JP4538602B2 - Blood pressure / blood viscosity measuring method and blood pressure / blood viscosity measuring apparatus - Google Patents

Blood pressure / blood viscosity measuring method and blood pressure / blood viscosity measuring apparatus Download PDF

Info

Publication number
JP4538602B2
JP4538602B2 JP2004026858A JP2004026858A JP4538602B2 JP 4538602 B2 JP4538602 B2 JP 4538602B2 JP 2004026858 A JP2004026858 A JP 2004026858A JP 2004026858 A JP2004026858 A JP 2004026858A JP 4538602 B2 JP4538602 B2 JP 4538602B2
Authority
JP
Japan
Prior art keywords
blood
pressure
viscosity
external
blood flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004026858A
Other languages
Japanese (ja)
Other versions
JP2005218501A (en
Inventor
英之 平田
豊 三原
文和 大平
志郎 松尾
薫 多田
宏一 守屋
Original Assignee
国立大学法人 香川大学
葵機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 香川大学, 葵機工株式会社 filed Critical 国立大学法人 香川大学
Priority to JP2004026858A priority Critical patent/JP4538602B2/en
Publication of JP2005218501A publication Critical patent/JP2005218501A/en
Application granted granted Critical
Publication of JP4538602B2 publication Critical patent/JP4538602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、血圧・血液粘度測定方法および血圧・血液粘度測定装置に関する。   The present invention relates to a blood pressure / blood viscosity measuring method and a blood pressure / blood viscosity measuring apparatus.

従来、血圧測定装置としては種々のものがあり、手首、腕、指などに測定装置を装着するものや(例えば、特許文献1,2参照)、血圧値を連続的に監視するもの(例えば、特許文献3参照)が知られている。   Conventionally, there are various types of blood pressure measuring devices, such as those that wear measuring devices on wrists, arms, fingers, etc. (for example, see Patent Documents 1 and 2), and devices that continuously monitor blood pressure values (for example, Patent Document 3) is known.

特開平8−580号公報JP-A-8-580 特開平1−214339号公報JP-A-1-214339 特開平7−284479号公報JP-A-7-284479

ところで、検査項目として血圧だけでなく血液粘度の測定が必要な場合がある。しかしながら上述した装置では血圧しか測定できないので、血圧測定に加えて血液粘度測定を別途行う必要があった。従来は、血液粘度測定を行う場合には患者の血液を採血し、粘度測定装置で検査するのが一般的である。そのため、検査工程が2工程となり、患者への負担が増加するとともに、検査を何回も行って粘度の時間的変化を観察するということは実際上困難であった。   By the way, there are cases where it is necessary to measure not only blood pressure but also blood viscosity as a test item. However, since only the blood pressure can be measured with the above-described apparatus, it is necessary to separately measure blood viscosity in addition to blood pressure measurement. Conventionally, when blood viscosity measurement is performed, blood of a patient is generally collected and inspected with a viscosity measuring device. For this reason, the number of inspection steps is two, which increases the burden on the patient, and it is practically difficult to observe the change in viscosity over time by performing the inspection many times.

請求項1の発明による血圧・血液粘度測定装置は、被験者の指に巻回するリング状部材であって、指の曲げ伸ばしの際の指の膨らみを利用して該指第1の外圧および第2の外圧を負荷する外圧負荷手段と、外圧負荷手段により負荷された第1の外圧および第2の外圧を測定する外圧測定手段と、第1の外圧を負荷したときの指の第1の血流量、および第1の外圧を負荷したときの指の第2の血流量を測定する血流量測定手段と、血圧値および血液粘度情報を演算する演算手段と、を備え、演算手段は、予め定められた血圧と血流量との関係を表す関係式を、第1および第2の外圧と第1および第2の血流量とに基づいて算出される血液粘度変化および外圧の変化に基づいて補正し、その補正された関係式と、第1および第2の外圧と、第1および第2の血流量とに基づいて血圧値および血液粘度情報を演算することを特徴とする。
請求項2の発明は、請求項1に記載の血圧・血液粘度測定装置において、血液粘度情報は相対的な血液粘度変化であることを特徴とする。
請求項3の発明は、請求項1に記載の血圧・血液粘度測定装置において、血液粘度情報は、第1および第2の外圧と、第1および第2の血流量と前記補正された関係式と、少なくとも既知の血液粘度とに基づいて算出される血液粘度であることを特徴とする。
請求項4の発明は、請求項1〜3のいずれか一項に記載の血圧・血液粘度測定装置において、外圧変化に対する血流量変化の比率と粘度変化との関係を表す血流量・粘度相関を求め、計測された2つの血流量間の変化と計測された2つの外圧間の変化との比と血流量・粘度相関に基づいて血液粘度の変化を算出することを特徴とする
請求項の発明は、請求項1〜4のいずれか一項に記載の血圧・血液粘度測定装置において、血流量測定手段は、被験者のに光を照射し、その反射光を受光して血流量を測定するものである
The blood pressure / blood viscosity measuring device according to the invention of claim 1 is a ring-shaped member that is wound around a finger of a subject, and uses a bulge of the finger during bending and stretching of the finger to apply a first external pressure and and external pressure loading means for loading the second external pressure, the external pressure measuring means for measuring a first external pressure and a second external pressure loaded by an external pressure load means, a first finger when the load of the first external pressure A blood flow measuring means for measuring the blood flow and the second blood flow of the finger when the first external pressure is applied; and a calculating means for calculating the blood pressure value and the blood viscosity information. A relational expression representing the relationship between the determined blood pressure and blood flow is corrected based on changes in blood viscosity and changes in external pressure calculated based on the first and second external pressures and the first and second blood flows. And the corrected relational expression, the first and second external pressures, and the first Characterized by calculating a blood pressure value and blood viscosity information based on the preliminary second blood flow.
According to a second aspect of the present invention, in the blood pressure / blood viscosity measuring apparatus according to the first aspect, the blood viscosity information is a relative blood viscosity change.
A third aspect of the present invention is the blood pressure / blood viscosity measuring apparatus according to the first aspect, wherein the blood viscosity information includes the first and second external pressures, the first and second blood flow rates, and the corrected relational expression. And the blood viscosity calculated based on at least the known blood viscosity.
According to a fourth aspect of the present invention, in the blood pressure / blood viscosity measuring device according to any one of the first to third aspects, a blood flow / viscosity correlation representing a relationship between a ratio of a change in blood flow to a change in external pressure and a change in viscosity. A change in blood viscosity is calculated based on a ratio between a change between two measured blood flow rates and a change between two measured external pressures and a blood flow / viscosity correlation .
The invention of claim 5 is the blood pressure / blood viscosity measuring device according to any one of claims 1 to 4, wherein the blood flow measuring means irradiates light on the subject's finger and receives the reflected light. It measures blood flow .

