JP4540046B2 - Static water refrigerant heat pump ice making system - Google Patents

Static water refrigerant heat pump ice making system Download PDF

Info

Publication number
JP4540046B2
JP4540046B2 JP2004232031A JP2004232031A JP4540046B2 JP 4540046 B2 JP4540046 B2 JP 4540046B2 JP 2004232031 A JP2004232031 A JP 2004232031A JP 2004232031 A JP2004232031 A JP 2004232031A JP 4540046 B2 JP4540046 B2 JP 4540046B2
Authority
JP
Japan
Prior art keywords
ice
water
water refrigerant
ice making
evaporating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004232031A
Other languages
Japanese (ja)
Other versions
JP2006046871A (en
Inventor
浩巳 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2004232031A priority Critical patent/JP4540046B2/en
Publication of JP2006046871A publication Critical patent/JP2006046871A/en
Application granted granted Critical
Publication of JP4540046B2 publication Critical patent/JP4540046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

本発明は、スタティック型水冷媒ヒートポンプ製氷システムに関する。さらに詳述すると、本発明は、水を冷媒とする製氷システムを用いた蓄冷装置の構造に関する。   The present invention relates to a static water refrigerant heat pump ice making system. More specifically, the present invention relates to a structure of a cold storage device using an ice making system using water as a refrigerant.

従来の水冷媒ヒートポンプ製氷システムとして、氷の生成を蒸発製氷器で、氷の貯蔵を貯氷タンクでそれぞれ行うものがある(図7、図8参照)。このような水冷媒ヒートポンプ製氷システムは、製氷部と貯氷部が異なることから一般に「ダイナミック型製氷システム」と呼ばれている(図7、図8参照)。   As a conventional water refrigerant heat pump ice making system, ice is generated by an evaporating ice making machine and ice is stored by an ice storage tank (see FIGS. 7 and 8). Such a water refrigerant heat pump ice making system is generally called a “dynamic ice making system” because the ice making part and the ice storage part are different (see FIGS. 7 and 8).

例えば図7に示す従来型の水冷媒ヒートポンプ製氷システム101は、伝熱管を有しない蒸発製氷器(タンク)102を備えている。この蒸発製氷器102の上部には水蒸気圧縮機103へと続く水蒸気の吸い込み口が設けられている。この蒸発製氷器102内に水をある高さまで封入し、水蒸気圧縮機103の吸い込み力によって気液界面から水を蒸発させる。その際、残りの水は蒸発潜熱を奪われるために温度・圧力が下がっていき、水の三重点(0.01℃、0.6kPa)に達するとその一部が凍って氷になる。   For example, a conventional water refrigerant heat pump ice making system 101 shown in FIG. 7 includes an evaporation ice making device (tank) 102 having no heat transfer tube. At the top of the evaporating ice maker 102, there is provided a water vapor suction port leading to the water vapor compressor 103. Water is sealed in the evaporation ice making device 102 to a certain height, and water is evaporated from the gas-liquid interface by the suction force of the steam compressor 103. At that time, the remaining water is deprived of latent heat of vaporization, so the temperature and pressure drop, and when it reaches the triple point of water (0.01 ℃, 0.6kPa), a part of it freezes to become ice.

また、同じダイナミック型の水冷媒ヒートポンプ製氷システム201として、図8に示すように蒸発製氷器202内に鉛直状の着氷板(液膜流下板)204を多数設置し、その表面に沿って流れる水を気液界面で凍らせるというものもある(例えば、特許文献1参照)。このような構造とした場合、全着氷板204の表面積分だけ上述した水冷媒ヒートポンプ製氷システム101よりも蒸発面積が増えるため、蒸発製氷器202のコンパクト化が図れる点で有利となる(なお、符号203は水蒸気圧縮機である)。   Also, as the same dynamic water refrigerant heat pump ice making system 201, as shown in FIG. 8, a large number of vertical icing plates (liquid film falling plates) 204 are installed in the evaporating ice maker 202 and flow along the surface thereof. There is also one that freezes water at the gas-liquid interface (see, for example, Patent Document 1). In the case of such a structure, the evaporation area is larger than the above-described water refrigerant heat pump ice making system 101 by the surface integral of all the ice icing plates 204, which is advantageous in that the evaporation ice making device 202 can be made compact (in addition, Reference numeral 203 is a steam compressor).

特開平6−241628号公報JP-A-6-241628

しかしながら、図7に示した従来型の水冷媒ヒートポンプ製氷システム101の場合、蒸発製氷器102にて製氷し続けていくうち、生成された氷が気液界面を覆って蒸発が起こりにくくなり、だんだんと氷が生成されにくくなってくるという問題がある。そこで、長時間にわたって水冷媒の蒸発面積(製氷面積)を確保するため、例えば攪拌機104によって氷−水スラリーの攪拌を行ったり、スラリーポンプ105を使って氷−水スラリーを蒸発製氷器102の外部(例えば貯氷タンク106)へと搬出したりしなければならなくなっている(図7参照)。また、蒸発製氷器102の内側壁面に氷が付着し成長すると攪拌羽根の回転が妨げられ攪拌機104の運転が阻害されてしまうので、例えば蒸発製氷器102の外側壁面に温ブライン配管107を設けて壁面を加熱するなどしてこのような事態を防がなければならない。このように攪拌、搬出さらには加熱を行うための設備を設けることは、システムの大型化とコスト上昇を招くとともにエネルギー消費も大きくなるという点で問題である。   However, in the case of the conventional water refrigerant heat pump ice making system 101 shown in FIG. 7, as the ice making device 102 continues to make ice, the generated ice covers the gas-liquid interface and is less likely to evaporate. There is a problem that it becomes difficult to generate ice. Therefore, in order to secure the evaporation area (ice making area) of the water refrigerant for a long time, for example, the ice-water slurry is stirred by the stirrer 104 or the ice-water slurry is removed from the evaporation ice making machine 102 by using the slurry pump 105. (For example, the ice storage tank 106) must be carried out (see FIG. 7). Further, if ice adheres to the inner wall surface of the evaporating ice maker 102 and grows, the rotation of the stirring blade is hindered and the operation of the agitator 104 is hindered. Such a situation must be prevented by heating the wall surface. Providing equipment for stirring, carrying out, and heating in this way is problematic in that it increases the size and cost of the system and increases energy consumption.

また、図8に示したような水冷媒ヒートポンプ製氷システム201の場合にも、上述した製氷システム101と同様、氷−水スラリーの攪拌、搬出と蒸発製氷器壁面の加熱を行うための設備が必要不可欠となる。また、製氷システム201は着氷板204に流す水を蒸発製氷器202の下部から上部までポンプアップして循環させるための配管205も備えているが、この配管205の内側に付着した氷が成長・合体することによって管内流路が塞がれてしまうのを防ぐため、例えばこの配管205を外側から加熱する温ブライン等の加熱設備206も別途必要となり、さらなるシステムの大型化、コスト上昇、エネルギー消費の増大を招くという問題もある。加えて、着氷板204の変形機構や加熱機構が必要になる場合もある。   Also, in the case of the water refrigerant heat pump ice making system 201 as shown in FIG. 8, as in the ice making system 101 described above, facilities for stirring and carrying out the ice-water slurry and heating the wall surface of the evaporation ice maker are necessary. Indispensable. The ice making system 201 is also provided with a pipe 205 for pumping and circulating water flowing through the ice icing plate 204 from the lower part to the upper part of the evaporating ice maker 202, and the ice attached to the inner side of the pipe 205 grows. In order to prevent clogging of the flow path in the pipe due to coalescence, for example, a heating facility 206 such as a warm brine for heating the pipe 205 from the outside is additionally required, further increasing the size of the system, increasing the cost, and energy There is also a problem of increasing consumption. In addition, a deformation mechanism or a heating mechanism for the icing plate 204 may be required.

そこで、本発明は、熱交換性能が高く、システムの小型化とコスト低減、省エネルギー化を図ることができるスタティック型水冷媒ヒートポンプ製氷システムを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a static water refrigerant heat pump ice making system that has high heat exchange performance and can achieve system size reduction, cost reduction, and energy saving.

かかる目的を達成するため、請求項1に記載のスタティック型水冷媒ヒートポンプ製氷システムは、液体状の水冷媒の蒸発により製氷して蓄冷する蒸発製氷器と、この蒸発製氷器中の気体状の水冷媒を吸引し当該蒸発製氷器中の液体状の水冷媒を蒸発させて冷却させる水蒸気圧縮機と、蒸発製氷器中に複数段設置され液体状の水冷媒あるいは固体状の水冷媒を貯めることが可能な貯氷パネルと、液体状の水冷媒および気体状の水冷媒のいずれもが通過可能なように貯氷パネルに設けられた通過孔と、蒸発製氷器の底部から液体状の水冷媒を最上段の貯氷パネルに供給して循環させる冷水管と、該冷水管に設けられた冷水ポンプと、水冷媒と他の熱媒体との間で熱交換を行うため冷水管の途中に設置された熱交換器とを備えることを特徴としている。   In order to achieve this object, a static water refrigerant heat pump ice making system according to claim 1 includes an evaporating ice maker that makes ice by evaporating liquid water refrigerant and stores the ice, and gaseous water in the evaporating ice maker. A steam compressor that sucks the refrigerant and evaporates and cools the liquid water refrigerant in the evaporation ice maker, and stores the liquid water refrigerant or solid water refrigerant installed in a plurality of stages in the evaporation ice maker. An ice storage panel, a passage hole provided in the ice storage panel so that both liquid water refrigerant and gaseous water refrigerant can pass through, and liquid water refrigerant from the bottom of the evaporation ice maker. Heat exchanger installed in the middle of the cold water pipe to exchange heat between the cold water pipe supplied to the ice storage panel and circulated, the cold water pump provided in the cold water pipe, and the water refrigerant and other heat medium With a vessel That.

本発明にかかるスタティック型水冷媒ヒートポンプ製氷システムは、例えば製氷運転モード時であれば冷水ポンプを停止させた状態で水蒸気圧縮機を運転することになる。こうした場合、蒸発製氷器内の圧力と温度が三重点以下まで下がると、貯氷パネル上の水の蒸発あるいは氷の昇華による吸熱作用によって、連続的に氷が生成される。   In the static water refrigerant heat pump ice making system according to the present invention, for example, in the ice making operation mode, the steam compressor is operated with the cold water pump stopped. In such a case, when the pressure and temperature in the evaporating ice maker is lowered to the triple point or lower, ice is continuously generated by the endothermic action caused by evaporation of water on the ice storage panel or sublimation of ice.

一方、解氷運転モード時においては水蒸気圧縮機を停止させ、蒸発製氷器内を大気に開放して大気圧下とした状態で冷水ポンプを運転することになる。このとき、冷却負荷側の熱交換器に供給された冷水は当該熱交換器にて受熱し温度が上昇した後、蒸発製氷器内の最上段の貯氷パネルに供給される。供給された水は貯氷パネル上の氷と直接接触熱交換して所定の温度まで冷やされた後、蒸発製氷器の下部から再び熱交換器へと供給されるというようにして蒸発製氷器および冷水管を循環する。   On the other hand, in the ice-breaking operation mode, the water vapor compressor is stopped, and the chilled water pump is operated in a state in which the inside of the evaporating ice maker is opened to the atmosphere and is at atmospheric pressure. At this time, the chilled water supplied to the heat exchanger on the cooling load side is received by the heat exchanger, the temperature rises, and then supplied to the uppermost ice storage panel in the evaporation ice maker. The supplied water is directly contact-exchanged with the ice on the ice storage panel, cooled to a predetermined temperature, and then supplied again to the heat exchanger from the bottom of the evaporating ice maker. Circulate the tube.

このような構造のスタティック型水冷媒ヒートポンプ製氷システムは、水冷媒自身が蒸発あるいは凝固・融解する際の潜熱(蒸発熱や融解熱)を利用した蓄冷システムとして利用することができる。しかも本発明にかかる製氷システムにおいては、製氷運転モードと解氷運転モードのいずれにおいても水冷媒自身が凝固または融解する蓄冷材として機能し、尚かつ当該水冷媒自身が循環して熱交換を行うという流動熱媒体としても機能することから、冷媒−蓄冷材−流動熱媒体の間で熱交換する際のロスが非常に小さい。したがってこのスタティック型水冷媒ヒートポンプ製氷システムによれば高い熱交換性能を実現することができる。   The static water refrigerant heat pump ice making system having such a structure can be used as a cold storage system using latent heat (evaporation heat or heat of fusion) when the water refrigerant itself evaporates, solidifies or melts. Moreover, in the ice making system according to the present invention, the water refrigerant itself functions as a cold storage material that solidifies or melts in both the ice making operation mode and the ice melting operation mode, and the water refrigerant itself circulates and performs heat exchange. Therefore, the loss at the time of heat exchange between the refrigerant, the cold storage material and the fluid heat medium is very small. Therefore, according to the static water refrigerant heat pump ice making system, high heat exchange performance can be realized.

請求項2に記載の発明は、請求項1に記載のスタティック型水冷媒ヒートポンプ製氷システムにおいて、貯氷パネルに設けられた通過孔の周囲が上側へと出っ張って周壁状になっているというものである。   The invention according to claim 2 is the static water refrigerant heat pump ice making system according to claim 1, wherein the periphery of the passage hole provided in the ice storage panel protrudes upward and forms a peripheral wall. .

請求項3に記載の発明は、請求項1または2に記載のスタティック型水冷媒ヒートポンプ製氷システムが蒸発製氷器を複数備えているというものである。   The invention according to claim 3 is that the static water refrigerant heat pump ice making system according to claim 1 or 2 includes a plurality of evaporating ice makers.

請求項1記載のスタティック型水冷媒ヒートポンプ製氷システムでは、蒸発製氷器内に板状の貯氷パネルが複数段設置されていることから、水冷媒の気液界面の広さが十分に確保されうる。これによれば、製氷時に生成された氷が気液界面を短時間で覆って蒸発が起こりにくくなるような事態を回避することができることから、攪拌機によって氷−水スラリーの攪拌を行ったり、スラリーポンプを使って氷−水スラリーを蒸発製氷器の外部へ搬出したりする必要がない。また、攪拌機自体が不要となることから攪拌羽根の回転阻害といった問題を考慮する必要がないので、例えば蒸発製氷器の外側壁面に温ブライン配管を設けるなどの必要もなくなる。さらには、蒸発製氷器が貯氷タンクを兼ねていることからも、ダイナミック型製氷システムにおけるような氷−水スラリーの攪拌・搬出が不要であり、また、その結果として蒸発製氷器の内側壁面への氷の付着・成長を防ぐ必要もない。したがって本発明にかかるスタティック型水冷媒ヒートポンプ製氷システムによれば、システム全体での省スペース化・低コスト化・省エネ化を実現できる。   In the static water refrigerant heat pump ice making system according to the first aspect, since a plurality of plate-shaped ice storage panels are installed in the evaporating ice maker, the area of the gas-liquid interface of the water refrigerant can be sufficiently secured. According to this, since it is possible to avoid a situation in which the ice generated during ice making covers the gas-liquid interface in a short time and evaporation is difficult to occur, the ice-water slurry is stirred by the stirrer, or the slurry There is no need to pump the ice-water slurry out of the evaporating ice maker. In addition, since the agitator itself is not necessary, it is not necessary to consider the problem of obstructing the rotation of the agitating blades. Furthermore, since the evaporative ice maker also serves as an ice storage tank, it is not necessary to agitate and carry out the ice-water slurry as in the dynamic ice making system. There is no need to prevent the adhesion and growth of ice. Therefore, according to the static water refrigerant heat pump ice making system according to the present invention, space saving, cost reduction, and energy saving can be realized in the entire system.

加えて、本発明にかかるスタティック型水冷媒ヒートポンプ製氷システムは、製氷運転モード時において冷水ポンプを停止させた状態で製氷することから、冷水管の内側に氷が付着して塞がれてしまうようなことがなく、管閉塞の防止策を講じる必要がない。したがってこのことも省スペース化・低コスト化・省エネ化を図るうえで有利となる。   In addition, the static water refrigerant heat pump ice making system according to the present invention makes ice while the cold water pump is stopped in the ice making operation mode, so that ice adheres to the inside of the cold water pipe and is blocked. There is no need to take measures to prevent tube blockage. Therefore, this is also advantageous for space saving, cost reduction and energy saving.

また、このスタティック型水冷媒ヒートポンプ製氷システムによれば、特許文献2のような着氷板の変形機構や加熱機構も不要である。   Moreover, according to this static type water refrigerant heat pump ice making system, the deformation mechanism and heating mechanism of the icing plate as in Patent Document 2 are unnecessary.

さらには、上述したようにこのスタティック型水冷媒ヒートポンプ製氷システムにおいては水冷媒自身が蓄冷材として機能し、尚かつ流動熱媒体としても機能することから、冷媒−蓄冷材−流動熱媒体の間で直接接触熱交換が行われる。このため、配管の壁を介して熱交換を行っていた従来システムと比較して、高い熱交換性能を実現することができる。   Furthermore, as described above, in this static water refrigerant heat pump ice making system, the water refrigerant itself functions as a cold storage material and also functions as a fluid heat medium. Direct contact heat exchange takes place. For this reason, compared with the conventional system which performed heat exchange via the wall of piping, a high heat exchange performance is realizable.

請求項2に記載のスタティック型水冷媒ヒートポンプ製氷システムによると、通過孔の周囲が上側に出っ張っている分だけ貯氷パネル上に水を貯めることができる。したがって、パネルの大きさや数を変えることによって、どの程度の分量の水冷媒を蓄冷材として利用するかも自在である。   According to the static water refrigerant heat pump ice making system according to the second aspect, water can be stored on the ice storage panel as much as the periphery of the passage hole protrudes upward. Therefore, by changing the size and number of panels, it is possible to freely use an amount of water refrigerant as a cold storage material.

また、請求項3に記載のスタティック型水冷媒ヒートポンプ製氷システムによると、冷水を供給する蒸発製氷器と氷を生成する蒸発製氷器とで役割分担することが可能となり、一つのシステムであっても製氷運転と解氷運転とを同時に行い蓄冷熱をしながら冷却負荷に対応することができるようになる。   In addition, according to the static water refrigerant heat pump ice making system according to claim 3, it is possible to share the roles between the evaporating ice making device that supplies cold water and the evaporating ice making device that generates ice. It is possible to cope with the cooling load while performing the ice storage operation and the ice melting operation at the same time and storing the cold.

以下、本発明の構成を図面に示す実施の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings.

図1〜図5に本発明の一実施形態を示す。本発明にかかるスタティック型水冷媒ヒートポンプ製氷システム1は、液体状の水冷媒(水)の蒸発により製氷して蓄冷する蒸発製氷器2と、この蒸発製氷器2中の気体状の水冷媒(水蒸気)を吸引し当該蒸発製氷器2中の液体状の水冷媒を蒸発させて冷却させる水蒸気圧縮機3と、蒸発製氷器2中に複数段設置され液体状の水冷媒あるいは固体状の水冷媒を貯めることが可能な貯氷パネル4と、水蒸気および水のいずれもが通過可能なように貯氷パネル4に設けられた通過孔5と、蒸発製氷器2の底部から液体状の水冷媒(本明細書ではこれを「冷水」とも呼ぶ)を最上段の貯氷パネル4に循環させる冷水管6と、該冷水管6に設けられた冷水ポンプ7と、冷水と他の熱媒体との間で熱交換を行うため冷水管6の途中に設置された熱交換器8とを備えている。   1 to 5 show an embodiment of the present invention. A static water refrigerant heat pump ice making system 1 according to the present invention includes an evaporating ice making device 2 that makes ice by evaporating liquid water refrigerant (water) and cools it, and a gaseous water refrigerant (water vapor) in the evaporating ice making device 2. ) To evaporate and cool the liquid water refrigerant in the evaporating ice maker 2, and a liquid water refrigerant or a solid water refrigerant installed in the evaporating ice maker 2 in a plurality of stages. An ice storage panel 4 capable of storing, a passage hole 5 provided in the ice storage panel 4 so that both water vapor and water can pass through, and a liquid water refrigerant from the bottom of the evaporating ice maker 2 (this specification) Then, this is also referred to as “cold water”). The chilled water pipe 6 for circulating the chilled water to the uppermost ice storage panel 4, the chilled water pump 7 provided in the chilled water pipe 6, and heat exchange between the chilled water and another heat medium Heat exchanger installed in the middle of the cold water pipe 6 to do It is equipped with a door.

蒸発製氷器2は、内部を減圧することによって液体状の水冷媒を蒸発させ、その際の吸熱作用によって当該蒸発製氷器2内に残存する液体状の水冷媒を凍らせて氷を生成するものである。本実施形態における蒸発製氷器2は、その内部に貯氷パネル4が複数段設置されているもので、これら貯氷パネル4の上面に貯まった液体状の水冷媒を凍らせる製氷装置と生成した氷を貯留しておく貯氷タンクとを兼ねている。   The evaporation ice maker 2 evaporates the liquid water refrigerant by reducing the pressure inside, and generates ice by freezing the liquid water refrigerant remaining in the evaporation ice maker 2 by the endothermic action at that time. It is. The evaporative ice maker 2 in this embodiment has a plurality of ice storage panels 4 installed therein, and an ice making device for freezing liquid water refrigerant stored on the upper surface of these ice storage panels 4 and generated ice. Also serves as an ice storage tank for storage.

この蒸発製氷器2の上部には水蒸気管9の一端が接続されている(図1、図2参照)。この水蒸気管9の他端には水蒸気圧縮機3が接続されている(図1参照)。この水蒸気圧縮機3は蒸発製氷器2内の気体を吸引して負圧にし、これによって貯氷パネル4に貯められた液体状の水冷媒(水)を蒸発させる(図1、図2参照)。水蒸気圧縮機3はさらに別の管10によって凝縮器11と接続されている。この凝縮器11は冷却水管13によって冷却塔12と接続されている。冷却水管13は、これら凝縮器11と冷却塔12とが途中に配置された環状の導水管であり、冷却水を循環させるようになっている(図1参照)。凝縮器11と冷却塔12の間には冷却水を凝縮器11側から冷却塔12側へと送り出す冷却水ポンプ14が設けられている。冷却水管13を循環する冷却水は凝縮器11において水蒸気の熱を奪い凝縮させる。熱をもらい受けた冷却水は冷却塔12にてこの熱を放熱した後、再び凝縮器11へと送り込まれる(図1参照)。   One end of a steam pipe 9 is connected to the upper part of the evaporation ice making device 2 (see FIGS. 1 and 2). A steam compressor 3 is connected to the other end of the steam pipe 9 (see FIG. 1). The water vapor compressor 3 sucks the gas in the evaporating ice maker 2 to a negative pressure, thereby evaporating the liquid water refrigerant (water) stored in the ice storage panel 4 (see FIGS. 1 and 2). The steam compressor 3 is connected to the condenser 11 by a further pipe 10. The condenser 11 is connected to the cooling tower 12 by a cooling water pipe 13. The cooling water pipe 13 is an annular water guide pipe in which the condenser 11 and the cooling tower 12 are arranged in the middle, and is configured to circulate cooling water (see FIG. 1). A cooling water pump 14 is provided between the condenser 11 and the cooling tower 12 to send the cooling water from the condenser 11 side to the cooling tower 12 side. The cooling water circulating through the cooling water pipe 13 takes the heat of the water vapor and condenses in the condenser 11. The cooling water that has received the heat dissipates this heat in the cooling tower 12, and then is sent to the condenser 11 again (see FIG. 1).

さらに、このスタティック型水冷媒ヒートポンプ製氷システム1における熱交換器8は、冷水管6によって蒸発製氷器2と接続されており、冷水の循環系統に組み込まれた形となっている(図1等参照)。熱交換器8は、冷水と空気との間で熱交換を行う冷水−空気熱交換器、あるいは冷水と他の液体との間で熱交換を行う冷水−液体熱交換器である。また、冷水管6の途中には冷水ポンプ7およびバルブ15,16が設けられている(図2参照)。冷水管6は、循環する冷水を複数段ある貯氷パネル4のうちの最上段へ供給し、各パネルを通って流下する冷水を再び循環させて熱交換器8へと送り出すように配管されている(図3、図4参照)。熱交換器8では、冷水管6を流れる冷水と空気との間、あるいは当該冷水と他の液体との間で熱交換を行う。   Further, the heat exchanger 8 in the static water refrigerant heat pump ice making system 1 is connected to the evaporation ice making device 2 by a cold water pipe 6 and is incorporated in a cold water circulation system (see FIG. 1 and the like). ). The heat exchanger 8 is a cold water-air heat exchanger that exchanges heat between cold water and air, or a cold water-liquid heat exchanger that exchanges heat between cold water and another liquid. A cold water pump 7 and valves 15 and 16 are provided in the middle of the cold water pipe 6 (see FIG. 2). The cold water pipe 6 is piped so as to supply the circulating cold water to the uppermost stage of the ice storage panels 4 having a plurality of stages, and to recirculate the cold water flowing down through each panel and send it to the heat exchanger 8. (See FIGS. 3 and 4). In the heat exchanger 8, heat is exchanged between cold water flowing through the cold water pipe 6 and air, or between the cold water and another liquid.

貯氷パネル4には単数好ましくは複数の通過孔5が設けられており、製氷時(冷熱を蓄える時)においては水蒸気がこの通過孔5を下から上へと通過し、解氷時(冷熱を取り出す時)には冷水がこの通過孔5を上から下へと通過することができるようになっている(図5参照)。これら通過孔5の周囲は、上側へと出っ張って周壁のようになっていることが好ましい(図2等参照)。こうした場合、そのフランジ部分の出っ張り高さの分だけ貯氷パネル4上に液体状の水冷媒(水)を張ることが可能となる(図3、図4参照)。出っ張り高さを超える分の水はこの通過孔5をオーバーフローし、その下段の貯氷パネル4上に流れ落ちる(図3、図4参照)。この場合、流れ落ちた水が直下の貯氷パネル4上に貯まるようにするという観点からすれば、上下の貯氷パネル4間において通過孔5は十分にずらして配置することが好ましい。こうすることによって、水が最上段から最下段までの全てのパネル内を流れることが可能となる。   The ice storage panel 4 is provided with a single, preferably a plurality of passage holes 5. During ice making (when storing cold energy), water vapor passes through the passage holes 5 from the bottom to the top, and during ice breaking (cold heat is removed). The cold water can pass through the passage hole 5 from the top to the bottom (see FIG. 5). It is preferable that the periphery of these passage holes 5 protrudes upward and looks like a peripheral wall (see FIG. 2 and the like). In such a case, it is possible to apply liquid water refrigerant (water) on the ice storage panel 4 by an amount corresponding to the protruding height of the flange portion (see FIGS. 3 and 4). The water exceeding the protruding height overflows the passage hole 5 and flows down onto the ice storage panel 4 in the lower stage (see FIGS. 3 and 4). In this case, it is preferable that the passage holes 5 are disposed so as to be sufficiently shifted between the upper and lower ice storage panels 4 from the viewpoint of storing the water that has flowed down on the ice storage panels 4 directly below. By doing so, water can flow in all the panels from the top to the bottom.

また、これら貯氷パネル4は蒸発製氷器2内に多数枚設置されていることが好ましい。こうすることにより水冷媒の気液界面の面積が大きくなり、その分だけ製氷時(冷熱を蓄える時)に水蒸気を発生させやすくなる。また、水蒸気発生能力は保持しつつ蒸発製氷器2を小型化することも可能となる。   Further, it is preferable that a large number of these ice storage panels 4 are installed in the evaporating ice maker 2. By doing so, the area of the gas-liquid interface of the water refrigerant increases, and it becomes easier to generate water vapor during ice making (when storing cold energy). Further, it is possible to reduce the size of the evaporating ice maker 2 while maintaining the water vapor generation capability.

続いて、本実施形態のスタティック型水冷媒ヒートポンプ製氷システム1における動作について説明する。   Then, the operation | movement in the static type water refrigerant heat pump ice making system 1 of this embodiment is demonstrated.

まず、製氷運転モード(図1、図2参照)においては、冷水ポンプ7を停止させた状態で水蒸気圧縮機3を運転する。蒸発製氷器2内の圧力と温度を三重点以下まで下げることにより貯氷パネル4上の水冷媒が蒸発あるいは昇華する。この際、吸熱に伴い連続的に製氷が行われる。このように本実施形態では、製氷運転モードにおいて冷水ポンプ7を停止することから、冷水管6の凍結閉塞(冷水管6の内側に氷が付着、成長、合体することによって管内流路が氷で塞がれてしまうこと)の防止策が不要になる。したがって、例えばこの冷水管6を外側から加熱する温ブライン等の設備を設置せずに済む。   First, in the ice making operation mode (see FIGS. 1 and 2), the steam compressor 3 is operated with the cold water pump 7 stopped. The water refrigerant on the ice storage panel 4 evaporates or sublimes by lowering the pressure and temperature in the evaporating ice maker 2 to the triple point or less. At this time, ice making is continuously performed with heat absorption. As described above, in this embodiment, the cold water pump 7 is stopped in the ice making operation mode. No need to prevent the blockage). Therefore, for example, it is not necessary to install equipment such as a warm brine for heating the cold water pipe 6 from the outside.

一方、解氷運転モード(図3、図4参照)においては、水蒸気圧縮機3を停止させ、蒸発製氷器2内を大気に開放して大気圧下とし、冷水ポンプ7を運転して冷却負荷側の熱交換器8に冷水を供給する。冷水は冷却負荷側の熱交換器8にて受熱し温度が上昇した後、蒸発製氷器2の上部まで移動し、最上段の貯氷パネル4に供給される。この冷水は貯氷パネル4上の氷と直接接触熱交換して所定の温度まで冷やされた後、蒸発製氷器2の下部から再び熱交換器8へと供給される(図3参照)。ちなみに、以上のような解氷運転モードのとき冷水ポンプ7は大気圧下で動作することになるため、冷水ポンプ7の運転に必要な吸い込みヘッド分(すなわち、蒸発製氷器2下端と冷水ポンプ7との高さの差)は、例えばダイナミック型水冷媒ヒートポンプ製氷システムにおける氷−水スラリーポンプのように低圧(三重点圧力)下で動作する場合(一例として、この場合であればヘッド分として2m程度必要)よりも小さくて済む。このため、本実施形態のようなスタティック型の水冷媒ヒートポンプ製氷システム1は、システム全体の小型化・コンパクト化を図るうえで従前のダイナミック型水冷媒ヒートポンプ製氷システムよりも有利である。なお、上記の解氷運転モード時に大気圧下以外で動作すること自体は可能だが、大気圧下で解氷運転することは、冷水ポンプの吸い込みヘッドを小さくするという点で好ましい。   On the other hand, in the ice-breaking operation mode (see FIGS. 3 and 4), the steam compressor 3 is stopped, the inside of the evaporating ice maker 2 is opened to the atmospheric pressure, and the cooling water load is operated by operating the cold water pump 7. Cold water is supplied to the side heat exchanger 8. The chilled water is received by the heat exchanger 8 on the cooling load side and the temperature rises. Then, the chilled water moves to the upper part of the evaporating ice maker 2 and is supplied to the uppermost ice storage panel 4. The cold water is directly contact-exchanged with ice on the ice storage panel 4 and cooled to a predetermined temperature, and then supplied again to the heat exchanger 8 from the lower part of the evaporating ice maker 2 (see FIG. 3). Incidentally, since the chilled water pump 7 operates under atmospheric pressure in the above-described ice-breaking operation mode, the suction heads necessary for the operation of the chilled water pump 7 (that is, the lower end of the evaporating ice maker 2 and the chilled water pump 7). The difference in height with respect to, for example, when operating under a low pressure (triple pressure) as in an ice-water slurry pump in a dynamic water refrigerant heat pump ice making system (as an example, in this case, 2 m as the head) Less than required). Therefore, the static water refrigerant heat pump ice making system 1 as in the present embodiment is more advantageous than the conventional dynamic water refrigerant heat pump ice making system in reducing the size and size of the entire system. Although it is possible to operate at a pressure other than atmospheric pressure in the above-described ice-melting operation mode, it is preferable to perform the ice-breaking operation at atmospheric pressure in terms of reducing the suction head of the cold water pump.

本実施形態のスタティック型水冷媒ヒートポンプ製氷システム1においては、蒸発製氷器2は貯氷タンクを兼ねることから、ダイナミック型のような氷−水スラリーの攪拌・搬出が不要であり、その結果として、蒸発製氷器2の内側壁面への氷の付着・成長を防ぐ必要もないという特長を有する。また、水冷媒と冷水と氷の間で直接接触熱交換をすることができる。以上のことからこのスタティック型水冷媒ヒートポンプ製氷システム1は、氷−水スラリーの攪拌・搬出、蒸発製氷器2の壁面加熱、循環水管の加熱が全て不要であり、また、蒸発製氷器2における蒸発面積が大きいことから、補助的な設備を含むシステム全体で見た場合の省スペース化・低コスト化・省エネ化が期待できる。   In the static water refrigerant heat pump ice making system 1 of the present embodiment, the evaporating ice maker 2 also serves as an ice storage tank, so that it is not necessary to agitate and carry out the ice-water slurry as in the dynamic type. It has the feature that it is not necessary to prevent the adhesion and growth of ice on the inner wall surface of the ice maker 2. In addition, direct heat exchange can be performed among the water refrigerant, cold water, and ice. From the above, this static water refrigerant heat pump ice making system 1 does not require stirring and carrying out of the ice-water slurry, heating the wall surface of the evaporating ice maker 2 and heating the circulating water pipe, and evaporating in the evaporating ice maker 2. Since the area is large, space saving, cost reduction, and energy saving can be expected when viewing the entire system including auxiliary equipment.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば本実施形態においては図1等に示したように単一の蒸発製氷器2を備えたスタティック型水冷媒ヒートポンプ製氷システム1を説明したが、複数(例えば2個)の蒸発製氷器2を備えたシステムとすることもできる(図6参照)。このようなシステムとした場合、両蒸発製氷器2に役割分担させれば単一のシステムにおいて製氷運転と解氷運転とを同時に実施することも可能となり、例えば図6に示すように一方の蒸発製氷器2(蒸発製氷器2a)にて製氷運転を行い、これと同時に他方の蒸発製氷器2(蒸発製氷器2b)にて解氷運転を行うことができるようになる。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the present embodiment, the static water refrigerant heat pump ice making system 1 having a single evaporating ice maker 2 has been described as shown in FIG. 1 and the like, but a plurality of (for example, two) evaporating ice maker 2 are provided. System (see FIG. 6). In the case of such a system, it is possible to carry out the ice making operation and the ice melting operation at the same time in a single system by sharing the roles between the two evaporation ice makers 2, for example, as shown in FIG. The ice making operation can be performed by the ice making device 2 (evaporation ice making device 2a), and at the same time, the ice melting operation can be performed by the other evaporation ice making device 2 (evaporation ice making device 2b).

また、上述した実施形態において説明したスタティック型水冷媒ヒートポンプ製氷システム1(蒸発製氷器2が単一のもの、図1および図2参照)は冷却負荷がないかまたは少ない時間帯(例えば夜間)に製氷運転を実施することが好ましく、原則としてはこのような動作が基本になる。しかし動作時間帯がこれに限られるということはなく、例えば冷却負荷が少なくなる時間帯がないような場合であれば、図6に示したように蒸発製氷器2を複数用意し、冷水を供給する蒸発製氷器(図6の蒸発製氷器2b参照)と氷を生成する蒸発製氷器(図6の蒸発製氷器2a参照)とで役割分担することができる。こうすることにより、一つのシステムで製氷運転と解氷運転を同時に行い、蓄冷熱をしながら冷却負荷に対応することが可能となる(図6参照)。あるいは、スタティック型水冷媒ヒートポンプ製氷システム1自体を複数用意し、製氷運転するシステムと解氷運転するシステムとに分けて蓄冷熱をしながら冷却負荷に対応することも可能である。   In addition, the static water refrigerant heat pump ice making system 1 described in the above-described embodiment (with a single evaporating ice making device 2, see FIGS. 1 and 2) has no cooling load or a time zone with a small amount of time (for example, at night). It is preferable to carry out an ice making operation, and in principle, such an operation is fundamental. However, the operation time zone is not limited to this. For example, if there is no time zone during which the cooling load is reduced, a plurality of evaporating ice makers 2 are prepared and cold water is supplied as shown in FIG. The role can be divided between the evaporating ice maker (see evaporating ice maker 2b in FIG. 6) and the evaporating ice maker (see evaporating ice maker 2a in FIG. 6) that generates ice. By doing so, it is possible to simultaneously perform the ice making operation and the ice melting operation in one system and cope with the cooling load while storing the cold (see FIG. 6). Alternatively, it is also possible to prepare a plurality of static water refrigerant heat pump ice making systems 1 themselves, and to deal with the cooling load while performing cold storage heat separately for the ice making operation system and the ice melting operation system.

さらに、本実施形態では製氷器2内に設置される貯氷パネル4の好適例として水平に複数段配置されるパネルを説明したが、所定量の水冷媒を貯めておくことができ、攪拌が不要な程度の気液界面領域(面積)を確保しうるものであればこのように水平でなくてもよく、例えば傾斜して設置されるがある程度の気液界面を確保した状態で水冷媒を張ることのできる容器などを使用することもできる。   Furthermore, in the present embodiment, a panel arranged horizontally in a plurality of stages has been described as a preferred example of the ice storage panel 4 installed in the ice making device 2, but a predetermined amount of water refrigerant can be stored, and stirring is unnecessary. As long as the gas-liquid interface region (area) can be secured to some extent, it does not have to be horizontal in this way. For example, it is installed at an angle, but the water refrigerant is stretched in a state where a certain amount of gas-liquid interface is secured. Containers that can be used can also be used.

本発明にかかるスタティック型水冷媒ヒートポンプ製氷システムの構成および製氷運転モード時における動作を示す図である。It is a figure which shows the structure of the static type water refrigerant heat pump ice making system concerning this invention, and the operation | movement at the time of ice making operation mode. 図1に示した蒸発製氷器およびその周辺の拡大図である。FIG. 2 is an enlarged view of the evaporation ice maker shown in FIG. 1 and its surroundings. スタティック型水冷媒ヒートポンプ製氷システムの構成および解氷運転モード時における動作を示す図である。It is a figure which shows the operation | movement at the time of the structure of a static type water refrigerant heat pump ice-making system, and an ice-melting operation mode. 図3に示した蒸発製氷器およびその周辺の拡大図である。FIG. 4 is an enlarged view of the evaporation ice maker shown in FIG. 3 and its surroundings. 貯氷パネルの一例を示す平面図である。It is a top view which shows an example of an ice storage panel. 本発明の別の実施形態を示す図で、2個の蒸発製氷器を備えたスタティック型水冷媒ヒートポンプ製氷システムの一例を表したものである。It is a figure which shows another embodiment of this invention, and represents an example of the static type water refrigerant heat pump ice making system provided with two evaporating ice makers. 従来のダイナミック型水冷媒ヒートポンプ製氷システムを示す図である。It is a figure which shows the conventional dynamic type water refrigerant heat pump ice making system. 従来のダイナミック型水冷媒ヒートポンプ製氷システムを示す図である。It is a figure which shows the conventional dynamic type water refrigerant heat pump ice making system.

符号の説明Explanation of symbols

1 スタティック型水冷媒ヒートポンプ製氷システム
2 蒸発製氷器
3 水蒸気圧縮機
4 貯氷パネル
5 通過孔
6 冷水管
7 冷水ポンプ
8 熱交換器
DESCRIPTION OF SYMBOLS 1 Static type water refrigerant heat pump ice making system 2 Evaporating ice maker 3 Steam compressor 4 Ice storage panel 5 Passage hole 6 Cold water pipe 7 Cold water pump 8 Heat exchanger

Claims (3)

液体状の水冷媒の蒸発により製氷して蓄冷する蒸発製氷器と、この蒸発製氷器中の気体状の水冷媒を吸引し当該蒸発製氷器中の液体状の水冷媒を蒸発させて冷却させる水蒸気圧縮機と、前記蒸発製氷器中に複数段設置され前記液体状の水冷媒あるいは固体状の水冷媒を貯めることが可能な貯氷パネルと、前記液体状の水冷媒および気体状の水冷媒のいずれもが通過可能なように前記貯氷パネルに設けられた通過孔と、前記蒸発製氷器の底部から前記液体状の水冷媒を最上段の前記貯氷パネルに供給して循環させる冷水管と、該冷水管に設けられた冷水ポンプと、前記水冷媒と他の熱媒体との間で熱交換を行うため前記冷水管の途中に設置された熱交換器とを備えることを特徴とするスタティック型水冷媒ヒートポンプ製氷システム。   An evaporative ice maker that makes ice by the evaporation of liquid water refrigerant and stores it, and water vapor that sucks the gaseous water refrigerant in the evaporation ice maker and evaporates and cools the liquid water refrigerant in the evaporation ice maker A compressor, an ice storage panel installed in a plurality of stages in the evaporating ice maker and capable of storing the liquid water refrigerant or the solid water refrigerant, and any of the liquid water refrigerant and the gaseous water refrigerant A passage hole provided in the ice storage panel so as to be able to pass through, a cold water pipe for supplying and circulating the liquid water refrigerant from the bottom of the evaporating ice maker to the ice storage panel in the uppermost stage, and the cold water A static water refrigerant comprising: a cold water pump provided in a pipe; and a heat exchanger installed in the middle of the cold water pipe for performing heat exchange between the water refrigerant and another heat medium. Heat pump ice making system. 前記貯氷パネルに設けられた通過孔の周囲が上側へと出っ張って周壁状になっていることを特徴とする請求項1に記載のスタティック型水冷媒ヒートポンプ製氷システム。   2. The static water refrigerant heat pump ice making system according to claim 1, wherein a periphery of a passage hole provided in the ice storage panel protrudes upward to form a peripheral wall shape. 前記蒸発製氷器を複数備えることを特徴とする請求項1または2に記載のスタティック型水冷媒ヒートポンプ製氷システム。


The static water refrigerant heat pump ice making system according to claim 1 or 2, wherein a plurality of the evaporating ice makers are provided.


JP2004232031A 2004-08-09 2004-08-09 Static water refrigerant heat pump ice making system Expired - Fee Related JP4540046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232031A JP4540046B2 (en) 2004-08-09 2004-08-09 Static water refrigerant heat pump ice making system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232031A JP4540046B2 (en) 2004-08-09 2004-08-09 Static water refrigerant heat pump ice making system

Publications (2)

Publication Number Publication Date
JP2006046871A JP2006046871A (en) 2006-02-16
JP4540046B2 true JP4540046B2 (en) 2010-09-08

Family

ID=36025614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232031A Expired - Fee Related JP4540046B2 (en) 2004-08-09 2004-08-09 Static water refrigerant heat pump ice making system

Country Status (1)

Country Link
JP (1) JP4540046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511218B2 (en) 2016-08-23 2022-11-29 Lg Electronics Inc. Cooling water stirrer and water purifier having the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151054U (en) * 1974-05-31 1975-12-16
JPS56142384A (en) * 1980-04-04 1981-11-06 Chiyoda Chem Eng & Constr Co Ltd Gas cooling method and apparatus therefor
JPS6062539A (en) * 1983-07-06 1985-04-10 アクチ−セルスカベツト ト−マス ツス.サブロエ アンド カンパニ− Storing of ice and method of increasing said storing
JPH06147705A (en) * 1992-11-17 1994-05-27 Nippon Sanso Kk Ice particle producing apparatus
JPH06272914A (en) * 1993-03-16 1994-09-27 Mitsui Eng & Shipbuild Co Ltd Multi-tank connecting type ice heat storing facility
JPH0933073A (en) * 1995-07-17 1997-02-07 Suga Kogyo Kk Vacuum vaporization type ice heat storage device
JPH1137669A (en) * 1997-07-17 1999-02-12 Mitsubishi Heavy Ind Ltd Gas cooler
JP2001074322A (en) * 1999-09-03 2001-03-23 Daikin Ind Ltd Refrigerating system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151054U (en) * 1974-05-31 1975-12-16
JPS56142384A (en) * 1980-04-04 1981-11-06 Chiyoda Chem Eng & Constr Co Ltd Gas cooling method and apparatus therefor
JPS6062539A (en) * 1983-07-06 1985-04-10 アクチ−セルスカベツト ト−マス ツス.サブロエ アンド カンパニ− Storing of ice and method of increasing said storing
JPH06147705A (en) * 1992-11-17 1994-05-27 Nippon Sanso Kk Ice particle producing apparatus
JPH06272914A (en) * 1993-03-16 1994-09-27 Mitsui Eng & Shipbuild Co Ltd Multi-tank connecting type ice heat storing facility
JPH0933073A (en) * 1995-07-17 1997-02-07 Suga Kogyo Kk Vacuum vaporization type ice heat storage device
JPH1137669A (en) * 1997-07-17 1999-02-12 Mitsubishi Heavy Ind Ltd Gas cooler
JP2001074322A (en) * 1999-09-03 2001-03-23 Daikin Ind Ltd Refrigerating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511218B2 (en) 2016-08-23 2022-11-29 Lg Electronics Inc. Cooling water stirrer and water purifier having the same

Also Published As

Publication number Publication date
JP2006046871A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US10267570B2 (en) Coolant heat exchanger having a scraper for each heat exchange interface surface
JP4540046B2 (en) Static water refrigerant heat pump ice making system
JP7421176B2 (en) immersion cooling system
JP4623995B2 (en) Ice making method and ice making apparatus by supercooling brine
CN208124708U (en) Refrigerator
US5802866A (en) Air-cooled absorption-type air conditioning apparatus
KR200493302Y1 (en) Liquid Phase Beverage Supercooling Device
KR200489423Y1 (en) Liquid Phase Beverage Supercooling Device
KR101470958B1 (en) An ice machine with an integrated water-air cooling system
JP2018071835A (en) Ice machine
JP2002372397A (en) Cooling system
JP3094781B2 (en) Vacuum ice making equipment
JP2007303790A (en) Beer dispenser
JP2009204297A (en) Automatic ice maker
JP4922843B2 (en) Cooling system
JP4399309B2 (en) Ice heat storage device
KR20080040173A (en) Cooling device of condenser
JPH055374Y2 (en)
CN202432778U (en) Surface cooling type air separator for ammonia refrigeration system
KR100443725B1 (en) Evaporative and enclosed cooling tower having heat pipe
JP2007170698A (en) Control method of cooling device
JP3387388B2 (en) Cooling system
JP2006112652A (en) Ice making method and device for heat storage
KR20200080066A (en) Liquid Phase Beverage Supercooling Device
JPH055375Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

R150 Certificate of patent or registration of utility model

Ref document number: 4540046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees