JP4535890B2 - Steel structure - Google Patents

Steel structure Download PDF

Info

Publication number
JP4535890B2
JP4535890B2 JP2005013444A JP2005013444A JP4535890B2 JP 4535890 B2 JP4535890 B2 JP 4535890B2 JP 2005013444 A JP2005013444 A JP 2005013444A JP 2005013444 A JP2005013444 A JP 2005013444A JP 4535890 B2 JP4535890 B2 JP 4535890B2
Authority
JP
Japan
Prior art keywords
steel pipe
heating
column
temperature
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005013444A
Other languages
Japanese (ja)
Other versions
JP2006200238A (en
Inventor
伸 中島
教雄 中島
Original Assignee
ナカジマ鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナカジマ鋼管株式会社 filed Critical ナカジマ鋼管株式会社
Priority to JP2005013444A priority Critical patent/JP4535890B2/en
Publication of JP2006200238A publication Critical patent/JP2006200238A/en
Application granted granted Critical
Publication of JP4535890B2 publication Critical patent/JP4535890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、鋼管柱と、この鋼管柱の梁材連結部に梁材を連結して構成される鉄骨構造物に関するものである。   The present invention relates to a steel pipe column and a steel structure constructed by connecting a beam material to a beam material connecting portion of the steel pipe column.

従来、鉄骨構造物としては、次のような構成が提供されている。すなわち、所定の板厚の長尺角形鋼管と、この長尺角形鋼管よりも板厚が厚くかつ梁材連結部を形成する長さの短尺角形鋼管とが準備される。ここで短尺角形鋼管や長尺角形鋼管は、その外周形状が最終製品形状よりも大きく形成されている半成形短尺角形鋼管や半成形長尺角形鋼管を熱間成形したもので、その際に半成形短尺角形鋼管や半成形長尺角形鋼管のコーナ部も最終製品の曲率半径よりも大きい曲率半径に形成されている。このような半成形短尺角形鋼管や半成形長尺角形鋼管を熱間成形することで、その外周形状が最終製品形状になった、すなわち、コーナ部も最終製品の曲率半径になった短尺角形鋼管や長尺角形鋼管を得ている。そして、これら短尺角形鋼管と長尺角形鋼管とを、短尺角形鋼管を梁材連結位置として長さ方向で溶接結合して角形鋼管柱を形成している。   Conventionally, the following structures are provided as a steel structure. That is, a long rectangular steel pipe having a predetermined thickness and a short rectangular steel pipe having a thickness larger than that of the long rectangular steel pipe and forming a beam connecting portion are prepared. Here, short square steel pipes and long square steel pipes are hot-formed semi-formed short square steel pipes and semi-formed long square steel pipes whose outer peripheral shape is larger than the final product shape. The corners of the formed short rectangular steel pipe and the semi-formed long rectangular steel pipe are also formed with a radius of curvature larger than the radius of curvature of the final product. By hot forming such a semi-formed short square steel pipe or a semi-formed long square steel pipe, the outer peripheral shape has become the final product shape, that is, the short square steel pipe whose corner portion also has the curvature radius of the final product. And have obtained long square steel pipes. The short square steel pipe and the long square steel pipe are welded and joined in the length direction using the short square steel pipe as a beam connecting position to form a square steel pipe column.

このような角形鋼管柱は所定本数が建築現場などに運搬され、そして短尺角形鋼管の外面に梁材を溶接結合によって連結することで、鉄骨構造物を構成し得る。その際に梁材連結部は、予め厚い板厚によって十分な強度を確保し得、梁材の溶接結合は何ら支障なく行える。そして短尺角形鋼管や長尺角形鋼管は、熱間成形によって平板部とコーナ部とを均質化し得るなど、種々な効果がある(たとえば、特許文献1参照。)。   A predetermined number of such square steel pipe columns are transported to a construction site and the like, and a steel frame structure can be formed by connecting a beam material to the outer surface of the short square steel pipe by welding connection. At that time, the beam member connecting portion can secure a sufficient strength in advance by a thick plate thickness, and the beam member can be welded and joined without any trouble. And a short square steel pipe and a long square steel pipe have various effects, such as being able to homogenize a flat plate part and a corner part by hot forming (for example, refer to patent documents 1).

しかし、半成形短尺角形鋼管や半成形長尺角形鋼管を熱間成形によって短尺角形鋼管や長尺角形鋼管とすることで、高価な絞り熱間成形手段を装備しなければならないことや、熱間成形手段による絞り熱間成形にかなりの時間を必要とすることで成形能率が悪いことなどから、短尺角形鋼管や長尺角形鋼管、すなわち鉄骨構造物がコスト高となっていた。   However, semi-formed short rectangular steel pipes and semi-formed long rectangular steel pipes can be made into short rectangular steel pipes and long rectangular steel pipes by hot forming, so that expensive drawing hot forming means must be equipped, Since a considerable amount of time is required for drawing hot forming by the forming means and the forming efficiency is poor, short rectangular steel pipes and long rectangular steel pipes, that is, steel frame structures have been expensive.

そこで、別の従来形式として、焼なまし(焼もどし)形式が提供されている。すなわち、たとえば鋼板を最終製品形状に冷間加工したのち焼なまし(焼もどし)により残留応力の除去を行う形式で、冷間加工物を600℃前後に加熱昇温させたのち、徐冷させている(たとえば、非特許文献1、非特許文献2参照。)。
特開2001−303661号公報(第4頁、第1、2図) 海老原熊雄著「金属便覧」丸善株式会社出版、昭和57年12月20日、P.360−365 三澤三郎著「新版熱処理技術入門」大河出版、昭和55年8月15日、11.鉄鋼材料の組織および変態P.2−3,P.12、21.一般熱処理作業P.118−119
Therefore, an annealing (tempering) format is provided as another conventional format. That is, for example, in the form of removing residual stress by cold working a steel sheet into a final product shape and then annealing (tempering), the cold work is heated to about 600 ° C. and then gradually cooled. (For example, see Non-Patent Document 1 and Non-Patent Document 2.)
JP 2001-303661 (Page 4, FIGS. 1 and 2) Kumao Ebihara “Metal Handbook” published by Maruzen Co., Ltd., December 20, 1982, p. 360-365 Saburo Misawa “Introduction to New Heat Treatment Technology”, Taiga Publishing, August 15, 1980, 11. Structure and transformation of steel materials 2-3, P.I. 12, 21. General heat treatment operation 118-119

しかし、上記した焼なまし(焼もどし)形式によると、1箇所の加熱手段によって、常温の冷間加工物を600℃前後にまで昇温させるため、かなりの熱処理時間を必要とすることになり、処理能率が悪いことなどからコスト高となっていた。また、冷間加工物が成形鋼管(角形鋼管など)の場合には、常温から600℃前後に一挙に昇温させる際に、周方向や長さ方向において均一状に昇温し難いことから、捩れ、曲がり、変形が激しく、鉄骨構造物の鋼管柱としての採用に問題があった。   However, according to the above-described annealing (tempering) format, the temperature of the cold-worked material at room temperature is raised to around 600 ° C. by one heating means, so that a considerable heat treatment time is required. The cost was high due to poor processing efficiency. In addition, when the cold-worked product is a formed steel pipe (such as a square steel pipe), it is difficult to raise the temperature uniformly in the circumferential direction and the length direction when the temperature is raised from room temperature to around 600 ° C. at once. There was a problem in adopting steel structures as steel pipe columns due to severe twisting, bending and deformation.

そこで本発明の請求項1記載の発明は、鋼管柱の少なくとも一部に、残留応力の除去と靭性の回復とを図り、捩れ、曲がり、変形が殆ど生じない均質の熱処理鋼管を採用し得るとともに、大幅なコストダウンで構成し得る鉄骨構造物を提供することを目的としたものである。   Therefore, the invention according to claim 1 of the present invention can adopt a homogeneous heat-treated steel pipe that eliminates residual stress and restores toughness, and is hardly twisted, bent, or deformed, at least in part of the steel pipe column. An object of the present invention is to provide a steel structure that can be constructed at a significant cost reduction.

前述した目的を達成するために、本発明の請求項1記載の鉄骨構造物は、鋼管柱と、この鋼管柱の梁材連結部に梁材を連結して構成される鉄骨構造物であって、冷間成形した鋼管に対して、加熱とホールドとを交互に行うに、最始段の加熱ゾーンにおいて、調整制御された加熱バーナーの加熱により雰囲気温度を昇温させるとともに、最始段のホールドゾーンにおいて、最始段の加熱ゾーンにて昇温させた温度状態でホールドし、中間段の加熱ゾーンにおいて、段階的に調整制御された加熱バーナーの加熱により雰囲気温度を段階的に昇温させるとともに、中間段のホールドゾーンにおいて、中間段の加熱ゾーンにて昇温させた温度状態でホールドし、最終段の加熱ゾーンにおいて、調整制御された加熱バーナーの加熱により雰囲気温度を変態点以下に段階的に昇温させたのち、最終段のホールドゾーンにおいて、最終段の加熱ゾーンにて昇温させた温度状態でホールドし、このホールドを行った加熱鋼管を徐冷することで得た熱処理鋼管を、鋼管柱の少なくとも一部に使用したことを特徴としたものである。 In order to achieve the above object, a steel structure according to claim 1 of the present invention is a steel structure constructed by connecting a steel pipe column and a beam material to a beam material connecting portion of the steel pipe column. for cold molded steel pipe, to perform heating and a hold alternately, Te heating zone smell SaiHajimedan, the ambient temperature causes heated by heating adjustment controlled heating burners, SaiHajimedan hold zone smell Te, held at the temperature while being heated in a heating zone of SaiHajime stage, in the heating zone of the intermediate stage, stepwise stepwise raising the ambient temperature by the heating of the adjustment controlled heating burners with temperature of causes, in the hold zone in the intermediate stage, and holding at the temperature state of being heated in a heating zone of the intermediate stage, and have contact to the heating zone of the last stage, the ambient temperature by the heating of the heating burners adjustment control a After stepwise raising the temperature to 3 transformation points or less, in the final stage hold zone, hold at the temperature raised in the final stage heating zone, and gradually cool the heated steel pipe that has performed this hold The heat-treated steel pipe obtained in (1) is used for at least a part of the steel pipe column.

したがって請求項1の発明によると、冷間成形した鋼管を加熱処理することによって、残留応力の除去と靭性の回復とを図り得る。また加熱処理を、段階的に調整制御された加熱バーナーの加熱により雰囲気温度を鋼管が目的とする温度に段階的に昇温させることによって、それぞれの燃焼熱量を無駄のない状態とし得る。そして、前段の加熱にて昇温させた温度状態にてホールドすることによって、鋼管の周方向や長さ方向における加熱温度の均一化を図り得る。しかも最終段の加熱を、A変態点以下としたことで、徐冷後における結晶粒化を防いで、粘りと強さを維持し得る。このようにして得た熱処理鋼管を鋼管柱の少なくとも一部に使用することで、残留応力の除去と靭性の回復とを図り、捩れ、曲がり、変形が殆ど生じない均質の鋼管柱とし得る。 Therefore, according to the first aspect of the present invention, the residual stress can be removed and the toughness can be recovered by heat-treating the cold-formed steel pipe. In addition, by heating the heating temperature stepwise to the target temperature of the steel pipe by heating the heating burner that is adjusted and controlled stepwise, the amount of combustion heat can be made lean. And the heating temperature in the circumferential direction or the length direction of the steel pipe can be made uniform by holding in a temperature state raised by heating in the previous stage. Moreover the heating in the final stage, it was less A 3 transformation point, to prevent crystallization granulation after slow cooling, can maintain stickiness and strength. By using the heat-treated steel pipe obtained in this way for at least a part of the steel pipe column, it is possible to remove residual stress and restore toughness, and to make a homogeneous steel pipe column that hardly twists, bends and deforms.

また本発明の請求項2記載の鉄骨構造物は、上記した請求項1記載の構成において、鋼管柱は、梁材連結部を形成する短尺鋼管と、この短尺鋼管の上下端に接続される長尺鋼管とからなり、短尺鋼管と長尺鋼管との少なくとも一方に熱処理鋼管を使用したことを特徴としたものである。   The steel structure according to claim 2 of the present invention is the structure according to claim 1, wherein the steel pipe column is connected to the short steel pipe forming the beam connecting portion and the upper and lower ends of the short steel pipe. It is characterized by using a heat-treated steel pipe for at least one of a short steel pipe and a long steel pipe.

したがって請求項2の発明によると、短尺鋼管を梁材連結部とした通しダイヤフラム方式や突き合せ溶接方式の鋼管柱を構成し得る。
そして本発明の請求項3記載の鉄骨構造物は、上記した請求項1または2記載の構成において、鋼管柱は長尺の熱処理鋼管からなり、梁材連結部の内部にダイヤフラムが連結されていることを特徴としたものである。
Therefore, according to the second aspect of the present invention, a through-diaphragm type or butt-welded type steel pipe column having a short steel pipe as a beam connecting portion can be formed.
The steel structure according to claim 3 of the present invention is the structure according to claim 1 or 2, wherein the steel pipe column is made of a long heat-treated steel pipe, and the diaphragm is connected to the inside of the beam connecting part. It is characterized by that.

したがって請求項3の発明によると、内ダイヤフラム方式の鋼管柱を構成し得る。
さらに本発明の請求項4記載の鉄骨構造物は、上記した請求項1〜3のいずれか1項に記載の構成において、鋼管柱が角形鋼管であることを特徴としたものである。
Therefore, according to the invention of claim 3, an inner diaphragm type steel pipe column can be constituted.
Furthermore, the steel structure according to claim 4 of the present invention is characterized in that, in the configuration according to any one of claims 1 to 3, the steel pipe column is a square steel pipe.

したがって請求項4の発明によると、鋼管柱に角形鋼管を採用した鉄骨構造物を構成し得る。
しかも本発明の請求項5記載の鉄骨構造物は、上記した請求項1〜3のいずれか1項に記載の構成において、鋼管柱が丸形鋼管であることを特徴としたものである。
Therefore, according to the invention of claim 4, it is possible to constitute a steel structure in which a square steel pipe is adopted as the steel pipe column.
Moreover, the steel structure according to claim 5 of the present invention is characterized in that, in the configuration according to any one of claims 1 to 3, the steel pipe column is a round steel pipe.

したがって請求項5の発明によると、鋼管柱に丸形鋼管を採用した鉄骨構造物を構成し得る。   Therefore, according to the invention of claim 5, it is possible to constitute a steel structure in which a round steel pipe is adopted as a steel pipe column.

上記した本発明の請求項1によると、冷間成形した鋼管を加熱処理することによって、残留応力の除去と靭性の回復とを図ることができ、このような加熱処理によって得た鋼管は、残留応力が殆どなくて高い座屈強度を得ることができるとともに、二次溶接性に優れたものにでき、以て加熱処理による効果を保ちながらも、耐力と靭性とを向上できる。また加熱処理は、段階的に調整制御された加熱バーナーの加熱により雰囲気温度を鋼管が目的とする温度に段階的に昇温させることによって、それぞれの燃焼熱量を無駄のない状態にできる。そして前段の加熱にて昇温させた温度状態にてホールドすることによって、鋼管の周方向や長さ方向における加熱温度の均一化を図ることができて、歪の発生を防止でき、以て捩れ、曲がり、変形が殆ど生じない均質の鋼管を、大幅なコストダウンで得ることができる。しかも最終段の加熱を、A変態点以下としたことで、徐冷後における結晶粒化を防いで、粘りと強さを維持できる。 According to the first aspect of the present invention described above, the heat treatment of the cold-formed steel pipe can achieve the removal of residual stress and the recovery of toughness. There is almost no stress and a high buckling strength can be obtained, and the secondary weldability can be improved, so that the yield strength and toughness can be improved while maintaining the effect of the heat treatment. Further, in the heat treatment, the temperature of the atmosphere is gradually increased to the target temperature of the steel pipe by the heating of the heating burner that is adjusted and controlled in stages, so that the amount of combustion heat can be made useless. And by holding at the temperature raised by the previous heating, the heating temperature in the circumferential direction and length direction of the steel pipe can be made uniform, distortion can be prevented, and twisting can be prevented. A homogeneous steel pipe that is bent and hardly deforms can be obtained at a significant cost reduction. Moreover the heating in the final stage, it was less A 3 transformation point, to prevent crystallization granulation after slow cooling, it can be maintained stickiness and strength.

このようにして得た熱処理鋼管を鋼管柱の少なくとも一部に使用することで、残留応力の除去と靭性の回復とを図り、捩れ、曲がり、変形が殆ど生じない均質の鋼管柱にできるとともに、大幅なコストダウンで構成した鉄骨構造物を提供できる。   By using the heat-treated steel pipe obtained in this way for at least a part of the steel pipe column, it is possible to remove residual stress and restore toughness, and to make a homogeneous steel pipe column that hardly twists, bends and deforms, A steel structure constructed with a significant cost reduction can be provided.

また上記した本発明の請求項2によると、短尺鋼管を梁材連結部とした通しダイヤフラム方式や突き合せ溶接方式の鋼管柱の少なくとも一部を、残留応力の除去と靭性の回復とを図り、捩れ、曲がり、変形が殆ど生じない均質のものにでき、大幅なコストダウンで構成した鉄骨構造物を提供できる。   According to claim 2 of the present invention described above, at least part of a steel pipe column of a through diaphragm method or a butt welding method using a short steel pipe as a beam connecting portion is intended to remove residual stress and restore toughness, It is possible to provide a steel structure that can be made homogeneous with almost no twisting, bending, or deformation, and can be constructed at a significant cost reduction.

そして上記した本発明の請求項3によると、内ダイヤフラム方式の鋼管柱を、残留応力の除去と靭性の回復とを図り、捩れ、曲がり、変形が殆ど生じない均質のものにでき、大幅なコストダウンで構成した鉄骨構造物を提供できる。   According to claim 3 of the present invention described above, the inner diaphragm type steel pipe column can be made homogeneous with little torsion, bending and deformation by removing the residual stress and restoring the toughness, and it is possible to significantly reduce the cost. It can provide a steel structure constructed with down.

さらに上記した本発明の請求項4によると、鋼管柱に角形鋼管を採用した鉄骨構造物を構成できる。
しかも上記した本発明の請求項5によると、鋼管柱に丸形鋼管を採用した鉄骨構造物を構成できる。
Furthermore, according to claim 4 of the present invention described above, it is possible to constitute a steel structure in which a square steel pipe is adopted as a steel pipe column.
Moreover, according to the fifth aspect of the present invention described above, a steel structure in which a round steel pipe is employed as the steel pipe column can be configured.

[実施の形態1]
以下に、本発明の実施の形態1を、四角形状の角形鋼管を採用した通しダイヤフラム方式として、図1〜図5に基づいて説明する。
[Embodiment 1]
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 5 as a through-diaphragm system employing a rectangular steel pipe.

図1、図2に示されるように、鉄骨構造物1は、鋼管柱10と、この鋼管柱10の梁材連結部(パネルゾーン)に連結した梁材とで構成される。そして鋼管柱10は、所定の板厚tで長尺の支柱11と、この支柱11よりも板厚Tが厚くかつ梁材連結部を形成する長さ(短尺)のコラム12と、支柱11とコラム12との間に介在される下部ダイヤフラム13a、ならびに上部ダイヤフラム13bによって構成される。すなわち鋼管柱10は、その長さ方向において支柱11群と梁材連結部用のコラム12群とに切断(分断)されている。   As shown in FIGS. 1 and 2, the steel structure 1 includes a steel pipe column 10 and a beam material connected to a beam material connecting portion (panel zone) of the steel pipe column 10. The steel pipe column 10 includes a long column 11 having a predetermined thickness t, a column 12 having a length (short) that is thicker than the column 11 and forms a beam connecting portion, a column 11, It is comprised by the lower diaphragm 13a interposed between the columns 12, and the upper diaphragm 13b. That is, the steel pipe column 10 is cut (divided) into a column 11 group and a column 12 group for beam connecting portions in the length direction.

そして下部の支柱11の上端に、裏当て材14aを介して下部ダイヤフラム13aが溶接16aされるとともに、この下部ダイヤフラム13a上に裏当て材15aを介してコラム12の下端が溶接17aされる。さらにコラム12の上端に、裏当て材15bを介して上部ダイヤフラム13bが溶接17bされるとともに、この上部ダイヤフラム13b上に裏当て材14bを介して上部の支柱11の下端が溶接16bされる。   The lower diaphragm 13a is welded 16a to the upper end of the lower support column 11 via the backing material 14a, and the lower end of the column 12 is welded 17a to the lower diaphragm 13a via the backing material 15a. Further, the upper diaphragm 13b is welded 17b to the upper end of the column 12 via a backing material 15b, and the lower end of the upper column 11 is welded 16b to the upper diaphragm 13b via the backing material 14b.

このようにして形成された鋼管柱10に対する梁材(主にH形鋼材)18の連結は、この梁材18の遊端を、両ダイヤフラム13a,13bやコラム12に溶接19することで行っていた。そして両ダイヤフラム13a,13bは、応力の伝達の役目を成していた。その際に、鋼管柱10の一部である支柱11群に熱処理鋼管が使用され、そしてコラム12に熱間成形鋼管が使用される。   The beam material (mainly H-shaped steel material) 18 is connected to the steel pipe column 10 formed in this way by welding 19 the free ends of the beam material 18 to both diaphragms 13a and 13b and the column 12. It was. Both diaphragms 13a and 13b served to transmit stress. At that time, a heat-treated steel pipe is used for the column 11 group which is a part of the steel pipe column 10, and a hot-formed steel pipe is used for the column 12.

次に、使用される支柱(熱処理鋼管)11群、すなわち、冷間成形した鋼管に対して、加熱とホールドとを交互に行って、加熱により段階的に昇温させるとともに、前段の加熱にて昇温させた温度状態でホールドし、最終段の加熱によりA変態点以下として昇温させたのち、最終段のホールドを行った加熱鋼管を徐冷することで得られる支柱11群の製造方法の一例を説明する。 Next, 11 groups of columns (heat-treated steel pipes) to be used, that is, cold-formed steel pipes, are alternately heated and held to raise the temperature stepwise by heating, hold at elevated temperature state was, after the temperature was raised as follows a 3 transformation point by heating in the final stage, the struts 11 group obtained by slowly cooling the heated steel pipe was held at the last stage of the manufacturing process An example will be described.

図3〜図5に示されるように、冷間成形した長尺で四角形状の角形鋼管(鋼管の一例)Aは、正規の外面間の外寸Wでかつ正規の外面曲率半径Rのコーナ部であるとともに、所定の板厚tであり、そして一つの平板部には、突き合わせ溶接による突き合わせ溶接部Bが形成されている。また角形鋼管Aは、所定の管長さLとされている。   As shown in FIGS. 3 to 5, a cold-formed long and square rectangular steel pipe (an example of a steel pipe) A has a corner portion having an outer dimension W between normal outer surfaces and a normal outer curvature radius R. And a predetermined plate thickness t, and a butt weld B by butt welding is formed on one flat plate portion. The square steel pipe A has a predetermined pipe length L.

この角形鋼管Aは、搬入床51に渡されて搬送される。この搬入床51の終端部に搬送された角形鋼管Aは、ローラコンベヤ(搬送手段の一例)52に渡され、このローラコンベヤ52により形成される搬送経路53上で搬送される。この搬送経路53中には、熱処理部61と冷却床71とが配設されている。   This square steel pipe A is transferred to the carry-in floor 51 and conveyed. The square steel pipe A conveyed to the terminal end of the carry-in floor 51 is transferred to a roller conveyor (an example of a conveying means) 52 and is conveyed on a conveying path 53 formed by the roller conveyor 52. A heat treatment unit 61 and a cooling bed 71 are disposed in the transport path 53.

すなわち熱処理部61は、角形鋼管Aを1つの炉62に入れての燃焼加熱方式であって、この炉62における前後方向の両端には、貫通孔により搬入口や搬出口が形成され、これら搬入口や搬出口には、それぞれ開閉扉63が設けられている。そして炉62内には、それぞれ3つの(複数の)加熱ゾーン65A,65B,65Cとホールドゾーン66A,66B,66Cとが交合に形成(配置)されている。その際に、加熱ゾーン65A,65B,65Cとホールドゾーン66A,66B,66Cとは、それぞれ同様のゾーン長さL+αであり、かつ管長さLに対して少し(α分)長く設定されている。そして、搬入口に最始段の加熱ゾーン65Aが対向され、搬出口に最終段のホールドゾーン66Cが対向されている。   That is, the heat treatment unit 61 is a combustion heating method in which the square steel pipe A is put in one furnace 62, and a carry-in port and a carry-out port are formed at both ends in the front-rear direction in the furnace 62 by through holes. Opening / closing doors 63 are respectively provided at the mouth and the outlet. In the furnace 62, three (a plurality of) heating zones 65A, 65B, 65C and hold zones 66A, 66B, 66C are formed (arranged) in an intersecting manner. At that time, the heating zones 65A, 65B, and 65C and the hold zones 66A, 66B, and 66C have the same zone length L + α, and are set slightly longer (α) than the tube length L. The first heating zone 65A is opposed to the carry-in entrance, and the final hold zone 66C is opposed to the carry-out exit.

さらに各加熱ゾーン65A,65B,65Cの部分には、前記炉62の一側下部でかつローラコンベヤ52のローラ間の中間位置に対向して下部加熱バーナー67A,67B,67Cが配設され、そして、炉62の他側上部でかつ前記下部加熱バーナー67A,67B,67Cに対して千鳥状に対峙する位置には上部加熱バーナー68A,68B,68Cが配設されている。   Further, lower heating burners 67A, 67B, and 67C are disposed in each heating zone 65A, 65B, and 65C at one side lower portion of the furnace 62 and opposite to an intermediate position between the rollers of the roller conveyor 52, and Upper heating burners 68A, 68B, 68C are disposed on the other upper side of the furnace 62 and at positions facing the lower heating burners 67A, 67B, 67C in a staggered manner.

前記加熱ゾーン65A,65B,65Cは、加熱バーナー67A,68A,67B,68B,67C,68Cの調整制御によって加熱温度が管理されている。すなわち、最始段の加熱ゾーン65Aに対応した加熱バーナー67A,68Aは、常温状態の角形鋼管Aを200℃前後に昇温するように調整制御し得、中間段の加熱ゾーン65Bに対応した加熱バーナー67B,68Bは、200℃前後の角形鋼管Aを400℃前後に昇温するように調整制御し得、最終段の加熱ゾーン65Cに対応した加熱バーナー67C,68Cは、400℃前後の角形鋼管Aを600℃前後(650℃を上限)に昇温するように調整制御し得るように構成されている。   The heating temperatures of the heating zones 65A, 65B, 65C are managed by adjusting the heating burners 67A, 68A, 67B, 68B, 67C, 68C. That is, the heating burners 67A and 68A corresponding to the first heating zone 65A can be adjusted and controlled to raise the temperature of the square steel pipe A in the room temperature to around 200 ° C., and the heating corresponding to the intermediate heating zone 65B. The burners 67B and 68B can be adjusted and controlled so that the temperature of the rectangular steel pipe A around 200 ° C. is raised to around 400 ° C., and the heating burners 67C and 68C corresponding to the heating zone 65C in the final stage are square steel pipes around 400 ° C. It is configured such that A can be adjusted and controlled to raise the temperature to around 600 ° C. (up to 650 ° C.).

前記加熱ゾーン65A,65B,65Cとホールドゾーン66A,66B,66Cとの境界部には、角形鋼管Aの通過を許す仕切り体69が設けられている。なお、この仕切り体69は省略されてもよく、またエアシャッターなどであってもよい。以上の62〜69などにより熱処理部61の一例が構成される。   A partition 69 that allows the square steel pipe A to pass is provided at the boundary between the heating zones 65A, 65B, and 65C and the hold zones 66A, 66B, and 66C. The partition 69 may be omitted or an air shutter or the like may be used. An example of the heat treatment unit 61 is configured by the above 62 to 69 and the like.

前述したように、冷間成形されたのち、搬入床51の終端部に搬送された角形鋼管Aは、ローラコンベヤ52に渡され、このローラコンベヤ52により熱処理部61の炉62に搬入される。この角形鋼管Aは、共通の炉62内において搬送経路53上を直線状に搬送されながら、各加熱バーナー67A,68A,67B,68B,67C,68Cの燃焼熱によって外面側から徐々に均一的に加熱される。その際に加熱は、加熱ゾーン65A,65B,65Cとホールドゾーン66A,66B,66Cとに交互に順次移動させて、加熱ゾーン65A,65B,65C群で段階的に昇温させるとともに、ホールドゾーン66A,66B,66C群で、前段の加熱ゾーン65A,65B,65Cにて昇温させた温度状態にてホールドし得るように構成される。   As described above, after cold forming, the square steel pipe A that has been transported to the end portion of the carry-in floor 51 is transferred to the roller conveyor 52 and is carried into the furnace 62 of the heat treatment section 61 by the roller conveyor 52. The square steel pipe A is gradually and uniformly distributed from the outer surface side by the combustion heat of each heating burner 67A, 68A, 67B, 68B, 67C, 68C while being transported linearly on the transport path 53 in the common furnace 62. Heated. At this time, the heating is alternately moved sequentially to the heating zones 65A, 65B, 65C and the holding zones 66A, 66B, 66C to raise the temperature stepwise in the heating zones 65A, 65B, 65C, and the holding zone 66A. , 66B, and 66C, the heating zones 65A, 65B, and 65C in the previous stage can be held in the temperature state.

すなわち、炉62に搬入された常温状態の角形鋼管Aは、まず最始段の加熱ゾーン65Aにおける加熱バーナー67A,68Aによって200℃前後に昇温するように全体加熱される。この200℃前後に昇温された角形鋼管Aは最始段のホールドゾーン66Aに移動され、200℃前後の雰囲気下でホールドされる。次いで200℃前後の角形鋼管Aは中間段の加熱ゾーン65Bに移動され、加熱バーナー67B,68Bによって400℃前後に昇温するように全体加熱される。この400℃前後に昇温された角形鋼管Aは中間段のホールドゾーン66Bに移動され、400℃前後の雰囲気下でホールドされる。そして400℃前後の角形鋼管Aは最終段の加熱ゾーン65Cに移動され、加熱バーナー67C,68Cによって600℃前後に昇温するように全体加熱される。この600℃前後に昇温された角形鋼管Aは最終段のホールドゾーン66Cに移動され、600℃前後の雰囲気下でホールドされる。   That is, the square steel pipe A in a normal temperature state carried into the furnace 62 is first heated so that the temperature is raised to around 200 ° C. by the heating burners 67A and 68A in the heating zone 65A of the first stage. The square steel pipe A heated to about 200 ° C. is moved to the first hold zone 66A and is held in an atmosphere of about 200 ° C. Next, the square steel pipe A at around 200 ° C. is moved to the intermediate heating zone 65B, and is heated as a whole by the heating burners 67B and 68B so that the temperature is raised to around 400 ° C. The square steel pipe A heated to about 400 ° C. is moved to the intermediate stage hold zone 66B and held in an atmosphere of about 400 ° C. Then, the square steel pipe A at around 400 ° C. is moved to the final heating zone 65C, and is heated by the heating burners 67C and 68C so that the temperature is raised to around 600 ° C. The square steel pipe A heated to around 600 ° C. is moved to the final stage hold zone 66C and held in an atmosphere around 600 ° C.

このように、冷間成形した角形鋼管Aを、各加熱ゾーン65A,65B,65Cにおいて、目的とする温度に段階的に昇温させることによって、それぞれの加熱バーナー67A,68A,67B,68B,67C,68Cによる燃焼熱量を無駄のない状態にできる。また各ホールドゾーン66A,66B,66Cにおいて、前段の加熱ゾーン65A,65B,65Cにて昇温させた温度状態にてホールドすることによって、角形鋼管Aの周方向や長さ方向における加熱温度の均一化を図り得る。   Thus, by heating the cold-formed square steel pipe A stepwise to the target temperature in each heating zone 65A, 65B, 65C, the respective heating burners 67A, 68A, 67B, 68B, 67C. , 68C, the amount of combustion heat can be made lean. Moreover, in each hold zone 66A, 66B, 66C, the heating temperature in the circumferential direction and the length direction of the square steel pipe A is made uniform by holding in the temperature state where the temperature is raised in the preceding heating zones 65A, 65B, 65C. Can be realized.

すなわち、最始段の加熱ゾーン65Aにおける加熱バーナー67A,68Aは、常温状態の角形鋼管Aを200℃前後に昇温させる燃焼熱量でよいことになる。そして、200℃前後に昇温させた角形鋼管Aを、最始段のホールドゾーン66Aにおいて200℃前後の雰囲気下でホールドすることによって、最始段の加熱ゾーン65Aにおける加熱(200℃前後)時に周方向や長さ方向において多少の温度差が生じ、不均一状(不揃い状)に加熱されている角形鋼管Aの温度を、そのホールド中に均一化し得、歪の発生を防止し得る。   That is, the heating burners 67A and 68A in the heating zone 65A in the first stage may be the amount of combustion heat that raises the temperature of the square steel pipe A at room temperature to around 200 ° C. Then, by holding the square steel pipe A that has been heated to around 200 ° C. in an atmosphere at around 200 ° C. in the hold zone 66A at the beginning, during heating (around 200 ° C.) in the heating zone 65A at the beginning. Some temperature difference occurs in the circumferential direction and the length direction, and the temperature of the square steel pipe A heated in a non-uniform (non-uniform) shape can be made uniform during the holding, and the occurrence of distortion can be prevented.

また、中間段の加熱ゾーン65Bにおける加熱バーナー67B,68Bは、200℃前後の角形鋼管Aを400℃前後に昇温させる燃焼熱量でよいことになる。そして、400℃前後に昇温させた角形鋼管Aを、中間段のホールドゾーン66Bにおいて400℃前後の雰囲気下でホールドすることによって、中間段の加熱ゾーン65Bにおける加熱(400℃前後)時に周方向や長さ方向において多少の温度差が生じ、不均一状(不揃い状)に加熱されている角形鋼管Aの温度を、そのホールド中に均一化し得、歪の発生を防止し得る。   Further, the heating burners 67B and 68B in the heating zone 65B in the intermediate stage may have a combustion heat amount for raising the temperature of the square steel pipe A around 200 ° C. to around 400 ° C. Then, by holding the square steel pipe A heated to about 400 ° C. in an intermediate stage hold zone 66B in an atmosphere of about 400 ° C., the circumferential direction during heating (about 400 ° C.) in the intermediate stage heating zone 65B Further, a slight temperature difference occurs in the length direction, and the temperature of the square steel pipe A heated in a non-uniform (non-uniform) shape can be made uniform during the hold, thereby preventing the occurrence of distortion.

さらに、最終段の加熱ゾーン65Cにおける加熱バーナー67C,68Cは、400℃前後の角形鋼管Aを600℃前後に昇温させる燃焼熱量でよいことになる。そして、600℃前後に昇温させた角形鋼管Aを、最終段のホールドゾーン66Cにおいて600℃前後の雰囲気下でホールドすることによって、最終段の加熱ゾーン65Cにおける加熱(600℃前後)時に周方向や長さ方向において多少の温度差が生じ、不均一状(不揃い状)に加熱されている角形鋼管Aの温度を、そのホールド中に均一化し得、歪の発生を防止し得る。   Furthermore, the heating burners 67C and 68C in the heating zone 65C at the final stage may be the amount of combustion heat for raising the temperature of the square steel pipe A at around 400 ° C. to around 600 ° C. And the square steel pipe A heated up to around 600 ° C. is held in an atmosphere at around 600 ° C. in the final stage hold zone 66C, so that the circumferential direction during heating (around 600 ° C.) in the final stage heating zone 65C Further, a slight temperature difference occurs in the length direction, and the temperature of the square steel pipe A heated in a non-uniform (non-uniform) shape can be made uniform during the hold, thereby preventing the occurrence of distortion.

また冷間成形した角形鋼管Aを、共通の炉62内で直線状に移動させながら、加熱ゾーン65A,65B,65Cとホールドゾーン66A,66B,66Cとに交互に順次移動させて、加熱ゾーン65A,65B,65C群で段階的に昇温させるとともに、ホールドゾーン66A,66B,66C群で、前段の加熱ゾーン65A,65B,65Cにて昇温させた温度状態にてホールドすることにより、炉62やローラコンベア(搬送手段)52をコンパクトにかつ安価に構成し得るとともに、移動制御を簡素化し得る。なお、炉62内におけるゾーン間の移動は、同時に(同期して)効率良く行われる。   In addition, while the cold-formed square steel pipe A is linearly moved in the common furnace 62, it is alternately moved to the heating zones 65A, 65B, 65C and the hold zones 66A, 66B, 66C in turn, thereby heating zone 65A. , 65B, and 65C, and the holding zones 66A, 66B, and 66C hold in the heated state in the heating zones 65A, 65B, and 65C in the previous stage, thereby holding the furnace 62. In addition, the roller conveyor (conveying means) 52 can be made compact and inexpensive, and the movement control can be simplified. The movement between zones in the furnace 62 is efficiently performed simultaneously (synchronously).

前述したように、最終段のホールドゾーン66Cにおいて600℃前後でホールドした角形鋼管Aを、開閉扉63を開動させることで、搬出口を通して炉62から冷却床71へと搬出し得る。そして角形鋼管Aの終端が完全に搬出されたときに、搬出口の開閉扉63が閉動される。このように最終段のホールドゾーン66Cから取り出した加熱状の角形鋼管Aを冷却床71において徐冷するように構成されている。   As described above, the square steel pipe A held at around 600 ° C. in the hold zone 66C in the final stage can be carried out from the furnace 62 to the cooling bed 71 through the carry-out port by opening the open / close door 63. When the end of the square steel pipe A is completely unloaded, the opening / closing door 63 of the unloading port is closed. Thus, the heated square steel pipe A taken out from the hold zone 66C in the final stage is configured to be gradually cooled in the cooling bed 71.

すなわち、最終段のホールドゾーン66Cから取り出された角形鋼管Aは冷却床71に受け取られる。この冷却床71はコンベヤ形式であって複数本の角形鋼管Aを平行させて支持し、そして長さ方向に対して横方向へと搬送させる。この冷却床71での搬送中に、角形鋼管Aは空冷形式で徐冷される。冷却床71での角形鋼管A群の搬送は、隣接した角形鋼管Aの間を離した状態で、または隣接した角形鋼管Aどうしを接触させ両側よりクランプした状態で搬送される。これにより角形鋼管Aは、同じ雰囲気温度下で徐冷されることになり、以て冷却時の曲がりを少なくし得る。   That is, the square steel pipe A taken out from the hold zone 66C at the final stage is received by the cooling bed 71. This cooling bed 71 is a conveyor type, supports a plurality of rectangular steel pipes A in parallel, and conveys them in a direction transverse to the length direction. During the conveyance on the cooling bed 71, the square steel pipe A is gradually cooled in an air cooling manner. Transport of the square steel pipes A group on the cooling bed 71 is performed in a state where the adjacent square steel pipes A are separated from each other or in a state where the adjacent square steel pipes A are brought into contact with each other and clamped from both sides. As a result, the square steel pipe A is gradually cooled under the same atmospheric temperature, so that bending during cooling can be reduced.

角形鋼管Aは、冷却床71の終端に達して熱処理鋼管となり、図示していない矯正装置、先端切断装置、後端切断装置、洗浄装置、防錆装置へと搬送され、必要に応じてそれぞれで処理されたのち、製品としてストレージされる。なお、この熱処理鋼管は、前述したように鉄骨構造物1における鋼管柱10の支柱11として使用される。   The square steel pipe A reaches the end of the cooling bed 71 and becomes a heat-treated steel pipe, and is conveyed to a straightening device, a front end cutting device, a rear end cutting device, a cleaning device, and a rust prevention device (not shown). After being processed, it is stored as a product. In addition, this heat-treated steel pipe is used as the support | pillar 11 of the steel pipe pillar 10 in the steel structure 1 as mentioned above.

上述したように、冷間成形した角形鋼管Aを加熱処理することによって、残留応力の除去と靭性の回復とを図り得、このような加熱処理によって得られた支柱11は、残留応力が殆どなくて高い座屈強度が得られるとともに、二次溶接性に優れたものとなり、以て加熱処理による効果を保ちながらも、耐力と靭性とを向上し得る。また加熱処理を、段階的に調整制御された加熱バーナー67A,68A,67B,68B,67C,68Cの加熱により雰囲気温度を角形鋼管Aが目的とする温度に段階的に昇温させ、その段階的に昇温させた温度状態にてホールドして行うことによって、捩れ、曲がり、変形が殆ど生じない均質の支柱11を、大幅なコストダウンで得られることになる。その際に支柱11を、最終段の加熱ゾーン26Cにて650℃を上限(A変態点以下)として昇温させることによって、徐冷後における結晶粒化を防いで、粘りと強さを維持し得る。 As described above, the heat treatment of the cold-formed square steel pipe A can remove residual stress and restore toughness, and the support 11 obtained by such heat treatment has almost no residual stress. High buckling strength can be obtained, and the secondary weldability is excellent, so that the proof stress and toughness can be improved while maintaining the effect of the heat treatment. Further , the heating temperature is increased stepwise to the target temperature of the square steel pipe A by heating the heating burners 67A, 68A, 67B, 68B, 67C, 68C which are adjusted and controlled stepwise. By holding in a temperature state that has been raised to a high temperature, a homogeneous support column 11 that hardly twists, bends, or deforms can be obtained at a significant cost reduction. Maintain the strut 11 in this case, by raising the temperature to 650 ° C. in a heating zone 26C in the final stage as the upper limit (A 3 hereinafter transformation point), prevent crystallization granulation after slow cooling, the stickiness and strength Can do.

したがって、鋼管柱10の少なくとも一部、すなわち支柱11群に、残留応力の除去と靭性の回復とを図り、捩れ、曲がり、変形が殆ど生じない均質の熱処理鋼管を採用し得るとともに、この熱処理鋼管は能率よく安価に得られ、以て鉄骨構造物1を大幅なコストダウンで構成し得ることになる。   Therefore, it is possible to adopt a homogeneous heat-treated steel pipe that eliminates residual stress and restores toughness and that hardly twists, bends, and deforms at least in a part of the steel pipe column 10, that is, the column 11 group. Can be obtained efficiently and inexpensively, so that the steel structure 1 can be constructed at a significant cost reduction.

上記した実施の形態1の鋼管柱10においては、その一部となる支柱11に熱処理鋼管が使用され、そしてコラム12に熱間成形鋼管が使用されているが、これは、支柱11とコラム12の全てに熱処理鋼管が使用される形式や、その一部となるコラム12に熱処理鋼管が使用され、支柱11に冷間成形鋼管が使用される形式などであってもよい。なお、短尺のコラム12に熱処理鋼管を使用する場合、上述したように、冷間成形した角形鋼管を加熱処理することにより得た長尺の熱処理鋼管が、所望の長さ(短尺)に切断される。
[実施の形態2]
次に、本発明の実施の形態2を、四角形状の角形鋼管を採用した突き合せ溶接方式として、図6、図7に基づいて説明する。
In the steel pipe column 10 of the first embodiment described above, a heat-treated steel pipe is used for the column 11 which is a part of the column, and a hot-formed steel pipe is used for the column 12. For example, a form in which a heat-treated steel pipe is used for all of the above, or a form in which a heat-treated steel pipe is used for the column 12 serving as a part thereof and a cold-formed steel pipe is used for the support 11 may be used. In addition, when using the heat-treated steel pipe for the short column 12, as described above, the long heat-treated steel pipe obtained by heat-treating the cold-formed square steel pipe is cut into a desired length (short). The
[Embodiment 2]
Next, a second embodiment of the present invention will be described based on FIGS. 6 and 7 as a butt welding method employing a square-shaped square steel pipe.

すなわち鉄骨構造物2は、鋼管柱20と、この鋼管柱20の梁材連結部(パネルゾーン)に連結した梁材24とで構成される。そして鋼管柱20は、所定の板厚tで長尺の支柱21と、この支柱21よりも板厚Tが厚くかつ梁材連結部を形成する長さ(短尺)のコラム22とによって構成される。すなわち鋼管柱20は、その長さ方向において支柱21群と梁材連結部用のコラム22群とに切断(分断)されている。そして下部の支柱21の上端に、コラム22の下端が突き合せ溶接23されるとともに、コラム22の上端に、上部の支柱21の下端が突き合せ溶接23される。なお、突き合せ溶接23を行う際に、支柱21とコラム22の内面間に裏当て材を介在させてもよい。   That is, the steel frame structure 2 includes a steel pipe column 20 and a beam member 24 connected to a beam member connecting portion (panel zone) of the steel pipe column 20. The steel pipe column 20 includes a long column 21 having a predetermined plate thickness t and a column 22 having a plate thickness T larger than the column 21 and a length (short) column 22 that forms a beam connecting portion. . That is, the steel pipe column 20 is cut (divided) into a column 21 group and a column 22 group for a beam connecting portion in the length direction. The lower end of the column 22 is butt-welded 23 to the upper end of the lower column 21, and the lower end of the upper column 21 is butt-welded 23 to the upper end of the column 22. When performing the butt welding 23, a backing material may be interposed between the support 21 and the inner surface of the column 22.

このようにして形成された鋼管柱20に対する梁材(主にH形鋼材)24の連結は、この梁材24の遊端をコラム22に溶接25することで行っていた。その際に、支柱21群には、前述したように、冷間成形した鋼管に対して、加熱とホールドとを交互に行って、段階的に調整制御された加熱バーナー67A,68A,67B,68B,67C,68Cの加熱により雰囲気温度を鋼管が目的とする温度に段階的に昇温させるとともに、前段の加熱にて昇温させた温度状態でホールドし、最終段の加熱により650℃を上限として昇温させたのち、最終段のホールドを行った加熱鋼管を徐冷することで得られる熱処理鋼管が使用され、そしてコラム22に熱間成形鋼管が使用される。 The beam material (mainly H-shaped steel material) 24 is connected to the steel pipe column 20 formed in this way by welding 25 the free end of the beam material 24 to the column 22. At that time, as described above, the heating column burners 67A, 68A, 67B, and 68B that are adjusted and controlled in stages by alternately performing heating and holding on the cold-formed steel pipe as described above. , 67C, 68C, the steel tube is gradually heated to the target temperature, held at the temperature raised by the previous heating, and the final heating is set to 650 ° C as the upper limit. After raising the temperature, a heat-treated steel pipe obtained by slow cooling the heated steel pipe that has been held in the final stage is used, and a hot-formed steel pipe is used for the column 22.

したがって、鋼管柱20の少なくとも一部、すなわち支柱21群に、残留応力の除去と靭性の回復とを図り、捩れ、曲がり、変形が殆ど生じない均質の熱処理鋼管を採用し得るとともに、この熱処理鋼管は能率よく安価に得られ、以て鉄骨構造物2を大幅なコストダウンで構成し得ることになる。   Accordingly, it is possible to adopt a homogeneous heat-treated steel pipe that eliminates residual stress and restores toughness and hardly twists, bends, and deforms in at least a part of the steel pipe column 20, that is, the column 21 group. Can be obtained efficiently and inexpensively, so that the steel structure 2 can be constructed at a significant cost reduction.

上記した実施の形態2の鋼管柱20においては、その一部となる支柱21に熱処理鋼管が使用され、そしてコラム22に熱間成形鋼管が使用されているが、これは、支柱21とコラム22の全てに熱処理鋼管が使用される形式や、その一部となるコラム22に熱処理鋼管が使用され、支柱21に冷間成形鋼管が使用される形式などであってもよい。なお、短尺のコラム22に熱処理鋼管を使用する場合、上述したように、冷間成形した角形鋼管を加熱処理することにより得た長尺の熱処理鋼管が、所望の長さ(短尺)に切断される。
[実施の形態3]
次に、本発明の実施の形態3を、四角形状の角形鋼管を採用した内ダイヤフラム方式として、図8、図9に基づいて説明する。
In the steel pipe column 20 of the second embodiment described above, a heat-treated steel pipe is used for the column 21 which is a part of the column, and a hot-formed steel pipe is used for the column 22. The heat treatment steel pipe may be used for all of the above, or the heat treatment steel pipe may be used for the column 22 which is a part of the heat treatment steel pipe, and the cold forming steel pipe may be used for the column 21. In addition, when using the heat-treated steel pipe for the short column 22, as described above, the long heat-treated steel pipe obtained by heat-treating the cold-formed square steel pipe is cut into a desired length (short). The
[Embodiment 3]
Next, Embodiment 3 of the present invention will be described based on FIGS. 8 and 9 as an inner diaphragm system employing a rectangular steel pipe.

すなわち鉄骨構造物3は、鋼管柱30と、この鋼管柱30の梁材連結部(パネルゾーン)に連結した梁材36とで構成される。そして鋼管柱30は、所定の板厚tで長尺の支柱31と、この支柱31内の梁材連結部に位置されるダイヤフラム32とによって構成される。すなわち鋼管柱30は、支柱31が、その長さ方向において切断(分断)されている。そして下部の支柱31内の上部と上部の支柱31内の下部とに、それぞれ裏当て材33を介してダイヤフラム32が溶接34により連結されている。これら下部の支柱31と上部の支柱31とは、直線状に位置されたのち、その遊端間が突き合せ溶接35により結合されている。なお、突き合せ溶接35を行う際に、上下の支柱31の内面間に裏当て材を介在させてもよい。   That is, the steel frame structure 3 includes a steel pipe column 30 and a beam member 36 connected to a beam member connecting portion (panel zone) of the steel pipe column 30. The steel pipe column 30 is constituted by a long column 31 having a predetermined thickness t and a diaphragm 32 positioned at a beam member connecting portion in the column 31. That is, the steel pipe column 30 has the column 31 cut (divided) in the length direction. A diaphragm 32 is connected to the upper portion in the lower support column 31 and the lower portion in the upper support column 31 via a backing material 33 by welding 34. The lower support 31 and the upper support 31 are positioned in a straight line, and their free ends are joined by a butt weld 35. In addition, when performing butt welding 35, you may interpose a backing material between the inner surfaces of the up-and-down support | pillar 31. FIG.

このようにして形成された鋼管柱30に対する梁材(主にH形鋼材)36の連結は、この梁材36の遊端を上下のダイヤフラム32に対向させた状態で、下部の支柱31と上部の支柱31との外面間に溶接37することで行っていた。その際に、支柱31群には、前述したように、冷間成形した鋼管に対して、加熱とホールドとを交互に行って、段階的に調整制御された加熱バーナー67A,68A,67B,68B,67C,68Cの加熱により雰囲気温度を鋼管が目的とする温度に段階的に昇温させるとともに、前段の加熱にて昇温させた温度状態でホールドし、最終段の加熱により650℃を上限として昇温させたのち、最終段のホールドを行った加熱鋼管を徐冷することで得られる熱処理鋼管が使用される。 The beam material (mainly H-shaped steel material) 36 is connected to the steel pipe column 30 formed in this way, with the free end of the beam material 36 facing the upper and lower diaphragms 32 and the upper column 31 and the upper column 31. This was done by welding 37 between the outer surfaces of the columns 31. At that time, as described above, the heating column burners 67A, 68A, 67B, and 68B that are adjusted and controlled in stages by alternately performing heating and holding on the cold-formed steel pipe as described above. , 67C, 68C, the steel tube is gradually heated to the target temperature, held at the temperature raised by the previous heating, and the final heating is set to 650 ° C as the upper limit. A heat-treated steel pipe obtained by gradually cooling the heated steel pipe that has been held in the final stage after the temperature is raised is used.

したがって、鋼管柱30の全部、すなわち支柱31群に、残留応力の除去と靭性の回復とを図り、捩れ、曲がり、変形が殆ど生じない均質の熱処理鋼管を採用し得るとともに、この熱処理鋼管は能率よく安価に得られ、以て鉄骨構造物3を大幅なコストダウンで構成し得ることになる。
[実施の形態4]
次に、本発明の実施の形態4を、丸形鋼管を採用した状態として、図10に基づいて説明する。
Accordingly, it is possible to employ a homogeneous heat-treated steel pipe that eliminates residual stress and restores toughness, and hardly twists, bends, and deforms in all of the steel pipe columns 30, that is, the columns 31. Therefore, the steel structure 3 can be constructed at a significant cost reduction.
[Embodiment 4]
Next, Embodiment 4 of the present invention will be described based on FIG. 10 as a state in which a round steel pipe is employed.

すなわち、冷間成形した長尺の丸形鋼管(鋼管の一例)Cは、全長に亘って正規の外面直径Φであり、そして周方向の一箇所には、突き合わせ溶接による突き合わせ溶接部Dが形成されている。このように冷間成形した丸形鋼管Cに対して、前述したように、加熱とホールドとを交互に行って、段階的に調整制御された加熱バーナー67A,68A,67B,68B,67C,68Cの加熱により雰囲気温度を丸形鋼管Cが目的とする温度に段階的に昇温させるとともに、前段の加熱にて昇温させた温度状態でホールドし、最終段の加熱により650℃を上限として昇温させたのち、最終段のホールドを行った加熱鋼管を徐冷する。 That is, a cold-formed long round steel pipe (an example of a steel pipe) C has a regular outer surface diameter Φ over its entire length, and a butt weld D formed by butt welding is formed at one place in the circumferential direction. Has been. As described above, heating and holding are alternately performed on the round steel pipe C thus cold-formed, and the heating burners 67A, 68A, 67B, 68B, 67C, and 68C are adjusted in stages. The atmospheric temperature is raised stepwise to the target temperature of the round steel pipe C by heating, and held at the temperature raised by the previous stage heating, and raised to 650 ° C. as the upper limit by the final stage heating. After heating, the heated steel pipe that has been held in the final stage is gradually cooled.

これにより得られた丸形の熱処理鋼管を、実施の形態1における支柱11群、実施の形態2における支柱21群、実施の形態3における支柱31群に使用することで、鋼管柱10,20,30の少なくとも一部、すなわち支柱11,21,31群に、残留応力の除去と靭性の回復とを図り、捩れ、曲がり、変形が殆ど生じない均質の熱処理鋼管を採用し得るとともに、この熱処理鋼管は能率よく安価に得られ、以て支柱11,21,31群に丸形鋼管を使用した鉄骨構造物1,2,3を大幅なコストダウンで構成し得ることになる。   By using the round heat-treated steel pipe obtained in this way for the support 11 group in the first embodiment, the support 21 group in the second embodiment, and the support 31 group in the third embodiment, the steel pipe columns 10, 20, At least a part of the column 30, that is, the columns 11, 21, 31 can be made of a homogeneous heat-treated steel pipe that eliminates residual stress and restores toughness and hardly twists, bends, and deforms. Can be obtained efficiently and inexpensively, so that the steel structures 1, 2, 3 using round steel pipes for the groups 11, 21, 31 can be constructed at a significant cost reduction.

上記した実施の形態1における角形鋼管Aや、実施の形態4における丸形鋼管Cの素材としては、鋼や鉄などが採用される。
上記した実施の形態1〜3では、支柱11,21,31として断面で正四角形状の角形鋼管を採用しているが、これは断面で長方形の角形鋼管も同様に採用し得るものである。さらには、正五角形や正六角形など、各種の多角形の角形鋼管にも同様に採用し得るものである。
Steel, iron, etc. are employ | adopted as a raw material of the square steel pipe A in above-mentioned Embodiment 1, and the round steel pipe C in Embodiment 4. FIG.
In Embodiments 1 to 3 described above, square steel pipes having a regular tetragonal cross section are employed as the columns 11, 21 and 31, but rectangular steel pipes having a rectangular cross section can also be employed. Furthermore, it can be similarly applied to various polygonal square steel pipes such as regular pentagons and regular hexagons.

上記した実施の形態1において、角形鋼管Aとしては、たとえば、ロール成形によるワンシーム角形鋼管、プレス成形による一対のみぞ形材を向き合わせて突き合わせ溶接したツーシーム角形鋼管、一対の圧延みぞ形材を溶接してなるツーシーム角形鋼管、圧延山形材を一対、向き合わせて溶接したツーシーム角形鋼管などが適宜に使用される。   In the first embodiment described above, as the square steel pipe A, for example, a one-seam square steel pipe formed by roll forming, a two-seam square steel pipe formed by facing and welding a pair of groove-shaped members by press forming, and a pair of rolled groove shapes are welded. A two-seam square steel pipe, a two-seam square steel pipe obtained by welding a pair of rolled chevron members facing each other, and the like are appropriately used.

上記した実施の形態1において角形鋼管Aとしては、大径で厚肉の角形鋼管、大径で薄肉の角形鋼管、小径で厚肉の角形鋼管、小径で薄肉の角形鋼管などであってもよい。
上記した実施の形態1〜実施の形態4においては、最終段の加熱ゾーン65Cで角形鋼管Aや丸形鋼管Cを600℃前後(650℃を上限)に昇温するように調整制御し得る構成とされているが、これは最終段の加熱ゾーン65Cで角形鋼管Aや丸形鋼管Cを、カーボンの量によって変化するA変態点以下(A変態点近く)の温度に昇温するように調整制御した構成であってもよい。
In the first embodiment, the square steel pipe A may be a large diameter and thick square steel pipe, a large diameter and thin square steel pipe, a small diameter and thick square steel pipe, a small diameter and thin square steel pipe, or the like. .
In the first to fourth embodiments described above, the configuration can be adjusted and controlled so as to raise the temperature of the rectangular steel pipe A or the round steel pipe C to around 600 ° C. (up to 650 ° C.) in the final heating zone 65C. as a have been, which is to raise the temperature of the RHS a or round steel pipes C in a heating zone 65C in the final stage, the temperature follows a 3 transformation point which changes by the amount of carbon (a 3 transformation point near) The configuration may be adjusted and controlled.

本発明の実施の形態1を示し、鉄骨構造物の要部の一部切り欠き斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view of a main part of a steel structure structure according to a first embodiment of the present invention. 同鉄骨構造物の要部の縦断正面図である。It is a vertical front view of the principal part of the steel structure. 同鉄骨構造物における支柱の製造工程を示す概略平面図である。It is a schematic plan view which shows the manufacturing process of the support | pillar in the steel structure. 同鉄骨構造物における支柱の製造工程を示す一部切り欠き斜視図である。It is a partially notched perspective view which shows the manufacturing process of the support | pillar in the steel structure. 同鉄骨構造物における支柱に採用される角形鋼管の平面図である。It is a top view of the square steel pipe employ | adopted as the support | pillar in the steel frame structure. 本発明の実施の形態2を示し、鉄骨構造物の一部切り欠き斜視図である。FIG. 5 is a partially cutaway perspective view of a steel structure according to a second embodiment of the present invention. 同鉄骨構造物の要部の縦断正面図である。It is a vertical front view of the principal part of the steel structure. 本発明の実施の形態3を示し、鉄骨構造物の要部の一部切り欠き斜視図である。FIG. 10 is a partially cutaway perspective view of a main part of a steel structure structure according to a third embodiment of the present invention. 同鉄骨構造物の要部の縦断正面図である。It is a vertical front view of the principal part of the steel structure. 本発明の実施の形態4を示し、鉄骨構造物における支柱に採用される丸形鋼管の平面図である。It is Embodiment 4 of this invention and is a top view of the round steel pipe employ | adopted as the support | pillar in a steel structure.

符号の説明Explanation of symbols

1 鉄骨構造物
2 鉄骨構造物
3 鉄骨構造物
10 鋼管柱
11 支柱(熱処理鋼管、長尺鋼管)
12 コラム(短尺鋼管)
13a 下部ダイヤフラム
13b 上部ダイヤフラム
18 梁材
20 鋼管柱
21 支柱(熱処理鋼管、長尺鋼管)
22 コラム(短尺鋼管)
23 突き合せ溶接
24 梁材
30 鋼管柱
31 支柱(熱処理鋼管、長尺鋼管)
32 ダイヤフラム
35 突き合せ溶接
36 梁材
51 搬入床
52 ローラコンベヤ(搬送手段)
61 熱処理部
62 炉
65A 最始段の加熱ゾーン
65B 中間段の加熱ゾーン
65C 最終段の加熱ゾーン
66A 最始段のホールドゾーン
66B 中間段のホールドゾーン
66C 最終段のホールドゾーン
71 冷却床
A 角形鋼管(鋼管)
C 丸形鋼管(鋼管)
L 角形鋼管Aの管長さ
L+α ゾーン長さ
DESCRIPTION OF SYMBOLS 1 Steel structure 2 Steel structure 3 Steel structure 10 Steel pipe pillar 11 Support | pillar (heat-treated steel pipe, long steel pipe)
12 columns (short steel pipe)
13a Lower diaphragm 13b Upper diaphragm 18 Beam material 20 Steel pipe pillar 21 Post (heat-treated steel pipe, long steel pipe)
22 column (short steel pipe)
23 Butt welding 24 Beam material 30 Steel pipe column 31 Post (heat treated steel pipe, long steel pipe)
32 Diaphragm 35 Butt welding 36 Beam material 51 Loading floor 52 Roller conveyor (conveying means)
61 Heat Treatment Unit 62 Furnace 65A First Stage Heating Zone 65B Middle Stage Heating Zone 65C Last Stage Heating Zone 66A First Stage Hold Zone 66B Middle Stage Hold Zone 66C Last Stage Hold Zone 71 Cooling Bed A Square Steel Pipe ( Steel pipe)
C Round steel pipe (steel pipe)
L Length of square steel pipe A L + α Zone length

Claims (5)

鋼管柱と、この鋼管柱の梁材連結部に梁材を連結して構成される鉄骨構造物であって、冷間成形した鋼管に対して、加熱とホールドとを交互に行うに、最始段の加熱ゾーンにおいて、調整制御された加熱バーナーの加熱により雰囲気温度を昇温させるとともに、最始段のホールドゾーンにおいて、最始段の加熱ゾーンにて昇温させた温度状態でホールドし、中間段の加熱ゾーンにおいて、段階的に調整制御された加熱バーナーの加熱により雰囲気温度を段階的に昇温させるとともに、中間段のホールドゾーンにおいて、中間段の加熱ゾーンにて昇温させた温度状態でホールドし、最終段の加熱ゾーンにおいて、調整制御された加熱バーナーの加熱により雰囲気温度を変態点以下に段階的に昇温させたのち、最終段のホールドゾーンにおいて、最終段の加熱ゾーンにて昇温させた温度状態でホールドし、このホールドを行った加熱鋼管を徐冷することで得た熱処理鋼管を、鋼管柱の少なくとも一部に使用したことを特徴とする鉄骨構造物。 And tubular columns, a steel structure constructed by connecting a beam member to the beam member coupling portion of the tubular columns for cold molded steel pipe, to perform heating and a hold alternately SaiHajime hold stage Te heating zone smell, the ambient temperature by heating adjustment controlled heating burner with raising the temperature, Te hold zone smell SaiHajimedan, at a temperature state of being heated in a heating zone of SaiHajime stage In the intermediate heating zone, the ambient temperature was raised stepwise by heating the heating burner controlled in stages, and in the intermediate holding zone, the temperature was raised in the intermediate heating zone. hold at temperature state, have you the heating zone of the final stage, after the ambient temperature by the heating of the heating burners adjustment control was raised stepwise below a 3 transformation point, holding zone smell of the final stage The heat-treated steel pipe obtained by holding the heated state in the heating zone in the final stage and gradually cooling the heated steel pipe that has performed the holding is used for at least a part of the steel pipe column. Steel structure. 鋼管柱は、梁材連結部を形成する短尺鋼管と、この短尺鋼管の上下端に接続される長尺鋼管とからなり、短尺鋼管と長尺鋼管との少なくとも一方に熱処理鋼管を使用したことを特徴とする請求項1記載の鉄骨構造物。   The steel pipe column consists of a short steel pipe that forms the beam connecting part and a long steel pipe connected to the upper and lower ends of this short steel pipe, and that a heat-treated steel pipe is used for at least one of the short steel pipe and the long steel pipe. The steel structure according to claim 1, wherein 鋼管柱は長尺の熱処理鋼管からなり、梁材連結部の内部にダイヤフラムが連結されていることを特徴とする請求項1または2記載の鉄骨構造物。   The steel structure according to claim 1 or 2, wherein the steel pipe column is made of a long heat-treated steel pipe, and a diaphragm is connected to the inside of the beam connecting part. 鋼管柱が角形鋼管であることを特徴とする請求項1〜3のいずれか1項に記載の鉄骨構造物。   The steel structure according to any one of claims 1 to 3, wherein the steel pipe column is a square steel pipe. 鋼管柱が丸形鋼管であることを特徴とする請求項1〜3のいずれか1項に記載の鉄骨構造物。   The steel structure according to any one of claims 1 to 3, wherein the steel pipe column is a round steel pipe.
JP2005013444A 2005-01-21 2005-01-21 Steel structure Active JP4535890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013444A JP4535890B2 (en) 2005-01-21 2005-01-21 Steel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005013444A JP4535890B2 (en) 2005-01-21 2005-01-21 Steel structure

Publications (2)

Publication Number Publication Date
JP2006200238A JP2006200238A (en) 2006-08-03
JP4535890B2 true JP4535890B2 (en) 2010-09-01

Family

ID=36958477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013444A Active JP4535890B2 (en) 2005-01-21 2005-01-21 Steel structure

Country Status (1)

Country Link
JP (1) JP4535890B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527945B2 (en) * 2008-05-27 2014-06-25 日鐵住金建材株式会社 Beam-column joint structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101617A (en) * 1980-12-18 1982-06-24 Nippon Kokan Kk <Nkk> Manufacture of 9%ni steel pipe
JPH04103721A (en) * 1990-08-23 1992-04-06 Nakajima Kokan Kk Heating furnace and working method for unstrained angular steel tube
JPH05138243A (en) * 1991-09-30 1993-06-01 Nakajima Kokan Kk Method and device for forming large diameter square steel tube including heat treatment
JPH05339627A (en) * 1992-06-10 1993-12-21 Sumitomo Metal Ind Ltd Heat treatment of low-carbon cr-mo steel
JPH07158207A (en) * 1993-12-13 1995-06-20 Kawasaki Steel Corp Square steel tube column and its connection part
JPH1060580A (en) * 1996-08-23 1998-03-03 Nippon Steel Corp Cold formed square steel tube minimal in difference of material in cold formed part and having refractoriness as well as high weldability, and its production
JP2001303661A (en) * 1999-11-17 2001-10-31 Nakajima Steel Pipe Co Ltd Steel pipe column and manufacturing method thereof
JP2004269990A (en) * 2003-03-11 2004-09-30 Nakajima Steel Pipe Co Ltd Method and facility for manufacturing steel pipe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101617A (en) * 1980-12-18 1982-06-24 Nippon Kokan Kk <Nkk> Manufacture of 9%ni steel pipe
JPH04103721A (en) * 1990-08-23 1992-04-06 Nakajima Kokan Kk Heating furnace and working method for unstrained angular steel tube
JPH05138243A (en) * 1991-09-30 1993-06-01 Nakajima Kokan Kk Method and device for forming large diameter square steel tube including heat treatment
JPH05339627A (en) * 1992-06-10 1993-12-21 Sumitomo Metal Ind Ltd Heat treatment of low-carbon cr-mo steel
JPH07158207A (en) * 1993-12-13 1995-06-20 Kawasaki Steel Corp Square steel tube column and its connection part
JPH1060580A (en) * 1996-08-23 1998-03-03 Nippon Steel Corp Cold formed square steel tube minimal in difference of material in cold formed part and having refractoriness as well as high weldability, and its production
JP2001303661A (en) * 1999-11-17 2001-10-31 Nakajima Steel Pipe Co Ltd Steel pipe column and manufacturing method thereof
JP2004269990A (en) * 2003-03-11 2004-09-30 Nakajima Steel Pipe Co Ltd Method and facility for manufacturing steel pipe

Also Published As

Publication number Publication date
JP2006200238A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
RU2648918C1 (en) Connecting structure for member in vehicle body
JP4535890B2 (en) Steel structure
US7618501B2 (en) Method for the heat treatment of extended steel products
JP4190504B2 (en) Heat treatment method for formed steel pipe
JP2007301574A (en) Steel tube manufacturing method, and steel tube manufacturing facility
JPH0399725A (en) Roll forming method for large sized square steel pipe
JP2006315015A (en) Method for manufacturing square steel pipe for connecting beam member, and manufacturing facilities therefor
JP3202145B2 (en) Manufacturing method of large square steel pipe and large round steel pipe
JP4260169B2 (en) Manufacturing method of square steel pipe and manufacturing equipment of square steel pipe
JP3311211B2 (en) Square steel pipe straightening equipment
JP2894871B2 (en) Multi-stage heating furnace and multi-stage heating method for steel pipe
JP3025090B2 (en) Heat treatment method for R section of large diameter square steel pipe corner
JP2006334633A (en) Method and equipment for manufacturing circular steel pipe
JP2007303107A (en) Square steel pipe and steel structure using square steel pipe
JP2852311B2 (en) Forming method and equipment for large diameter square steel pipe
JP2735538B2 (en) Square steel pipe and method for manufacturing square steel pipe
JP2002212640A (en) Method for producing angular steel tube
JP3501553B2 (en) Heating equipment for hollow steel pipes
JPH06330177A (en) Heat treatment apparatus for round corner part of large diameter square steel tube
JP2006213933A (en) Method for cooling heated steel tube
JP2004269990A (en) Method and facility for manufacturing steel pipe
JP7054510B2 (en) How to manufacture the outer diaphragm
JP7260858B2 (en) Steel sheet pile straightening device, straightening method, and steel sheet pile manufacturing method
JPH0999324A (en) Manufacture of square tube
JP2735411B2 (en) Forming method and equipment for large diameter square steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4535890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250