JP4538955B2 - Photoelectric conversion device using ether compound electrolyte - Google Patents

Photoelectric conversion device using ether compound electrolyte Download PDF

Info

Publication number
JP4538955B2
JP4538955B2 JP2000604485A JP2000604485A JP4538955B2 JP 4538955 B2 JP4538955 B2 JP 4538955B2 JP 2000604485 A JP2000604485 A JP 2000604485A JP 2000604485 A JP2000604485 A JP 2000604485A JP 4538955 B2 JP4538955 B2 JP 4538955B2
Authority
JP
Japan
Prior art keywords
formula
photoelectric conversion
compound
conversion element
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000604485A
Other languages
Japanese (ja)
Inventor
貴明 酒井
尚平 松井
克人 三浦
政徳 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Application granted granted Critical
Publication of JP4538955B2 publication Critical patent/JP4538955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

発明の分野
本発明は、高イオン伝導性を有するエーテル化合物の電解質を用いた光電変換素子に関する。
関連技術
従来、電気化学的な各種デバイスに有機溶剤のイオン伝導体が注目されている。特に太陽電池用に使われる光電変換素子用のイオン伝導体として、炭酸エステルやテトラヒドロフランなどの有機溶剤にヨウ素とヨウ化カリウムを添加した電解質などが提案されている。しかし、これらの電解液は蒸気圧が高く、光電変換素子の耐久性の阻害になっており、特に太陽電池分野では10年以上の耐久性が必要であり、イオン伝導性、安全性およびシール安定性の優れた電解質が望まれている。
発明の要旨
本発明者らは、エーテル化合物(I)、(II)、(III)または(IV):(A)に、ヨウ素とヨウ素化合物の組み合わせあるいは臭素と臭素化合物の組み合わせからなる酸化還元対(B)を添加することにより所望の電解質が得られ、更にこの電解質は、太陽電池などの光電変換素子に応用するために有用であることを見出して本発明を完成した。すなわち、本発明は、充分なイオン伝導性と優れた安定性を有する電解質を用いることにより、長期安定性に優れた光電変換素子を提供する。
本発明者らは、エーテル化合物(I)、(II)、(III)または(IV):(A)に、ヨウ素とヨウ素化合物の組み合わせあるいは臭素と臭素化合物の組み合わせからなる酸化還元対(B)を添加することにより所望の電解質が得られ、更にこの電解質は、太陽電池などの光電変換素子に応用するために有用であることを見出して本発明を完成した。すなわち、本発明は、充分なイオン伝導性と優れた安定性を有する電解質を用いることにより、長期安定性に優れた光電変換素子を提供する。
本発明は、
(A)式(I)、(II)、(III)または(IV):

