JP4536373B2 - New composition - Google Patents

New composition Download PDF

Info

Publication number
JP4536373B2
JP4536373B2 JP2003504977A JP2003504977A JP4536373B2 JP 4536373 B2 JP4536373 B2 JP 4536373B2 JP 2003504977 A JP2003504977 A JP 2003504977A JP 2003504977 A JP2003504977 A JP 2003504977A JP 4536373 B2 JP4536373 B2 JP 4536373B2
Authority
JP
Japan
Prior art keywords
spironolactone
nanosuspension
nanoparticles
drug
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003504977A
Other languages
Japanese (ja)
Other versions
JP2004534074A (en
JP2004534074A5 (en
Inventor
ギ ベルグノー
パスカル グルニエ
アラン ナハミアス
Original Assignee
ヤゴテック アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤゴテック アーゲー filed Critical ヤゴテック アーゲー
Publication of JP2004534074A publication Critical patent/JP2004534074A/en
Publication of JP2004534074A5 publication Critical patent/JP2004534074A5/ja
Application granted granted Critical
Publication of JP4536373B2 publication Critical patent/JP4536373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • A61K31/585Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin containing lactone rings, e.g. oxandrolone, bufalin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/10Antioedematous agents; Diuretics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cardiology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Hospice & Palliative Care (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Steroid Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明はナノ粒子の形態の原薬スピロノラクトン、ナノ粒子を製造する方法、ナノ粒子を含む製剤、およびナノ粒子性原薬の使用に関する。特に本発明は、スピロノラクトンを含むナノ懸濁液に関する。   The present invention relates to a drug substance spironolactone in the form of nanoparticles, a method for producing nanoparticles, a formulation comprising nanoparticles, and the use of a nanoparticulate drug substance. In particular, the present invention relates to nanosuspensions containing spironolactone.

スピロノラクトンは、カリウムの喪失をきたさない利尿剤として使用できるアルドステロン阻害剤として知られている。例えば、アルダクトンとして市販されており、例えば、うっ血性心不全の治療などに使用できる。スピロノラクトンは水に対する溶解性が2.8 mg/100 mlと極度に低い。これはインビボでの原薬の吸収に不都合であり、バイオアベイラビリティが低くなる。したがって、望ましい血中濃度に達するためには、より高用量の原薬が必要となる。スピロノラクトンの溶解性が低いために、原薬を製剤化する際の選択肢も限定されることにもなる。   Spironolactone is known as an aldosterone inhibitor that can be used as a diuretic that does not cause loss of potassium. For example, it is marketed as alductone and can be used, for example, for the treatment of congestive heart failure. Spironolactone has extremely low solubility in water of 2.8 mg / 100 ml. This is inconvenient for absorption of the drug substance in vivo and has low bioavailability. Therefore, higher doses of drug substance are required to reach the desired blood levels. Due to the low solubility of spironolactone, the options for formulating the drug substance are also limited.

経口投与後、小腸からの薬剤の吸収は、主に腸液への薬剤の溶解性および腸の透過性に依存する。溶解性の低い薬剤は、一般に溶解速度が低く、腸粘膜の内外でわずかな濃度勾配しか示さないため、吸収は低く信頼できないレベルとなる。溶解性が低い原薬は、例えばボーラス注射のような他の投与経路においても、不利な点がある。したがって、必要な用量を提供しないような、非常に薄い濃度の溶液しか作成できない可能性がある。そのような状況では、注射ではなく、持続注入によって投与する必要がある可能性がある。場合によっては、非経口投与に適した製剤が全く得られない可能性もある。   After oral administration, drug absorption from the small intestine is primarily dependent on drug solubility in the intestinal fluid and intestinal permeability. Drugs with poor solubility generally have a low dissolution rate and show only a slight concentration gradient inside and outside the intestinal mucosa, resulting in low and unreliable levels of absorption. Drug substances with low solubility also have disadvantages in other routes of administration, such as bolus injection. Therefore, it may be possible to make only a very thin solution that does not provide the required dose. In such situations, it may be necessary to administer by continuous infusion rather than injection. In some cases, no preparation suitable for parenteral administration may be obtained.

微粒子およびナノ粒子の形態で原薬を製造するために、多大な努力がなされてきた。しかし、そのような小さな粒子の調製は容易なことではなく、工程の技術的な側面、および満足できる産物を得るという点の両方で、さらに困難が生じ得る。たとえば、一貫した狭い範囲の粒子サイズを、特に製造規模で得るのは困難な場合がある。さらに、安定した産物(例えば、ナノ懸濁液)を得る必要があるが、微粒子およびナノ粒子は凝集し固まりになる傾向があり、これは産物の安定性には不都合な影響がある。微粒子およびナノ粒子の調製のために、いくつかの手法が研究されてきた。   Great efforts have been made to produce drug substances in the form of microparticles and nanoparticles. However, the preparation of such small particles is not easy and can be more difficult both in terms of technical aspects of the process and in obtaining a satisfactory product. For example, it may be difficult to obtain a consistent narrow range of particle sizes, especially on a manufacturing scale. In addition, stable products (eg, nanosuspensions) need to be obtained, but microparticles and nanoparticles tend to agglomerate and set, which has a detrimental effect on product stability. Several approaches have been investigated for the preparation of microparticles and nanoparticles.

米国特許第5,091,188号は、水に不溶性の薬剤の注射溶液を製造する方法を記述しているが、この方法では、リン脂質または他の膜を形成する両親媒性脂質の存在下で、音波処理または高度な剪断を含む他の過程によって、結晶性の原薬を50nmから10μmの寸法に縮小することを含み、これにより、薬剤の微小結晶は脂質によってコートされる。   U.S. Patent No. Or by reducing the crystalline drug substance to a size of 50 nm to 10 μm by other processes including high shear, whereby the drug microcrystals are coated with lipids.

米国特許第5,145,684号は、表面に吸着した非架橋性の表面修飾剤を持つ結晶性の原薬の粒子であって、有効平均サイズが約400nm未満の粒子を記述している。これらの粒子は、例えばボールミル、アトリッションミル、振動ミル、またはメディアミルなどを用いて、粉砕媒体の存在下で粉砕することによって調製されるとしている。   US Pat. No. 5,145,684 describes particles of crystalline drug substance having a non-crosslinkable surface modifier adsorbed on the surface and having an effective average size of less than about 400 nm. These particles are prepared by pulverization in the presence of a pulverizing medium using, for example, a ball mill, an attrition mill, a vibration mill, or a media mill.

国際公開公報第96/14830号(米国特許第5,858,410号)は、平均直径が10nmから1,000nmで、全体に対する5μmを超える粒子の割合が0.1% 未満である、水に不溶性または難溶性の純粋な活性化合物の粒子を含む薬剤キャリアを記述している。表面活性剤を用いた、または好ましくは用いない、キャビテーション(例えば、ピストンギャップホモジナイザーを用いる)または剪断力もしくは衝撃力(即ち、ジェット噴流原理)による粒子の調製も、記述されている。   WO 96/14830 (US Pat. No. 5,858,410) is a pure water insoluble or sparingly soluble material with an average diameter of 10 nm to 1,000 nm and less than 0.1% of particles greater than 5 μm in total. A drug carrier comprising particles of the active compound is described. The preparation of particles by cavitation (eg using a piston gap homogenizer) or shear or impact force (ie jet jet principle), with or without the use of surfactants, has also been described.

本発明者らは、スピロノラクトンが、一貫した狭い範囲の粒子サイズのナノ粒子の形態に都合良く製造できることを発見した。都合の良いことに、ナノ粒子性スピロノラクトンは、ナノ懸濁液の形態で提供される。驚くべきことに、さらにナノ懸濁液はラットへの経口投与後、小腸の膜を通した流れが増え、薬物動態プロファイルの改善が見られた。   The inventors have discovered that spironolactone can be conveniently produced in the form of nanoparticles with a consistent narrow range of particle sizes. Conveniently, the nanoparticulate spironolactone is provided in the form of a nanosuspension. Surprisingly, the nanosuspension also showed improved flow through the membrane of the small intestine after oral administration to rats and improved pharmacokinetic profiles.

したがって、本発明は第1の局面で、光子相関分光法によって測定した平均直径が約300nmから約900nm、好ましくは400nmから600nmの範囲の、スピロノラクトンを含むナノ粒子を提供する。   Accordingly, the present invention provides, in a first aspect, nanoparticles comprising spironolactone having an average diameter measured by photon correlation spectroscopy in the range of about 300 nm to about 900 nm, preferably 400 nm to 600 nm.

製薬分野で周知のように、粒子サイズは様々な方法で測定でき、方法によって見かけ上異なる粒子サイズが報告される場合がある。そのような方法には、光子相関分光法(PCS)およびレーザー回折が含まれる。さらに、粒子サイズは平均粒子サイズ(例、数平均、重量平均、または体積平均粒子サイズ)として報告される可能性がある。本明細書では、特に記載がないかぎり、粒子サイズは体積平均粒子サイズを示す。したがって例えば、500nmのD50は、粒子の体積で50%が、500nm未満の直径を持つことを示す。または、500nm未満の直径を持つ粒子が、全部の粒子数によって占める総体積の50%を占めるとも言うことができる。 As is well known in the pharmaceutical art, particle size can be measured in various ways, and apparently different particle sizes may be reported depending on the method. Such methods include photon correlation spectroscopy (PCS) and laser diffraction. Further, the particle size may be reported as an average particle size (eg, number average, weight average, or volume average particle size). In this specification, unless otherwise indicated, the particle size indicates a volume average particle size. Thus, for example, 500 nm in D 50 indicates that 50% by volume of the particles have a diameter of less than 500 nm. Alternatively, it can be said that particles having a diameter of less than 500 nm occupy 50% of the total volume occupied by the total number of particles.

本発明に係るスピロノラクトンの粒子サイズをレーザー回折で測定すると、D50は350nm〜750nmの範囲で、D99は500nm〜900nmの範囲である。 When the particle size of the spironolactone according to the present invention is measured by laser diffraction, D 50 is in the range of 350 nm to 750 nm, and D 99 is in the range of 500 nm to 900 nm.

本発明に係るスピロノラクトンを含むナノ懸濁液およびナノ粒子は、好ましくはナノ粒子の凝集を予防するために、安定化剤を含む。そのような安定化剤は当技術分野で周知であり、以下にさらに詳細に記述されている。   Nanosuspensions and nanoparticles comprising spironolactone according to the present invention preferably contain a stabilizer to prevent aggregation of the nanoparticles. Such stabilizers are well known in the art and are described in further detail below.

本明細書では、本発明に係るスピロノラクトンを含むナノ粒子およびスピロノラクトンを含むナノ懸濁液は、ナノ粒子性スピロノラクトンと呼ぶ。この用語には、安定化剤と結合したスピロノラクトンを含むナノ粒子およびナノ懸濁液も含まれる。   In this specification, the nanoparticle containing spironolactone and the nanosuspension containing spironolactone according to the present invention are referred to as nanoparticulate spironolactone. The term also includes nanoparticles and nanosuspensions comprising spironolactone combined with a stabilizer.

本発明に係るナノ粒子性スピロノラクトンは、任意の既知のナノ粒子製造方法、特にキャビテーションによって、製造できる。   The nanoparticulate spironolactone according to the present invention can be produced by any known nanoparticle production method, particularly cavitation.

本発明の第2の局面は、スピロノラクトンの粗大分散をキャビテーションにかける段階を含む、スピロノラクトンを含むナノ粒子の製造方法を提供する。好ましくは、ナノ粒子は高圧ピストンギャップホモジナイザーを用いて製造される。ナノ粒子は、安定化剤と結合していてもよい。そのような安定化剤は当技術分野で周知であり、以下にさらに詳細に記述されている。   The second aspect of the present invention provides a method for producing nanoparticles comprising spironolactone, comprising the step of subjecting a coarse dispersion of spironolactone to cavitation. Preferably, the nanoparticles are produced using a high pressure piston gap homogenizer. The nanoparticles may be bound with a stabilizer. Such stabilizers are well known in the art and are described in further detail below.

ナノ粒子の製造のためには、開始材料のスピロノラクトンは、好ましくは約100μm未満の粒子サイズを持つ粗粒子の形態で使用されることが好ましい。必要な場合には、スピロノラクトンの粒子サイズは、粉砕のような通常の手段によってこのレベルに小さくできる。好ましくは、スピロノラクトンの粗粒子はこの原薬が本質的に不溶性である溶媒を含む液体媒体中に分散している。スピロノラクトンの場合は、液体媒体は好ましくは水性の溶媒を含み、最も好ましくは本質的に水からなる。粗粒子の分散中のスピロノラクトンの濃度は、0.1%〜50%の範囲であり得る。粗大分散は、その後、任意の既知のナノ粒子を得るための方法に使用できる。   For the production of nanoparticles, the starting material spironolactone is preferably used in the form of coarse particles, preferably having a particle size of less than about 100 μm. If necessary, the particle size of spironolactone can be reduced to this level by conventional means such as grinding. Preferably, the coarse particles of spironolactone are dispersed in a liquid medium comprising a solvent in which the drug substance is essentially insoluble. In the case of spironolactone, the liquid medium preferably comprises an aqueous solvent and most preferably consists essentially of water. The concentration of spironolactone in the dispersion of coarse particles can range from 0.1% to 50%. Coarse dispersion can then be used in the method to obtain any known nanoparticles.

好ましい方法は、粒子サイズを主にキャビテーションによって小さくする高圧均質化である。これは高圧のピストンギャップホモジナイザーを使用して行なうのが最も好ましい、この方法では、粗粒子の分散を、高い流速で約25μmの幅のギャップを通過させる。液体に対する静圧は、液体の蒸気圧より低くなる。したがって液体は沸騰し、ギャップの部分で気泡を形成する。しかし、液体がギャップから出ると、通常の圧力がかかり、気泡は崩壊する。その結果発生する強力な爆縮力は、非常に強いため、原薬の粗粒子を破壊し、ナノ粒子を形成する。   A preferred method is high pressure homogenization where the particle size is reduced primarily by cavitation. This is most preferably done using a high pressure piston gap homogenizer, in which the coarse particle dispersion is passed through a gap about 25 μm wide at high flow rates. The static pressure on the liquid is lower than the vapor pressure of the liquid. Therefore, the liquid boils and forms bubbles at the gap. However, when the liquid exits the gap, normal pressure is applied and the bubbles collapse. The resulting powerful implosion force is so strong that it destroys the coarse particles of the drug substance and forms nanoparticles.

高圧均質化は、100〜3000バール、好ましくは1000〜2000バール(107〜3×108 Pa、好ましくは108〜2×108 Pa)の範囲の圧力で、0℃〜50℃、好ましくは10℃〜20℃、例えば約15℃の温度で実行できる。均質化は、所望の粒子サイズが得られるまで一連のサイクルとして、または例えば2時間〜30時間、好ましくは2時間〜10時間のような連続過程で行なうことができる。 High pressure homogenization is performed at a pressure in the range of 100 to 3000 bar, preferably 1000 to 2000 bar (10 7 to 3 × 10 8 Pa, preferably 10 8 to 2 × 10 8 Pa), preferably 0 ° C. to 50 ° C. Can be carried out at a temperature of 10 ° C. to 20 ° C., for example about 15 ° C. Homogenization can be carried out as a series of cycles until the desired particle size is obtained or in a continuous process such as for example 2 hours to 30 hours, preferably 2 hours to 10 hours.

本発明に係るスピロノラクトンのナノ懸濁液は、好ましくは、ナノ粒子の凝集を予防するために、安定化剤を含む。安定化剤は、ナノ懸濁液の製造における任意の適当な段階で、導入してもよい。例えば、ナノ粒子の形成の前に最初の粗大分散に、または例えば高圧均質化による粒子サイズの縮小の後に、表面活性剤を添加してもよい。または、安定化剤の一部を粒子サイズの縮小段階の前に、一部を後に添加することもできる。好ましくは、安定化剤は粗大分散中に存在する。粗大分散中またはナノ懸濁液中の安定化剤の濃度は、0%〜10%の範囲で良い。   The spironolactone nanosuspension according to the present invention preferably contains a stabilizer to prevent aggregation of the nanoparticles. Stabilizers may be introduced at any suitable stage in the production of the nanosuspension. For example, a surfactant may be added to the initial coarse dispersion prior to nanoparticle formation or after particle size reduction, eg, by high pressure homogenization. Alternatively, a portion of the stabilizer can be added before the particle size reduction step and a portion later. Preferably, the stabilizer is present in the coarse dispersion. The concentration of stabilizer in the coarse dispersion or nanosuspension may range from 0% to 10%.

本発明に係るナノ懸濁液の製造に使用できる安定化剤は、通常の安定化剤から選択でき、表面活性剤および表面修飾剤として記述された化合物も含んでもよい。使用できる安定化剤の例には以下が含まれる:ポリオキシエチレンソルビタン脂肪酸エステル、例えばTweenおよびSpan;ポリオキシエチレンステアレート;ポリオキシエチレンアルキルエステル;ポリエチレングリコール;ポロキサマー(例えばLutrol F68)のようなブロックポリマーおよびブロックコポリマー、ならびにポロキサミン;種々の供給源からのレシチン(例、卵レシチンまたは大豆レシチン)、化学修飾したレシチン(例、水和レシチン)、ならびにリン脂質およびスフィンゴ脂質、ステロール(例、コレステリン誘導体、およびスチグマステリン)、糖または糖アルコールと脂肪酸または脂肪アルコールのエステルおよびエーテル(例、サッカロースモノステアレート);エトキシ化モノおよびジグリセリド、エトキシ化脂質およびリポイド、ジセチルリン酸、ホスファチジルグリセリン、コール酸ナトリウム、グリココール酸ナトリウム、タウロコール酸ナトリウム、クエン酸ナトリウム、セルロースエーテルおよびセルロースエステル(例、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム)、ポリビニル誘導体、例えばポリビニルアルコール、ポリビニルピロリドン、ポリ酢酸ビニル、アルギン酸塩、ポリアクリレート(例えば、カルボポール)、キサンタン;ペクチン、ゼラチン、カゼイン、アラビアゴム、コレステロール、トラガカント、ステアリン酸、ステアリン酸カルシウム、モノステアリン酸グリセリン、スルホコハク酸ジオクチルナトリウム(ドキュセートナトリウム);ラウリル硫酸ナトリウム、ドデシル硫酸ナトリウム、塩化ベンザルコニウム、アルキルアリールポリエーテルスルホン酸塩、ポリエチレングリコール;コロイド状2酸化ケイ素、ケイ酸アルミニウムマグネシウム;およびリン酸塩。   Stabilizers that can be used in the production of the nanosuspension according to the present invention can be selected from conventional stabilizers and may also include compounds described as surfactants and surface modifiers. Examples of stabilizers that can be used include: polyoxyethylene sorbitan fatty acid esters such as Tween and Span; polyoxyethylene stearate; polyoxyethylene alkyl ester; polyethylene glycol; poloxamer (eg Lutrol F68) Block polymers and copolymers, and poloxamine; lecithin (eg, egg lecithin or soy lecithin) from various sources, chemically modified lecithin (eg, hydrated lecithin), and phospholipids and sphingolipids, sterols (eg, cholesterol) Phosphorus derivatives, and stigmasterin), esters or ethers of sugars or sugar alcohols and fatty acids or fatty alcohols (eg, saccharose monostearate); ethoxylated mono and diglycerides, ethoxylated lipids and Lipoid, dicetyl phosphate, phosphatidyl glycerol, sodium cholate, sodium glycocholate, sodium taurocholate, sodium citrate, cellulose ether and cellulose ester (eg, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxymethylcellulose), polyvinyl derivatives Such as polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, alginate, polyacrylate (eg carbopol), xanthan; pectin, gelatin, casein, gum arabic, cholesterol, tragacanth, stearic acid, calcium stearate, glyceryl monostearate, Dioctyl sodium sulfosuccinate (docusate sodium); Sodium Lil sulfate, sodium dodecyl sulfate, benzalkonium chloride, alkyl aryl polyether sulfonates, polyethylene glycol; colloidal silicon dioxide, magnesium aluminum silicate, and phosphate.

好ましい安定化剤はドキュセートナトリウムであり、これはOctowet 70(商標)という名前で、プロピレングリコール中の溶液として、市販されている。   A preferred stabilizer is docusate sodium, which is commercially available as a solution in propylene glycol under the name Octowet 70 ™.

上記より、この過程は液体媒体中で実施され、ナノ粒子性スピロノラクトン産物は最初にナノ懸濁液の形態で得られることが理解される。必要な場合には、液体媒体を、例えば凍結乾燥または噴霧乾燥等により除去し、固体のナノ粒子性スピロノラクトンを提供することができる。ナノ懸濁液の製造中に安定化剤が存在する場合、対応する乾燥ナノ粒子生産物は、安定化剤と結合していることが理解される。   From the above it is understood that this process is carried out in a liquid medium and that the nanoparticulate spironolactone product is initially obtained in the form of a nanosuspension. If necessary, the liquid medium can be removed, such as by freeze drying or spray drying, to provide a solid nanoparticulate spironolactone. It is understood that if a stabilizer is present during the production of the nanosuspension, the corresponding dry nanoparticle product is associated with the stabilizer.

本発明に係るスピロノラクトンナノ懸濁液およびナノ粒子を、任意で当技術分野で周知の薬学的に許容される賦形剤およびキャリアを用いて、薬学的用途のために製剤化してもよい。これは任意の都合の良い経路、例えば、非経口、経口、局所、口腔内、舌下、経鼻、肺、直腸、または経皮投与によって、薬剤として投与できる。   Spironolactone nanosuspensions and nanoparticles according to the present invention may be formulated for pharmaceutical use, optionally using pharmaceutically acceptable excipients and carriers well known in the art. This can be administered as a drug by any convenient route, such as parenteral, oral, topical, buccal, sublingual, nasal, pulmonary, rectal or transdermal administration.

したがって、本発明は第3の局面では、光子相関分光法によって測定した平均直径が約300nmから約900nm、好ましくは400nmから600nmの範囲の、スピロノラクトンを含むナノ粒子を含む、薬学的製剤を提供する。本発明に係る薬学的製剤は、都合良くはナノ懸濁液、最も好ましくは水溶液中のナノ懸濁液を含む。本発明に係る薬学的製剤は、当技術分野で周知の方法にしたがって製造できる。   Accordingly, the present invention provides, in a third aspect, a pharmaceutical formulation comprising nanoparticles comprising spironolactone having an average diameter measured by photon correlation spectroscopy in the range of about 300 nm to about 900 nm, preferably 400 nm to 600 nm. . The pharmaceutical formulation according to the invention conveniently comprises a nanosuspension, most preferably a nanosuspension in an aqueous solution. The pharmaceutical preparations according to the present invention can be manufactured according to methods well known in the art.

例えば、経口投与のための固体の剤形などは、スピロノラクトンを含むナノ懸濁液を、糖の球面または他の適当な固体の薬学的賦形剤上にスプレーコートすることによって、製造できる。   For example, solid dosage forms for oral administration can be prepared by spray coating a nanosuspension containing spironolactone onto a sugar sphere or other suitable solid pharmaceutical excipient.

吸入による肺投与のための剤形を、スピロノラクトンの水性ナノ懸濁液を含むエアロゾルとして提供することができる。吸入用の粉末は、水性分散をラクトースのようなキャリア粒子上に噴霧することによって製造できる。   A dosage form for pulmonary administration by inhalation can be provided as an aerosol comprising an aqueous nanosuspension of spironolactone. Inhalable powders can be made by spraying the aqueous dispersion onto carrier particles such as lactose.

本発明に係るスピロノラクトン製剤は、アルドステロン阻害剤で治療できるうっ血性心不全および他の状態の治療に使用できる。   The spironolactone formulations according to the present invention can be used to treat congestive heart failure and other conditions that can be treated with aldosterone inhibitors.

別の局面では、本発明は例えばうっ血性心不全のような、アルドステロン阻害剤で治療できることが周知の状態の治療における、ナノ粒子性スピロノラクトンの使用を提供する。   In another aspect, the present invention provides the use of nanoparticulate spironolactone in the treatment of conditions well known to be treatable with aldosterone inhibitors, such as congestive heart failure.

実験
表1は、本発明に係るスピロノラクトンの代表的な調製物を例示するものである。
Experimental Table 1 illustrates representative preparations of spironolactone according to the present invention.

ナノ懸濁液の調製
安定化剤の水溶液の調製物を、注射用の水または緩衝液中に添加し、透明な溶液が得られるまで磁気撹拌した。適当な量の表面活性剤水溶液でスピロノラクトンを湿らせ、スラリーを形成した。得られた懸濁液を高度の剪断分散装置を用いて分散化した。懸濁液は発泡形成を避けるため、磁気撹拌し続けた。得られた懸濁液を高圧ピストンギャップホモジナイザーに通し、ナノ懸濁液を得た。製剤1〜7はAvestin C5(商標)を用いて調製し、製剤8および9はAvestin C50(商標)を用いて調製した。均質化の際、薬剤粒子はキャビテーション効果および剪断力によって分散し、小さな微粒子およびナノ粒子を形成する。粒子サイズはZetasizer 3000 HS(商標) (Malvern)を用いて、光子相関分光法(PCS)によって決定した。D50およびD90は、Coulter LS230を用いてレーザー回折によって測定した。
Preparation of nanosuspension A preparation of an aqueous solution of stabilizer was added into water or buffer for injection and magnetically stirred until a clear solution was obtained. Spironolactone was wetted with an appropriate amount of an aqueous surfactant solution to form a slurry. The resulting suspension was dispersed using an advanced shear disperser. The suspension was kept magnetically stirred to avoid foaming. The resulting suspension was passed through a high pressure piston gap homogenizer to obtain a nanosuspension. Formulations 1-7 were prepared using Avestin C5 ™, and formulations 8 and 9 were prepared using Avestin C50 ™. Upon homogenization, the drug particles are dispersed by cavitation effects and shear forces to form small microparticles and nanoparticles. The particle size was determined by photon correlation spectroscopy (PCS) using a Zetasizer 3000 HS ™ (Malvern). D 50 and D 90 were measured by laser diffraction using a Coulter LS230.

Figure 0004536373
Figure 0004536373

生物学的試験結果
本発明に係るスピロノラクトンのナノ懸濁液は、製剤が提供する種々の飽和濃度の効果を調べるために、Caco-2単層細胞を通した薬剤送達に対する効果を検討した。
Biological test results The nanosuspension of spironolactone according to the present invention was examined for its effect on drug delivery through Caco-2 monolayer cells in order to examine the effect of various saturation concentrations provided by the formulation.

この試験に使用した製剤は表1に示される製剤8だった。   The formulation used in this study was formulation 8, shown in Table 1.

試験溶液の調製
ナノ懸濁液は、pH 6.5に調整した種々の量の25mM MES添加ハンクス液(HBSS)で希釈し、平衡になるまで震盪した。基準溶液として、対応する濃度の表面活性剤の存在下で、HBSS/MES溶液中で飽和濃度に達するまで各薬剤の過剰量の粗粉末を震盪した。沈殿からの溶液の分離は、4500 refで15分間の遠心によって行なった。
Preparation of test solution The nanosuspension was diluted with various amounts of 25 mM MES added Hanks solution (HBSS) adjusted to pH 6.5 and shaken until equilibrated. As a reference solution, excess crude powder of each drug was shaken in the presence of a corresponding concentration of surfactant until a saturated concentration was reached in the HBSS / MES solution. Separation of the solution from the precipitate was performed by centrifugation at 4500 ref for 15 minutes.

吸収試験
Caco-2細胞(継代33-41)を24 mmポリカーボネートフィルターメンブレン(ポアサイズ0.4μm;Transwell, Corning, MA)上で、21〜27日間培養した。試験溶液2.5mlを頂部、緩衝液2.5mlを基底外側に添加した。レシーバーチェンバーからの試料を0, 30, 60, 90, 120分に採取し、その体積の新しい培地を補充した。試料は液体シンチレーション計数によって放射標識したマーカー分子、HPLCによってスピロノラクトンの分析をした。完全性のマーカーとして14C-マンニトールおよび3H-メトプロロールを使用した。さらに各実験の最初と最後にTEER(経上皮電気抵抗)測定を行なった。薬剤の流れは、時間に対する、単層を通して送達された薬剤の量の勾配から、計算した。
Absorption test
Caco-2 cells (passage 33-41) were cultured on a 24 mm polycarbonate filter membrane (pore size 0.4 μm; Transwell, Corning, Mass.) For 21-27 days. 2.5 ml of test solution was added to the top and 2.5 ml of buffer solution was added to the basolateral side. Samples from the receiver chamber were taken at 0, 30, 60, 90, 120 minutes and replenished with that volume of fresh medium. Samples were analyzed for marker molecules radiolabeled by liquid scintillation counting and spironolactone by HPLC. 14 C-mannitol and 3 H-metoprolol were used as integrity markers. Furthermore, TEER (transepithelial electrical resistance) measurement was performed at the beginning and end of each experiment. Drug flow was calculated from the slope of the amount of drug delivered through the monolayer over time.

結果
図1は腸膜を通したスピロノラクトンの定常状態の流れを示す。1:100, 1:30および1:10で、粗懸濁液と比較して、希釈したナノ懸濁液をドナー溶液とした方が流れの値は高かった。
Results FIG. 1 shows the steady state flow of spironolactone through the intestinal membrane. At 1: 100, 1:30 and 1:10, the flow values were higher when the diluted nanosuspension was used as the donor solution compared to the crude suspension.

経口吸収試験
ラットへの経口投与後、図2に示すように、本発明に係るスピロノラクトンナノ懸濁液を用いると、対応する粗懸濁液よりも、薬剤代謝物の血漿レベルが有意に高かった。
Oral absorption test After oral administration to rats, as shown in FIG. 2, the plasma levels of drug metabolites were significantly higher when using the spironolactone nanosuspension according to the present invention than the corresponding crude suspension .

インビボバイオアベイラビリティ試験
イヌにおけるスピロノラクトンのインビボバイオアベイラビリティは、4群のクロスオーバー(食後/絶食)試験で行なった。上述のような粗懸濁液(基準)またはナノ懸濁液(被験)を8匹のオスのビーグル犬に5mg/kgの用量で投与した。ウォッシュアウト期間は10日だった。LC/MS/MS:スピロノラクトン、カンレノン、TMSL、およびHTMSL、(LOQ=0.5ng/mL)。結果は表2および表3ならびに図3および図4に示す。
In vivo bioavailability study In vivo bioavailability of spironolactone in dogs was performed in a four-group crossover (post-meal / fast) study. Crude suspension (reference) or nanosuspension (test) as described above was administered to 8 male Beagle dogs at a dose of 5 mg / kg. The washout period was 10 days. LC / MS / MS: Spironolactone, canrenone, TMSL, and HTMSL, (LOQ = 0.5 ng / mL). The results are shown in Tables 2 and 3 and FIGS. 3 and 4.

Figure 0004536373
Figure 0004536373

Figure 0004536373
Figure 0004536373

腸膜を通したスピロノラクトンの定常状態の流れを示す。1:100, 1:30および1:10で、粗懸濁液と比較して、希釈したナノ懸濁液をドナー溶液とした方が流れの値は高かった。Fig. 3 shows the steady state flow of spironolactone through the intestinal membrane. At 1: 100, 1:30 and 1:10, the flow values were higher when the diluted nanosuspension was used as the donor solution compared to the crude suspension. ラットへの経口投与後、本発明に係るスピロノラクトンナノ懸濁液を用いると、対応する粗懸濁液よりも、薬剤代謝物の血漿レベルが有意に高かった。After oral administration to rats, the plasma levels of drug metabolites were significantly higher when the spironolactone nanosuspension according to the present invention was used than the corresponding crude suspension. イヌにおけるスピロノラクトンのインビボバイオアベイラビリティは、4群のクロスオーバー(食後/絶食)試験で行なった。上述のような粗懸濁液(基準)またはナノ懸濁液(被験)を8匹のオスのビーグル犬に5mg/kgの用量で投与した。ウォッシュアウト期間は10日だった。LC/MS/MS:スピロノラクトン、カンレノン、TMSL、およびHTMSL、(LOQ=0.5ng/mL)。結果は表2および表3ならびに図3および図4に示す。In vivo bioavailability of spironolactone in dogs was performed in a 4-group crossover (post-meal / fast) study. Crude suspension (reference) or nanosuspension (test) as described above was administered to 8 male Beagle dogs at a dose of 5 mg / kg. The washout period was 10 days. LC / MS / MS: Spironolactone, canrenone, TMSL, and HTMSL, (LOQ = 0.5 ng / mL). The results are shown in Tables 2 and 3 and FIGS. 3 and 4.

Claims (4)

スピロノラクトンのナノ粒子を含むナノ懸濁液であって、
該ナノ粒子は、光子相関分光法によって測定した平均直径が300nmから900nmの範囲であり、
該ナノ懸濁液は安定化剤を含み、該安定化剤がドキュセートナトリウムであるナノ懸濁液。
A nanosuspension containing nanoparticles of spironolactone,
The nanoparticles have an average diameter measured by photon correlation spectroscopy in the range of 300 nm to 900 nm,
The nanosuspension comprises a stabilizer, said stabilizer is sodium docusate, nanosuspension.
前記ナノ粒子は、光子相関分光法によって測定した平均直径が400nmから600nmの範囲である、請求項1記載のナノ懸濁液 The nanoparticles ranges from an average diameter 400nm of 600nm as measured by photon correlation spectroscopy, nanosuspension according to claim 1, wherein. 水性ナノ懸濁液である、請求項1または2記載のナノ懸濁液。The nanosuspension according to claim 1 or 2 , which is an aqueous nanosuspension. 請求項1〜3のいずれかに記載のナノ懸濁液を含む薬学的製剤。A pharmaceutical preparation comprising the nanosuspension according to claim 1.
JP2003504977A 2001-06-14 2002-06-14 New composition Expired - Fee Related JP4536373B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0114532.5A GB0114532D0 (en) 2001-06-14 2001-06-14 Novel compositions
PCT/IB2002/003136 WO2002102391A2 (en) 2001-06-14 2002-06-14 Composition comprising nanoparticulate spironolactone

Publications (3)

Publication Number Publication Date
JP2004534074A JP2004534074A (en) 2004-11-11
JP2004534074A5 JP2004534074A5 (en) 2006-01-05
JP4536373B2 true JP4536373B2 (en) 2010-09-01

Family

ID=9916594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003504977A Expired - Fee Related JP4536373B2 (en) 2001-06-14 2002-06-14 New composition

Country Status (6)

Country Link
US (2) US20040151776A1 (en)
EP (1) EP1429781A2 (en)
JP (1) JP4536373B2 (en)
AU (1) AU2002347094A1 (en)
GB (1) GB0114532D0 (en)
WO (1) WO2002102391A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0127832D0 (en) * 2001-11-20 2002-01-09 Jagotec Ag Method for the preparation of pharmaceutical nanosuspensions
MXPA04009968A (en) 2002-04-09 2004-12-13 Flamel Tech Sa Oral suspension of active principle microcapsules.
JP2006511525A (en) * 2002-12-13 2006-04-06 ヤゴテック アーゲー Nanoparticulate spironolactone topical formulation
JP2006089386A (en) * 2004-09-21 2006-04-06 Nippon Tenganyaku Kenkyusho:Kk Suspension medicine composition containing steroid or steroid derivative
US9023400B2 (en) * 2006-05-24 2015-05-05 Flamel Technologies Prolonged-release multimicroparticulate oral pharmaceutical form
US7897691B2 (en) 2008-05-09 2011-03-01 Gm Global Technology Operations, Inc. Proton exchange membranes for fuel cell applications
JP5185039B2 (en) * 2008-09-24 2013-04-17 富士フイルム株式会社 Optical film, manufacturing method thereof, polarizing plate and liquid crystal display device using the same
MA43132A (en) * 2015-10-30 2018-09-05 Cmp Dev Llc AQUEOUS COMPOSITIONS OF SPIRONOLACTONE
US10493083B2 (en) 2015-10-30 2019-12-03 Cmp Development Llc Spironolactone aqueous compositions

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011316A (en) * 1975-02-24 1977-03-08 Research Institute For Medicine And Chemistry Inc. Cyclohexa-2,5-diene-1-thiones
IE58110B1 (en) * 1984-10-30 1993-07-14 Elan Corp Plc Controlled release powder and process for its preparation
DE3623376A1 (en) * 1986-07-11 1988-01-21 Behringwerke Ag PHARMACEUTICAL FORMULATION AND METHOD FOR THE PRODUCTION THEREOF
US4837211A (en) * 1987-04-06 1989-06-06 Carolina Medical Products, Inc. Spironolactone composition
US5091188A (en) * 1990-04-26 1992-02-25 Haynes Duncan H Phospholipid-coated microcrystals: injectable formulations of water-insoluble drugs
US5145684A (en) * 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5567592A (en) * 1994-02-02 1996-10-22 Regents Of The University Of California Screening method for the identification of bioenhancers through the inhibition of P-glycoprotein transport in the gut of a mammal
GB9409778D0 (en) * 1994-05-16 1994-07-06 Dumex Ltd As Compositions
DE4440337A1 (en) * 1994-11-11 1996-05-15 Dds Drug Delivery Services Ges Pharmaceutical nanosuspensions for drug application as systems with increased saturation solubility and dissolution rate
FR2730231B1 (en) * 1995-02-02 1997-04-04 Fournier Sca Lab COMBINATION OF FENOFIBRATE AND VITAMIN E, USE IN THERAPEUTICS
WO1996024358A1 (en) * 1995-02-10 1996-08-15 G.D. Searle & Co. Use of low dose amount of spironolactone for treatment of cardiovascular disease
US5510118A (en) * 1995-02-14 1996-04-23 Nanosystems Llc Process for preparing therapeutic compositions containing nanoparticles
ATE274341T1 (en) * 1995-02-24 2004-09-15 Elan Pharma Int Ltd AEROSOLS CONTAINING NANOPARTICLE DISPERSIONS
US5716928A (en) * 1995-06-07 1998-02-10 Avmax, Inc. Use of essential oils to increase bioavailability of oral pharmaceutical compounds
US5891469A (en) * 1997-04-02 1999-04-06 Pharmos Corporation Solid Coprecipitates for enhanced bioavailability of lipophilic substances
US5891845A (en) * 1997-11-21 1999-04-06 Fuisz Technologies Ltd. Drug delivery systems utilizing liquid crystal structures
UA74141C2 (en) * 1998-12-09 2005-11-15 Дж.Д. Сірл Енд Ко. Oral pharmaceutical compositions comprising micronized eplerenone (variants), method for its production and method for treating aldosterone-mediated states (variants)
US6180138B1 (en) * 1999-01-29 2001-01-30 Abbott Laboratories Process for preparing solid formulations of lipid-regulating agents with enhanced dissolution and absorption
US6294192B1 (en) * 1999-02-26 2001-09-25 Lipocine, Inc. Triglyceride-free compositions and methods for improved delivery of hydrophobic therapeutic agents
US6267985B1 (en) * 1999-06-30 2001-07-31 Lipocine Inc. Clear oil-containing pharmaceutical compositions
US6248363B1 (en) * 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
DK1175220T3 (en) * 1999-12-08 2005-08-29 Pharmacia Corp Nanoparticulate eplerenone compositions
WO2002013762A2 (en) * 2000-08-10 2002-02-21 Delsys Pharmaceutical Corporation Improved solid pharmaceutical dosage formulation of hydrophobic drugs

Also Published As

Publication number Publication date
US20080069886A1 (en) 2008-03-20
WO2002102391A2 (en) 2002-12-27
EP1429781A2 (en) 2004-06-23
JP2004534074A (en) 2004-11-11
WO2002102391A3 (en) 2004-04-29
US20040151776A1 (en) 2004-08-05
AU2002347094A1 (en) 2003-01-02
GB0114532D0 (en) 2001-08-08

Similar Documents

Publication Publication Date Title
US11103501B2 (en) Dry powder formulation of azole derivative for inhalation
EP2143423B1 (en) Method for producing pulverized organic compound particle
US6368620B2 (en) Formulations comprising lipid-regulating agents
US20080069886A1 (en) Spironolactone nanoparticles, compositions and methods related thereto
EP1414410B1 (en) Nanoparticulate formulations of fenofibrate
JP2001509518A (en) Nanocrystalline preparation of human immunodeficiency virus (HIV) protease inhibitor using cellulosic surface stabilizer and method for producing such preparation
Leung et al. Porous mannitol carrier for pulmonary delivery of cyclosporine A nanoparticles
Khatib et al. Formation of ciprofloxacin nanocrystals within liposomes by spray drying for controlled release via inhalation
EP3616688A1 (en) Preparation of nanosuspension comprising nanocrystals of active pharmaceutical ingredients with little or no stabilizing agents
JP5759464B2 (en) Oxaliplatin nanoparticles and method for producing the same
EP4190311A1 (en) Suspension of triazole antifungal drug for atomizer
Miyazaki et al. Improved respirable fraction of budesonide powder for dry powder inhaler formulations produced by advanced supercritical CO2 processing and use of a novel additive
Sinha Emerging potential of nanosuspension-enabled drug delivery: An overview
Kumar et al. Design Development and Characterization of Nicardipine Solid Lipid Nano-Particulars
EP2540281A1 (en) Solid self-microemulsifying systems
Kawakami Particle Architectonics for Pulmonary Drug Delivery
KR20110029249A (en) Pharmaceutical composition having the improved solubility of planlukast
CN116196274A (en) Nanometer suspension, freeze-dried powder, preparation method and application

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090326

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090602

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees