JP4534050B2 - Method for producing titanium alloy for living body - Google Patents

Method for producing titanium alloy for living body Download PDF

Info

Publication number
JP4534050B2
JP4534050B2 JP2001105941A JP2001105941A JP4534050B2 JP 4534050 B2 JP4534050 B2 JP 4534050B2 JP 2001105941 A JP2001105941 A JP 2001105941A JP 2001105941 A JP2001105941 A JP 2001105941A JP 4534050 B2 JP4534050 B2 JP 4534050B2
Authority
JP
Japan
Prior art keywords
crucible
metal
additive metal
titanium
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001105941A
Other languages
Japanese (ja)
Other versions
JP2002012923A (en
Inventor
有道 守田
壽男 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
AICHI GAKUIN
Original Assignee
Fuji Electric Holdings Ltd
AICHI GAKUIN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd, AICHI GAKUIN filed Critical Fuji Electric Holdings Ltd
Priority to JP2001105941A priority Critical patent/JP4534050B2/en
Publication of JP2002012923A publication Critical patent/JP2002012923A/en
Application granted granted Critical
Publication of JP4534050B2 publication Critical patent/JP4534050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、生体用チタン合金の製造方法に関し、特に浮揚溶解法を用いた生体用チタン合金の製造方法に関する。
【0002】
【従来の技術】
生体用金属材料に要求される基本的性質は3つある。すなわち、▲1▼耐食性に優れていること、▲2▼生体に対して無毒無害、つまり生体親和性がよいこと、▲3▼機械的性質に優れていることである。これら3つの条件を満たす生体用金属材料としてチタン(Ti)あるいはチタン合金があり、利用価値はきわめて高い。現在、生体用チタン合金としては、Ti-6Al-4VやTi-7Nb-6Al合金などが使用されているが、AlやVは生体に対して有害であるという報告がなされている。図7は各種金属の生体適合性と毒性についての報告の一例を示すものである。図7によれば、Ti,Ta,Nb,Pt,Zrなどが生体に対して適合性を示すことが分かる。また、機械的特性の面からは、β型チタン合金がより骨に近い弾性率を示すことで注目され、これまでTi-13Nb-13Zr,Ti11Mo-6Zr−2Fe,Ti-15Mo,Ti-16Nb-10Hf,Ti-15Mo-5Zr-3Al,Ti-15Mo-3Nb,Ti-35.3Nb-5.1Ta-7.1Zr,Ti-29Nb-13Ta4.6Zr,Ti-40Ta,Ti-50Taなどが開発されている。これらから、β型合金とするためには、合金元素としてTa,Nb,Moなどが有効であることが分かる。
【0003】
【発明が解決しようとする課題】
ところが、Ta,Nb,Moなどの合金元素は、Tiと比べると融点が高く、また比重が大きい金属である。ちなみに、Tiの融点は1680℃,比重は4.5g/cm2であるのに対し、例えばNbは同2560℃,8.37g/cm2、またTaは同2990℃,16.6g/cm2である。融点が高くかつ差がある金属同士や比重に大きな差がある金属同士を母材から一括溶解して成分の均一な合金を得ることは通常の加熱炉では困難で、るつぼが高温に耐えられなかったり、先に溶解した低融点金属の溶湯内で高融点金属が沈下したりする。また、Tiは活性が大きいことから、るつぼとの反応も問題になる。そのため、上に示したβ型合金のほとんどは、粉末燒結により合金化されている。しかしながら、粉末燒結の型形状や精度には限度があり、精密な生体部品、例えば人工歯根などを形成しようとすると多くの加工プロセスを経なければならず、コストが高いという問題があった。
【0004】
従って、母材からの一括溶解によって均一な組織のチタン合金を得ることができれば、製造プロセスの簡略化とコストダウンが図れることになる。
そこで、この発明の課題は、チタンとこれよりも高融点・大比重の添加金属の母材とを一括溶解して、1回の溶解で成分の均一なチタン合金を製造することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、この発明は、まず溶解法として以下の特長を有する浮揚溶解法を用いる。図8は浮揚溶解装置の構造例を示す断面図である。図8の浮揚溶解装置において、るつぼ1は銅製で円錐底付きの円筒形状に形成され、縦方向のスリット2により多数のセグメント3に分断されている。るつぼ1の外側には誘導加熱コイルが上コイル4と下コイル5とに分けて巻かれ、それぞれ高周波電源6及び7に接続されている。各セグメント3には上下に貫通する冷却水路が設けられ、図示太線矢印の向きに冷却水が通水される。このような浮揚溶解装置において、るつぼ1内に原料金属を入れ、コイル4,5に高周波電流を流すと磁束が発生し、この磁束がるつぼ1及び原料金属と鎖交すると、それぞれに渦電流が流れ、原料金属はジュール熱により溶解して溶湯8を生じる。その際、るつぼ1と溶湯8の対向表面を流れる渦電流9と10とは互いに逆向きであるため、溶湯8はローレンツ力によりるつぼ1の壁面から離れて、白抜き矢印で示すように浮揚する。溶解完了後の溶湯8は、コイル電流の調整により電磁反発力が制御され、るつぼ1の底穴11から連続的に出湯される。
【0006】
このような浮揚溶解装置は、高融点で高純度、かつ比重の異なる金属からなる合金の溶解による製造装置として優れている。すなわち、▲1▼るつぼと非接触で溶解するため、高融点金属の溶解が可能である。▲2▼るつぼからの汚染がないため、高純度合金の製造が可能である。▲3▼電磁力による強力な攪拌で均質な合金が得られる。▲4▼真空雰囲気で溶解を行えば、雰囲気から溶湯への汚染も防げるため、活性金属の溶解も可能である。
【0007】
浮揚溶解法は上記の特長を有しているが、この発明は更に溶解に工夫を講じ、より均質な合金が得られるようにするものである。そのために、この発明は、高融点・大比重の添加金属をワイヤ状に形成してるつぼ内にセットするものである(請求項1)。ワイヤ状の金属材は適宜に巻回し、あるいは屈曲させることにより、るつぼ内に浮かせた状態でセットすることができ、このようにセットした高融点・大比重の添加金属は、低融点のTiが溶け落ちた後も引き続き空間位置に留まり、その状態から徐々にTi溶湯中に溶け込む。その結果、添加金属を粒状にしてセットした従来のように、Tiの溶湯中に未溶解の添加金属が沈降して遍在することがなく、強力な電磁攪拌力とあいまって、融点差、比重差の大きい場合にも均質な合金組織が得られる。
【0008】
また、この発明は同様のねらいから、高融点・大比重の添加金属を薄板状に形成してるつぼ内にセットするものである(請求項2)。薄板状の金属材はるつぼの内壁面に沿って立て掛けるように積み上げることにより、やはりるつぼ内に浮かせた状態でセットすることができ、このようにセットした高融点・大比重の添加金属は、低融点のTiが溶け落ちた後も引き続き空間位置に留まり、その状態から徐々にTi溶湯中に溶け込む。
【0009】
請求項1又は請求項2において、添加金属はるつぼ内の外周側に配置し、その内側にチタンを挿入するのがよい(請求項3)。これにより、添加金属を誘導加熱コイルに近い位置に置くことになり、チタンよりも先に高融点の添加金属が加熱される。融点の低いチタンをコイル近くに置くと、チタンが溶解した後、高融点の添加金属の融点までTi溶湯を過熱しなければならず加熱効率が悪くなる。従って、高融点の添加金属はるつぼ内の外周側に位置させ、チタンが溶解した時点で添加金属をできるだけ高温に加熱しておくものとする。
【0010】
更に、この発明は、別の手段として、前記添加金属をシート状に形成し、この添加金属のシートにより前記チタンを包んで前記るつぼ内にセットするものである(請求項4)。チタンを添加金属シートで包んでるつぼ内にセットすることにより、チタンを外側から完全にくるみ、高融点の添加金属をチタンよりも一層優先的に加熱することができる。また、粉状や粒状のチタンでも、添加金属シートで包むことにより、溶解初期にチタン粉粒がるつぼ底に落下して未溶解になるのを防ぐことができる。
【0011】
ところで、金属の溶解においては、基本的には材料形状が小さく、表面積の広いものの方が早く簡単に溶解する。しかし、この発明で用いる浮揚溶解法においては、交番磁界により誘導加熱を行うため、材料形状が誘導電流の浸透深さδcmより小さいと加熱効率が低下する。ここで、浸透深さδcmは、δ=5.03√(ρ/μf)(ただし、ρ:金属の固有抵抗μΩ・cm,μ:比透磁率, f:周波数Hz)の式で求められるものである。そこで、表面積は広く取りつつ加熱効率を下げないように、ワイヤ状の添加金属の径dや薄板状若しくはシート状の添加金属の厚さtは、浸透深さδよりも大きくする。ただし、添加金属の溶解は、その径dや厚さtの大きさに比例して困難になる。発明者らは実験の結果、添加金属の径d及び厚さtは浸透深さδの1.5倍〜3倍にとれば最も加熱効率がよいことを突き止めた(請求項5)。
【0012】
【発明の実施の形態】
図1は、この発明の実施の形態を示す浮揚溶解装置のるつぼ断面図である。この実施の形態は、Ti11を円柱状にし、添加金属としてのTa12をワイヤ状としたもので、実験ではTi11は直径5mm×長さ20mmのものを用い、Ta12は直径2mmのものを用いた。合金の配合比はTi-15wt%Taとし、100g容量の水冷銅るつぼ内の外周側にTa12が位置するように、らせん状に巻いたTa12をるつぼ1の内壁に沿わせて図示の通りセットし、その内側にTi11を適宜に挿入した。溶解条件は、2.6×103Paまで真空引きした後、7.4×104 Paまでアルゴンを注入した雰囲気で、コイル周波数50kHz、電力50kWで溶解するものとした。通電開始後、約30秒でTi11が溶解したが、らせん状のTa12は未だ原形を保ち、その後、約20秒でTi溶湯中に溶け込んだ。この溶湯を引き続き30〜40kWの電力で約5分間攪拌保持した後、るつぼ内で自然冷却してインゴットとした。
【0013】
図5は上記溶解で得られたインゴット13の側面図、図6はこのインゴット13を分析線VI−VI線(図5)に沿って切断し、その断面をEPMAで定量分析して、合金組織のTi及びTaの偏析の有無を検討した結果を示す線図である。図6によれば、Ti及びTaはいずれもインゴットの上部から下部まで均一に分布していることが分かる。
【0014】
図2は、Ti11を円柱状にし、添加金属としてのTa12を薄板状にした実施の形態を示すもので、Ti11は図1の実験と同じ直径5mm×長さ20mmのものを用い、Ta12は厚さ1mm×縦20mm×横10mmの長方形のものを用いた。合金の配合比及び溶解条件は、図1の実験と同じとした。Ta12はるつぼ内の外周側に位置するように、るつぼ1の内壁面に立て掛けるようにして積み上げ、その内側にTi11を挿入して溶解した。この場合も、Ta12はTi11が溶解した時点で原位置を保ち、その後、Ti溶湯中に溶け込んで、図1の場合とほぼ同様の均質な合金が得られた。
【0015】
図3は、Ti11を円盤状にし、添加金属としてのTa12をワイヤ状にした実施の形態を示すもので、Ti11は直径50mm×厚さ10mmのものを用い、Ta12は図1の実験と同じ直径2mmのものを用いた。合金の配合比及び溶解条件は図1の実験と同じとした。Ta12を図示の通りTi11の外側に絡ませるように巻き付けたものをるつぼ内にセットし、Ta12がるつぼ1の外周側に位置するようにして溶解した。この場合もやはり同様の溶解過程を経て、均質な合金組織が得られた。
【0016】
上記各実施の形態に示す通り、ワイヤ状(図1,図3)あるいは薄板状(図2)のTaは表面積が大きく溶解が容易であるとともに、ワイヤ状Taはらせん状などに巻回することにより、また薄板状Taはるつぼ内壁面に立て掛けることにより、るつぼ内に浮かせた状態でセットすることが可能である。このようにセットしたTaは、低融点のTiが溶け落ちた後も引き続きセット時の空間位置に留まり、その状態から徐々にTi溶湯中に溶け込む。そのため、TaはTi溶湯内に偏ることなく分布し、電磁力による攪拌作用を受けて均質な合金組織を形成する。更に、ワイヤ状のTaはTiの外側で巻回し、また薄板状のTaはTiの外側でるつぼ内壁面に立て掛けることにより、TaはTiよりも誘導加熱コイル6,7の近くに位置してTiよりも先に加熱される。その結果、Taの溶解過程でのTiの過熱が緩和され加熱効率が向上する。
【0017】
図示実施の形態において、ワイヤはらせん状に、あるいはTi円盤の外側に絡ませて巻回する例を示したが、添加金属をるつぼ内に浮かせてセットするためのワイヤ形態は、例えば不定形に屈曲させるなども可能で自由である。また、薄板状の添加金属は長方形の例を示したが、形状はこれに限定されるものではなく、例えば不定形の板片にするなど任意である。なお、実験では合金はインゴットにしたが、生体部品の実際の製作においては、るつぼからの出湯による連続鋳造が可能である。
【0018】
図4は、Ti11を円柱状にし、添加金属としてのNb12をシート状として、シート12でTi11で包んでるつぼ1内にセットした実施の形態を示すものである。Ti11は図1の実験と同じ直径5mm×長さ20mmのものを用い、Nb12のシートは厚さ1mm×縦70mm×横70mmの正方形のものを用いた。合金の配合比はTi-50wt%Nbとし、溶解条件は、図1の実験と同じとした。通電開始後、Ti11は約25秒程度で溶解したと推測され、Nb12は約30秒で溶解した。この実験でも、図1の場合とほぼ同様の均質な合金が得られた。
【0019】
図4の実施の形態においては、添加金属のシート12でTi11を包むことにより、添加金属12はTi11に必ず優先して加熱される。この場合もTi11は先に溶解するが、添加金属の溶解時間も短縮され、結果として全体の溶解時間が短縮される。また、図示実施の形態ではTi11を円柱状に形成した例を示したが、粉状や粒状のTi11を用いることも可能であり、添加金属のシート12で包むことにより、粉粒状のTi11でもるつぼ底へ落下して未溶解になることがなく、Ti11の形状の自由度が大きくなる。
【0020】
【発明の効果】
以上の通り、この発明によれば、均一な組成の生体用チタン合金を簡単かつ歩留まりよく製造することができ、またこの合金を用いて精密な生体部品を容易に鋳造することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す浮揚溶解装置のるつぼ断面図である。
【図2】この発明の異なる実施の形態を示す浮揚溶解装置のるつぼ断面図である。
【図3】この発明の更に異なる実施の形態を示す浮揚溶解装置のるつぼ断面図である。
【図4】この発明の更に異なる実施の形態を示す浮揚溶解装置のるつぼ断面図である。
【図5】図1のるつぼから得られたチタン合金インゴットの側面図である。
【図6】図5のインゴットのVI−VI線に沿う断面のEPMAによる組織分析結果を示す線図で、(A)はTiの分布を示し、(B)はTaの分布を示す。
【図7】各種金属の生体適合性を示す線図である。
【図8】浮揚溶解装置の構造例を示す断面図である。
【符号の説明】
1 るつぼ
4 誘導加熱コイル
5 誘導加熱コイル
11 チタン
12 添加金属
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a titanium alloy for living organisms, and more particularly to a method for producing a titanium alloy for living organisms using a levitation dissolution method.
[0002]
[Prior art]
There are three basic properties required for biometallic materials. That is, (1) excellent corrosion resistance, (2) non-toxic and harmless to a living body, that is, good biocompatibility, and (3) excellent mechanical properties. Titanium (Ti) or titanium alloy is a metal material for living body that satisfies these three conditions, and its utility value is extremely high. Currently, Ti-6Al-4V and Ti-7Nb-6Al alloys are used as biological titanium alloys, but it has been reported that Al and V are harmful to living organisms. FIG. 7 shows an example of a report on biocompatibility and toxicity of various metals. According to FIG. 7, it can be seen that Ti, Ta, Nb, Pt, Zr, etc. are compatible with the living body. Also, in terms of mechanical properties, β-type titanium alloys have attracted attention because of their elastic modulus close to that of bones, and so far Ti-13Nb-13Zr, Ti11Mo-6Zr-2Fe, Ti-15Mo, Ti-16Nb- 10Hf, Ti-15Mo-5Zr-3Al, Ti-15Mo-3Nb, Ti-35.3Nb-5.1Ta-7.1Zr, Ti-29Nb-13Ta4.6Zr, Ti-40Ta, Ti-50Ta, etc. have been developed. From these, it can be seen that Ta, Nb, Mo, and the like are effective as alloy elements in order to obtain a β-type alloy.
[0003]
[Problems to be solved by the invention]
However, alloy elements such as Ta, Nb, and Mo are metals having a higher melting point and a higher specific gravity than Ti. Incidentally, the melting point of Ti is 1680 ° C., a specific gravity whereas a 4.5 g / cm 2, for example, Nb is the 2560 ℃, 8.37g / cm 2, also Ta is the 2990 ° C., is 16.6 g / cm 2. It is difficult to obtain an alloy with a uniform component by batch melting metals with high melting points and differences or metals with large differences in specific gravity from a base material, and the crucible cannot withstand high temperatures. Or the high melting point metal sinks in the molten metal of the low melting point metal previously melted. In addition, since Ti is highly active, reaction with the crucible also becomes a problem. For this reason, most of the β-type alloys shown above are alloyed by powder sintering. However, there is a limit to the mold shape and accuracy of powder sintering, and there has been a problem in that when a precise biological part, such as an artificial tooth root, is to be formed, many processing processes have to be performed and the cost is high.
[0004]
Therefore, if a titanium alloy having a uniform structure can be obtained by batch melting from the base material, the manufacturing process can be simplified and the cost can be reduced.
Accordingly, an object of the present invention is to produce a titanium alloy having a uniform component by one-time melting of titanium and a base metal of an additive metal having a higher melting point and a higher specific gravity than this.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention first uses a flotation dissolution method having the following features as a dissolution method. FIG. 8 is a cross-sectional view showing a structural example of a levitation dissolution apparatus. 8, the crucible 1 is made of copper and has a cylindrical shape with a conical bottom, and is divided into a number of segments 3 by slits 2 in the vertical direction. On the outside of the crucible 1, an induction heating coil is wound into an upper coil 4 and a lower coil 5 and connected to high frequency power sources 6 and 7, respectively. Each segment 3 is provided with a cooling water passage penetrating vertically, and the cooling water is passed in the direction of the bold arrow in the drawing. In such a levitating and melting apparatus, when a raw material metal is put in the crucible 1 and a high frequency current is passed through the coils 4 and 5, a magnetic flux is generated. The raw material metal is melted by Joule heat to generate molten metal 8. At that time, since the eddy currents 9 and 10 flowing on the opposing surfaces of the crucible 1 and the molten metal 8 are opposite to each other, the molten metal 8 is separated from the wall surface of the crucible 1 by the Lorentz force and floats as indicated by the white arrow. . The molten metal 8 after the completion of melting has its electromagnetic repulsive force controlled by adjusting the coil current, and is continuously discharged from the bottom hole 11 of the crucible 1.
[0006]
Such a levitation melting apparatus is excellent as a manufacturing apparatus by melting alloys made of metals having a high melting point, high purity, and different specific gravity. That is, (1) since it melts without contact with the crucible, it is possible to dissolve the refractory metal. (2) Since there is no contamination from the crucible, it is possible to produce a high purity alloy. (3) A homogeneous alloy can be obtained by strong stirring by electromagnetic force. (4) If the melting is performed in a vacuum atmosphere, contamination from the atmosphere to the molten metal can be prevented, so that the active metal can be dissolved.
[0007]
Although the levitation melting method has the above-mentioned features, the present invention further devises the melting so that a more homogeneous alloy can be obtained. For this purpose, the present invention is such that an additive metal having a high melting point and a large specific gravity is formed in a wire shape and set in a crucible (Claim 1). The wire-like metal material can be set in a state of floating in the crucible by being appropriately wound or bent. The high melting point and high specific gravity additive metal thus set is made of low melting point Ti. Even after it melts down, it stays in the space and gradually melts into the molten Ti from that state. As a result, as in the conventional case where the additive metal is set in a granular form, the undissolved additive metal does not settle and ubiquitously exist in the molten Ti, combined with a strong electromagnetic stirring force, melting point difference, specific gravity Even when the difference is large, a homogeneous alloy structure can be obtained.
[0008]
Further, for the same purpose, the present invention is such that an additive metal having a high melting point and a large specific gravity is formed in a thin plate shape and set in a crucible (Claim 2). Laminated metal materials can be set in a state of floating in the crucible by stacking them so as to stand along the inner wall of the crucible. The high melting point and high specific gravity additive metal set in this way is low Even after the melting point of Ti melts away, it remains in the space and gradually melts into the molten Ti from that state.
[0009]
In Claim 1 or Claim 2, it is good to arrange | position an addition metal to the outer peripheral side in a crucible, and to insert titanium in the inner side (Claim 3). As a result, the additive metal is placed at a position close to the induction heating coil, and the high melting point additive metal is heated prior to titanium. If titanium having a low melting point is placed near the coil, the molten Ti must be heated to the melting point of the high melting point additive metal after the titanium is melted, resulting in poor heating efficiency. Accordingly, the additive metal having a high melting point is positioned on the outer peripheral side in the crucible, and the additive metal is heated to the highest possible temperature when titanium is dissolved.
[0010]
Further, according to another aspect of the present invention, the additive metal is formed into a sheet shape, and the titanium is wrapped by the sheet of the additive metal and set in the crucible (Claim 4). By wrapping titanium in an additive metal sheet and setting it in a crucible, the titanium can be completely wrapped from the outside, and the high melting point additive metal can be heated more preferentially than titanium. Moreover, even if powdery or granular titanium is wrapped with an additive metal sheet, it is possible to prevent titanium powder particles from falling to the crucible bottom and becoming undissolved in the initial stage of dissolution.
[0011]
By the way, in the melting of a metal, basically, a material having a small material shape and a large surface area dissolves quickly and easily. However, in the levitation melting method used in the present invention, since induction heating is performed by an alternating magnetic field, if the material shape is smaller than the penetration depth of induced current δcm, the heating efficiency is lowered. Here, the penetration depth δcm is obtained by the following formula: δ = 5.03√ (ρ / μf) (where ρ is the specific resistance of the metal μΩ · cm, μ is the relative permeability, and f is the frequency Hz). . Therefore, the diameter d of the wire-like additive metal and the thickness t of the thin plate-like or sheet-like additive metal are made larger than the penetration depth δ so as not to lower the heating efficiency while taking a large surface area. However, dissolution of the added metal becomes difficult in proportion to the size of the diameter d and the thickness t. As a result of experiments, the inventors have found that the heating efficiency is best when the diameter d and thickness t of the additive metal is 1.5 to 3 times the penetration depth δ.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view of a crucible of a levitation dissolution apparatus showing an embodiment of the present invention. In this embodiment, Ti11 has a cylindrical shape, and Ta12 as an additive metal has a wire shape. In the experiment, Ti11 has a diameter of 5 mm × length of 20 mm, and Ta12 has a diameter of 2 mm. The alloy mix ratio is Ti-15wt% Ta, and the spirally wound Ta12 is set along the inner wall of the crucible 1 so that Ta12 is located on the outer periphery of the 100g capacity water-cooled copper crucible. Ti11 was appropriately inserted inside. The dissolution conditions were such that, after evacuation to 2.6 × 10 3 Pa, argon was injected to 7.4 × 10 4 Pa and the coil was melted at a frequency of 50 kHz and a power of 50 kW. Ti11 was dissolved in about 30 seconds after the start of energization, but the helical Ta12 still kept its original shape, and then dissolved in the Ti melt in about 20 seconds. The molten metal was subsequently stirred and held at a power of 30 to 40 kW for about 5 minutes, and then naturally cooled in a crucible to form an ingot.
[0013]
FIG. 5 is a side view of the ingot 13 obtained by the above melting, and FIG. 6 is a sectional view of the ingot 13 taken along the analysis line VI-VI (FIG. 5). It is a diagram which shows the result of having examined the presence or absence of the segregation of Ti and Ta. According to FIG. 6, it can be seen that both Ti and Ta are uniformly distributed from the top to the bottom of the ingot.
[0014]
FIG. 2 shows an embodiment in which Ti11 is made into a columnar shape and Ta12 as an additive metal is made into a thin plate shape. Ti11 has a diameter of 5 mm × length of 20 mm as in the experiment of FIG. A rectangular shape having a length of 1 mm × length 20 mm × width 10 mm was used. The compounding ratio and melting conditions of the alloy were the same as in the experiment of FIG. Ta12 was piled up so as to lean against the inner wall surface of the crucible 1 so as to be positioned on the outer peripheral side in the crucible, and Ti11 was inserted into the inner side and melted. Also in this case, Ta12 kept its original position when Ti11 was dissolved, and then melted into the molten Ti, and a homogeneous alloy almost the same as in FIG. 1 was obtained.
[0015]
FIG. 3 shows an embodiment in which Ti11 is made into a disk shape and Ta12 as an additive metal is made into a wire shape. Ti11 has a diameter of 50 mm × thickness of 10 mm, and Ta12 has the same diameter as the experiment of FIG. A 2 mm one was used. The alloying ratio and melting conditions of the alloy were the same as in the experiment of FIG. As shown in the figure, Ta12 wound around the outside of Ti11 was set in a crucible, and dissolved so that Ta12 was positioned on the outer peripheral side of the crucible 1. In this case as well, a homogeneous alloy structure was obtained through the same melting process.
[0016]
As shown in the above embodiments, the wire-shaped (FIGS. 1 and 3) or thin plate (FIG. 2) Ta has a large surface area and can be easily dissolved, and the wire-shaped Ta is wound in a spiral shape or the like. Further, the thin plate Ta can be set in a state of being floated in the crucible by leaning on the inner wall surface of the crucible. The Ta set in this way continues to remain in the space position at the time of setting after the low melting point Ti melts and gradually melts into the molten Ti from that state. Therefore, Ta is distributed evenly in the molten Ti and receives a stirring action by electromagnetic force to form a homogeneous alloy structure. Further, the wire-like Ta is wound outside the Ti, and the thin plate-like Ta is leaned against the inner wall of the crucible outside the Ti, so that the Ta is located closer to the induction heating coils 6 and 7 than Ti. It is heated before. As a result, Ti overheating during the Ta dissolution process is alleviated and heating efficiency is improved.
[0017]
In the illustrated embodiment, an example in which the wire is wound spirally or entangled outside the Ti disk has been shown, but the wire form for setting the additive metal floating in the crucible is bent in an irregular shape, for example. It is possible and free. Moreover, although the thin plate-shaped additive metal has shown the example of a rectangle, the shape is not limited to this, For example, it is arbitrary, such as making it an indefinite shape piece. In the experiment, the alloy was an ingot. However, in the actual production of a biological part, continuous casting by hot water from a crucible is possible.
[0018]
FIG. 4 shows an embodiment in which Ti11 is formed into a columnar shape, Nb12 as an additive metal is formed into a sheet shape, and the sheet 12 is wrapped in Ti11 and set in the crucible 1. Ti11 having the same diameter as the experiment of FIG. 1 having a diameter of 5 mm × length of 20 mm was used, and the Nb12 sheet having a thickness of 1 mm × length of 70 mm × width of 70 mm was used. The alloying ratio was Ti-50 wt% Nb, and the melting conditions were the same as in the experiment of FIG. After the start of energization, it was estimated that Ti11 was dissolved in about 25 seconds, and Nb12 was dissolved in about 30 seconds. Also in this experiment, a homogeneous alloy almost the same as in FIG. 1 was obtained.
[0019]
In the embodiment shown in FIG. 4, the additive metal 12 is heated in preference to the Ti11 by wrapping the Ti11 with the additive metal sheet 12. In this case as well, Ti11 is dissolved first, but the dissolution time of the added metal is also shortened, and as a result, the entire dissolution time is shortened. In the illustrated embodiment, an example in which Ti11 is formed in a columnar shape is shown. However, it is also possible to use powdery or granular Ti11. Without falling to the bottom and undissolved, the degree of freedom of the shape of Ti11 increases.
[0020]
【The invention's effect】
As described above, according to the present invention, a biomedical titanium alloy having a uniform composition can be manufactured easily and with high yield, and a precise biomedical part can be easily cast using this alloy.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a crucible of a levitating and dissolving apparatus showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a crucible of a levitation dissolution apparatus showing a different embodiment of the present invention.
FIG. 3 is a cross-sectional view of a crucible of a levitation dissolution apparatus showing still another embodiment of the present invention.
FIG. 4 is a cross-sectional view of a crucible of a levitation dissolution apparatus showing still another embodiment of the present invention.
FIG. 5 is a side view of a titanium alloy ingot obtained from the crucible of FIG.
6A and 6B are diagrams showing the structure analysis result by EPMA of the cross section along the VI-VI line of the ingot of FIG. 5, wherein FIG. 6A shows the distribution of Ti, and FIG. 6B shows the distribution of Ta.
FIG. 7 is a diagram showing biocompatibility of various metals.
FIG. 8 is a cross-sectional view showing a structural example of a levitation dissolution apparatus.
[Explanation of symbols]
1 crucible 4 induction heating coil 5 induction heating coil 11 titanium 12 additive metal

Claims (5)

誘導加熱コイルにより金属をるつぼから浮揚させて溶解する浮揚溶解法を用い、チタンとこれよりも高融点・大比重の添加金属とを一括溶解して生体用チタン合金を製造する方法において、
前記添加金属をワイヤ状に形成してるつぼ内にセットすることを特徴とする生体用合金の製造方法。
In the method of manufacturing a titanium alloy for living body by using a levitation melting method in which a metal is levitated and melted from a crucible by an induction heating coil, and titanium and an additive metal having a higher melting point and a higher specific gravity are collectively dissolved.
A method of manufacturing a biomedical alloy, wherein the additive metal is formed in a wire shape and set in a crucible.
誘導加熱コイルにより金属をるつぼから浮揚させて溶解する浮揚溶解法を用い、チタンとこれよりも高融点・大比重の添加金属とを一括溶解して生体用チタン合金を製造する方法において、
前記添加金属を薄板状に形成してるつぼ内にセットすることを特徴とする生体用合金の製造方法。
In the method of manufacturing a titanium alloy for living body by using a levitation melting method in which a metal is levitated and melted from a crucible by an induction heating coil, and titanium and an additive metal having a higher melting point and a higher specific gravity are collectively dissolved.
A method for producing a bioalloy, wherein the additive metal is formed in a thin plate shape and set in a crucible.
前記添加金属を前記るつぼ内の外周側に配置し、その内側に前記チタンを挿入することを特徴とする請求項1又は請求項2記載の生体用チタン合金の製造方法。The method for producing a biomedical titanium alloy according to claim 1 or 2, wherein the additive metal is disposed on an outer peripheral side in the crucible, and the titanium is inserted inside the additive metal. 誘導加熱コイルにより金属をるつぼから浮揚させて溶解する浮揚溶解法を用い、チタンとこれよりも高融点・大比重の添加金属とを一括溶解して生体用チタン合金を製造する方法において、
前記添加金属をシート状に形成し、この添加金属のシートにより前記チタンを包んで前記るつぼ内にセットすることを特徴とする生体用合金の製造方法。
In the method of manufacturing a titanium alloy for living body by using a levitation melting method in which a metal is levitated and melted from a crucible by an induction heating coil, and titanium and an additive metal having a higher melting point and a higher specific gravity are collectively dissolved.
A method for producing a bioalloy, wherein the additive metal is formed into a sheet shape, and the titanium is wrapped in the sheet of the additive metal and set in the crucible.
前記添加金属を流れる誘導電流の浸透深さδに対して、前記添加金属のワイヤ径又は板厚若しくはシート厚をδ×(1.5〜3)とすることを特徴とする請求項1〜請求項4のいずれかに記載の生体用チタン合金の製造方法。The wire diameter or plate thickness or sheet thickness of the additive metal is δ × (1.5 to 3) with respect to the penetration depth δ of the induced current flowing through the additive metal. The manufacturing method of the titanium alloy for biological bodies in any one of.
JP2001105941A 2000-04-26 2001-04-04 Method for producing titanium alloy for living body Expired - Lifetime JP4534050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001105941A JP4534050B2 (en) 2000-04-26 2001-04-04 Method for producing titanium alloy for living body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-125602 2000-04-26
JP2000125602 2000-04-26
JP2001105941A JP4534050B2 (en) 2000-04-26 2001-04-04 Method for producing titanium alloy for living body

Publications (2)

Publication Number Publication Date
JP2002012923A JP2002012923A (en) 2002-01-15
JP4534050B2 true JP4534050B2 (en) 2010-09-01

Family

ID=26590834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105941A Expired - Lifetime JP4534050B2 (en) 2000-04-26 2001-04-04 Method for producing titanium alloy for living body

Country Status (1)

Country Link
JP (1) JP4534050B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246081A (en) * 1995-03-03 1996-09-24 Honda Motor Co Ltd Method for melting additional metal
JPH09137238A (en) * 1995-11-08 1997-05-27 Sumitomo Metal Ind Ltd Production of titanium-aluminium intermetallic compound ingot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246081A (en) * 1995-03-03 1996-09-24 Honda Motor Co Ltd Method for melting additional metal
JPH09137238A (en) * 1995-11-08 1997-05-27 Sumitomo Metal Ind Ltd Production of titanium-aluminium intermetallic compound ingot

Also Published As

Publication number Publication date
JP2002012923A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP5492982B2 (en) Method for producing β-γ-TiAl based alloy
TWI607093B (en) Metal alloy composite material and method for making the same
WO2007122736A1 (en) Casting method and apparatus
CN105112819B (en) Method for regulating micro structure of Ti-Zr-Nb-Cu-Be-system amorphous composite material
RU2618038C2 (en) Method for obtaining a heat-resistant alloy based on niobium
JP4534050B2 (en) Method for producing titanium alloy for living body
JP2002122386A (en) Water-cooled copper crucible for levitational melting
CN100469913C (en) Liquid state hydrogen-replacing thinning solidifying tissue method in Ti-6Al-4V alloy induction shell smelting process
US8858868B2 (en) Temperature regulated vessel
Yamashita et al. In situ observation of nonmetallic inclusion formation in NiTi alloys
JPWO2010018849A1 (en) Silicon purification method
JP4164780B2 (en) Consumable electrode type remelting method of super heat-resistant alloy
RU2630157C2 (en) Method to produce electrodes of alloys based on titanium aluminide
US7753986B2 (en) Titanium processing with electric induction energy
TW200811304A (en) Method of making sputtering target and target produced
RU2111826C1 (en) Process of casting of aluminium alloys, aluminum alloy and process of manufacture of intermediate articles from it
JP2004068110A (en) Heat resistant magnesium alloy and method for producing the same
Saito et al. Large Scale cold crucible levitation melting furnace for titanium
Srinivasan et al. Mechanical properties and microstructures of as printed and heat treated samples of selective laser melted IN625 alloy powder
TW593720B (en) Method for manufacturing aluminum-alloy target material, and aluminum-alloy target material obtained by the method
Matsugi et al. Property-Control of TiNi System Intermetallics and Their Characteristics
CN109207792B (en) The soft contact two-part copper alloy crystallizer of high magnetic permeability and its preparation and application
CN117900435A (en) Apparatus and method for casting fine crystals of titanium and titanium alloy
Berge et al. An air melting technique for preparing Cu-Cr alloys
CN115874073A (en) Smelting method of high-entropy alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4534050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term