Figure 0004538955
[式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、R101、R102、R103、R104、R105は、水素原子、または−O(CHCHO)−A(但し、Aはアルキル基またはアルケニル基、aは1〜12の数)である。但し、式(I)、(II)、(III)および(IV)のそれぞれにおいて、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、R101、R102、R103、R104、R105の全てが同時に水素原子であることはない。Aは、−(CH−(但し、bは1〜12の数)又は−O(CHCHO)−(但し、cは1〜12の数)である。]
で示されるエーテル化合物、ならびに
(B)ヨウ素とヨウ素化合物の組み合わせまたは臭素と臭素化合物の組み合わせからなる酸化還元対
を含んでなる電解質を用いた光電変換素子を提供する。
発明の詳細な説明
式(I)、(II)、(III)および(IV)において、Aの例は、メチル基、エチル基、プロピル基、エテニル基(CH=CH−)などである。
エーテル化合物におけるエチレンオキシド単位(−CHCHO−)の総数は、1〜20、例えば、3〜12であってよい。R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、R101、R102、R103、R104、R105は、同様または異なっていてよい。
式(I)の構造式が式(I−1)で表されるエーテル化合物の合成法は次のとおりである。
Figure 0004538955
[R17、R18、R19は炭素数1〜6のアルキル基又は炭素数2〜6のアルケニル基より選ばれる基である。l、m、nは0〜12である。但し、l、m、nの全てが同時に0であることはない。]
式(I−1)において、l+m+nの合計は、好ましくは2以上、更に好ましくは3以上である。
(Step1)
(a)式のグリシジルエーテルに対し、3倍モル量の(b)式のアルコールと1.1倍モル量のペレット状のNaOHをフラスコに入れて攪拌し、70℃でグリシジルエーテル(a)を滴下する。滴下終了後、約1時間攪拌した後、HCl水溶液で反応液を中和する。ろ過、濃縮後、蒸留により中間体の(d)式のアルコールを得る。
Figure 0004538955
(Step2)
次に、中間体アルコール(d)式と、その1.5倍モル量のペレット状のNaOHをフラスコに入れ攪拌し、60℃で、中間体アルコールの1.5倍モル量の(c)式の化合物を滴下する。滴下終了後、約2時間攪拌し、ろ過後、精製し、(I−1)式の化合物を得る。
式(III)の構造式が式(III−1)で表されるエーテル化合物の合成法は次のとおりである。
Figure 0004538955
[R20、R21、R22、R23は炭素数1〜6のアルキル基又は炭素数2〜6のアルケニル基より選ばれる基である。o、p、q、r、sは0〜12である。但し、o、p、q、r、sの全てが同時に0であることはない。]
上記式(III−1)において、o+p+q+r+sの合計は、好ましくは2以上、更に好ましくは3以上、例えば4以上である。
(I−1)式の合成法のStep1と同様の方法で、(e)、(f)式のアルコールを合成する。
Figure 0004538955
(e)と(f)の等モル混合物に、(e)、(f)を合わせたモル数と同モル数のNaOHを加え、70℃で攪拌し、その1/2のモル数の(g)式の化合物を滴下する。
Cl−(−CH−CH−O−)s−1−CH−CH−Cl (g)
滴下終了後、約2時間攪拌し、ろ過後、精製し、(III−1)式の化合物を得る。
式(IV)の構造式が式(IV−1)で表されるエーテル化合物の合成法は次のとおりである。
Figure 0004538955
[R24、R25、R26、R27は炭素数1〜6のアルキル基又は炭素数2〜6のアルケニル基より選ばれる基である。t、u、v、wは0〜12である。但し、t、u、v、wの全てが同時に0であることはない。]
上記式(IV−1)において、t+u+v+wの合計は、好ましくは2以上、更に好ましくは3以上、例えば4以上である。
(Step1)
(I−1)式の合成法のStep1と同様の方法で、(h)式のアルコールを合成する。
Figure 0004538955
(h)式のアルコールに対し、3〜5倍モル量のエピクロロヒドリンと1.5倍モル量のペレット状のNaOHをフラスコに入れ、攪拌し、40℃で(h)式のアルコールを滴下する。滴下終了後、約2時間攪拌した後、ろ過、濃縮後、蒸留により、グリシジルエーテル(i)を得る。
Figure 0004538955
(Step2)
グリシジルエーテル(i)に対し、2倍モル量の(j)式のアルコールと1.1倍モル量のペレット状のNaOHをフラスコに入れ攪拌し、70℃でグリシジルエーテル(i)を滴下する。
滴下終了後、約1時間攪拌した後、HCl水溶液で反応液を中和する。ろ過、濃縮後、蒸留により、中間体アルコール(k)を得る。
Figure 0004538955
(Step3)
次に、中間体アルコール(k)と、その1.5倍モル量のペレット状のNaOHをフラスコに入れ、攪拌し、60℃で中間体アルコール(k)の1.5倍モル量の(l)式の化合物を滴下する。滴下終了後、約2時間攪拌し、ろ過後、精製し、(IV−1)式の化合物を得る。
Cl−(−CH−CH−O−)−R26 (l)
式(II)のエーテル化合物も上記と同様の操作により、得ることができる。 本発明でいう酸化還元対(B)とは、可逆的酸化還元反応を行う一対の化合物で、酸化体・還元体を独立に系内に添加したとき、速やかに電気化学的平衡に達するような物質を意味する。酸化還元対は、ヨウ素−ヨウ素化合物の組み合わせまたは臭素−臭素化合物の組み合わせである。
ヨウ素−ヨウ素化合物の組み合わせの酸化還元対は、例えばIとLiI、NaI、KI、CsI、CaI等の金属ヨウ化物の組み合わせ、またはIとアルキルアンモニウムヨーダイド、ピリジニウムヨーダイドなど4級アンモニウム化合物のヨウ素塩もしくはそれらを側鎖に持つ高分子化合物等の組み合わせにより構成されることが好ましい。
臭素−臭素化合物の組み合わせの酸化還元対は、例えばBrとLiBr、NaBr、KBr、CsBr、CaBr等の金属臭化物、あるいは、Brとアルキルアンモニウムブロマイド、ピリジニウムブロマイドなどの4級アンモニウム化合物の臭素塩またはそれらを側鎖に持つ高分子化合物等の組み合わせにより構成されることが好ましい。
酸化還元対の混合割合は、混合するエーテル化合物と任意に選択することが出来る。一般に酸化還元対の混合量が多いほど高いイオン伝導度を示す電解質を得ることが出来る。しかし、混合量が多すぎると、イオンの解離が起こりにくくなり、伝導度が低下してくる。また、酸化還元対の平衡電位が問題になる場合は、必要な平衡電位が得られるよう混合量を調整することができる。
本発明において、上記酸化還元対の使用量は、エーテル化合物100重量部に対して1〜50重量部、例えば5〜35重量部であってよい。
酸化還元対におけるヨウ素:ヨウ素化合物(および臭素:臭素化合物)のモル比は、1:5〜5:1が好ましい。
本発明の電解質の製造方法は特に制約はないが、通常、エーテル化合物(A)、酸化還元対(B)が混合できればよい。
酸化還元対(B)をエーテル化合物(A)に混合する方法は特に制約されないが、酸化還元対(B)を直接、エーテル化合物(A)に混合させる方法、酸化還元対(B)を含む有機溶媒にエーテル化合物(A)を混合させる方法などがある。粘性の高いあるいは固体状のエーテル化合物の場合は、有機溶媒(例えば、アセトニトリル)を用いて電解質製造の後に有機溶媒を除去する。
本発明において光電変換素子とは、電極間の電気化学反応を利用して、光エネルギーを電気エネルギーに変換する素子である。この光電変換素子に光を照射すると、一方の電極で電子が発生し、電極間に設けられた電線を通って対電極に移動する。対電極に移動した電子は、本発明のエーテル化合物よりなる電解質中の酸化還元対を還元する。還元された酸化還元対は、エーテル化合物よりなる電解質中を陰イオンとして一方の電極から他方の電極へ移動して、他方の電極に達し自らは酸化体に戻ることで、電子を他方の電極に戻す。このようにして、本発明の光電変換素子は、光エネルギーを電気エネルギーに変換できる素子またはセンサーである。又、光に応答するところから光センサーとしての機能も有する。
光電変換素子は、エーテル化合物の電解質および一対(2つ)の電極を有してなる。
電極としては、ガラス板(光を透過する透明の保護材)に付着された導電体が挙げられる。電極を有するガラス板は、導電性材料(例えば、金属、酸化物半導体、特にインジウム−錫酸化物(ITO)をコーティングしたガラス板であってよい。
透明電極に酸化チタン、酸化亜鉛、酸化タングステン、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カリウム、タンタル酸カリウム、酸化タングステン、酸化鉄などの酸化物半導体、硫化カドミウム、CdTe、ケイ素、フタロシアニン、ポリチエニレン、ポリピロール、ポリアニリンなどの半導体、または、前記の酸化物半導体や半導体を色素や他の無機物で増感したものなどを一層または二層以上担持させると、より好ましい光電変換素子が得られる。すなわち、本発明の光電変換素子は、エーテル化合物よりなる電解質、半導体(例えば、n型半導体またはp型半導体)を含んでなる1つの電極、半導体(例えば、p型半導体またはn型半導体)または金属である1つの対電極を有してなってよい。
電極に担持する半導体としては、酸化物半導体が好ましく、特に、酸化チタンまたは色素で増感した酸化チタンが、安定性、安全性、価格の点から好ましい。色素としては、有機金属錯体、例えばルテニウム−ビピリジン錯体、特にシス−ジ(チオシアナト)−N,N’−ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)(cis−di(thiocyanato)−N,N’−bis(2,2’−bipyridyl−4,4’−dicarboxylic acid)ruthenium(II))を用いることができる。
電解質を電極上に設けるには、電解質を直接電極に含浸あるいは不織布に含浸する方法などを採用することが出来る。もしくは、電極間にスペーサーを設けても良い。このようにして電解質を電極上に設けた後、電解質上に対電極を設けて、本発明の光電変換素子を得ることが出来る。
光電変換素子に本発明のエーテル化合物の電解質を用いると、優れたイオン伝導性を有しかつ優れた安定性を有するものであるため、良好な変換効率を有する光電変換素子を得ることが出来る。
本発明の光電変換素子は、太陽電池、光センサー等として使用できる。
図1は、実施例4で得られた光電変換素子の断面図である。光電変換素子は、ガラス板1および6、電極2および5、半導体層3およびエーテル化合物の電解質層4を有する。
透明のガラス板1および6は、光電変換素子を保護し、かつ光を透過する。ガラス板1および6の厚さは0.1〜5mmであって良い。電極2は、透明なITO(インジウム−錫酸化物)であって良い。電極2の厚さは、2〜100μmであって良い。層3は、多孔質TiOからなり、光からホールと電子を発光させる。電解質層4は、エーテル化合物と電解質化合物から成り、イオンのキャリア層として機能する。電解質層4の厚さは5〜1000μmであって良い。電極5は、金属(例えば、金および白金)からできている事が好ましい。電極5の厚さは、2〜100μmであって良い。
光電変換素子の側面は、樹脂7で封止されていることが好ましい。樹脂7の例は、エポキシ樹脂、アクリル樹脂等である。電極2および電極5にはリード線8が接続されている。リード線8は、導電性ペースト(図示せず)によって電極2および5に取付られている。導電性ペーストの例は、銀ペースト、カーボンペースト等である。
実施例
以下、実施例により本発明を具体的に説明する。
エーテル化合物の特性を以下のとおり測定した。
イオン伝導度(導電率)
イオン伝導度(導伝率σ)は、複素インピーダンス測定により求めた。測定は40℃、電圧10mV、周波数5Hz〜13MHzの交流法を用いた。
合成例1(エーテル化合物(i)の合成)
(Step1)
ジエチレングリコールモノメチルエーテル360g(3.0モル)にペレット状のNaOH44.0g(1.1モル)を加え、70℃で攪拌しながら、2−(2−メトキシエトキシ)エチルグリシジルエーテル176g(1.0モル)を少量ずつ滴下した。滴下終了後、約1時間攪拌した後室温で放冷した。その後、塩酸で中和し、析出した塩をろ過し、濃縮した後、減圧蒸留により精製し、1,3−ビス[2−(2−メトキシエトキシ)エトキシ]−2−プロパノール222g(収率75%)を得た。蒸留温度は171〜175℃/0.8mmHgであった。
(Step2)
Step1で得られた1,3−ビス[2−(2−メトキシエトキシ)エトキシ]−2−プロパノール100g(0.34モル)にペレット状のNaOH20.4g(0.51モル)を加え、60℃で攪拌しながら、2−クロロエチルメチルエーテル48.2g(0.51モル)を少量ずつ滴下した。滴下終了後、約2時間攪拌し、析出した塩をろ過し、濃縮した後、減圧蒸留により精製し、1,3−ビス[2−(2−メトキシエトキシ)エトキシ]−2−(2−メトキシエトキシ)プロパン(i)102g(収率85%)を得た。蒸留温度は155〜161℃/0.2mmHgであった。
Figure 0004538955
合成例2(エーテル化合物(ii)の合成)
合成例1のStep1と同様の方法で合成した1,3−ビス(2−メトキシエトキシ)−2−プロパノール100g(0.48モル)にペレット状のNaOH9.6g(0.24モル)を加え、70℃で攪拌しながら2−クロロエチルエーテル11.4g(0.08モル)を少量ずつ滴下した。滴下終了後、約2時間攪拌した後、室温で放冷した。その後、析出した塩をろ過し、濃縮した後、減圧下(180℃/0.1mmHg)で低沸物を除いて、(ii)式の化合物31.2g(収率80%)を得た。
Figure 0004538955
合成例3(エーテル化合物(iii)の合成)
(Step1)
エピクロロヒドリン506g(5.5モル)にペレット状のNaOH68.0g(1.7モル)を加え、40℃で攪拌しながら、合成例1のStep1と同様の方法で合成した1−(2−メトキシエトキシ)−3−[2−(2−メトキシエトキシ)エトキシ]−2−プロパノール278g(1.1モル)を少量ずつ滴下した。滴下終了後、約2時間攪拌した後室温で放冷した。その後、析出した塩をろ過し、濃縮した後、減圧蒸留により精製し、1−(2−メトキシエトキシ)−3−[2−(2−メトキシエトキシ)エトキシ]プロピル−2−グリシジルエーテル231g(収率68%)を得た。蒸留温度は143〜147℃/0.3mmHgであった。
(Step2)
次に、エトキシエタノール117g(1.3モル)にペレット状のNaOH28.8g(0.72モル)を加え、70℃で攪拌しながら、Step1で得られた1−(2−メトキシエトキシ)−3−[2−(2−メトキシエトキシ)エトキシ]プロピル−2−グリシジルエーテル200g(0.65モル)を少量ずつ滴下した。滴下終了後約1時間攪拌した後、室温で放冷した。その後、塩酸で中和し、析出した塩をろ過し、濃縮した後、減圧蒸留により、精製し、(m)式の化合物184g(収率71%)を得た。蒸留温度は185〜192℃/0.1mmHgであった。
Figure 0004538955
(Step3)
Step2で合成した(m)式の化合物150g(0.38モル)にペレット状のNaOH22.8g(0.57モル)を加え、60℃で攪拌しながら、2−クロロエチルメチルエーテル53.9g(0.57モル)を少量ずつ滴下した。滴下終了後、約2時間攪拌し、析出した塩をろ過し、濃縮した後、減圧下(180℃/0.1mmHg)で低沸物を除いて、(iii)式の化合物134g(収率77%)を得た。
Figure 0004538955
実施例1
合成例1で製造したエーテル化合物(i)1g、オリゴエチレングリコールジメチルエーテル(分子量:400)1g、ヨウ化リチウム200mgおよびヨウ素50mgを混合した。この混合物のイオン伝導度を測定したところ7.4×10−3S/cmであった。
実施例2
合成例2で製造したエーテル化合物(ii)1g、ヨウ化リチウム400mg及びヨウ素100mgを混合し、イオン伝導度を測定したところ8.2×10−3S/cmであった。
実施例3
合成例3で製造したエーテル化合物(iii)を実施例2と同様にイオン伝導度を測定したところ、9.2×10−3S/cmであった。
実施例4
1)エーテル化合物の合成例で得たそれぞれの化合物((i)〜(iii))1gとヨウ化リチウム300mgを混合し電解質化合物を得た。スパッタ法により白金をコートした透明ガラス板(ガラス厚:2mm、白金厚:20μm)に不織布(厚み50μm)を被せ、不織布に電解質化合物を染み込ませた後、ヨウ素雰囲気下に2時間暴露させた。
2)対電極として、ITO(インジウム−錫酸化物)をスパッタ法によりコーティングした透明ガラス板(ガラス板の厚さ:2mm、ITO膜の厚さ:20μm)に酸化チタンの懸濁液を塗布し、乾燥後、焼結して多孔質酸化チタン被膜(厚さ:10μm)を形成した。得られた多孔質酸化チタン被膜1cm当たり、増感色素として、シス−ジチオシアナト−N,N’−ビス(2、2−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)のルテニウム−ビピリジン錯体を100μg吸着させた。その後、1)と同様に作成した電解質化合物を酸化チタン層に含浸させた。
1)および2)で作製した電解質及び電極を貼り合わせながら側面をエポキシ樹脂で封止した後、導電性ペースト(銀ペースト)によりリード線(銅線)を白金電極およびITO電極に取り付けて光電変換素子を得た。光電変換素子は、図1に示すようなものであった。
AM1.5のソーラーシミュレータを光源として、96W/mの光を照射して、電流の光応答性を測定した。エーテル化合物(i)を使用した半導体層3および電解質層4を有する光電変換素子、エーテル化合物(ii)を使用した半導体層3および電解質層4を有する光電変換素子、エーテル化合物(iii)を使用した半導体層3および電解質層4を有する光電変換素子において、それぞれ安定な一定の電流[1.0mA(化合物(i)の場合)、1.2mA(化合物(ii)の場合)、1.1mA(化合物(iii)の場合)]を発生し続けた。
このことから、本発明の高分子固体電解質は、光照射により直流電流を継続して流し、光電変換素子が太陽電池として良好に機能していることがわかった。
発明の効果
安定性に優れた電解質を使用した本発明の光電変換素子は、光照射により直流電流を継続的に流し、効率よくイオンを輸送できる。本発明の光電変換素子は、太陽電池として良好に機能する。
【図面の簡単な説明】
図1は、実施例4で得られた光電変換素子の断面図である。 Field of the Invention The present invention relates to a photoelectric conversion element using an electrolyte of an ether compound having high ionic conductivity.
Related art Conventionally, ionic conductors of organic solvents have attracted attention in various electrochemical devices. In particular, as an ionic conductor for a photoelectric conversion element used for a solar cell, an electrolyte in which iodine and potassium iodide are added to an organic solvent such as carbonate ester or tetrahydrofuran has been proposed. However, these electrolytes have a high vapor pressure, which impedes the durability of the photoelectric conversion element. In particular, in the solar cell field, durability of 10 years or more is required, and ion conductivity, safety, and stability of the seal are required. An electrolyte having excellent properties is desired.
Summary of the invention The inventors of the present invention have obtained from ether compounds (I), (II), (III) or (IV): (A) a combination of iodine and iodine compound or a combination of bromine and bromine compound. The desired electrolyte was obtained by adding the redox couple (B), and the present invention was found to be useful for application to a photoelectric conversion element such as a solar cell, thereby completing the present invention. That is, this invention provides the photoelectric conversion element excellent in long-term stability by using the electrolyte which has sufficient ion conductivity and outstanding stability.
The present inventors provide an oxidation-reduction pair (B) comprising an ether compound (I), (II), (III) or (IV): (A) and a combination of iodine and an iodine compound or a combination of bromine and a bromine compound. As a result, it was found that this electrolyte is useful for application to a photoelectric conversion element such as a solar cell, thereby completing the present invention. That is, this invention provides the photoelectric conversion element excellent in long-term stability by using the electrolyte which has sufficient ion conductivity and outstanding stability.
The present invention
(A) Formula (I), (II), (III) or (IV):
Figure 0004538955
[Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 101 , R 102 , R 103 , R 104 , R 105 are a hydrogen atom, or —O (CH 2 CH 2 O) a -A 1 (where A 1 is an alkyl group or alkenyl group, a is 1 Number of ~ 12). However, in each of the formulas (I), (II), (III) and (IV), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 101 , R 102 , R 103 , R 104 , and R 105 are not all hydrogen atoms at the same time. A is — (CH 2 ) b — (where b is a number from 1 to 12) or —O (CH 2 CH 2 O) c — (where c is a number from 1 to 12). ]
And (B) a photoelectric conversion element using an electrolyte comprising an oxidation-reduction pair comprising a combination of iodine and an iodine compound or a combination of bromine and a bromine compound.
DETAILED DESCRIPTION <br/> formula invention (I), in (II), (III) and (IV), examples of A 1 include a methyl group, an ethyl group, a propyl group, an ethenyl group (CH 2 = CH- ) Etc.
The total number of ethylene oxide units (—CH 2 CH 2 O—) in the ether compound may be 1-20, such as 3-12. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 101 , R 102 , R 103 , R 104 , R 105 may be similar or different.
A method for synthesizing the ether compound in which the structural formula of the formula (I) is represented by the formula (I-1) is as follows.
Figure 0004538955
[R 17 , R 18 and R 19 are groups selected from an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. l, m, and n are 0-12. However, all of l, m, and n are not 0 at the same time. ]
In the formula (I-1), the sum of l + m + n is preferably 2 or more, more preferably 3 or more.
(Step 1)
3 times mole amount of alcohol of formula (b) and 1.1 times mole amount of NaOH in pellet form are stirred in a flask with respect to glycidyl ether of formula (a), and glycidyl ether (a) is stirred at 70 ° C. Dripping. After completion of the dropwise addition, the mixture is stirred for about 1 hour, and then the reaction solution is neutralized with an aqueous HCl solution. After filtration and concentration, an intermediate alcohol of formula (d) is obtained by distillation.
Figure 0004538955
(Step 2)
Next, the intermediate alcohol (d) formula and 1.5 times the molar amount of pelleted NaOH were placed in a flask and stirred, and at 60 ° C., the intermediate alcohol (1.5) molar amount (c) formula The compound is added dropwise. After completion of dropping, the mixture is stirred for about 2 hours, filtered and purified to obtain a compound of formula (I-1).
The synthesis method of the ether compound in which the structural formula of the formula (III) is represented by the formula (III-1) is as follows.
Figure 0004538955
[R 20 , R 21 , R 22 , R 23 are groups selected from an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. o, p, q, r, and s are 0-12. However, all of o, p, q, r, and s are not 0 at the same time. ]
In the above formula (III-1), the sum of o + p + q + r + s is preferably 2 or more, more preferably 3 or more, for example 4 or more.
(I-1) The alcohols of the formulas (e) and (f) are synthesized by the same method as Step 1 of the synthesis method of the formula (I-1).
Figure 0004538955
To the equimolar mixture of (e) and (f), NaOH having the same number of moles as the sum of moles of (e) and (f) is added and stirred at 70 ° C. ) The compound of formula is added dropwise.
Cl - (- CH 2 -CH 2 -O-) s-1 -CH 2 -CH 2 -Cl (g)
After completion of dropping, the mixture is stirred for about 2 hours, filtered and purified to obtain a compound of formula (III-1).
The synthesis method of the ether compound in which the structural formula of the formula (IV) is represented by the formula (IV-1) is as follows.
Figure 0004538955
[R 24 , R 25 , R 26 and R 27 are groups selected from an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. t, u, v, and w are 0-12. However, all of t, u, v, and w are not 0 at the same time. ]
In the above formula (IV-1), the total of t + u + v + w is preferably 2 or more, more preferably 3 or more, for example 4 or more.
(Step 1)
The alcohol of the formula (h) is synthesized by the same method as Step 1 of the synthesis method of the formula (I-1).
Figure 0004538955
Into the flask, 3 to 5 times the molar amount of epichlorohydrin and 1.5 times the molar amount of pellet-like NaOH are added to the flask and stirred, and the alcohol of the (h) type is added at 40 ° C. Dripping. After completion of the dropwise addition, the mixture is stirred for about 2 hours, filtered, concentrated, and distilled to obtain glycidyl ether (i).
Figure 0004538955
(Step 2)
To the glycidyl ether (i), a 2-fold molar amount of the alcohol of the formula (j) and a 1.1-fold molar amount of pelleted NaOH are placed in a flask and stirred, and glycidyl ether (i) is added dropwise at 70 ° C.
After completion of dropping, the mixture is stirred for about 1 hour, and then the reaction solution is neutralized with an aqueous HCl solution. After filtration and concentration, an intermediate alcohol (k) is obtained by distillation.
Figure 0004538955
(Step 3)
Next, intermediate alcohol (k) and 1.5 times its molar amount of pelleted NaOH were placed in a flask, stirred, and 1.5 times the amount of intermediate alcohol (k) (l) at 60 ° C. ) The compound of formula is added dropwise. After completion of dropping, the mixture is stirred for about 2 hours, filtered and purified to obtain a compound of formula (IV-1).
Cl-(— CH 2 —CH 2 —O—) v —R 26 (l)
The ether compound of the formula (II) can also be obtained by the same operation as described above. The redox couple (B) referred to in the present invention is a pair of compounds that perform a reversible redox reaction. When an oxidant / reductant is independently added to the system, an electrochemical equilibrium is quickly reached. Means a substance. The redox couple is an iodine-iodine compound combination or a bromine-bromine compound combination.
The redox pair of the iodine-iodine compound combination includes, for example, a combination of I 2 and a metal iodide such as LiI, NaI, KI, CsI, and CaI 2 , or quaternary ammonium such as I 2 and alkylammonium iodide, pyridinium iodide. It is preferably constituted by a combination of an iodine salt of a compound or a polymer compound having them in the side chain.
Bromine - Bromine bromine compound combinations redox pairs, such Br 2 and LiBr, NaBr, KBr, CsBr, CaBr 2 , etc. of the metal bromide or,, Br 2 and alkyl bromide, quaternary ammonium compounds such as pyridinium bromide It is preferably constituted by a combination of a salt or a polymer compound having a side chain thereof.
The mixing ratio of the redox pair can be arbitrarily selected from the ether compound to be mixed. In general, an electrolyte having a higher ionic conductivity can be obtained as the mixing amount of the redox couple increases. However, when the mixing amount is too large, ion dissociation hardly occurs and the conductivity decreases. In addition, when the equilibrium potential of the redox couple becomes a problem, the mixing amount can be adjusted so as to obtain a necessary equilibrium potential.
In this invention, the usage-amount of the said oxidation reduction pair may be 1-50 weight part with respect to 100 weight part of ether compounds, for example, 5-35 weight part.
The molar ratio of iodine: iodine compound (and bromine: bromine compound) in the redox couple is preferably 1: 5 to 5: 1.
Although there is no restriction | limiting in particular in the manufacturing method of the electrolyte of this invention, Usually, what is necessary is just to be able to mix an ether compound (A) and a redox couple (B).
The method of mixing the redox couple (B) with the ether compound (A) is not particularly limited, but the method of mixing the redox couple (B) directly with the ether compound (A), the organic containing the redox couple (B) There is a method of mixing the ether compound (A) with a solvent. In the case of a highly viscous or solid ether compound, the organic solvent is removed after the electrolyte production using an organic solvent (for example, acetonitrile).
In the present invention, the photoelectric conversion element is an element that converts light energy into electric energy by utilizing an electrochemical reaction between electrodes. When this photoelectric conversion element is irradiated with light, electrons are generated at one of the electrodes, and move to a counter electrode through an electric wire provided between the electrodes. The electrons transferred to the counter electrode reduce the redox couple in the electrolyte made of the ether compound of the present invention. The reduced redox couple moves from one electrode to the other electrode as an anion in the electrolyte composed of an ether compound, reaches the other electrode, and returns to the oxidant itself, thereby transferring electrons to the other electrode. return. Thus, the photoelectric conversion element of the present invention is an element or sensor that can convert light energy into electric energy. It also has a function as an optical sensor because it responds to light.
The photoelectric conversion element includes an ether compound electrolyte and a pair (two) of electrodes.
As an electrode, the conductor attached to the glass plate (transparent protective material which permeate | transmits light) is mentioned. The glass plate having the electrodes may be a glass plate coated with a conductive material (for example, a metal, an oxide semiconductor, particularly indium-tin oxide (ITO)).
Titanium oxide, zinc oxide, tungsten oxide, barium titanate, strontium titanate, potassium titanate, potassium tantalate, tungsten oxide, iron oxide and other oxide semiconductors, cadmium sulfide, CdTe, silicon, phthalocyanine, polythienylene, When a semiconductor such as polypyrrole or polyaniline, or the above-described oxide semiconductor or semiconductor sensitized with a dye or another inorganic substance is supported in one or more layers, a more preferable photoelectric conversion element can be obtained. That is, the photoelectric conversion element of the present invention includes an electrolyte composed of an ether compound, one electrode including a semiconductor (for example, an n-type semiconductor or a p-type semiconductor), a semiconductor (for example, a p-type semiconductor or an n-type semiconductor), or a metal. May have one counter electrode.
As the semiconductor carried on the electrode, an oxide semiconductor is preferable, and in particular, titanium oxide or titanium oxide sensitized with a dye is preferable from the viewpoint of stability, safety, and cost. Examples of dyes include organometallic complexes such as ruthenium-bipyridine complexes, particularly cis-di (thiocyanato) -N, N′-bis (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) (cis). -Di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'-dicboxylic acid) ruthenium (II)) can be used.
In order to provide the electrolyte on the electrode, a method of directly impregnating the electrolyte with the electrode or impregnating the nonwoven fabric can be employed. Alternatively, a spacer may be provided between the electrodes. Thus, after providing electrolyte on an electrode, a counter electrode is provided on electrolyte and the photoelectric conversion element of this invention can be obtained.
When the ether compound electrolyte of the present invention is used for a photoelectric conversion element, it has excellent ionic conductivity and excellent stability, and therefore a photoelectric conversion element having good conversion efficiency can be obtained.
The photoelectric conversion element of this invention can be used as a solar cell, a photosensor, etc.
1 is a cross-sectional view of the photoelectric conversion element obtained in Example 4. FIG. The photoelectric conversion element has glass plates 1 and 6, electrodes 2 and 5, a semiconductor layer 3, and an electrolyte layer 4 of an ether compound.
Transparent glass plates 1 and 6 protect the photoelectric conversion element and transmit light. The thickness of the glass plates 1 and 6 may be 0.1-5 mm. The electrode 2 may be transparent ITO (indium-tin oxide). The thickness of the electrode 2 may be 2 to 100 μm. The layer 3 is made of porous TiO 2 and emits holes and electrons from the light. The electrolyte layer 4 includes an ether compound and an electrolyte compound, and functions as an ion carrier layer. The thickness of the electrolyte layer 4 may be 5 to 1000 μm. The electrode 5 is preferably made of metal (for example, gold and platinum). The thickness of the electrode 5 may be 2 to 100 μm.
The side surface of the photoelectric conversion element is preferably sealed with resin 7. Examples of the resin 7 are an epoxy resin, an acrylic resin, and the like. Lead wires 8 are connected to the electrodes 2 and 5. The lead wire 8 is attached to the electrodes 2 and 5 with a conductive paste (not shown). Examples of the conductive paste are silver paste, carbon paste and the like.
Examples Hereinafter, the present invention will be described specifically by way of examples.
The properties of the ether compound were measured as follows.
Ionic conductivity (conductivity)
The ionic conductivity (conductivity σ) was determined by complex impedance measurement. The measurement used the alternating current method of 40 degreeC, voltage 10mV, and frequency 5Hz-13MHz.
Synthesis Example 1 (Synthesis of ether compound (i))
(Step 1)
While adding 44.0 g (1.1 mol) of pellet-like NaOH to 360 g (3.0 mol) of diethylene glycol monomethyl ether and stirring at 70 ° C., 176 g (1.0 mol) of 2- (2-methoxyethoxy) ethyl glycidyl ether was stirred. ) Was added dropwise in small portions. After completion of dropping, the mixture was stirred for about 1 hour and then allowed to cool at room temperature. Thereafter, the mixture was neutralized with hydrochloric acid, and the deposited salt was filtered and concentrated, and then purified by distillation under reduced pressure to obtain 222 g of 1,3-bis [2- (2-methoxyethoxy) ethoxy] -2-propanol (75% yield). %). The distillation temperature was 171 to 175 ° C./0.8 mmHg.
(Step 2)
To 100 g (0.34 mol) of 1,3-bis [2- (2-methoxyethoxy) ethoxy] -2-propanol obtained in Step 1, 20.4 g (0.51 mol) of NaOH in the form of pellets was added, and 60 ° C. While stirring, 48.2 g (0.51 mol) of 2-chloroethyl methyl ether was added dropwise little by little. After completion of the dropwise addition, the mixture was stirred for about 2 hours, and the deposited salt was filtered and concentrated, and then purified by distillation under reduced pressure to obtain 1,3-bis [2- (2-methoxyethoxy) ethoxy] -2- (2-methoxy 102 g (85% yield) of ethoxy) propane (i) were obtained. The distillation temperature was 155 to 161 ° C./0.2 mmHg.
Figure 0004538955
Synthesis Example 2 (Synthesis of ether compound (ii))
To 1,3-bis (2-methoxyethoxy) -2-propanol 100 g (0.48 mol) synthesized by the same method as in Step 1 of Synthesis Example 1, 9.6 g (0.24 mol) of NaOH in pellet form was added, While stirring at 70 ° C., 11.4 g (0.08 mol) of 2-chloroethyl ether was added dropwise little by little. After completion of the dropwise addition, the mixture was stirred for about 2 hours and then allowed to cool at room temperature. Thereafter, the deposited salt was filtered and concentrated, and then the low-boiling substances were removed under reduced pressure (180 ° C./0.1 mmHg) to obtain 31.2 g (yield 80%) of the compound of formula (ii).
Figure 0004538955
Synthesis Example 3 (Synthesis of ether compound (iii))
(Step 1)
1- (2) synthesized in the same manner as Step 1 of Synthesis Example 1 while adding 68.0 g (1.7 mol) of pellet-like NaOH to 506 g (5.5 mol) of epichlorohydrin and stirring at 40 ° C. -Methoxyethoxy) -3- [2- (2-methoxyethoxy) ethoxy] -2-propanol (278 g, 1.1 mol) was added dropwise in small portions. After completion of dropping, the mixture was stirred for about 2 hours and allowed to cool at room temperature. Thereafter, the precipitated salt was filtered and concentrated, and then purified by distillation under reduced pressure to obtain 231 g of 1- (2-methoxyethoxy) -3- [2- (2-methoxyethoxy) ethoxy] propyl-2-glycidyl ether (yield). 68%). The distillation temperature was 143 to 147 ° C./0.3 mmHg.
(Step 2)
Next, 18.8 g (0.72 mol) of pellet-like NaOH was added to 117 g (1.3 mol) of ethoxyethanol, and 1- (2-methoxyethoxy) -3 obtained in Step 1 was stirred at 70 ° C. -200 g (0.65 mol) of [2- (2-methoxyethoxy) ethoxy] propyl-2-glycidyl ether was added dropwise little by little. After completion of dropping, the mixture was stirred for about 1 hour and then allowed to cool at room temperature. Then, after neutralizing with hydrochloric acid, the deposited salt was filtered and concentrated, and then purified by distillation under reduced pressure to obtain 184 g (yield 71%) of the compound of formula (m). The distillation temperature was 185 to 192 ° C./0.1 mmHg.
Figure 0004538955
(Step 3)
2150 g (0.57 mol) of pellet-like NaOH was added to 150 g (0.38 mol) of the compound of the formula (m) synthesized in Step 2, and 53.9 g (2-chloroethyl methyl ether) was stirred at 60 ° C. 0.57 mol) was added dropwise in small portions. After completion of the dropwise addition, the mixture was stirred for about 2 hours, and the precipitated salt was filtered and concentrated, and then the low-boiling substances were removed under reduced pressure (180 ° C./0.1 mmHg) to obtain 134 g of a compound of the formula (iii) (yield 77). %).
Figure 0004538955
Example 1
1 g of the ether compound (i) produced in Synthesis Example 1, 1 g of oligoethylene glycol dimethyl ether (molecular weight: 400), 200 mg of lithium iodide and 50 mg of iodine were mixed. When the ionic conductivity of this mixture was measured, it was 7.4 × 10 −3 S / cm.
Example 2
When 1 g of the ether compound (ii) produced in Synthesis Example 2 was mixed with 400 mg of lithium iodide and 100 mg of iodine, and the ionic conductivity was measured, it was 8.2 × 10 −3 S / cm.
Example 3
When the ionic conductivity of the ether compound (iii) produced in Synthesis Example 3 was measured in the same manner as in Example 2, it was 9.2 × 10 −3 S / cm.
Example 4
1) 1 g of each compound ((i) to (iii)) obtained in the synthesis example of the ether compound and 300 mg of lithium iodide were mixed to obtain an electrolyte compound. A transparent glass plate (glass thickness: 2 mm, platinum thickness: 20 μm) coated with platinum by a sputtering method was covered with a nonwoven fabric (thickness 50 μm), and the nonwoven fabric was impregnated with an electrolyte compound, and then exposed to an iodine atmosphere for 2 hours.
2) As a counter electrode, a suspension of titanium oxide is applied to a transparent glass plate (thickness of glass plate: 2 mm, thickness of ITO film: 20 μm) coated with ITO (indium-tin oxide) by sputtering. After drying, it was sintered to form a porous titanium oxide film (thickness: 10 μm). Ruthenium-bipyridine of cis-dithiocyanato-N, N′-bis (2,2-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) as a sensitizing dye per 1 cm 2 of the obtained porous titanium oxide coating 100 μg of the complex was adsorbed. Thereafter, the titanium oxide layer was impregnated with the electrolyte compound prepared in the same manner as in 1).
After the electrolyte and electrodes produced in 1) and 2) are bonded together, the side surfaces are sealed with an epoxy resin, and then lead wires (copper wires) are attached to the platinum electrodes and ITO electrodes with a conductive paste (silver paste) for photoelectric conversion. An element was obtained. The photoelectric conversion element was as shown in FIG.
Using an AM1.5 solar simulator as a light source, light of 96 W / m 2 was irradiated to measure the photoresponsiveness of the current. Photoelectric conversion element having semiconductor layer 3 and electrolyte layer 4 using ether compound (i), photoelectric conversion element having semiconductor layer 3 and electrolyte layer 4 using ether compound (ii), and ether compound (iii) were used. In the photoelectric conversion element having the semiconductor layer 3 and the electrolyte layer 4, a stable constant current [1.0 mA (in the case of compound (i)), 1.2 mA (in the case of compound (ii)), 1.1 mA (compound) In the case of (iii))] continues to be generated.
From this, it was found that the polymer solid electrolyte of the present invention continuously passed a direct current by light irradiation, and the photoelectric conversion element functioned well as a solar cell.
Effect of the invention The photoelectric conversion element of the present invention using an electrolyte having excellent stability can efficiently transport ions by allowing a direct current to flow continuously by light irradiation. The photoelectric conversion element of the present invention functions well as a solar cell.
[Brief description of the drawings]
1 is a cross-sectional view of the photoelectric conversion element obtained in Example 4. FIG.

Claims (4)

(A)式(I)、(II)、(III)または(IV):
Figure 0004538955
[式中、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、R101、R102、R103、R104、R105は、水素原子、または−O(CHCHO)−A(但し、Aはアルキル基またはアルケニル基、aは1〜12の数)である。但し、式(I)、(II)、(III)および(IV)のそれぞれにおいて、R、R、R、R、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、R101、R102、R103、R104、R105の全てが同時に水素原子であることはない。Aは、−(CH−(但し、bは1〜12の数)又は−O(CHCHO)−(但し、cは1〜12の数)である。]
で示されるエーテル化合物、ならびに
(B)ヨウ素とヨウ素化合物の組み合わせまたは臭素と臭素化合物の組み合わせからなる酸化還元対
を含んでなる電解質を用いた光電変換素子。
(A) Formula (I), (II), (III) or (IV):
Figure 0004538955
[Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 101 , R 102 , R 103 , R 104 , R 105 are a hydrogen atom, or —O (CH 2 CH 2 O) a -A 1 (where A 1 is an alkyl group or alkenyl group, a is 1 Number of ~ 12). However, in each of the formulas (I), (II), (III) and (IV), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 101 , R 102 , R 103 , R 104 , and R 105 are not all hydrogen atoms at the same time. A is — (CH 2 ) b — (where b is a number from 1 to 12) or —O (CH 2 CH 2 O) c — (where c is a number from 1 to 12). ]
And (B) a photoelectric conversion element using an electrolyte comprising an oxidation-reduction pair comprising a combination of iodine and an iodine compound or a combination of bromine and a bromine compound.
式(I)の構造式が式(I−1)で表される請求項1に記載の光電変換素子。
Figure 0004538955
[R17、R18、R19は炭素数1〜6のアルキル基又は炭素数2〜6のアルケニル基より選ばれる基である。l、m、nは0〜12である。但し、l、m、nの全てが同時に0であることはない。]
The photoelectric conversion element according to claim 1, wherein the structural formula of the formula (I) is represented by the formula (I-1).
Figure 0004538955
[R 17 , R 18 and R 19 are groups selected from an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. l, m, and n are 0-12. However, all of l, m, and n are not 0 at the same time. ]
式(III)の構造式が式(III−1)で表される請求項1に記載の光電変換素子。
Figure 0004538955
[R20、R21、R22、R23は炭素数1〜6のアルキル基又は炭素数2〜6のアルケニル基より選ばれる基である。o、p、q、r、sは0〜12である。但し、o、p、q、r、sの全てが同時に0であることはない。]
The photoelectric conversion element according to claim 1, wherein the structural formula of the formula (III) is represented by the formula (III-1).
Figure 0004538955
[R 20 , R 21 , R 22 and R 23 are groups selected from an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. o, p, q, r, and s are 0-12. However, all of o, p, q, r, and s are not 0 at the same time. ]
式(IV)の構造式が式(IV−1)で表される請求項1に記載の光電変換素子。
Figure 0004538955
[R24、R25、R26、R27は炭素数1〜6のアルキル基又は炭素数2〜6のアルケニル基より選ばれる基である。t、u、v、wは0〜12である。但し、t、u、v、wの全てが同時に0であることはない。]
The photoelectric conversion element according to claim 1, wherein the structural formula of the formula (IV) is represented by the formula (IV-1).
Figure 0004538955
[R 24 , R 25 , R 26 and R 27 are groups selected from an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms. t, u, v, and w are 0-12. However, all of t, u, v, and w are not 0 at the same time. ]
JP2000604485A 1999-03-10 2000-03-08 Photoelectric conversion device using ether compound electrolyte Expired - Fee Related JP4538955B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6308099 1999-03-10
PCT/JP2000/001379 WO2000054361A1 (en) 1999-03-10 2000-03-08 Photoelectric conversion devices made by using ethereal electrolytes

Publications (1)

Publication Number Publication Date
JP4538955B2 true JP4538955B2 (en) 2010-09-08

Family

ID=13219015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000604485A Expired - Fee Related JP4538955B2 (en) 1999-03-10 2000-03-08 Photoelectric conversion device using ether compound electrolyte

Country Status (2)

Country Link
JP (1) JP4538955B2 (en)
WO (1) WO2000054361A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009310805B2 (en) 2008-10-29 2017-02-02 Fujifilm Corporation Dye, photoelectric conversion element using the same, photoelectrochemical cell, and method of producing dye
CN102471417B (en) * 2009-07-15 2015-08-19 巴斯夫欧洲公司 Multipolymer, its purposes as thickening material and preparation method thereof
JP5524557B2 (en) 2009-09-28 2014-06-18 富士フイルム株式会社 Method for producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP5620081B2 (en) 2009-09-28 2014-11-05 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP5756772B2 (en) 2011-03-30 2015-07-29 富士フイルム株式会社 Photoelectric conversion element and photoelectrochemical cell
JP5972811B2 (en) 2013-02-22 2016-08-17 富士フイルム株式会社 Photoelectric conversion element, method for producing photoelectric conversion element, and dye-sensitized solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236165A (en) * 1994-12-29 1996-09-13 Ishihara Sangyo Kaisha Ltd High polymer solid electrolyte, and its manufacture, and photo-electric transfer element using it
JPH0927352A (en) * 1994-12-29 1997-01-28 Ishihara Sangyo Kaisha Ltd Porous material-high polymer solid electrolyte complex, its manufacture, and photoelectric conversion element using it
JPH09245848A (en) * 1996-03-14 1997-09-19 Shin Etsu Chem Co Ltd Photo charging type thin power source element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674596A5 (en) * 1988-02-12 1990-06-15 Sulzer Ag
JPH09259943A (en) * 1996-03-19 1997-10-03 Tokyo Gas Co Ltd Wet type solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236165A (en) * 1994-12-29 1996-09-13 Ishihara Sangyo Kaisha Ltd High polymer solid electrolyte, and its manufacture, and photo-electric transfer element using it
JPH0927352A (en) * 1994-12-29 1997-01-28 Ishihara Sangyo Kaisha Ltd Porous material-high polymer solid electrolyte complex, its manufacture, and photoelectric conversion element using it
JPH09245848A (en) * 1996-03-14 1997-09-19 Shin Etsu Chem Co Ltd Photo charging type thin power source element

Also Published As

Publication number Publication date
WO2000054361A1 (en) 2000-09-14

Similar Documents

Publication Publication Date Title
Kuang et al. Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells
KR101366122B1 (en) Light-absorbing material and photoelectric conversion element
US20110146796A1 (en) Photoelectric device
JP5894372B2 (en) OPTOELECTRIC ELEMENT AND METHOD FOR PRODUCING OPTOELECTRIC ELEMENT
JP5261068B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element using the same
US9012901B2 (en) Photoelectric conversion element
JP6010549B2 (en) Photoelectric device and manufacturing method thereof
US20080149175A1 (en) Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device
JP4538955B2 (en) Photoelectric conversion device using ether compound electrolyte
US9013023B2 (en) Photoelectric element having stacked charge-transport layers
US7910824B2 (en) Dye-sensitized solar cell using ion-bound oligomer complex and method of manufacturing the same
US20040256002A1 (en) Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
Wang et al. S-alkylbenzothiophenium-based solid-state electrolyte for efficient quantum-dot sensitized solar cells
JP4500523B2 (en) Onium salt
KR101158767B1 (en) New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt
KR20100128096A (en) Novel ruthenium-based dye and preparation thereof
JP2016192502A (en) Dye-sensitized solar cell element
JP2015071702A (en) Organic sensitizing dye, dye-sensitized solar cell, and dye-sensitized solar cell module
JP6534331B2 (en) Complete organic dye compound having a heterocyclic linker group for dye-sensitized photoelectric conversion device, and photoelectric conversion device using the same
JP6445378B2 (en) Photoelectric conversion element
JP6209424B2 (en) Metal complex, dye-sensitized solar cell, dye-sensitized solar cell module, method for producing metal complex
JP4421262B2 (en) Onium salt
JP6053607B2 (en) Organic sensitizing dye, dye-sensitized solar cell, and dye-sensitized solar cell module
JP6312318B2 (en) Metal complex dyes, ligands and dye-sensitized solar cells
JP2017050385A (en) Electrolyte and dye-sensitized solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Ref document number: 4538955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees