared by filtering through a membrane filter having a diameter of 45 μm. The fluorine concentration was measured by a lanthanum-alizarin complexone spectrophotometric method described in JIS K0102 (1998). The test results are shown in Table 1.

Figure 0004540554
Figure 0004540554

表1に示すように、カルシウム化合物およびリン化合物を添加していない比較例1に対して、溶解性カルシウム化合物およびリン酸化合物を添加した比較例2、参考例1および実施例2においてはフッ素溶出量の環境基準値である0.8mgF/L以下までの処理が可能であった。しかしながら、比較例2においてはpHの低下が確認され、土壌のpH緩衝能力の低下および土壌中の重金属溶出の促進等、環境負荷を増大させる恐れがあることが想定された。また、リンの溶出量も増大しており、地下水中の富栄養化を引き起こす可能性がある。一方、難溶解性のカルシウム化合物のみを使用した比較例3に関してはフッ素の溶出濃度が高く、環境基準値までの処理は困難であり、未反応のリン酸塩も残存していることが確認された。溶解性カルシウム化合物および難溶解性カルシウム化合物を添加した参考例1および実施例2についてはフッ素溶出濃度も低く、pHも中性付近に適切に調整されていることが分かった。参考例1においてはリンの溶出濃度が若干高く、実施例2のようにカルシウム化合物を予め混合した後にリン酸化合物を添加することがより望ましいことを確認した。
As shown in Table 1, in Comparative Example 2, in which soluble calcium compound and phosphoric acid compound were added, Comparative Example 1, Reference Example 1 and Example 2 in which calcium compound and phosphorous compound were not added, fluorine elution It was possible to treat the amount up to 0.8mgF / L, which is the environmental standard value. However, in Comparative Example 2, a decrease in pH was confirmed, and it was assumed that there was a risk of increasing the environmental burden such as a decrease in the pH buffering capacity of the soil and promotion of elution of heavy metals in the soil. Moreover, the amount of phosphorus elution is increasing, which may cause eutrophication in groundwater. On the other hand, in Comparative Example 3 using only the hardly soluble calcium compound, it was confirmed that the elution concentration of fluorine was high, the treatment to the environmental standard value was difficult, and unreacted phosphate remained. It was. Regarding Reference Example 1 and Example 2 to which the soluble calcium compound and the hardly soluble calcium compound were added, it was found that the fluorine elution concentration was also low and the pH was appropriately adjusted around neutrality. In Reference Example 1, the elution concentration of phosphorus was slightly high, and it was confirmed that it was more desirable to add the phosphoric acid compound after mixing the calcium compound in advance as in Example 2.

このように、フッ素汚染土壌に対してカルシウム化合物およびリン酸化合物を適切に添加、混合することによりフッ素の溶出を抑制することが可能であった。   Thus, it was possible to suppress the elution of fluorine by appropriately adding and mixing the calcium compound and the phosphate compound to the fluorine-contaminated soil.

Claims (3)

カルシウム化合物およびリン酸化合物をフッ素を含有する土壌中に添加してカルシウムフルオロアパタイトを形成させることによりフッ素イオンの溶出を防止するフッ素汚染土壌の処理方法であって、カルシウム化合物として塩化カルシウム炭酸カルシウム混合して添加した後に、リン酸化合物としてリン酸水素二ナトリウムもしくはリン酸二水素ナトリウムを添加することを特徴とするフッ素汚染土壌の処理方法。 A calcium compound and a phosphate compound, a processing method of the fluorine contaminated soil to prevent the elution of fluoride ions by forming calcium fluoroapatite added to soil containing fluorine, calcium chloride as a calcium compound and a carbonic acid A method for treating fluorine-contaminated soil, characterized by adding disodium hydrogen phosphate or sodium dihydrogen phosphate as a phosphate compound after mixing and adding calcium . 前記カルシウム化合物および前記リン酸化合物を、前記土壌中に原位置で添加する、請求項1に記載のフッ素汚染土壌の処理方法。 The method for treating fluorine-contaminated soil according to claim 1, wherein the calcium compound and the phosphate compound are added in situ to the soil. 前記塩化カルシウムと前記炭酸カルシウムを、水とのスラリーの状態で混合して添加する、請求項1または2に記載のフッ素汚染土壌の処理方法。 The method for treating fluorine-contaminated soil according to claim 1 or 2, wherein the calcium chloride and the calcium carbonate are mixed and added in a slurry state with water .
JP2005169365A 2005-06-09 2005-06-09 Treatment method of fluorine-contaminated soil Active JP4540554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169365A JP4540554B2 (en) 2005-06-09 2005-06-09 Treatment method of fluorine-contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169365A JP4540554B2 (en) 2005-06-09 2005-06-09 Treatment method of fluorine-contaminated soil

Publications (2)

Publication Number Publication Date
JP2006341196A JP2006341196A (en) 2006-12-21
JP4540554B2 true JP4540554B2 (en) 2010-09-08

Family

ID=37638552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169365A Active JP4540554B2 (en) 2005-06-09 2005-06-09 Treatment method of fluorine-contaminated soil

Country Status (1)

Country Link
JP (1) JP4540554B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584915B2 (en) * 2010-05-10 2014-09-10 独立行政法人国立高等専門学校機構 Fluorine insolubilizing agent and method for producing the same
CN116656370B (en) * 2023-07-21 2023-10-20 北京建工环境修复股份有限公司 Phosphorus-fluorine contaminated soil stabilization material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149950A (en) * 1999-12-01 2001-06-05 Kurita Water Ind Ltd Water treating method and water treating device
JP2002331272A (en) * 2001-05-09 2002-11-19 Kurita Water Ind Ltd Method for treating fluorine-containing solid waste
JP2004358309A (en) * 2003-06-03 2004-12-24 Ngk Insulators Ltd Method for treating fluorine in wastewater
JP2005058917A (en) * 2003-08-13 2005-03-10 Kokan Kogyo Kk Treatment method for soil polluted with heavy metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149950A (en) * 1999-12-01 2001-06-05 Kurita Water Ind Ltd Water treating method and water treating device
JP2002331272A (en) * 2001-05-09 2002-11-19 Kurita Water Ind Ltd Method for treating fluorine-containing solid waste
JP2004358309A (en) * 2003-06-03 2004-12-24 Ngk Insulators Ltd Method for treating fluorine in wastewater
JP2005058917A (en) * 2003-08-13 2005-03-10 Kokan Kogyo Kk Treatment method for soil polluted with heavy metal

Also Published As

Publication number Publication date
JP2006341196A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
KR101801496B1 (en) Insolubilizing material for specific hazardous substance and method for insolubilizing specific hazardous substance with same
JP2007330884A (en) Fluorine insolubilization/stabilization treatment material and treatment method of fluorine contaminated soil or fluorine contaminated ash
JP4079225B2 (en) Treatment method for heavy metal contaminated soil
JP4470216B2 (en) Treatment method for fluorine-containing solid waste
KR20160044531A (en) Insolubilizing material for hazardous substances, and treatment method using same
JP2009072657A (en) Method for treating heavy metals in soil or soil slurry
JP4540554B2 (en) Treatment method of fluorine-contaminated soil
JP5842423B2 (en) Detoxification method for solid waste containing heavy metals
JP2005305387A (en) Method for treating fluorine polluted soil
JP4151822B2 (en) Method for producing gypsum with reduced fluorine eluting
JP2008255171A (en) Fixing agent for inorganic harmful component
JP2008273993A (en) Heavy metal elution inhibitor and heavy metal elution-inhibiting construction method
KR20040087629A (en) A method for remediation of heavy metal-contaminated soil using liquefied phosphate
JP4788721B2 (en) Insolubilizer and insolubilization method of fluorine in steelmaking slag
JP3419330B2 (en) One-component heavy metal fixing agent
JP2012135728A (en) Method for reducing elution of fluorine from contaminated soil and composition and kit for reducing elution of fluorine from contaminated soil
JP4043763B2 (en) Soil solidifying agent
JPH11300313A (en) Heavy metal fixing agent composition and treatment of ash containing heavy metal
JP3716473B2 (en) Processing method for heavy metal-containing ash
JP7467798B2 (en) Manufacturing method of natural water fertilizer and natural water fertilizer
JPH10174952A (en) Treatment of heavy metal-containing ash
JP2009051914A (en) Soil-solidifying material, and method for solidifying soil
JP6406937B2 (en) Fluorine insolubilizer
JP2004283757A (en) Purification method for soil polluted with hexavalent chromium, and use of soil purified thereby
KR20170003602A (en) Insolubilizing material and method for insolubilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Ref document number: 4540554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250