本発明によれば、被験者のに負荷される外圧とそれを負荷した際の血流量とから、血圧値および血液粘度を測定することができる。 According to the present invention, the blood pressure value and the blood viscosity can be measured from the external pressure applied to the subject's finger and the blood flow volume when it is loaded.

以下、図を参照して本発明を実施するための最良の形態について説明する。まず、本実施の形態の血圧・血液粘度測定装置は、被験者の最高・最低血圧値を予め別の血圧計で測定しておき、その測定結果を被験者の初期データとして記憶しておくものである。そして、本実施の形態の装置を被験者に装着した後は、初期データに基づいて血圧データおよび相対的な血液粘度変化を断続的に測定することができる。さらに、被験者の血液粘度を予め測定し、既知の初期データとして記憶しておくことにより、血液粘度変化に加えて血液粘度そのものも算出することができる。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. First, the blood pressure / blood viscosity measuring apparatus according to the present embodiment measures the maximum and minimum blood pressure values of a subject in advance with another sphygmomanometer, and stores the measurement results as initial data of the subject. . And after mounting | wearing a test subject with the apparatus of this Embodiment, based on initial data, blood pressure data and a relative blood viscosity change can be measured intermittently. Furthermore, by measuring the blood viscosity of the subject in advance and storing it as known initial data, the blood viscosity itself can be calculated in addition to the blood viscosity change.

図1は本発明による血圧・血液粘度測定装置の概略構成を示すブロック図である。カフ1はリング状の袋であり、被験者の指Fに巻回されるように装着される。カフ1は血圧・血液粘度測定の際に指Fに外部静水圧(以下ではカフ圧を呼ぶ)を負荷するものであり、配管3を介して接続された電動の空気ポンプ2によりカフ1内に空気を送り込むことによって指Fを圧迫する。図示していないが、配管3には切換弁が設けられていて、その切換弁を制御することによりカフ1へ空気の供給および排気を切り換えることができる。   FIG. 1 is a block diagram showing a schematic configuration of a blood pressure / blood viscosity measuring apparatus according to the present invention. The cuff 1 is a ring-shaped bag and is worn so as to be wound around the finger F of the subject. The cuff 1 applies external hydrostatic pressure (hereinafter referred to as cuff pressure) to the finger F when measuring blood pressure and blood viscosity, and the cuff 1 is put into the cuff 1 by an electric air pump 2 connected via a pipe 3. The finger F is squeezed by sending air. Although not shown, the piping 3 is provided with a switching valve, and the supply and exhaust of air to the cuff 1 can be switched by controlling the switching valve.

配管3には圧力センサ4が接続されており、この圧力センサ4によりカフ1に供給される空気の圧力、すなわち、カフ圧を検出することができる。圧力センサ4には例えば静電容量型のダイアフラム式センサが用いられ、シリコン基板上に微小ダイアフラムを形成して成る半導体センサを用いれば、圧力センサ4をカフ1自体に装着することができる。   A pressure sensor 4 is connected to the pipe 3, and the pressure of the air supplied to the cuff 1 by the pressure sensor 4, that is, the cuff pressure can be detected. For example, a capacitance type diaphragm sensor is used as the pressure sensor 4. If a semiconductor sensor formed by forming a micro diaphragm on a silicon substrate is used, the pressure sensor 4 can be attached to the cuff 1 itself.

また、カフ1には血管内の血流量を検出する血流量センサ5が指Fに密着するように設けられており、血流量センサ5からの信号は血流量計6に入力され、そこで血流量が演算される。血流量計6には、例えば、レーザ光を皮膚に指に照射して血流を検出するレーザドップラー血流計等が用いられる。   The cuff 1 is provided with a blood flow sensor 5 for detecting the blood flow in the blood vessel so as to be in close contact with the finger F, and a signal from the blood flow sensor 5 is input to the blood flow meter 6 where the blood flow is detected. Is calculated. As the blood flow meter 6, for example, a laser Doppler blood flow meter that detects blood flow by irradiating the skin with laser light on the finger is used.

圧力センサ4からのカフ圧信号および血流量計6からの血流量信号は、装置全体の制御を行うコントローラ7に入力される。コントローラ7には血圧や血液粘度を演算する演算部7aと、検出結果、演算に必要なパラメータ、演算結果などが記憶される記憶部7bとを備えている。演算部7aはCPUで構成され、記憶部7bはROM,RAM等で構成される。   The cuff pressure signal from the pressure sensor 4 and the blood flow signal from the blood flow meter 6 are input to a controller 7 that controls the entire apparatus. The controller 7 includes a calculation unit 7a that calculates blood pressure and blood viscosity, and a storage unit 7b that stores detection results, parameters necessary for calculation, calculation results, and the like. The calculation unit 7a is configured by a CPU, and the storage unit 7b is configured by a ROM, a RAM, and the like.

また、コントローラ7には送信機8が接続され、演算結果や各種データを送信することができるので、離れた場所において血圧の変化や血液粘度の変化をモニタすることができる。本実施の形態の装置は、例えば、被験者の血圧および血液粘度を継続的に観察するような場合に適しており、指Fに装着されるカフ1や血流量センサ5を除く二点鎖線で囲まれた各装置は一つの筐体(不図示)内に収納され、その筐体は被験者の手首等に装着される。   In addition, since the transmitter 8 is connected to the controller 7 and can transmit calculation results and various data, changes in blood pressure and changes in blood viscosity can be monitored at remote locations. The apparatus according to the present embodiment is suitable for, for example, continuously observing the blood pressure and blood viscosity of a subject, and is surrounded by a two-dot chain line excluding the cuff 1 and the blood flow sensor 5 attached to the finger F. Each device is housed in one housing (not shown), and the housing is attached to the wrist of the subject.

《血圧算出方法》
次に、本実施の形態の血圧・血液粘度測定装置における血圧および血液粘度の算出方法について説明する。まず、血圧の算出方法について説明する。本実施の形態の血圧・血液粘度測定方法では、一般的な「円管内流れモデル」および「内外圧を受ける円筒の変形モデル」を用いた流量−内圧シミュレーションにより、流量ηを内圧ξの一次式(1)で近似する。
η=aξ+b …(1)
《Blood pressure calculation method》
Next, a method for calculating blood pressure and blood viscosity in the blood pressure / blood viscosity measuring apparatus according to the present embodiment will be described. First, a blood pressure calculation method will be described. In the blood pressure / blood viscosity measurement method of the present embodiment, the flow rate η is a linear expression of the internal pressure ξ by a flow-internal pressure simulation using a general “circular pipe flow model” and “cylinder deformation model subjected to internal / external pressure”. Approximate with (1).
η = aξ + b (1)

式(1)の係数a,bは、血管に対応する円管に加わる外圧、および血液粘度に対応する流体の粘度によって異なる。そこで上述したモデルで近似式(1)の係数a,bのシミュレーションを行ったところ、図2,3に示すような結果が得られた。図2は係数aに関するシミュレーション結果を示したものであり、図3は係数bに関するシミュレーション結果を示したものである。   The coefficients a and b in the equation (1) differ depending on the external pressure applied to the circular tube corresponding to the blood vessel and the viscosity of the fluid corresponding to the blood viscosity. Therefore, simulations of the coefficients a and b of the approximate expression (1) were performed with the above-described model, and the results shown in FIGS. 2 and 3 were obtained. FIG. 2 shows a simulation result related to the coefficient a, and FIG. 3 shows a simulation result related to the coefficient b.

図2,3において、P0は外圧でP00は外圧の初期値であり、μは粘性でμ0は粘性の初期値である。例えば、被験者の最高血圧Pmaxおよび最低血圧Pminと、それらに対応する最高血流量Qmaxおよび最低血流量Qminが測定された場合、それらを近似式(1)に適用することにより、被験者のその測定時における係数a0,b0が式(2),(3)により得られる。これらの値を初期値とし、図2,3のシミュレーション結果から外圧および粘度が変化したときの係数a,bを求めることができる。
a0=(Qmax−Qmin)/(Pmax−Pmin) …(2)
b0=Qmin−a0・Pmin …(3)
2 and 3, P0 is the external pressure, P00 is the initial value of the external pressure, μ is the viscosity, and μ0 is the initial value of the viscosity. For example, when the maximum blood pressure Pmax and the minimum blood pressure Pmin of the subject and the corresponding maximum blood flow Qmax and the minimum blood flow Qmin are measured, by applying them to the approximate expression (1), The coefficients a0 and b0 in are obtained by equations (2) and (3). With these values as initial values, the coefficients a and b when the external pressure and the viscosity change can be obtained from the simulation results of FIGS.
a0 = (Qmax−Qmin) / (Pmax−Pmin) (2)
b0 = Qmin−a0 · Pmin (3)

図2,3から分かるように、P0/P00とμ/μ0とはa,bと一定の関係を有している。すなわち、x=P0/P00、y=μ/μ0としたとき、式(4),(5)に示すような関数f(x、y)、g(x、y)が存在する。したがって、これらの内圧と粘性とに依存する関数f(x、y)、g(x、y)を用いることにより、外圧の変化量と粘性の変化量とが分かれば近似係数a,bが決定でき、式(1)より血流量から血圧(内圧)を算出することができる。
a/a0=f(x、y) …(4)
b/b0=g(x、y) …(5)
As can be seen from FIGS. 2 and 3, P0 / P00 and μ / μ0 have a certain relationship with a and b. That is, when x = P0 / P00 and y = μ / μ0, there are functions f (x, y) and g (x, y) as shown in equations (4) and (5). Therefore, by using the functions f (x, y) and g (x, y) depending on these internal pressures and viscosities, the approximation coefficients a and b are determined if the amount of change in external pressure and the amount of change in viscosity are known. The blood pressure (internal pressure) can be calculated from the blood flow volume from the equation (1).
a / a0 = f (x, y) (4)
b / b0 = g (x, y) (5)

ここで、関数f(x、y)、g(x、y)は最小二乗法を用いて式(6),(7)のように近似する。
f(x、y)=c1x+c2x+c3xy+c4y+c5y+c6 …(6)
g(x、y)=d1x+d2x+d3xy+d4y+d5y+d6 …(7)
Here, the functions f (x, y) and g (x, y) are approximated by equations (6) and (7) using the least square method.
f (x, y) = c1x 2 + c2x + c3xy + c4y 2 + c5y + c6 (6)
g (x, y) = d1x 2 + d2x + d3xy + d4y 2 + d5y + d6 (7)

f(x、y)に関する式(6)の各係数c1〜c6を求めるために、x(外圧)、y(粘性)の条件を変化させてシミュレーションをn回行う。そして、それぞれについて次式(8)のような一次近似を行い、得られたa,bを初期値a0,b0で除してa/a0およびb/b0を求める。
(流量)=a×(内圧)+b …(8)
In order to obtain the coefficients c1 to c6 of Equation (6) relating to f (x, y), the simulation is performed n times while changing the conditions of x (external pressure) and y (viscosity). Then, linear approximation as in the following equation (8) is performed for each, and a / b and b / b0 are obtained by dividing obtained a and b by initial values a0 and b0.
(Flow rate) = a × (Internal pressure) + b (8)

ここでz=a/a0とおくと、シミュレーションをn回行っているので、n組のデータ(x1,y1,z1),(x2,y2,z2),………,(xn,yn,zn)が得られることになる。次式(9)のような行列を考えた場合、係数c1〜c6を最小二乗法により決定するには、式(10)に示すような方程式を解いてそれらを決定すればよい。式(10)を解くにはLU分解法を用いれば良く、その結果、係数c1〜c6が求まる。式(7)の関数g(x、y)についても、同様にして係数d1〜d6が求まる。

Figure 0004538602
Figure 0004538602
Here, if z = a / a0, since the simulation is performed n times, n sets of data (x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn) ) Will be obtained. When a matrix like the following equation (9) is considered, in order to determine the coefficients c1 to c6 by the least square method, an equation as shown in equation (10) may be solved to determine them. In order to solve equation (10), the LU decomposition method may be used, and as a result, the coefficients c1 to c6 are obtained. For the function g (x, y) in Expression (7), the coefficients d1 to d6 are obtained in the same manner.
Figure 0004538602
Figure 0004538602

《血液粘度の算出方法》
次に、血液粘度、すなわち粘性の算出方法について説明する。粘性は常に変動するので、血管に対応する配管に2段階の外圧P01,P02を加え、そのときの流量Q1,Q2との関係から求めることにする。ここでは、式(11)で算出される値Cと粘性との関係をシミュレーションする。なお、シミュレーションに用いたデータは下記の通りである。
C=(Q1−Q2)/(P01−P02) …(11)
外圧…30,40(mmHg)
内圧…200(mmHg)
密度…1200(kg/m
縦弾性係数…20(MPa)
粘性…20.0〜30.0(Pa・s)
心拍数…60(回/min)
《Blood viscosity calculation method》
Next, a method for calculating blood viscosity, that is, viscosity will be described. Since the viscosity always fluctuates, two stages of external pressures P01 and P02 are applied to the pipe corresponding to the blood vessel, and the viscosity is determined from the relationship with the flow rates Q1 and Q2 at that time. Here, the relationship between the value C calculated by Expression (11) and the viscosity is simulated. The data used for the simulation is as follows.
C = (Q1-Q2) / (P01-P02) (11)
External pressure: 30, 40 (mmHg)
Internal pressure: 200 (mmHg)
Density ... 1200 (kg / m 3 )
Longitudinal elastic modulus: 20 (MPa)
Viscosity: 20.0-30.0 (Pa · s)
Heart rate ... 60 (times / min)

図4はシミュレーションの結果を表す図であり、縦軸はμ/μ0、横軸はCである。図4から粘性比μ/μ0とCとの間に一定の関係が有ることが分かり、シミュレーション結果から式(12)を決定することができる。よって、二段階外圧を負荷したときに測定される血流量から、式(11)を用いてCを算出し、算出されたCを式(12)に代入することにより粘性の相対値を求めることができる。
μ/μ0=h(C) …(12)
FIG. 4 is a diagram showing the results of the simulation. The vertical axis is μ / μ0 and the horizontal axis is C. It can be seen from FIG. 4 that there is a certain relationship between the viscosity ratio μ / μ0 and C, and equation (12) can be determined from the simulation results. Therefore, C is calculated from the blood flow measured when a two-stage external pressure is applied, using Equation (11), and the relative value of viscosity is obtained by substituting the calculated C into Equation (12). Can do.
μ / μ0 = h (C) (12)

なお、図4では関数hは式(11)で算出されるCを変数とする関数としたが、予め別の測定器具を用いて測定した被験者の特定血圧・血流量データから算出したCをC0、その後に本発明による装置を用いて測定した被験者の血圧・血流量データから算出されるCをC1とし、それらの比C1/C0を変数とする関数としても良い。以下では、関数h(C)は比C1/C0=Cを変数とする関数として扱う。   In FIG. 4, the function h is a function having C calculated by the equation (11) as a variable, but C calculated from the specific blood pressure / blood flow data of the subject measured in advance using another measuring instrument is expressed as C0. Thereafter, C calculated from the blood pressure / blood flow data of the subject measured using the apparatus according to the present invention may be C1, and a function having a ratio C1 / C0 as a variable may be used. In the following, the function h (C) is treated as a function having the ratio C1 / C0 = C as a variable.

《測定手順の説明》
次いで、図1の装置を用いた血圧および血液粘度の測定手順について、図5のフローチャートを参照しながら説明する。関数f、g、hは上述したシミュレーションにより予め算出され、図1の記憶部7bに格納されている。本実施の形態では、上述したように被験者の最高血圧値Pmax,最低血圧値Pminおよび血液粘度μ0を予め別の器具で測定し、それらの値を記憶部7bに記憶しておく。
<< Explanation of measurement procedure >>
Next, procedures for measuring blood pressure and blood viscosity using the apparatus of FIG. 1 will be described with reference to the flowchart of FIG. The functions f, g, and h are calculated in advance by the above-described simulation and stored in the storage unit 7b in FIG. In the present embodiment, as described above, the maximum blood pressure value Pmax, the minimum blood pressure value Pmin, and the blood viscosity μ0 of the subject are measured in advance with another device, and these values are stored in the storage unit 7b.

図5において、ステップS1〜ステップS3の処理は、血圧・血液粘度算出に必要な初期値を被験者自身の血圧・血流量データに基づいて算出するキャリブレーション処理に関するものである。そして、ステップS4〜ステップS10の処理により最高血圧値、最低血圧値および血液粘度が算出される。   In FIG. 5, the processes in steps S <b> 1 to S <b> 3 relate to a calibration process for calculating initial values necessary for blood pressure / blood viscosity calculation based on the blood pressure / blood flow data of the subject himself / herself. Then, the maximum blood pressure value, the minimum blood pressure value, and the blood viscosity are calculated by the processes in steps S4 to S10.

(ステップS1)
ステップS1では、図1のカフ1に空気を供給して被験者の指Fに異なるカフ圧P001およびP002を順に負荷し、心拍と同期して発生する最高血流量および最低血流量を血流量計6により計測する。カフ圧P001における最高血流量および最低血流量をQmax01,Qmin01とし、カフ圧P002における最高血流量および最低血流量をQmax02,Qmin02とする。血圧および血流量は心拍と同期して脈動しており、血流量が最高となったときに最高血圧が測定され、反対に血流量が最低となったときに最低血圧が測定される。なお、これらのデータP001,P002,Qmax01,Qmin01およびQmax02,Qmin02は記憶部7bに記憶される。
(Step S1)
In step S1, air is supplied to the cuff 1 of FIG. 1 and different cuff pressures P001 and P002 are sequentially applied to the subject's finger F, and the maximum blood flow volume and the minimum blood flow volume generated in synchronism with the heartbeat are measured on the blood flow meter 6. Measure by The maximum blood flow and the minimum blood flow at the cuff pressure P001 are Qmax01 and Qmin01, and the maximum blood flow and the minimum blood flow at the cuff pressure P002 are Qmax02 and Qmin02. The blood pressure and blood flow pulsate in synchronization with the heartbeat, and the maximum blood pressure is measured when the blood flow reaches the maximum, and the minimum blood pressure is measured when the blood flow reaches the minimum. These data P001, P002, Qmax01, Qmin01 and Qmax02, Qmin02 are stored in the storage unit 7b.

(ステップS2)
ステップS2では、ステップS1で測定された最高血流量Qmax01および最低血流量Qmin01と、記憶部7bに予め記憶されている最高血圧値Pmaxおよび最低血圧値Pminとを用いて、上述した式(2)、(3)により近似係数a0,b0を算出する。なお、式(2),(3)のQmaxにはQmax01を用い、QminにはQmin01を用いる。
(Step S2)
In step S2, using the maximum blood flow rate Qmax01 and minimum blood flow rate Qmin01 measured in step S1 and the maximum blood pressure value Pmax and the minimum blood pressure value Pmin stored in advance in the storage unit 7b, the above-described equation (2) , (3) to calculate approximate coefficients a0 and b0. In addition, Qmax01 is used for Qmax of Formula (2) and (3), and Qmin01 is used for Qmin.

(ステップS3)
ステップS3では、ステップS1で測定したカフ圧P001のときの最高血流量Qmax01とカフ圧P002のときの最高血流量Qmax02を式(11)に代入して、Cの初期値C0を算出する。上述したステップS1〜S3の処理によって、装置を装着している被験者に関する初期値a0,b0,C0が設定される。以下のステップS4〜S10の処理で算出される血圧・血液粘度は、被験者のデータから算出される初期値a0,b0,C0に基づいて演算されるので、被験者の血圧および血液粘度をより精度良く算出することができる。
(Step S3)
In step S3, the maximum blood flow rate Qmax01 at the cuff pressure P001 measured in step S1 and the maximum blood flow rate Qmax02 at the cuff pressure P002 are substituted into the equation (11) to calculate the initial value C0 of C. The initial values a0, b0, C0 relating to the subject wearing the device are set by the processing in steps S1 to S3 described above. Since the blood pressure and blood viscosity calculated in the following steps S4 to S10 are calculated based on the initial values a0, b0, and C0 calculated from the data of the subject, the blood pressure and blood viscosity of the subject are more accurately determined. Can be calculated.

(ステップS4)
ステップS4では、カフ1によりカフ圧P01,P02を順に負荷して、カフ圧P01における最高および最低血流量Qmax1,Qmin1およびカフ圧P02における最高および最低血流量Qmax2,Qmin2を測定し、記憶部7bに記憶する。
(Step S4)
In step S4, the cuff pressures P01 and P02 are sequentially loaded by the cuff 1, the maximum and minimum blood flow rates Qmax1 and Qmin1 at the cuff pressure P01 and the maximum and minimum blood flow rates Qmax2 and Qmin2 at the cuff pressure P02 are measured, and the storage unit 7b. To remember.

(ステップS5)
ステップS5では、ステップS4で測定されたデータに基づいて、上述した式(11)と同様の式(13)によりC1を算出する。
C1=(Qmax1−Qmax2)/(P01−P02) …(13)
(Step S5)
In step S5, based on the data measured in step S4, C1 is calculated by equation (13) similar to equation (11) described above.
C1 = (Qmax1-Qmax2) / (P01-P02) (13)

(ステップS6)
ステップS6では、ステップS5で算出されたC1とステップS3で算出されたCの初期値C0との比C=C1/C0を算出する。
(Step S6)
In step S6, the ratio C = C1 / C0 between C1 calculated in step S5 and the initial value C0 of C calculated in step S3 is calculated.

(ステップS7)
ステップS7では、上述した式(12)の関数h(C)にステップS6で算出したCを代入して、血液粘度の比μ/μ0を算出する。得られた比μ/μ0は初期値μ0に対する変化を表しており、この値に記憶部7bに予め記憶されている血液粘度の初期値μ0を乗算することにより、血流量測定時のリアルタイムな血液粘度μが算出される。
(Step S7)
In step S7, the blood viscosity ratio μ / μ0 is calculated by substituting C calculated in step S6 into the function h (C) of the above-described equation (12). The obtained ratio μ / μ0 represents a change with respect to the initial value μ0, and by multiplying this value by the initial value μ0 of blood viscosity stored in advance in the storage unit 7b, real-time blood during blood flow measurement is obtained. Viscosity μ is calculated.

(ステップS8)
ステップS8では、ステップS7で算出された値μ/μ0と、ステップS1およびステップS4で測定されたデータに基づく値P01/P001とをそれぞれ式(4),(5)のx、yに代入し、a/a0およびb/b0の値を算出する。
(Step S8)
In step S8, the value μ / μ0 calculated in step S7 and the values P01 / P001 based on the data measured in steps S1 and S4 are substituted for x and y in equations (4) and (5), respectively. , A / a0 and b / b0 are calculated.

(ステップS9)
ステップS9では、ステップS8で算出されたa/a0,b/b0に記憶部7bに記憶された初期値a0,b0をそれぞれ乗算してa1,b1を算出する。算出されたa1,b1は血流量測定時における近似式(1)の係数を表している。
(Step S9)
In step S9, a1 and b1 are calculated by multiplying a / a0 and b / b0 calculated in step S8 by initial values a0 and b0 stored in the storage unit 7b, respectively. The calculated a1 and b1 represent the coefficients of the approximate expression (1) at the time of blood flow measurement.

(ステップS10)
ステップS10では、ステップS9で算出されたa1,b1を近似式(1)の対応する係数a,bに代入し、ηにステップS4で測定された最高血流量Qmax1を代入することにより、最高血圧値が「(最高血圧)=(Qmax1−b1)/a1」のように算出される。同様に、a1,b1および最低血流量Qmin1を近似式(1)に代入することにより、最低血圧値が「(最高血圧)=(Qmin1−b1)/a1」のように算出される。
(Step S10)
In step S10, a1 and b1 calculated in step S9 are substituted for the corresponding coefficients a and b of the approximate expression (1), and the maximum blood flow Qmax1 measured in step S4 is substituted for η, so that the maximum blood pressure is obtained. The value is calculated as “(maximum blood pressure) = (Qmax1-b1) / a1”. Similarly, by substituting a1, b1 and the minimum blood flow volume Qmin1 into the approximate expression (1), the minimum blood pressure value is calculated as “(maximum blood pressure) = (Qmin1−b1) / a1”.

ステップS10の処理が終了したならばステップS4に戻り、ステップS4からステップS10までの処理が繰り返し実行される。その結果、ステップS4からステップS10までの処理が実行される毎に新しい最高および最低血圧値と血液粘度とが得られ、それらの時間的変化を観察することができる。特に、血液粘度については採血を必要としないため、被験者に負担をかけることなく血液粘度の変化を時系列的に測定することが可能となる。また、前述したように、測定結果は記憶部7bに保存され、さらに、それらのデータを送信機8を介して送信することができる。   If the process of step S10 is complete | finished, it will return to step S4 and the process from step S4 to step S10 will be performed repeatedly. As a result, new maximum and minimum blood pressure values and blood viscosities are obtained each time the processing from step S4 to step S10 is executed, and their temporal changes can be observed. In particular, since blood collection is not required for blood viscosity, it is possible to measure changes in blood viscosity in time series without placing a burden on the subject. Further, as described above, the measurement results are stored in the storage unit 7b, and further, those data can be transmitted via the transmitter 8.

上述した実施の形態では、カフ1を被験者の指Fに装着する構成としたが、腕に巻回する構成としても良い。上述した実施の形態の変形例であり、図1のカフ1をラバー等のリング状弾性体で形成し、指Fの曲げ伸ばしした際の指Fの膨らみを利用してカフ圧P001,P002を負荷するような構成とする。この場合、空気ポンプ2は不要となり、圧力センサ4には前述したような半導体センサが用いられる。圧力センサ4は図1の血流量センサ5のようにカフ1に組み込まれる。   In the embodiment described above, the cuff 1 is mounted on the subject's finger F. However, the cuff 1 may be wound around the arm. 1 is a modification of the above-described embodiment, and the cuff 1 of FIG. 1 is formed of a ring-like elastic body such as rubber, and the cuff pressures P001 and P002 are applied using the swelling of the finger F when the finger F is bent and stretched. The load is configured. In this case, the air pump 2 is not necessary, and the semiconductor sensor as described above is used as the pressure sensor 4. The pressure sensor 4 is incorporated in the cuff 1 like the blood flow sensor 5 of FIG.

また、形状記憶合金をラバー等の弾性体でモールドしたものをカフ1として用いても良い。例えば、ヒータを内蔵して形状記憶合金の温度を変え、そのときの形状記憶合金の変形により指Fにカフ圧を負荷する。なお、図1では血流量センサ5はカフ1に組み込まれているが、カフ1と別個に装着するようにしても良い。   Further, a shape memory alloy molded with an elastic body such as rubber may be used as the cuff 1. For example, a heater is incorporated to change the temperature of the shape memory alloy, and a cuff pressure is applied to the finger F by deformation of the shape memory alloy at that time. In FIG. 1, the blood flow sensor 5 is incorporated in the cuff 1, but may be attached separately from the cuff 1.

上述したように、本実施の形態では被験者の指Fに外部静水圧を与えたときの血流量を測定することで、容易に血圧および血液粘度を測定することができる。さらに、従来のように採血することなく血液粘度を測定できるので、連続的に複数回の測定を行っても被験者に負担をかけることがなく、血液粘度の経時変化を容易に測定することができる。また、指Fに異なる2つの外部静水圧P001,P002を負荷するだけで良いので、僅かなカフ圧で血圧値と血液粘度が測定できる。そのため、上述したような形状記憶合の変形を利用することにより、カフ1を指輪等のように非常に小型化することができ、また、装着感に優れたカフ1を構成できる。   As described above, in the present embodiment, the blood pressure and blood viscosity can be easily measured by measuring the blood flow when external hydrostatic pressure is applied to the subject's finger F. Furthermore, since blood viscosity can be measured without blood collection as in the past, even if a plurality of measurements are continuously performed, the subject is not burdened, and changes in blood viscosity over time can be easily measured. . Further, since only two different external hydrostatic pressures P001 and P002 need to be applied to the finger F, the blood pressure value and blood viscosity can be measured with a slight cuff pressure. Therefore, by using the deformation of the shape memory as described above, the cuff 1 can be made very small like a ring or the like, and the cuff 1 excellent in wearing feeling can be configured.

以上説明した実施の形態と特許請求の範囲の要素との対応において、カフ1は外圧負荷手段を、圧力センサ4は外圧測定手段を、血流量センサ5は血流量測定手段を、演算部7aは演算手段を構成する。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。 In the correspondence between the embodiment described above and the elements of the claims, the cuff 1 is an external pressure load means, the pressure sensor 4 is an external pressure measurement means, the blood flow sensor 5 is a blood flow measurement means, and the calculation unit 7a is Computation means is configured. In addition, the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired.

さらに、第1の外部静水圧を負荷したときの第1の血流量と、第2の外部静水圧を負荷したとき第2の血流量とをそれぞれ測定し、さらに、予め定められた血圧と血流量との関係を表す関係式を、第1および第2の外部静水圧と第1および第2の血流量とにより算出される血液粘度変化および外部静水圧の変化に基づいて補正し、第1および第2の外部静水圧と第1および第2の血流量と第3の工程の補正された関係式とに基づいて血圧値および血液粘度情報を算出するものであるならば、シミュレーションに用いるモデルや、血圧−血流量に関する近似式は上述したものに限らず、本発明を適用することができる。   Further, the first blood flow when the first external hydrostatic pressure is loaded and the second blood flow when the second external hydrostatic pressure is loaded are measured, respectively, and predetermined blood pressure and blood are measured. The relational expression representing the relationship with the flow rate is corrected based on a change in blood viscosity and a change in external hydrostatic pressure calculated from the first and second external hydrostatic pressures and the first and second blood flow volumes, If the blood pressure value and blood viscosity information are to be calculated based on the second external hydrostatic pressure, the first and second blood flow rates, and the corrected relational expression in the third step, a model used for the simulation In addition, the approximate expression related to the blood pressure-blood flow rate is not limited to that described above, and the present invention can be applied.

本発明による血圧・血液粘度測定装置の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a blood pressure / blood viscosity measuring apparatus according to the present invention. 係数aに関するシミュレーション結果を示した図である。It is the figure which showed the simulation result regarding the coefficient a. 係数bに関するシミュレーション結果を示した図である。It is the figure which showed the simulation result regarding the coefficient b. シミュレーションの結果を表す図である。It is a figure showing the result of simulation. 血圧および血液粘度の算出方法を説明するフローチャートである。It is a flowchart explaining the calculation method of blood pressure and blood viscosity.

符号の説明Explanation of symbols

1 カフ
2 空気ポンプ
4 圧力センサ
5 血流量センサ
6 血流量計
7 コントローラ
7a 演算部
7b 記憶部
8 送信機
DESCRIPTION OF SYMBOLS 1 Cuff 2 Air pump 4 Pressure sensor 5 Blood flow sensor 6 Blood flow meter 7 Controller 7a Calculation part 7b Memory | storage part 8 Transmitter

Claims (5)

被験者の指に巻回するリング状部材であって、前記指の曲げ伸ばしの際の指の膨らみを利用して該指第1の外圧および第2の外圧を負荷する外圧負荷手段と、
前記外圧負荷手段により負荷された前記第1の外圧および第2の外圧を測定する外圧測定手段と、
前記第1の外圧を負荷したときの前記指の第1の血流量、および前記第1の外圧を負荷したときの前記指の第2の血流量を測定する血流量測定手段と、
血圧値および血液粘度情報を演算する演算手段と、を備え、
前記演算手段は、予め定められた血圧と血流量との関係を表す関係式を、前記第1および第2の外圧と前記第1および第2の血流量とに基づいて算出される血液粘度変化および外圧の変化に基づいて補正し、その補正された関係式と、前記第1および第2の外圧と、前記第1および第2の血流量とに基づいて前記血圧値および血液粘度情報を演算することを特徴とする血圧・血液粘度測定装置。
A ring-shaped member wound around the subject's finger, the external pressure loading means for applying a first external pressure and a second external pressure to the finger by utilizing the swelling of the finger when the finger is bent and stretched ;
An external pressure measuring means for measuring the first external pressure and the second external pressure loaded by the external pressure load means;
A blood flow measuring means for measuring a first blood flow of the finger when the first external pressure is applied, and a second blood flow of the finger when the first external pressure is applied ;
Calculating means for calculating blood pressure value and blood viscosity information,
The calculating means calculates a relational expression representing a predetermined relationship between blood pressure and blood flow based on the first and second external pressures and the first and second blood flows. And the blood pressure value and blood viscosity information are calculated based on the corrected relational expression, the first and second external pressures, and the first and second blood flow rates. An apparatus for measuring blood pressure and blood viscosity.
請求項1に記載の血圧・血液粘度測定装置において、In the blood pressure / blood viscosity measuring device according to claim 1,
前記血液粘度情報は相対的な血液粘度変化であることを特徴とする血圧・血液粘度測定装置。  The blood pressure / blood viscosity measuring apparatus, wherein the blood viscosity information is a relative blood viscosity change.
請求項1に記載の血圧・血液粘度測定装置において、In the blood pressure / blood viscosity measuring device according to claim 1,
前記血液粘度情報は、前記第1および第2の外圧と、前記第1および第2の血流量と前記補正された関係式と、少なくとも既知の血液粘度とに基づいて算出される血液粘度であることを特徴とする血圧・血液粘度測定装置。The blood viscosity information is blood viscosity calculated based on the first and second external pressures, the first and second blood flow rates, the corrected relational expression, and at least the known blood viscosity. An apparatus for measuring blood pressure and blood viscosity.
請求項1〜3のいずれか一項に記載の血圧・血液粘度測定装置において、
外圧変化に対する血流量変化の比率と粘度変化との関係を表す血流量・粘度相関を求め、計測された2つの血流量間の変化と計測された2つの外圧間の変化との比と前記血流量・粘度相関に基づいて血液粘度の変化を算出することを特徴とする血圧・血液粘度測定装置
In the blood pressure / blood viscosity measuring device according to any one of claims 1 to 3,
A blood flow / viscosity correlation representing a relationship between a change in blood flow volume with respect to a change in external pressure and a change in viscosity is obtained, and the ratio between the change between the two measured blood flow volumes and the change between the two measured external pressures and the blood A blood pressure / blood viscosity measuring apparatus that calculates a change in blood viscosity based on a flow rate / viscosity correlation .
請求項1〜4のいずれか一項に記載の血圧・血液粘度測定装置において、
前記血流量測定手段は、被験者のに光を照射し、その反射光を受光して血流量を測定することを特徴とする血圧・血液粘度測定装置。
In the blood pressure / blood viscosity measuring device according to any one of claims 1 to 4 ,
The blood pressure measuring device irradiates a subject's finger with light, receives the reflected light, and measures the blood flow.
JP2004026858A 2004-02-03 2004-02-03 Blood pressure / blood viscosity measuring method and blood pressure / blood viscosity measuring apparatus Expired - Fee Related JP4538602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026858A JP4538602B2 (en) 2004-02-03 2004-02-03 Blood pressure / blood viscosity measuring method and blood pressure / blood viscosity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026858A JP4538602B2 (en) 2004-02-03 2004-02-03 Blood pressure / blood viscosity measuring method and blood pressure / blood viscosity measuring apparatus

Publications (2)

Publication Number Publication Date
JP2005218501A JP2005218501A (en) 2005-08-18
JP4538602B2 true JP4538602B2 (en) 2010-09-08

Family

ID=34994621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026858A Expired - Fee Related JP4538602B2 (en) 2004-02-03 2004-02-03 Blood pressure / blood viscosity measuring method and blood pressure / blood viscosity measuring apparatus

Country Status (1)

Country Link
JP (1) JP4538602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517072B1 (en) * 2014-10-08 2015-05-04 이의호 Method to measure glomerular filtration rate of the kidney and device thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295657A (en) * 2007-05-30 2008-12-11 Yuri Uchiyama Blood viscosity measuring device
JP6171768B2 (en) * 2013-09-13 2017-08-02 カシオ計算機株式会社 Dehydration state determination device
JP6477792B2 (en) * 2017-07-05 2019-03-06 カシオ計算機株式会社 Dehydration state determination device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214339A (en) * 1988-02-23 1989-08-28 Koorin Denshi Kk Blood pressure monitoring method and apparatus
JPH0258409U (en) * 1988-10-21 1990-04-26
JPH02261421A (en) * 1989-04-03 1990-10-24 Koorin Denshi Kk Blood pressure monitoring apparatus
JPH04288129A (en) * 1991-03-18 1992-10-13 Sony Corp Blood viscosity observing apparatus
JPH07284479A (en) * 1994-04-20 1995-10-31 Nippon Colin Co Ltd Continuous blood pressure monitoring apparatus
JPH08580A (en) * 1994-06-27 1996-01-09 Matsushita Electric Works Ltd Sphygmomanometer
JP2002052011A (en) * 2000-08-10 2002-02-19 Tanita Corp Blood viscometer
JP2002519088A (en) * 1998-06-26 2002-07-02 トリップハーゼ メディカル リミテッド Blood system characteristic evaluation device
JP2003159250A (en) * 2001-07-09 2003-06-03 Seiko Instruments Inc Device for measuring blood rheology
JP2003290226A (en) * 2002-04-03 2003-10-14 Seiko Instruments Inc Circulatory movement measuring apparatus, circulatory movement measuring method, blood pressure measuring method and circulatory movement sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214339A (en) * 1988-02-23 1989-08-28 Koorin Denshi Kk Blood pressure monitoring method and apparatus
JPH0258409U (en) * 1988-10-21 1990-04-26
JPH02261421A (en) * 1989-04-03 1990-10-24 Koorin Denshi Kk Blood pressure monitoring apparatus
JPH04288129A (en) * 1991-03-18 1992-10-13 Sony Corp Blood viscosity observing apparatus
JPH07284479A (en) * 1994-04-20 1995-10-31 Nippon Colin Co Ltd Continuous blood pressure monitoring apparatus
JPH08580A (en) * 1994-06-27 1996-01-09 Matsushita Electric Works Ltd Sphygmomanometer
JP2002519088A (en) * 1998-06-26 2002-07-02 トリップハーゼ メディカル リミテッド Blood system characteristic evaluation device
JP2002052011A (en) * 2000-08-10 2002-02-19 Tanita Corp Blood viscometer
JP2003159250A (en) * 2001-07-09 2003-06-03 Seiko Instruments Inc Device for measuring blood rheology
JP2003290226A (en) * 2002-04-03 2003-10-14 Seiko Instruments Inc Circulatory movement measuring apparatus, circulatory movement measuring method, blood pressure measuring method and circulatory movement sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517072B1 (en) * 2014-10-08 2015-05-04 이의호 Method to measure glomerular filtration rate of the kidney and device thereof

Also Published As

Publication number Publication date
JP2005218501A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
KR101068116B1 (en) Apparatus and method for sensing radial arterial pulses for noninvasive and continuous measurement of blood pressure
USRE37852E1 (en) Blood pressure monitoring system
JP7229263B2 (en) Pressure measuring device, pressure measuring system and method for measuring pressure and/or elasticity of veins or organs and combining with an ultrasound measuring unit
US20110009718A1 (en) Determination of physiological parameters using repeated blood pressure measurements
JP2006289088A (en) Apparatus and method for pulse detection
CN102711599B (en) Super contraction in rapid blood pressure circulation is measured
WO2010073690A1 (en) Electronic sphygmomanometer, and method of measurement of blood pressure
CN110381819B (en) Biological information measuring apparatus and storage medium
CN104042200A (en) Non-invasive monitoring device and method for beat-to-beat arterial blood pressure
CN110916623B (en) Small-sized flexible pulse diagnosis instrument capable of applying pressure actively and detection method thereof
JP4538602B2 (en) Blood pressure / blood viscosity measuring method and blood pressure / blood viscosity measuring apparatus
CN113226161A (en) Control unit for deriving a measure of arterial compliance
CN107106046B (en) Blood vessel elastic modulus evaluation device
US20090099466A1 (en) Method and system for automatic cuff type determination
CN104936510A (en) Cardiovascular screening diagnostic and monitoring system and method
US20190307340A1 (en) Blood pressure measurement device and blood pressure measurement method
CN106264478A (en) Monitor system, temperature monitor and body temperature data processing method thereof and device
JP3706853B2 (en) Biological data observation device
TWI580404B (en) Method and system for measuring spasticity
CN111436938B (en) Limb swelling monitoring device and method
CN109793503B (en) Pulse condition diagnosis device and traditional Chinese medicine robot with same
CN103190893B (en) Method and system for calibrating parameters of blood-pressure meter
RU2638712C1 (en) Pneumatic sensor for continuous non-invasive measurement of arterial pressure
US20150051463A1 (en) Oximetry Signal, Pulse-Pressure Correlator
EP2976999B1 (en) Circulatory organ function arithmetic calculation device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Ref document number: 4538602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees