JP4538706B2 - Cleaning method for water treatment equipment - Google Patents

Cleaning method for water treatment equipment Download PDF

Info

Publication number
JP4538706B2
JP4538706B2 JP2001010669A JP2001010669A JP4538706B2 JP 4538706 B2 JP4538706 B2 JP 4538706B2 JP 2001010669 A JP2001010669 A JP 2001010669A JP 2001010669 A JP2001010669 A JP 2001010669A JP 4538706 B2 JP4538706 B2 JP 4538706B2
Authority
JP
Japan
Prior art keywords
water
cleaning
packed bed
metal particles
iron metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001010669A
Other languages
Japanese (ja)
Other versions
JP2002210478A (en
Inventor
弘 大岸
順一 根来
裕之 朝田
良弘 恵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001010669A priority Critical patent/JP4538706B2/en
Publication of JP2002210478A publication Critical patent/JP2002210478A/en
Application granted granted Critical
Publication of JP4538706B2 publication Critical patent/JP4538706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水処理装置の洗浄方法に関する。さらに詳しくは、本発明は、鉄金属粒子の充填層に通水して水中の不純物を還元処理する水処理装置において、必要最小限の洗浄水と洗浄時間で、鉄金属表面に付着した汚濁物質を確実に除去することができる水処理装置の洗浄方法に関する。
【0002】
【従来の技術】
石炭又は石油の燃焼排ガスを処理する排煙脱硫プロセスから排出される排煙脱硫排水は、重金属、非金属類などの種々の不純物を含有するので、排煙脱硫排水よりこれらの不純物を除去する必要がある。排煙脱硫排水の水質は、使用する燃料や、排煙脱硫方式により変化し、水質の変化に対応した排煙脱硫排水の処理方法が必要とされている。
排水にペルオキソ硫酸、ヨウ素酸、セレン酸などが含まれている場合は、排水を鉄金属粒子の充填層に通水して、水中の不純物を還元処理することができる。排水のpHを5以下に調整し、鉄金属と接触させると、鉄金属より次式にしたがって2価の鉄イオンが水中に溶出する。
Fe+2H+ → Fe2++H2
排水中に含まれるペルオキソ硫酸、ヨウ素酸及びセレン酸は、それぞれ以下に示す式にしたがって2価の鉄イオンと反応し、還元処理される。
28 2-+2Fe2+ → 2SO4 2-+2Fe3+
2IO3 -+10Fe2++12H+ → I2+10Fe3++6H2
SeO4 2-+6Fe2++8H+ → Se0+6Fe3++4H2
さらに、酸化還元電位が−400〜−100mVの場合は、次式にしたがって鉄金属とセレン酸の反応が起こる。
SeO4 2-+3Fe+8H+ → Se0+3Fe2++4H2
このようにして排水中に含まれる不純物を鉄金属と接触させて還元処理したのち、還元処理水にアルカリ剤を添加してpHを7以上とすると、水中の鉄イオンは、例えば、下記の式のように水不溶性の水酸化鉄となってフロックを形成する。
Fe2++2NaOH → Fe(OH)2+2Na+
Fe3++3NaOH → Fe(OH)3+3Na+
このとき、還元されたセレンのほか、排水中に含まれる重金属類、懸濁物質、フッ素、COD成分なども同時に凝集、沈降して分離することができる。
図1は、鉄金属粒子の充填層に通水して水中の不純物を還元処理する水処理装置の一例の説明図である。本図に示す水処理装置は、円筒状のカラム1の底部に排水、洗浄水及び空気の導入口2を備え、上部に還元処理水及び洗浄排水のための水排出口3を備えている。カラムの下部には多孔板4を取り付け、その上に鉄金属粒子を充填して鉄金属粒子の充填層5が形成される。カラムの上部には多孔板6が取り付けられ、充填層の洗浄時に粒子が流出するのを防止する。
鉄金属粒子の充填層に排水の通水を続けると、排水中に含まれる汚濁物質や、還元処理の際に生成する汚濁物質が鉄金属粒子へ付着し、鉄金属粒子の充填層の目詰まりなどが生じる。このような汚濁物質の主成分は、溶出した2価の鉄の一部が酸化されて生成した酸化鉄、水酸化鉄、FeO(OH)などであり、その発生量は排水の水質によって異なる。つまり、処理対象の酸化性物質以外の共存酸化性物質も含めて、排水中に酸化性物質が多量に含まれる場合は、同じ2価の鉄の溶出量でも、汚濁物質の発生量は多くなる。したがって、水質変動がある場合、一定の洗浄時間では、過洗浄になったり、洗浄不足になったりする。特に、処理対象の酸化性物質以外の共存酸化性物質の影響が大きい。洗浄不足の場合、鉄金属粒子同士が結合し、大きな塊となって処理性能の低下が起こる。一旦塊が生成すると、ほぐすのは困難であり、最終的には通水不可能となる。したがって、通常は洗浄不足とならないように余裕をもって過剰の洗浄時間を設定する。しかし、過剰の洗浄時間を設定すると、洗浄水を無駄に使うという問題があった。
【0003】
【発明が解決しようとする課題】
本発明は、鉄金属粒子の充填層に通水して水中の不純物を還元処理する水処理装置において、必要最小限の洗浄水と洗浄時間で、鉄金属表面に付着した汚濁物質を確実に除去することができる水処理装置の洗浄方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、鉄金属粒子の充填層に通水して水中の不純物を還元処理する水処理装置において、充填層から排出される洗浄排水の汚濁物濃度を測定して、充填層に供給する洗浄水と気体との混合流体の供給時間を制御することにより、必要最小限の洗浄水と洗浄時間で、鉄金属表面に付着した汚濁物質を確実に除去し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)鉄金属粒子の充填層に通水して水中の不純物を還元処理する水処理装置の洗浄方法であって、鉄金属粒子の充填層への還元処理する排水の通水を一次停止して、鉄金属粒子の充填層に空気を供給して、鉄金属充填層をほぐしたのち、空気の供給を続けたまま洗浄水を供給し、ついで、空気の供給を止めて、洗浄水のみを通水して、充填層から排出される洗浄排水の懸濁物質濃度を測定して、懸濁物質濃度が200mg/Lになるまで洗浄を続けたのち、通水を還元処理する排水の通水に切り替えることを特徴とする水処理装置の洗浄方法、
(2)洗浄水のみによる洗浄時間が0.5〜3分間であることを特徴とする第1項記載の水処理装置の洗浄方法、及び、
(3)懸濁物質濃度の測定を、洗浄排水管又は洗浄排水管のバイパスに設けたセンサーによって行う第1項又は第2項記載の水処理装置の洗浄方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明の水処理装置の洗浄方法は、鉄金属粒子の充填層に通水して水中の不純物を還元処理する水処理装置の洗浄方法であって、充填層に洗浄水と気体との混合流体を供給して充填層の汚濁物質を除去する際に、充填層から排出される洗浄排水の汚濁物濃度を測定して、混合流体の供給時間を制御する。測定する洗浄排水の汚濁物濃度に特に制限はないが、懸濁物質濃度又は濁度であることが好ましい。懸濁物質濃度及び濁度は、市販の測定器を用いて、簡便かつ連続的に測定することができる。
本発明方法は、ペルオキソ硫酸、ヨウ素酸、セレン酸などの酸化性物質を不純物として含有する排水を、鉄金属粒子の充填層に通水し、排水中の不純物を還元処理する水処理装置の洗浄に適用することができる。排水のpHを5以下に調整して鉄金属と接触させると、2価の鉄イオンが水中に溶出し、排水中に含まれる酸化性物質は、2価の鉄イオンと反応して還元処理される。さらに、酸化還元電位が−400〜−100mVの場合は、セレン酸は鉄金属と反応して還元される。このようにして、排水中に含まれる不純物を鉄金属と接触して還元処理したのち、還元処理水にアルカリ剤を添加してpHを7以上にすると、水中の鉄イオンは、水不溶性の水酸化鉄となってフロックを形成する。このとき、還元されたセレンなどのほか、排水中に含まれる重金属類、懸濁物質、フッ素、COD成分なども同時に凝集して、固液分離により除去することができる。
pHを5以下に調整した排水を接触させる鉄金属粒子としては、純鉄、粗鋼、合金鋼、その他の鉄合金などの粒子を挙げることができる。鉄金属が鉄合金であるときは、鉄の含有率が85重量%以上であることが好ましい。
【0006】
排水と鉄金属粒子の接触は、排水を鉄金属粒子を充填したカラムなどに通水することにより、効率的に行うことができる。しかし、鉄金属粒子の充填層に排水の通水を続けると、汚濁物質の鉄金属粒子の表面への付着や、鉄金属粒子の充填層の目詰まりなどが生じ、排水中の不純物の除去効率が次第に低下してくる。このような汚濁物質には、鉄金属又は鉄イオンの反応により生成する酸化鉄、炭化鉄、硫化鉄や、排水中の懸濁物質などがある。
本発明方法においては、鉄金属粒子の充填層に排水を通水し、不純物の還元処理を続けたのち、排水の通水を停止し、鉄金属粒子の充填層に洗浄水と気体の混合流体を供給し、鉄金属粒子の表面に付着した汚濁物質を剥離、除去し、あるいは、鉄金属粒子の充填層に目詰まりを起こしている汚濁物質を除去する。本発明方法においては、排水の通水を停止したのち、洗浄水と気体との混合流体を供給する前に、洗浄水を通水して鉄金属粒子を洗浄することができ、あるいは、気体のみを供給して鉄金属粒子の充填層をほぐすこともできる。鉄金属粒子の充填層に洗浄水を通水して洗浄することにより、鉄金属粒子の充填層内に存在する2価又は3価の鉄イオンを含有する水を、鉄イオンを含有しない洗浄水により置換することができる。気体のみを供給して充填層をほぐすと、その間は洗浄水を供給していないので、洗浄排水を発生させることなく充填層をほぐすことができる。本発明方法において、洗浄水と混合流体を形成する気体に特に制限はなく、例えば、空気、窒素ガスなどを挙げることができるが、通常は空気を好適に用いることができる。
【0007】
pHを5以下に調整した排水の通水は、水素ガスが発生するために通常は上向流で行う。また、洗浄水と気体との混合流体の供給も、上向流で行うことが好ましい。洗浄水と気体との混合流体を上向流として供給することにより、鉄金属粒子の充填層が展開、流動化するとともに、気泡を含む混合流体により激しく撹拌され、鉄金属粒子表面から付着した汚濁物質が剥離され、目詰まりを起こしている汚濁物質とともに水流に伴われて排出される。洗浄水のみによる洗浄では、鉄金属粒子の充填層が展開しても、汚濁物質の剥離効果が小さく、多量の洗浄水を消費しても洗浄効果は上がらない。
本発明方法において、洗浄水と気体との混合流体を形成するための洗浄水の通水速度は、LV=30〜150m/hであることが好ましい。洗浄水の通水速度は、鉄金属粒子の大きさなどに応じて選択することができるが、洗浄水と気体との混合流体を供給したとき、鉄金属粒子の充填層が10〜50%展開する程度とすることが好ましい。洗浄水の通水速度が30m/h未満であると、鉄金属粒子の充填層の展開が少なく、鉄金属粒子の表面に付着した汚濁物質が十分に剥離しないおそれがある。洗浄水の通水速度が150m/hを超えると、消費する洗浄水の量が多くなる上に、鉄金属粒子が流出するおそれがある。
本発明方法において、洗浄水と気体との混合流体を形成するための気体の供給量は、鉄金属粒子の充填層に対し、体積比で1分間に0.1〜10倍量であることが好ましい。気体の供給量が、鉄金属粒子の充填層に対し体積比で1分間に0.1倍量未満であると、撹拌力が弱く洗浄効果が十分に向上しないおそれがある。気体の供給量は、通常は鉄金属粒子の充填層に対し体積比で1分間に10倍量で十分であり、それ以上の気体を供給しても、気体の供給量の増加に見合って洗浄効果は向上しない。
【0008】
本発明方法においては、鉄金属粒子の充填層から排出される洗浄排水の汚濁物濃度を測定して、洗浄水と気体との混合流体の供給時間を制御する。汚濁物濃度を測定するセンサーの設置箇所に特に制限はなく、洗浄排水と接する任意の箇所に設置することができるが、例えば、排水の通水処理時には還元処理水排出管として使われ、洗浄水と気体との混合流体による洗浄時には洗浄排水管として使われる管にバイパス管を設けてセンサーを設置することができ、あるいは、洗浄排水管として使われる管に直接センサーを設置することもできる。混合流体に含まれる気体の大部分は、気液分離して鉄金属粒子の充填層の上部の気相に抜けるが、気体の一部は洗浄排水に含まれるおそれがある。洗浄排水管として使われる管にバイパス管を設けてセンサーを設置することにより、センサーに接する洗浄排水が気泡を含まない状態として、気泡による測定誤差を防止することができる。本発明方法においては、洗浄排水中の汚濁物濃度が所定の管理値に達したとき、気体の供給を停止して、混合流体による洗浄を終了することが好ましい。混合流体による洗浄を終了するときの汚濁物濃度の管理値は、実験的に設定することができる。排水を一定時間鉄金属粒子の充填層に通水して還元処理したのち、汚濁した鉄金属粒子の充填層に洗浄水と気体との混合流体を供給して充填層を洗浄し、洗浄排水の汚濁物濃度を測定して、洗浄時間と汚濁物濃度の関係をグラフに表す。
図2は、洗浄時間と懸濁物質濃度の関係を示すグラフの一例である。同一の排出源から排出される排水であっても、排水の水質は経時的に変動するので、鉄金属粒子の充填層中に生成する汚濁物質量は大きく変動する。図2に示されるように、同一の排出源から排出される排水を処理したときの洗浄時間と汚濁物濃度の関係を繰り返して求め、洗浄を停止するときの汚濁物濃度を設定することが好ましい。例えば、図2に示される関係では、洗浄排水の懸濁物質濃度が200mg/Lに達したときに洗浄を停止することが好ましく、100mg/L以下に達したときに洗浄を停止することがより好ましい。鉄金属粒子の充填層から排出される洗浄排水の汚濁物濃度を測定して、洗浄水と気体との混合流体の供給時間を制御することにより、洗浄不足による鉄金属粒子の塊が生成することがなく、洗浄が過剰となって洗浄水と洗浄時間を無駄にすることもなく、安定して鉄金属粒子の充填層の処理性能を維持することができる。
【0009】
本発明方法においては、洗浄水と気体との混合流体を供給して洗浄を終了したのち、気体の供給を停止して洗浄水のみによる洗浄を行うことが好ましい。洗浄水のみによる洗浄を行うことにより、洗浄水と気体との混合流体によって剥離した汚濁物質を洗い流すとともに、鉄金属粒子の充填層から気泡を追い出すことができ、さらに、鉄金属粒子の充填層を均一に形成することができる。
本発明方法においては、洗浄水と気体との混合流体の供給後の洗浄水のみによる洗浄は、0.5〜3分間行うことが好ましい。洗浄水のみによる洗浄時間が0.5分間未満であると、剥離した汚濁物質の洗い流し及び気泡の追い出しが不十分となるおそれがある。洗浄水のみによる洗浄は、通常は3分間以内で十分であり、それ以上洗浄水のみによる洗浄を継続しても洗浄効果は向上しない。洗浄水のみによる洗浄を終了したのち、洗浄水の供給を停止して沈静化することにより、鉄金属粒子の充填層をふたたび形成する。
本発明方法において、鉄金属粒子の充填層の洗浄を開始する時期に特に制限はなく、例えば、前回の洗浄から所定時間が経過したとき、所定量の排水の還元処理を終了したとき、鉄金属粒子の充填層の差圧が所定値に達したときなど、任意に設定することができる。
【0010】
図3は、本発明の水処理装置の洗浄方法の一態様の説明図である。本態様においては、酸化性物質を不純物として含有する排水が、pH5以下に調整されたのち、鉄金属粒子充填塔7に供給される。鉄金属粒子の充填層を通過して不純物が還元された還元処理水は、還元処理水排出管8を経由して凝集槽9に送られる。還元処理水には、凝集槽においてアルカリ剤が添加され、アルカリ性に調整されて水酸化鉄が凝集し、固液分離により処理水が得られる。排水を一定時間通水したのち、バルブ10を閉じて排水の供給を停止し、バルブ11を開いて鉄金属粒子の充填層に空気を送って充填層をほぐす。次いで、空気を送り続けたまま、バルブ12を開き、ポンプ13により洗浄水を送水して、洗浄水と空気との混合流体として鉄金属粒子の充填層に送り込む。
鉄金属粒子の充填層から排出される洗浄排水は、洗浄排水管として使われる還元処理水排出管8から、バイパス管14を経由して汚濁物濃度測定器15に送られる。洗浄排水の汚濁物濃度が設定値まで低下したとき、制御装置16からバルブ11に信号が送られて空気の供給が停止され、洗浄水のみによる洗浄が行われる。洗浄水のみによる洗浄を所定時間行ったのち、制御装置16からバルブ12又はバルブ12とポンプ13に信号が送られ、洗浄水の供給が停止されて鉄金属粒子の充填層の洗浄を終了する。次いで、ふたたびバルブ10を開いて、排水の還元処理を再開する。
従来は、洗浄水と気体との混合流体を鉄金属粒子の充填層に一定時間供給することにより、汚濁物質を除去していたが、実際の排水処理においては排水の水質が変動するために、鉄金属粒子の表面に付着する汚濁物質の度合が異なり、最適の洗浄時間を設定することは困難であった。本発明方法によれば、洗浄排水の汚濁物質濃度を測定して混合流体の供給時間を制御することにより、必要最小限の洗浄水量で確実に洗浄を行うことができ、長期間にわたり安定して排水中の不純物を除去することができる。
【0011】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
石炭火力発電所の排煙脱硫排水を、鉄金属粒子の充填層に通水して還元処理した。
排水のセレン(VI)濃度は、0.5mg/Lである。内径30mmのカラムに、平均粒径0.6mmの球状鉄金属粒子500mLを充填して鉄金属粒子充填層を形成し、図3に工程を示す水処理装置を作製した。汚濁物濃度測定装置としては、SS濃度計[電気化学計器(株)、SSD−10]を用いた。
排水に2価の鉄イオンの溶出量が75mg/Lになるように塩酸を添加し、70℃に加熱して、流量7.5L/h(LV=10.6m/h)で上向流で通水した。
12時間ごとに通水をいったん停止し、空気を85L/hで20秒間供給し、鉄金属粒子充填層をほぐしたのち、空気を供給し続けたまま、洗浄水として工業用水をLV=90m/hで900秒間通水した。次いで、空気の供給を止めて、洗浄水のみを60秒間通水した。この間、洗浄排水の懸濁物質濃度を測定した。このようにして、鉄金属粒子の充填層の洗浄を6回行った。
得られた6本の洗浄時間−懸濁物質濃度曲線のうち、懸濁物質濃度が最も高い曲線と、最も低い曲線を図2に示す。これらの曲線から、洗浄排水の懸濁物質濃度が200mg/Lになるまで、洗浄を続けることが適当であると判断した。
実施例2
実施例1と同じセレン(VI)濃度0.5mg/Lの排水を、実施例1と同様にして、鉄金属粒子の充填層に通水して還元処理した。
12時間ごとに通水を止め、実施例1と同じ条件で洗浄排水の懸濁物質濃度が200mg/Lになるまで洗浄を続けた。洗浄排水の懸濁物質濃度が200mg/Lになったとき、空気の供給を止め、洗浄水のみを60秒間通水した。次いで、排水の通水に切り替えて、還元処理を再開した。
鉄金属粒子の充填層から流出する還元処理水は、凝集槽に導き、水酸化ナトリウム水溶液を添加してpH9.5に調整することにより、鉄酸化物などを凝集沈殿させて、処理水を得た。
排水の通水による還元処理と、洗浄水と空気との混合流体による洗浄の工程を500時間行った結果、処理水中のセレン濃度は常に0.1mg/L以下であり、平均値は0.03mg/Lであった。また、混合流体による洗浄の1回当たりの平均時間は、280秒であった。
比較例1
図2のデータから、安全をみて、洗浄水と空気との混合流体による洗浄時間を、1回について600秒の一定値に設定した以外は、実施例2と同様にして、排水の通水による還元処理と、洗浄水と空気との混合流体による洗浄の工程を500時間行った。処理水中のセレン濃度は常に0.1mg/L以下であり、平均値は0.03mg/Lであった。
比較例2
洗浄水と空気の混合流体による洗浄時間を、1回について実施例2の平均洗浄時間である280秒の一定値に設定した以外は、実施例2と同様にして、排水の通水による還元処理と、洗浄水と空気との混合流体による洗浄の工程を500時間行った。処理水中のセレン濃度は最高0.2mg/Lに達し、平均値は0.08mg/Lであった。
【0012】
【発明の効果】
本発明方法によれば、ペルオキソ硫酸、ヨウ素酸、セレン酸などの酸化性物質を不純物として含有する排水を鉄金属粒子の充填層に通水して還元処理するに際し、鉄金属粒子の充填層の洗浄を、排水の水質変動に対して適正な量の洗浄水で効率的に行い、排水処理を長期間にわたって安定して行うことができる。
【図面の簡単な説明】
【図1】図1は、水処理装置の一例の説明図である。
【図2】図2は、洗浄時間と懸濁物質濃度の関係を示すグラフの一例である。
【図3】図3は、本発明の水処理装置の洗浄方法の一態様の説明図である。
【符号の説明】
1 カラム
2 導入口
3 排出口
4 多孔板
5 鉄金属粒子の充填層
6 多孔板
7 鉄金属粒子充填塔
8 還元処理水排出管
9 凝集槽
10 バルブ
11 バルブ
12 バルブ
13 ポンプ
14 バイパス管
15 汚濁物濃度測定器
16 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cleaning a water treatment apparatus. More specifically, the present invention is a water treatment apparatus for reducing impurities in water by passing water through a packed bed of iron metal particles, and the contaminants adhered to the surface of the iron metal with the minimum required washing water and washing time. It is related with the washing | cleaning method of the water treatment apparatus which can remove reliably.
[0002]
[Prior art]
The flue gas desulfurization effluent discharged from the flue gas desulfurization process for treating coal or petroleum combustion exhaust gas contains various impurities such as heavy metals and non-metals, so it is necessary to remove these impurities from the flue gas desulfurization effluent. There is. The water quality of the flue gas desulfurization wastewater varies depending on the fuel used and the flue gas desulfurization method, and a method for treating the flue gas desulfurization wastewater corresponding to the change in water quality is required.
When the wastewater contains peroxosulfuric acid, iodic acid, selenic acid, etc., the wastewater can be passed through a packed bed of iron metal particles to reduce impurities in the water. When the pH of the wastewater is adjusted to 5 or less and brought into contact with ferrous metal, divalent iron ions are eluted from the ferrous metal according to the following formula.
Fe + 2H + → Fe 2+ + H 2
Peroxosulfuric acid, iodic acid and selenic acid contained in the waste water react with divalent iron ions according to the following formulas, respectively, and are reduced.
S 2 O 8 2- + 2Fe 2+ → 2SO 4 2- + 2Fe 3+
2IO 3 + 10Fe 2+ + 12H + → I 2 + 10Fe 3+ + 6H 2 O
SeO 4 2− + 6Fe 2+ + 8H + → Se 0 + 6Fe 3+ + 4H 2 O
Further, when the oxidation-reduction potential is −400 to −100 mV, a reaction between iron metal and selenic acid occurs according to the following formula.
SeO 4 2− + 3Fe + 8H + → Se 0 + 3Fe 2+ + 4H 2 O
After reducing the impurities contained in the waste water by bringing them into contact with the iron metal in this way and adding an alkaline agent to the reduced treated water so that the pH is 7 or more, the iron ions in the water can be expressed, for example, by the following formula: In this way, water-insoluble iron hydroxide is formed to form floc.
Fe 2+ + 2NaOH → Fe (OH) 2 + 2Na +
Fe 3+ + 3NaOH → Fe (OH) 3 + 3Na +
At this time, in addition to the reduced selenium, heavy metals, suspended substances, fluorine, COD components, etc. contained in the waste water can also be coagulated, settled and separated at the same time.
FIG. 1 is an explanatory diagram of an example of a water treatment device that reduces water impurities by passing water through a packed bed of iron metal particles. The water treatment apparatus shown in the figure has a drainage, washing water and air inlet 2 at the bottom of a cylindrical column 1 and a water discharge port 3 for reducing treatment water and washing drainage at the top. A porous plate 4 is attached to the lower part of the column, and iron metal particles are filled thereon to form a packed layer 5 of iron metal particles. A perforated plate 6 is attached to the upper part of the column to prevent particles from flowing out when the packed bed is washed.
If drainage of water is continued through the packed bed of iron metal particles, the pollutants contained in the drainage and pollutants generated during the reduction process adhere to the iron metal particles, and the packed bed of iron metal particles is clogged. Etc. occur. The main components of such pollutants are iron oxide, iron hydroxide, FeO (OH) and the like produced by oxidation of part of the eluted divalent iron, and the amount generated varies depending on the quality of the wastewater. In other words, if a large amount of oxidizing substances are included in the wastewater, including coexisting oxidizing substances other than the oxidizing substances to be treated, the amount of pollutants generated will increase even with the same divalent iron elution amount. . Therefore, when there is a change in water quality, over-cleaning or insufficient cleaning may occur in a certain cleaning time. In particular, the influence of coexisting oxidizing substances other than the oxidizing substances to be treated is significant. In the case of insufficient cleaning, the iron metal particles are combined to form a large lump, resulting in a decrease in processing performance. Once a lump is formed, it is difficult to unravel and eventually it is impossible to pass water. Therefore, normally, an excessive cleaning time is set with a margin so as not to cause insufficient cleaning. However, if an excessive cleaning time is set, there is a problem that the cleaning water is wasted.
[0003]
[Problems to be solved by the invention]
The present invention reliably removes contaminants adhering to the surface of iron metal with a minimum amount of cleaning water and cleaning time in a water treatment device that reduces impurities in the water by passing water through a packed bed of iron metal particles. The object of the present invention is to provide a cleaning method for a water treatment apparatus that can be used.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have conducted a cleaning process for exhausting water from a packed bed in a water treatment apparatus for reducing impurities in water by passing water through the packed bed of iron metal particles. By measuring the concentration of pollutants in the waste water and controlling the supply time of the mixed fluid of cleaning water and gas supplied to the packed bed, the contamination adhered to the surface of ferrous metal with the minimum required cleaning water and cleaning time. It has been found that substances can be removed reliably, and the present invention has been completed based on this finding.
That is, the present invention
(1) A cleaning method for a water treatment apparatus for reducing impurities in water by passing water through a packed bed of iron metal particles, and temporarily stopping the flow of waste water to be reduced into the packed bed of iron metal particles After supplying air to the packed bed of iron metal particles and loosening the packed iron metal layer, supply cleaning water while continuing to supply air, and then stop supplying air and supply only cleaning water. and passed through, by measuring the suspended solids concentration in the wash waste water discharged from the packed bed, suspended after the substance concentration was continued washing until the 200 mg / L, water flow of wastewater reduction treatment water flow A method of cleaning a water treatment device, characterized by switching to
(2) The method for cleaning a water treatment apparatus according to item 1 , wherein the cleaning time with only cleaning water is 0.5 to 3 minutes , and
(3) The method for cleaning a water treatment apparatus according to item 1 or 2, wherein the suspended solids concentration is measured by a sensor provided in a cleaning drain pipe or a bypass of the cleaning drain pipe,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
A cleaning method for a water treatment apparatus according to the present invention is a cleaning method for a water treatment apparatus for reducing impurities in water by passing water through a packed bed of iron metal particles, and a mixed fluid of cleaning water and gas in the packed bed When the pollutant in the packed bed is removed by supplying, the concentration of the pollutant in the washing wastewater discharged from the packed bed is measured to control the supply time of the mixed fluid. Although there is no restriction | limiting in particular in the contaminant density | concentration of the washing waste_water | drain to measure, It is preferable that it is a suspended substance density | concentration or turbidity. The suspended substance concentration and turbidity can be measured easily and continuously using a commercially available measuring instrument.
The method of the present invention is a cleaning of a water treatment apparatus in which wastewater containing an oxidizing substance such as peroxosulfuric acid, iodic acid, and selenic acid as impurities is passed through a packed bed of iron metal particles, and the impurities in the wastewater are reduced. Can be applied to. When the pH of the wastewater is adjusted to 5 or less and brought into contact with iron metal, divalent iron ions are eluted in the water, and the oxidizing substances contained in the wastewater are reduced by reacting with the divalent iron ions. The Furthermore, when the oxidation-reduction potential is −400 to −100 mV, selenic acid reacts with iron metal and is reduced. In this way, after reducing impurities by contacting impurities contained in the wastewater with iron metal, when an alkaline agent is added to the reduction-treated water and the pH is set to 7 or more, the iron ions in the water become water-insoluble water. It becomes iron oxide and forms floc. At this time, in addition to the reduced selenium and the like, heavy metals, suspended substances, fluorine, COD components and the like contained in the waste water can also coagulate at the same time and be removed by solid-liquid separation.
Examples of the iron metal particles that are brought into contact with the wastewater whose pH is adjusted to 5 or less include particles of pure iron, crude steel, alloy steel, and other iron alloys. When the iron metal is an iron alloy, the iron content is preferably 85% by weight or more.
[0006]
The contact between the waste water and the iron metal particles can be efficiently performed by passing the waste water through a column filled with the iron metal particles. However, if drainage of water is continued through the packed bed of iron metal particles, contaminants adhere to the surface of the iron metal particles, and the packed bed of iron metal particles becomes clogged, resulting in the removal efficiency of impurities in the drainage. Gradually decreases. Examples of such pollutants include iron oxide, iron carbide, iron sulfide generated by the reaction of iron metal or iron ions, suspended substances in waste water, and the like.
In the method of the present invention, drainage is passed through the packed bed of iron metal particles, and after reducing impurities, the drainage of drainage is stopped, and a mixed fluid of washing water and gas is passed through the packed bed of iron metal particles. To remove and remove the contaminants adhering to the surface of the iron metal particles, or to remove the contaminants that clog the packed bed of iron metal particles. In the method of the present invention, after stopping the water flow of the waste water, before supplying the mixed fluid of the cleaning water and the gas, the cleaning metal can be passed to wash the iron metal particles, or only the gas Can be supplied to loosen the packed bed of iron metal particles. Washing water containing no divalent or trivalent iron ions present in the packed bed of iron metal particles is washed by passing washing water through the packed bed of iron metal particles. Can be substituted. When only the gas is supplied and the packed bed is loosened, the packed bed can be loosened without generating washing waste water since no washing water is supplied during that time. In the method of the present invention, the gas that forms the mixed fluid with the washing water is not particularly limited, and examples thereof include air and nitrogen gas. Usually, air can be preferably used.
[0007]
The drainage water whose pH is adjusted to 5 or less is usually performed in an upward flow because hydrogen gas is generated. In addition, it is preferable to supply the mixed fluid of cleaning water and gas in an upward flow. By supplying a mixed fluid of washing water and gas as an upward flow, the packed bed of iron metal particles expands and fluidizes, and is vigorously stirred by the mixed fluid containing bubbles and contaminated from the surface of the iron metal particles. The material is stripped and discharged along with the water stream along with the clogging pollutants. In cleaning with only cleaning water, even if the packed bed of iron metal particles is expanded, the effect of removing contaminants is small, and even if a large amount of cleaning water is consumed, the cleaning effect does not increase.
In the method of the present invention, the flow rate of the cleaning water for forming a mixed fluid of cleaning water and gas is preferably LV = 30 to 150 m / h. The flow rate of the wash water can be selected according to the size of the iron metal particles, etc., but when the mixed fluid of wash water and gas is supplied, the packed bed of the iron metal particles is developed by 10 to 50%. It is preferable to make it to the extent to do. When the water flow rate of the washing water is less than 30 m / h, there is little development of the packed bed of iron metal particles, and there is a possibility that the contaminants adhering to the surface of the iron metal particles are not sufficiently separated. If the flow rate of the wash water exceeds 150 m / h, the amount of wash water consumed increases and iron metal particles may flow out.
In the method of the present invention, the supply amount of gas for forming a mixed fluid of washing water and gas may be 0.1 to 10 times the volume per minute with respect to the packed bed of iron metal particles. preferable. If the supply amount of the gas is less than 0.1 times the volume per minute with respect to the packed bed of iron metal particles, the stirring force may be weak and the cleaning effect may not be sufficiently improved. The amount of gas supply is usually 10 times the volume per minute of the packed bed of iron metal particles, and even if more gas is supplied, cleaning is performed in accordance with the increase in gas supply amount. The effect is not improved.
[0008]
In the method of the present invention, the concentration of contaminants in the cleaning wastewater discharged from the packed bed of iron metal particles is measured to control the supply time of the mixed fluid of cleaning water and gas. There are no particular restrictions on the location of the sensor that measures the concentration of contaminants, and it can be installed at any location in contact with the cleaning wastewater. When cleaning with a mixed fluid of gas and gas, a sensor can be installed by providing a bypass pipe in a pipe used as a cleaning drain pipe, or a sensor can be installed directly in a pipe used as a cleaning drain pipe. Most of the gas contained in the mixed fluid separates into gas and liquid and escapes to the gas phase above the packed bed of iron metal particles, but part of the gas may be contained in the cleaning waste water. By providing a bypass pipe in the pipe used as the washing drain pipe and installing the sensor, it is possible to prevent the measurement error due to the bubbles so that the washing drainage in contact with the sensor does not contain bubbles. In the method of the present invention, when the concentration of contaminants in the cleaning wastewater reaches a predetermined control value, it is preferable to stop the supply of gas and end the cleaning with the mixed fluid. The control value of the contaminant concentration when the cleaning with the mixed fluid is finished can be set experimentally. After draining the wastewater through a packed bed of iron metal particles for a certain period of time and reducing it, the mixed bed of washing water and gas is supplied to the packed bed of contaminated iron metal particles to clean the packed bed, The pollutant concentration is measured and the relationship between the cleaning time and the pollutant concentration is shown in a graph.
FIG. 2 is an example of a graph showing the relationship between washing time and suspended solids concentration. Even if wastewater is discharged from the same discharge source, the quality of the wastewater varies with time, so the amount of pollutants generated in the packed bed of iron metal particles varies greatly. As shown in FIG. 2, it is preferable to repeatedly determine the relationship between the cleaning time and the pollutant concentration when processing wastewater discharged from the same discharge source, and to set the pollutant concentration when stopping the cleaning. . For example, in the relationship shown in FIG. 2, it is preferable to stop the cleaning when the concentration of suspended solids in the cleaning wastewater reaches 200 mg / L, and it is more preferable to stop the cleaning when it reaches 100 mg / L or less. preferable. By measuring the concentration of contaminants in the cleaning wastewater discharged from the packed bed of iron metal particles and controlling the supply time of the mixed fluid of cleaning water and gas, lumps of iron metal particles are generated due to insufficient cleaning. Therefore, the processing performance of the packed bed of iron metal particles can be stably maintained without excessive cleaning and waste of cleaning water and cleaning time.
[0009]
In the method of the present invention, it is preferable to supply the mixed fluid of the cleaning water and the gas and finish the cleaning, and then stop the supply of the gas and perform the cleaning only with the cleaning water. By washing with only washing water, it is possible to wash away the polluted substances separated by the mixed fluid of washing water and gas, and to expel air bubbles from the packed bed of iron metal particles. It can be formed uniformly.
In the method of the present invention, it is preferable that the cleaning with only the cleaning water after the supply of the mixed fluid of the cleaning water and the gas is performed for 0.5 to 3 minutes. If the cleaning time with only the cleaning water is less than 0.5 minutes, there is a possibility that washing away the polluted contaminants and expelling bubbles will be insufficient. Cleaning with only cleaning water is usually sufficient for 3 minutes or less, and even if cleaning with only cleaning water is continued, the cleaning effect is not improved. After the cleaning with only the cleaning water is completed, the supply of the cleaning water is stopped and settled to form the packed bed of iron metal particles again.
In the method of the present invention, there is no particular limitation on the timing of starting the cleaning of the packed bed of iron metal particles. For example, when a predetermined time has elapsed since the previous cleaning, when the reduction treatment of a predetermined amount of wastewater is completed, When the differential pressure of the packed bed of particles reaches a predetermined value, it can be arbitrarily set.
[0010]
Drawing 3 is an explanatory view of one mode of the washing method of the water treatment equipment of the present invention. In this embodiment, wastewater containing an oxidizing substance as an impurity is adjusted to pH 5 or lower and then supplied to the iron metal particle packed tower 7. The reduced water whose impurities have been reduced through the packed bed of iron metal particles is sent to the agglomeration tank 9 via the reduced water discharge pipe 8. An alkaline agent is added to the reduced treated water in a coagulation tank, adjusted to be alkaline and iron hydroxide is aggregated, and treated water is obtained by solid-liquid separation. After drainage is passed for a certain period of time, the valve 10 is closed to stop the supply of drainage, the valve 11 is opened and air is sent to the packed bed of iron metal particles to loosen the packed bed. Next, the valve 12 is opened while the air continues to be fed, the washing water is fed by the pump 13 and fed into the packed bed of iron metal particles as a mixed fluid of the washing water and air.
The cleaning waste water discharged from the packed bed of iron metal particles is sent to the pollutant concentration measuring device 15 via the bypass pipe 14 from the reduced treated water discharge pipe 8 used as the cleaning drain pipe. When the pollutant concentration in the cleaning wastewater is lowered to the set value, a signal is sent from the control device 16 to the valve 11 to stop the supply of air and cleaning with only cleaning water is performed. After the cleaning with only the cleaning water is performed for a predetermined time, a signal is sent from the control device 16 to the valve 12 or the valve 12 and the pump 13, the supply of the cleaning water is stopped, and the cleaning of the packed bed of iron metal particles is finished. Next, the valve 10 is opened again, and the reduction treatment of the waste water is resumed.
In the past, contaminants were removed by supplying a mixed fluid of cleaning water and gas to the packed bed of iron metal particles for a certain period of time, but in actual wastewater treatment, the quality of wastewater fluctuates, It was difficult to set the optimal cleaning time because the degree of contaminants adhering to the surface of the iron metal particles was different. According to the method of the present invention, by measuring the concentration of pollutants in the washing wastewater and controlling the supply time of the mixed fluid, it is possible to reliably carry out washing with the minimum amount of washing water, and stably over a long period of time. Impurities in the waste water can be removed.
[0011]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
The flue gas desulfurization effluent from a coal-fired power plant was passed through a packed bed of iron metal particles for reduction treatment.
The selenium (VI) concentration in the wastewater is 0.5 mg / L. A column with an inner diameter of 30 mm was filled with 500 mL of spherical iron metal particles having an average particle diameter of 0.6 mm to form an iron metal particle packed layer, and a water treatment apparatus whose process is shown in FIG. 3 was produced. An SS densitometer [Electrochemical Meter Co., Ltd., SSD-10] was used as the pollutant concentration measuring device.
Hydrochloric acid is added to the waste water so that the elution amount of divalent iron ions is 75 mg / L, heated to 70 ° C., and upward flow at a flow rate of 7.5 L / h (LV = 10.6 m / h). I passed water.
Water flow was stopped once every 12 hours, air was supplied at 85 L / h for 20 seconds, the iron metal particle packed bed was loosened, and industrial water was then supplied as washing water with LV = 90 m / Water was passed for 900 seconds at h. Next, the supply of air was stopped, and only cleaning water was passed for 60 seconds. During this time, the suspended solids concentration in the washing waste water was measured. In this way, the packed bed of iron metal particles was washed six times.
Of the obtained 6 washing time-suspended substance concentration curves, the curve with the highest suspended substance concentration and the curve with the lowest suspended substance concentration are shown in FIG. From these curves, it was judged that it was appropriate to continue washing until the suspended solids concentration in the washing wastewater reached 200 mg / L.
Example 2
The same selenium (VI) concentration 0.5 mg / L wastewater as in Example 1 was passed through a packed bed of iron metal particles and reduced in the same manner as in Example 1.
Water flow was stopped every 12 hours, and washing was continued under the same conditions as in Example 1 until the concentration of suspended solids in the washing wastewater reached 200 mg / L. When the suspended solid concentration of the washing wastewater reached 200 mg / L, the air supply was stopped and only the washing water was passed for 60 seconds. Subsequently, the reduction treatment was resumed by switching to drainage water flow.
Reduced treated water flowing out from the packed bed of iron metal particles is led to a coagulation tank, and adjusted to pH 9.5 by adding an aqueous sodium hydroxide solution to coagulate and precipitate iron oxide and the like to obtain treated water. It was.
As a result of performing the reduction process by drainage water flow and the washing process with the mixed fluid of washing water and air for 500 hours, the selenium concentration in the treated water is always 0.1 mg / L or less, and the average value is 0.03 mg. / L. In addition, the average time per washing with the mixed fluid was 280 seconds.
Comparative Example 1
From the data in FIG. 2, for safety, the cleaning time with the mixed fluid of cleaning water and air was set to a constant value of 600 seconds per time, and the drainage water flow was performed in the same manner as in Example 2. A reduction process and a cleaning process using a mixed fluid of cleaning water and air were performed for 500 hours. The selenium concentration in the treated water was always 0.1 mg / L or less, and the average value was 0.03 mg / L.
Comparative Example 2
Reduction treatment by drainage water flow in the same manner as in Example 2 except that the cleaning time with the mixed fluid of cleaning water and air is set to a constant value of 280 seconds, which is the average cleaning time of Example 2 for one time. And the washing | cleaning process by the mixed fluid of washing water and air was performed for 500 hours. The selenium concentration in the treated water reached a maximum of 0.2 mg / L, and the average value was 0.08 mg / L.
[0012]
【The invention's effect】
According to the method of the present invention, when the wastewater containing an oxidizing substance such as peroxosulfuric acid, iodic acid, and selenic acid as impurities is passed through the packed bed of iron metal particles for reduction treatment, Washing can be performed efficiently with an appropriate amount of washing water against fluctuations in the quality of the wastewater, and wastewater treatment can be performed stably over a long period of time.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an example of a water treatment apparatus.
FIG. 2 is an example of a graph showing the relationship between washing time and suspended solids concentration.
FIG. 3 is an explanatory view of one aspect of a cleaning method for a water treatment apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Column 2 Inlet 3 Outlet 4 Porous plate 5 Packing layer 6 of iron metal particles Porous plate 7 Iron metal particle packed tower 8 Reduction treatment water discharge pipe 9 Coagulation tank 10 Valve 11 Valve 12 Valve 13 Pump 14 Bypass pipe 15 Contaminant Concentration measuring device 16 Control device

Claims (3)

鉄金属粒子の充填層に通水して水中の不純物を還元処理する水処理装置の洗浄方法であって、鉄金属粒子の充填層への還元処理する排水の通水を一次停止して、鉄金属粒子の充填層に空気を供給して、鉄金属充填層をほぐしたのち、空気の供給を続けたまま洗浄水を供給し、ついで、空気の供給を止めて、洗浄水のみを通水して、充填層から排出される洗浄排水の懸濁物質濃度を測定して、懸濁物質濃度が200mg/Lになるまで洗浄を続けたのち、通水を還元処理する排水の通水に切り替えることを特徴とする水処理装置の洗浄方法。A cleaning method of a water treatment apparatus for reducing impurities in water by passing water through a packed bed of iron metal particles, and temporarily stopping the water flow of wastewater to be reduced to the packed bed of iron metal particles, After supplying air to the packed bed of metal particles and loosening the ferrous metal packed bed, supply cleaning water while continuing to supply air, then stop supplying air and allow only cleaning water to flow. After measuring the suspended solids concentration in the wastewater discharged from the packed bed and continuing the washing until the suspended solids concentration reaches 200 mg / L, switch to the drainage water for reduction treatment. A method for cleaning a water treatment apparatus. 洗浄水のみによる洗浄時間が0.5〜3分間であることを特徴とする請求項1記載の水処理装置の洗浄方法。The cleaning method for a water treatment apparatus according to claim 1 , wherein the cleaning time with only the cleaning water is 0.5 to 3 minutes . 懸濁物質濃度の測定を、洗浄排水管又は洗浄排水管のバイパスに設けたセンサーによって行う請求項1又は2記載の水処理装置の洗浄方法。The water treatment apparatus cleaning method according to claim 1 or 2, wherein the suspended substance concentration is measured by a sensor provided in a cleaning drain pipe or a bypass of the cleaning drain pipe.
JP2001010669A 2001-01-18 2001-01-18 Cleaning method for water treatment equipment Expired - Fee Related JP4538706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001010669A JP4538706B2 (en) 2001-01-18 2001-01-18 Cleaning method for water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001010669A JP4538706B2 (en) 2001-01-18 2001-01-18 Cleaning method for water treatment equipment

Publications (2)

Publication Number Publication Date
JP2002210478A JP2002210478A (en) 2002-07-30
JP4538706B2 true JP4538706B2 (en) 2010-09-08

Family

ID=18877943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001010669A Expired - Fee Related JP4538706B2 (en) 2001-01-18 2001-01-18 Cleaning method for water treatment equipment

Country Status (1)

Country Link
JP (1) JP4538706B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261950B2 (en) * 2006-07-04 2013-08-14 栗田工業株式会社 Method and apparatus for treating selenium-containing wastewater
JP6053593B2 (en) * 2013-03-27 2016-12-27 千代田化工建設株式会社 Treatment of selenium-containing wastewater
JP6213044B2 (en) * 2013-08-20 2017-10-18 栗田工業株式会社 Method and apparatus for treating selenium-containing water
JP2015039651A (en) * 2013-08-20 2015-03-02 栗田工業株式会社 Method and apparatus for treating selenium-containing water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232188A (en) * 1994-02-22 1995-09-05 Hitachi Ltd Method for controlling biological activated carbon equipment
JPH1034168A (en) * 1996-07-26 1998-02-10 Kurita Water Ind Ltd Method for treating water containing selenium
JPH11319856A (en) * 1998-05-14 1999-11-24 Kurita Water Ind Ltd Cleaning method of water treating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232188A (en) * 1994-02-22 1995-09-05 Hitachi Ltd Method for controlling biological activated carbon equipment
JPH1034168A (en) * 1996-07-26 1998-02-10 Kurita Water Ind Ltd Method for treating water containing selenium
JPH11319856A (en) * 1998-05-14 1999-11-24 Kurita Water Ind Ltd Cleaning method of water treating device

Also Published As

Publication number Publication date
JP2002210478A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
TWI418521B (en) Treatment method and treatment device of selenium - containing wastewater
JP4117106B2 (en) Method and apparatus for treating manganese-containing water
JP4538706B2 (en) Cleaning method for water treatment equipment
WO2019239515A1 (en) Oxidation device, water treatment device, water treatment method, ozone water generation method, and cleaning method
JP3385137B2 (en) Treatment of flue gas desulfurization wastewater
JP4877103B2 (en) Method and apparatus for treating selenium-containing wastewater
JP5109505B2 (en) Method and apparatus for treating selenium-containing wastewater
JP4041977B2 (en) Method and apparatus for processing solution containing selenium
JP3699367B2 (en) Waste liquid treatment method
JP4014679B2 (en) Wastewater treatment method
JP3870405B2 (en) Treatment of selenium-containing wastewater
JP2000070962A (en) Treatment of waste water containing fluorine
JP3981843B2 (en) Method for treating selenium-containing water
JP3360608B2 (en) Cleaning method for water treatment equipment
JP2006263703A (en) Treatment method and treatment apparatus of selenium-containing water
JPH11277076A (en) Method and apparatus for treating manganese-containing water
JPH10137772A (en) Manganese containing water treatment and device therefor
JP4214326B2 (en) Water treatment equipment
JP4246809B2 (en) Wastewater treatment method
JP6213044B2 (en) Method and apparatus for treating selenium-containing water
JP3928187B2 (en) Method and apparatus for dephosphorization in wastewater
JP4597346B2 (en) Treatment of selenium-containing wastewater
JP2007254194A (en) Processing method of iron-containing waste fluid
JPH09323090A (en) Washing method of water treatment device
JP2006021119A (en) Fluid treatment method and fluid treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4538706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees