JP4533308B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4533308B2
JP4533308B2 JP2005355579A JP2005355579A JP4533308B2 JP 4533308 B2 JP4533308 B2 JP 4533308B2 JP 2005355579 A JP2005355579 A JP 2005355579A JP 2005355579 A JP2005355579 A JP 2005355579A JP 4533308 B2 JP4533308 B2 JP 4533308B2
Authority
JP
Japan
Prior art keywords
casing
heated fluid
path
heating fluid
fluid path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005355579A
Other languages
Japanese (ja)
Other versions
JP2007162956A (en
Inventor
梨英子 岡田
健 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005355579A priority Critical patent/JP4533308B2/en
Publication of JP2007162956A publication Critical patent/JP2007162956A/en
Application granted granted Critical
Publication of JP4533308B2 publication Critical patent/JP4533308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換部に仕切り材を設けた熱交換器に関する。   The present invention relates to a heat exchanger in which a partition material is provided in a heat exchange part.

従来の熱交換器としては、特許文献1に記載のものが提案されている。特許文献1に記載の熱交換器は、円筒状のハウジング内に断面円形状の流路が複数配置された構造を有している。
特開平6−294593号公報(図2)
As a conventional heat exchanger, the thing of patent document 1 is proposed. The heat exchanger described in Patent Document 1 has a structure in which a plurality of circular passages having a circular cross section are arranged in a cylindrical housing.
JP-A-6-294593 (FIG. 2)

しかしながら、特許文献1に記載の熱交換器は、ハウジングを円筒形状にすることで熱応力が集中しにくいという点と、円筒状のハウジング内に断面円形状の流路を多数配置することで熱変換効率を向上させるという点において優れているが、円形の流路が多数必要になるため、部品点数が増大して製造工程が複雑になる問題がある。そこで、円筒状のハウジングに断面細長形状の流路を複数並列に配置することで部品点数の削減が可能になるが、円筒形状のハウジングの場合には、流路の並び方向の両端部分に流路を配置できない広い流路部分が発生して、その部分だけ流速(流速のむら)が増大して、温度分布が不均一になる。   However, the heat exchanger described in Patent Document 1 has the advantage that thermal stress is less likely to be concentrated by making the housing cylindrical, and heat flow is achieved by arranging a large number of circular passages in the cylindrical housing. Although it is excellent in terms of improving the conversion efficiency, a large number of circular flow paths are required, which increases the number of parts and complicates the manufacturing process. Therefore, it is possible to reduce the number of parts by arranging a plurality of elongated flow passages in a cylindrical housing in parallel, but in the case of a cylindrical housing, the flow is applied to both end portions of the flow passage arrangement direction. A wide flow path portion where the path cannot be arranged is generated, and the flow velocity (uneven flow rate) is increased only by that portion, and the temperature distribution becomes uneven.

本発明は、前記従来の課題を解決するものであり、簡単な構成で応力集中を発生させず、しかも温度むらを防止することができる熱交換器を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a heat exchanger that does not generate stress concentration with a simple configuration and can prevent temperature unevenness.

請求項1に係る発明は、加熱流体が流通する流路断面が細長形状に形成された複数の加熱流体経路、および被加熱流体が流通する被加熱流体経路を有し、前記各加熱流体経路が前記被加熱流体経路内に互いに間隔を開けて並列に配置された熱交換部を覆う略円筒形状のケーシングと、内側に前記ケーシングが挿入される円筒状のハウジングと、を備え、前記加熱流体経路は、この加熱流体経路の並び方向の中央が最も長く、前記並び方向の両端部が最も短くなるように、前記加熱流体経路の長さが前記中央から前記両端部にかけて短くなるように形成され、前記ケーシングは、前記加熱流体経路の並び方向の両端部が扁平に形成されるとともに、前記被加熱流体が導入される流入部と前記被加熱流体が流出する流出部との間に位置する長さで形成され、前記加熱流体経路の並び方向の両端部に設けられる弓形の仕切部と、前記加熱流体経路の流路断面の長手方向の両端部に設けられる円弧形状の仕切部とが、1枚のプレートで中央部に穴が形成されるように構成された仕切り材をさらに備え、前記仕切り材が、前記流入部側の縁部に前記ケーシングと一体に形成されるとともに前記ハウジングと密着するように配置したことを特徴とする。 Invention, a plurality of heating fluid path channel cross section is formed in an elongated shape pressurizing heat fluid flows, and has a heated fluid pathway heated fluid flows, each heating fluid path according to claim 1 A substantially cylindrical casing that covers heat exchange portions that are arranged in parallel and spaced apart from each other in the heated fluid path, and a cylindrical housing in which the casing is inserted, and the heating fluid The path is formed such that the length of the heating fluid path becomes shorter from the center to the both ends so that the center of the heating fluid path is the longest in the center and the both ends of the heating direction are the shortest. The casing is formed such that both ends of the heating fluid path in the arrangement direction are flat and is positioned between an inflow portion into which the heated fluid is introduced and an outflow portion from which the heated fluid flows out. Now Arcuate partition portions provided at both ends of the heating fluid path in the arrangement direction, and arc-shaped partition portions provided at both ends in the longitudinal direction of the flow path cross section of the heating fluid path, A partition member configured such that a hole is formed in a central portion of the plate, wherein the partition member is formed integrally with the casing at an edge portion on the inflow portion side and is in close contact with the housing; It is arranged.

請求項1に係る発明によれば、ハウジングを円筒状にすることにより、応力集中を防止することができる。このようにハウジングを円筒状にして、細長形状の加熱流体経路を複数並列に配置すると、加熱流体経路の並び方向の両端部に加熱流体経路を配置できない広い被加熱流体経路部分が発生するが、この広い被加熱流体経路部分に仕切り材を設けることにより、被加熱流体の流れが遮られることで、流配分布を均一にして、温度分布の均一化が可能になる。 According to the invention which concerns on Claim 1 , stress concentration can be prevented by making a housing cylindrical. In this way, when the housing is cylindrical and a plurality of elongated heating fluid paths are arranged in parallel, a wide heated fluid path portion where heating fluid paths cannot be arranged at both ends in the arrangement direction of the heating fluid paths occurs. By providing the partition material in the wide heated fluid path portion, the flow of the heated fluid is blocked, thereby making the flow distribution uniform and making the temperature distribution uniform.

請求項に係る発明は、前記ハウジングの内側に前記熱交換部を包み込む管状のケーシングを備え、前記ケーシングと前記仕切り材とが一体構造であることを特徴とする。
請求項に係る発明によれば、ハウジングとケーシングとで二重管構造になるため、ケーシングが熱交換部を固定する治具の役割を果たし、熱交換部をハウジングへ取り付ける際の製作性を向上することができる。
The invention according to claim 1 is characterized in that a tubular casing that wraps the heat exchanging portion inside the housing is provided, and the casing and the partition member have an integral structure.
According to the first aspect of the invention, since the housing and the casing have a double tube structure, the casing serves as a jig for fixing the heat exchanging portion, and the manufacturability when the heat exchanging portion is attached to the housing is improved. Can be improved.

請求項に係る発明は、前記仕切り材は、中央部に前記熱交換部を配置するための穴を有する形状であることを特徴とする。
請求項に係る発明によれば、外周を囲うような仕切り材を用いることにより、外周全体で熱変換効率を上げることが可能になる。
The invention according to claim 1 is characterized in that the partition member has a shape having a hole for disposing the heat exchange part in a central part.
According to the invention which concerns on Claim 1 , it becomes possible to raise heat conversion efficiency in the whole outer periphery by using the partition material which surrounds an outer periphery.

請求項に係る発明は、前記仕切り材が前記ケーシングの前記流入部側の縁部とともに前記流出部側の縁部に設けられ、前記ケーシングと前記ハウジングとの間に前記各仕切り材で密閉された環状の断熱層を有することを特徴とする。 According to a second aspect of the present invention, the partition member is provided on an edge portion on the outflow portion side together with an edge portion on the inflow portion side of the casing, and is sealed with the partition members between the casing and the housing. It is characterized by having an annular heat insulating layer.

請求項に係る発明によれば、熱交換部からの放熱を抑えることができ、熱変換効率を向上させることができる。 According to the invention which concerns on Claim 2 , the thermal radiation from a heat exchange part can be suppressed, and heat conversion efficiency can be improved.

請求項に係る発明は、少なくとも前記被加熱流体の最外層経路は、フィン構造を有していることを特徴とする。 The invention according to claim 3 is characterized in that at least the outermost layer path of the fluid to be heated has a fin structure.

請求項に係る発明によれば、フィン構造自体が緩衝材の役割をなし、加熱流体経路が熱変形した際に生じる応力をフィン構造で逃がすことが可能になる。また、最外層経路にフィンを設けることにより、内部からの放熱による熱損失を抑制し、断熱層としての効果を持たせて、フィン外周部の熱変形を抑えることができる。 According to the third aspect of the present invention, the fin structure itself serves as a cushioning material, and the stress generated when the heated fluid path is thermally deformed can be released by the fin structure. In addition, by providing the fins in the outermost layer path, heat loss due to heat radiation from the inside can be suppressed, and an effect as a heat insulating layer can be given to suppress thermal deformation of the fin outer peripheral portion.

本発明によれば、簡単な構成で応力集中を発生させず、しかも温度むらを防止することができる熱交換器を提供できる。   According to the present invention, it is possible to provide a heat exchanger that does not generate stress concentration with a simple configuration and can prevent temperature unevenness.

図1は本実施形態の熱交換器を搭載したシステムの一例を示す構成図、図2は本実施形態の熱交換器を備えた燃焼ヒータを示す外観斜視図である。   FIG. 1 is a block diagram showing an example of a system equipped with a heat exchanger according to this embodiment, and FIG. 2 is an external perspective view showing a combustion heater provided with the heat exchanger according to this embodiment.

図1に示すシステムは、燃料電池システム1であり、燃料電池FC、アノード系2、カソード系3、冷却系4、暖機系5などを備えている。なお、本実施形態では、燃料電池システム1が例えば車両に搭載され、この車両が低温環境下で使用される際に、燃料電池システム1の始動時に暖機系5によって燃料電池FCが暖機されるようになっている。   The system shown in FIG. 1 is a fuel cell system 1 and includes a fuel cell FC, an anode system 2, a cathode system 3, a cooling system 4, a warm-up system 5, and the like. In the present embodiment, the fuel cell system 1 is mounted on a vehicle, for example, and when the vehicle is used in a low temperature environment, the fuel cell FC is warmed up by the warm-up system 5 when the fuel cell system 1 is started. It has become so.

前記燃料電池FCは、固体高分子型であるPEM(Proton Exchange Membrane)型の燃料電池であり、電解質膜mをアノード極Anとカソード極Caとで挟んで構成された膜電極構造体(MEA;Membrane Electrode Assembly)を導電性のセパレータでさらに挟んで構成した単セルを厚み方向に複数積層した構造を有している。また、燃料電池FC内には、燃料ガスとしての水素が流通する流路と、酸化剤としての空気(酸素)が流通する流路とは別に、燃料電池FCの暖機時に使用される被加熱流体が流通する流路が形成されている。なお、この被加熱流体は、燃料電池FCを冷却する際の冷却媒体としても使用される。この種の燃料電池FCでは、アノード極Anに水素が、カソード極Caに空気が供給されることにより、水素と空気中の酸素との電気化学反応により発電が行われ、走行モータなどに電力が供給される。   The fuel cell FC is a solid polymer type PEM (Proton Exchange Membrane) type fuel cell, and a membrane electrode structure (MEA;) comprising an electrolyte membrane m sandwiched between an anode electrode An and a cathode electrode Ca. It has a structure in which a plurality of single cells configured by sandwiching a membrane electrode assembly) with a conductive separator are stacked in the thickness direction. In addition, in the fuel cell FC, separately from the flow path through which hydrogen as the fuel gas flows and the flow path through which air (oxygen) as the oxidant flows, the heated object used when the fuel cell FC is warmed up. A flow path through which the fluid flows is formed. The heated fluid is also used as a cooling medium when cooling the fuel cell FC. In this type of fuel cell FC, hydrogen is supplied to the anode electrode An and air is supplied to the cathode electrode Ca, whereby electric power is generated by an electrochemical reaction between hydrogen and oxygen in the air, and electric power is supplied to the traveling motor and the like. Supplied.

前記アノード系2は、水素タンク2a、レギュレータ2b、パージ弁2c、エゼクタ2dなどを備えている。水素タンク2aは、高純度の水素が高圧に充填されたものであり、図示しない遮断弁が開弁することにより、水素がレギュレータ2bで減圧された後に燃料電池FCのアノード極Anの入口に供給されるようになっている。パージ弁2cは遮断弁であり、閉弁時には、アノード極Anの出口から排出された未反応の水素がエゼクタ2dによって再びアノード極Anの入口に供給され、開弁時には、アノード極Anに蓄積された不純物が排出されるようになっている。   The anode system 2 includes a hydrogen tank 2a, a regulator 2b, a purge valve 2c, an ejector 2d, and the like. The hydrogen tank 2a is filled with high-purity hydrogen at a high pressure. When a shut-off valve (not shown) is opened, the hydrogen is decompressed by the regulator 2b and then supplied to the inlet of the anode pole An of the fuel cell FC. It has come to be. The purge valve 2c is a shut-off valve. When the valve is closed, unreacted hydrogen discharged from the outlet of the anode electrode An is supplied again to the inlet of the anode electrode An by the ejector 2d. When the valve is opened, it is accumulated in the anode electrode An. Impurities are discharged.

前記カソード系3は、エアコンプレッサ3aなどを備えている。エアコンプレッサ3aは、モータにより駆動される機械式の過給器などで構成され、外気(空気)を取り込んで圧縮して、燃料電池FCのカソード極Caの入口に空気を供給する。   The cathode system 3 includes an air compressor 3a and the like. The air compressor 3a is composed of a mechanical supercharger or the like driven by a motor, takes in external air (air) and compresses it, and supplies air to the inlet of the cathode electrode Ca of the fuel cell FC.

前記アノード極Anから排出されたアノードオフガス、および前記カソード極Caから排出されたカソードオフガスは、希釈器6に送られて、ここでアノードオフガス中の水素がカソードオフガスで希釈された後に大気中へ排出される。   The anode off-gas discharged from the anode electrode An and the cathode off-gas discharged from the cathode electrode Ca are sent to the diluter 6, where the hydrogen in the anode off-gas is diluted with the cathode off-gas and then into the atmosphere. Discharged.

前記冷却系4は、燃料電池FCが発電により発生した熱を放熱する機能を有し、ラジエータ4a、配管4b,4c,4d、循環ポンプ4e、サーモスタット弁4fなどを備えている。この冷却系4では、燃料電池FCを冷却する必要がある場合には、循環ポンプ4eが作動するとともにサーモスタット弁4fがラジエータ4a側に切り換えられることで、燃料電池FCで加熱された冷却媒体がラジエータ4aで冷却される。また、燃料電池FCを冷却する必要がない場合には、サーモスタット弁4fが配管4d側に切り換えられる。   The cooling system 4 has a function of dissipating heat generated by the fuel cell FC by power generation, and includes a radiator 4a, pipes 4b, 4c, 4d, a circulation pump 4e, a thermostat valve 4f, and the like. In the cooling system 4, when it is necessary to cool the fuel cell FC, the circulation pump 4e is activated and the thermostat valve 4f is switched to the radiator 4a side, so that the cooling medium heated by the fuel cell FC is supplied to the radiator. Cooled in 4a. Further, when it is not necessary to cool the fuel cell FC, the thermostat valve 4f is switched to the pipe 4d side.

前記暖機系5は、燃焼ヒータ10、混合器11、配管5a,5b、三方弁5c、ガス供給配管5d、5eなどを備えている。燃焼ヒータ10は、燃焼器20と熱交換器30A(30B,30C)とが隣接して設けられている。なお、燃焼器20は、ハニカム構造体などに触媒が担持された燃焼部22がケース21内に支持されて構成されている(図3参照)。以下、参考例、第1実施形態実施形態の熱交換器30A,30B,30Cについて説明する。 The warm-up system 5 includes a combustion heater 10, a mixer 11, pipes 5a and 5b, a three-way valve 5c, gas supply pipes 5d and 5e, and the like. The combustion heater 10 is provided with a combustor 20 and a heat exchanger 30A (30B, 30C) adjacent to each other. Note that the combustor 20 is configured such that a combustion portion 22 in which a catalyst is supported on a honeycomb structure or the like is supported in a case 21 (see FIG. 3). Hereinafter, the heat exchangers 30A, 30B, and 30C of the reference example, the first embodiment , and the second embodiment will be described.

参考例
図3は図2のA−A断面図、図4は図3のB−B断面図である。なお、図2は、第実施形態および第実施形態において共通である。また、図3では、フィンの図示を省略している
図3に示すように、熱交換器30Aは、熱交換部31Aと、ハウジング32と、仕切り材33a,33b,33c,33d(なお、仕切り材33a,33bについては、図4参照)と、を備えている。
( Reference example )
3 is a cross-sectional view taken along the line AA in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line BB in FIG. FIG. 2 is common to the first embodiment and the second embodiment. In FIG. 3, the illustration of the fins is omitted .
As shown in FIG. 3, the heat exchanger 30A includes a heat exchange part 31A, a housing 32, and partition members 33a, 33b, 33c, and 33d (refer to FIG. 4 for the partition members 33a and 33b). I have.

図4に示すように、前記熱交換部31Aは、円筒状に形成されたハウジング32の内側の空間に、上下方向に流路断面が細長形状に形成された複数(本実施形態では5本)の加熱流体管部31a,31a,31a,31a,31aを有している。さらに詳述すると、各加熱流体管部31aは、一定の幅で上下方向に細長く且つ同じ長さに形成され、互いに間隔を開けて配置されている。なお、これら加熱流体管部31aで囲まれる細長形状の空間が、本実施形態での加熱流体経路S1に相当する。そして、これら加熱流体管部31aの外側のハウジング32で囲まれる空間が、本実施形態での被加熱流体経路S2に相当する。   As shown in FIG. 4, the heat exchanging portion 31 </ b> A has a plurality (five in the present embodiment) in which the cross section of the flow path is formed in an elongated shape in the space inside the housing 32 formed in a cylindrical shape. Heating fluid pipe portions 31a, 31a, 31a, 31a, 31a. More specifically, each heating fluid pipe portion 31a is formed to have a constant width and is elongated in the vertical direction and the same length, and is arranged with a space between each other. In addition, the elongate space enclosed by these heating fluid pipe | tube parts 31a is equivalent to heating fluid path | route S1 in this embodiment. A space surrounded by the housing 32 outside the heated fluid pipe portion 31a corresponds to the heated fluid path S2 in the present embodiment.

図3に示すように、前記ハウジング32は、円筒状の筒体32aと、この筒体32aの両端の開口を、加熱流体経路S1を除いて閉塞する円形の閉塞板32b,32cとを備えている。また、ハウジング32には、前記燃焼器20寄りの下部に被加熱流体を熱交換部31Aに流入させるための配管5aが接続され、また燃焼器20とは逆側の上部に被加熱流体を熱交換部31Aから流出させるための配管5bが接続されている。なお、配管5aは、図1に示すように、三方弁5cを介して前記配管4cの途中に接続され、また配管5bは、配管4cの三方弁5cの下流側に接続されている。なお、三方弁5cは、図示しない制御部によって、被加熱流体を熱交換器30Aをバイパスさせて流通させる通常運転位置と、被加熱流体を燃料電池FCと熱交換器30Aとの間で流通させる暖機運転位置とに切り替え可能となっている。   As shown in FIG. 3, the housing 32 includes a cylindrical cylinder 32a, and circular blocking plates 32b and 32c that block the openings at both ends of the cylinder 32a except for the heating fluid path S1. Yes. The housing 32 is connected to a pipe 5a for allowing the fluid to be heated to flow into the heat exchanging portion 31A at the lower part near the combustor 20, and heats the fluid to be heated at the upper part opposite to the combustor 20. A pipe 5b for flowing out from the exchange part 31A is connected. As shown in FIG. 1, the pipe 5a is connected in the middle of the pipe 4c via a three-way valve 5c, and the pipe 5b is connected to the downstream side of the three-way valve 5c of the pipe 4c. The three-way valve 5c causes a control unit (not shown) to circulate the heated fluid between the fuel cell FC and the heat exchanger 30A, and a normal operation position where the heated fluid bypasses the heat exchanger 30A. Switching to the warm-up operation position is possible.

図4に示すように、前記仕切り材33a,33b,33c,33dは、弓形のプレートで形成され、熱交換部31Aの長手方向の中央部付近(図3参照)に配置されている。また、仕切り材33a,33bは、各加熱流体管部31aの並び方向の両端部に、その湾曲面がハウジング32の内壁面と密着するように接合され、一方、仕切り材33c,33dは、前記両端部とは異なる、加熱流体管部31aの断面長手方向(図4の上下方向)の両端部に、その湾曲面がハウジング32の内壁面と密着するように接合されている。また、加熱流体管部31aと加熱流体管部31aとの間には、断面形状が波型のフィン(フィン構造)34Aが設けられ、熱交換部31Aの最外層経路には、同様に断面波形のフィン(フィン構造)34Bが設けられている。なお、このフィン34A,34Bは、図3において符号E1で示す範囲内に設けられ、特にこの範囲E1が積極的に熱交換を行う熱交換部31Aとして機能している。また、以下では、配管5aから熱交換部31Aに被加熱流体が導入される間の領域を流入部E2とし、熱交換部31Aから配管5bに被加熱流体が排出される間の領域を流出部E3として説明する。   As shown in FIG. 4, the partition members 33a, 33b, 33c, and 33d are formed of arcuate plates, and are arranged near the center in the longitudinal direction of the heat exchanging portion 31A (see FIG. 3). Further, the partition members 33a and 33b are joined to both ends of the heating fluid pipe portions 31a in the arrangement direction so that the curved surfaces thereof are in close contact with the inner wall surface of the housing 32, while the partition members 33c and 33d are Different from the both end portions, the curved surfaces are joined to both end portions in the longitudinal direction of the cross section of the heating fluid pipe portion 31 a (vertical direction in FIG. 4) so that the curved surfaces are in close contact with the inner wall surface of the housing 32. Further, a corrugated fin (fin structure) 34A is provided between the heating fluid pipe part 31a and the heating fluid pipe part 31a, and the cross-sectional waveform is similarly provided in the outermost layer path of the heat exchange part 31A. Fins (fin structure) 34B are provided. The fins 34A and 34B are provided within a range indicated by reference numeral E1 in FIG. 3, and in particular, the range E1 functions as a heat exchanging portion 31A that actively exchanges heat. In the following, the region during which the heated fluid is introduced from the pipe 5a to the heat exchanging portion 31A is referred to as an inflow portion E2, and the region during which the heated fluid is discharged from the heat exchanging portion 31A to the pipe 5b is referred to as the outflow portion. This will be described as E3.

次に、熱交換器30Aを含む燃料電池システム1の動作について説明する。前記した燃料電池システム1の起動時に、図示しない制御部によって、燃料電池FCの暖機が必要であると判断された場合には、三方弁5cを暖機運転位置に切り替えるとともに循環ポンプ4eを駆動する。そして、図示しない遮断弁を開弁して水素タンク2aからガス供給配管5dを介して混合器11に水素を供給するとともに、エアコンプレッサ3aを駆動してガス供給配管5eを介して混合器11に空気(酸素)を供給する。混合器11で混合された水素と空気の混合ガスは、燃焼ヒータ10の燃焼器20に送られ、この燃焼器20で触媒燃焼が行われる。触媒燃焼によって発生した加熱流体(高温の燃焼オフガス)は、熱交換器30Aの各加熱流体管部31aにより形成された加熱流体経路S1を白抜き矢印で示すように流通する。そして、熱交換器30Aを通過した燃焼オフガスは、燃料電池FCのカソード極Caの出口から排出されたカソードオフガスなどとともに大気中へと排出される。 Next , the operation of the fuel cell system 1 including the heat exchanger 30A will be described. When the above-described fuel cell system 1 is started, if a control unit (not shown) determines that the fuel cell FC needs to be warmed up, the three-way valve 5c is switched to the warm-up operation position and the circulation pump 4e is driven. To do. Then, a shut-off valve (not shown) is opened to supply hydrogen from the hydrogen tank 2a to the mixer 11 via the gas supply pipe 5d, and to the mixer 11 via the gas supply pipe 5e by driving the air compressor 3a. Supply air (oxygen). The mixed gas of hydrogen and air mixed in the mixer 11 is sent to the combustor 20 of the combustion heater 10, and catalytic combustion is performed in the combustor 20. The heating fluid (high-temperature combustion off gas) generated by catalytic combustion flows through the heating fluid path S1 formed by each heating fluid pipe portion 31a of the heat exchanger 30A as indicated by the white arrow. The combustion off gas that has passed through the heat exchanger 30A is discharged into the atmosphere together with the cathode off gas discharged from the outlet of the cathode electrode Ca of the fuel cell FC.

一方、循環ポンプ4eの駆動によって、被加熱流体が、配管5aから熱交換部31Aに流入して、加熱流体経路S1を流通する加熱流体と熱交換が行われ、被加熱流体が加熱される。ところで、円筒状のハウジング32に流路断面が細長形状の加熱流体経路S1が形成されたものでは、仕切り材33a〜33dが設けられていないと、加熱流体経路S1の並び方向の両端部に、大きな加熱流体経路が形成されてしまうので、この周囲の加熱流体の流れが中心の加熱流体の流れよりも速くなり、温度が低下して温度むらが発生する。そこで、本実施形態のように、熱交換部31Aの被加熱流体経路S2の外周縁部に仕切り材33a〜33dを設けることによって、被加熱流体の流れが遮られるので、熱交換部31Aの中心部と外周縁部とで被加熱流体の流れ(流配)を均一にすることができ、被加熱流体の温度むらを防止することが可能になる。   On the other hand, by the driving of the circulation pump 4e, the heated fluid flows from the pipe 5a into the heat exchanging portion 31A, heat exchange is performed with the heated fluid flowing through the heated fluid path S1, and the heated fluid is heated. By the way, in the case where the heating fluid path S1 having a narrow channel cross section is formed in the cylindrical housing 32, if the partition members 33a to 33d are not provided, both ends of the heating fluid path S1 in the alignment direction are provided. Since a large heated fluid path is formed, the flow of the surrounding heated fluid becomes faster than the flow of the central heated fluid, and the temperature is lowered to cause temperature unevenness. Therefore, as in the present embodiment, by providing the partition members 33a to 33d at the outer peripheral edge portion of the heated fluid path S2 of the heat exchanging portion 31A, the flow of the heated fluid is blocked, so the center of the heat exchanging portion 31A The flow (distribution) of the heated fluid can be made uniform between the portion and the outer peripheral edge, and it becomes possible to prevent uneven temperature of the heated fluid.

また、熱交換器30Aでは、仕切り材33a〜33dを挟んで上流側と下流側において被加熱流体に淀みが生じるので、淀み部分によって熱交換部31Aからの放熱を抑制し、熱変換効率を上げることができる。 Further , in the heat exchanger 30A, stagnation occurs in the fluid to be heated on the upstream side and the downstream side with the partition members 33a to 33d interposed therebetween. be able to.

また、熱交換器30Aでは、被加熱流体経路S2の最外層経路にフィン34B(図4参照)を設けることにより、フィン34B自体が緩衝材の役割をなし、加熱流体管部31e〜31gが熱変形したとしても応力を逃がすことができる。さらに、フィン34Bを設けることにより、内部の加熱流体経路S1からの放熱による熱損失を抑制し、断熱層としての効果を持たせて、フィン34Bの外周部の熱変形を抑えることができる。 Further , in the heat exchanger 30A, by providing the fin 34B (see FIG. 4) in the outermost layer path of the heated fluid path S2, the fin 34B itself serves as a buffer material, and the heated fluid pipe portions 31e to 31g are heated. Even if it is deformed, the stress can be released. Further, by providing the fins 34B, heat loss due to heat radiation from the internal heating fluid path S1 can be suppressed, and an effect as a heat insulating layer can be provided to suppress thermal deformation of the outer peripheral portion of the fins 34B.

そして、図示しない制御部によって、燃料電池FCが自己発電可能な状態になったと判断された場合には、三方弁5cを通常運転位置に切り替えて暖機運転を終了する。また、燃料電池FCから排出される被加熱流体の温度が所定温度を超えた場合には、サーモスタット弁4fが切り替えられて、燃料電池FCから流出した被加熱流体がラジエータ4aで冷却されて燃料電池FCに戻される。   If the control unit (not shown) determines that the fuel cell FC is in a state capable of self-power generation, the three-way valve 5c is switched to the normal operation position and the warm-up operation is terminated. In addition, when the temperature of the heated fluid discharged from the fuel cell FC exceeds a predetermined temperature, the thermostat valve 4f is switched, and the heated fluid flowing out from the fuel cell FC is cooled by the radiator 4a, and the fuel cell. Returned to FC.

5に示すように、加熱流体経路S1の並び方向の両端部のみに仕切り材33a,33bが設けられている。この場合には、図4のように加熱流体管部の上下方向の長さを均一にせずに、図5に示すように、並び方向の中央(最も径の長い位置)に流路断面が上下方向に最も長い加熱流体管部31b、並び方向の外側に2番目に長い加熱流体管部31c,31c、さらに並び方向の外側に最も短い加熱流体管部31d,31dを備えることで、より広い加熱流体から受ける被加熱流体の伝熱面積を得ることができる。 As shown in FIG. 5, partition members 33a and 33b are provided only at both ends of the heating fluid path S1 in the arrangement direction. In this case, the length of the heating fluid pipe portion in the vertical direction is not made uniform as shown in FIG. 4, but the cross section of the flow path is vertically arranged at the center (position with the longest diameter) in the arrangement direction as shown in FIG. The heating fluid pipe section 31b that is the longest in the direction, the second longest heating fluid pipe sections 31c and 31c outside the arrangement direction, and the shortest heating fluid pipe sections 31d and 31d outside the arrangement direction further increase heating. The heat transfer area of the heated fluid received from the fluid can be obtained.

また、図示していないが、仕切り材33a〜33dのすべてが1枚のプレートで一体に形成されたものであってもよい。あるいは、被加熱流体の流れを遮って、流れを均一にすることができるものであれば、仕切り材33a〜33dに複数の穴が形成されたパンチングメタルのようなものであってもよい。これにより、熱交換器30Aの軽量化が可能になる。   Moreover, although not shown in figure, all of the partition materials 33a-33d may be integrally formed with one plate. Alternatively, it may be a punching metal in which a plurality of holes are formed in the partition members 33a to 33d as long as it can block the flow of the heated fluid and make the flow uniform. This makes it possible to reduce the weight of the heat exchanger 30A.

(第実施形態)
図6は第実施形態の熱交換器を備えた燃焼ヒータを示す断面図、図7は図6のC−C断面図、図8は第実施形態の熱交換器を示す透視斜視図である。なお、図6では、フィンの図示を省略している。
図6に示すように、第実施形態の熱交換器30Bは、熱交換部31Bと、ハウジング32と、仕切り材37と、ケーシング38と、を備えている。なお、仕切り材37とケーシング38とは、一体構造である。
(First Embodiment)
6 is a cross-sectional view showing a combustion heater provided with the heat exchanger of the first embodiment, FIG. 7 is a cross-sectional view taken along the line CC of FIG. 6, and FIG. 8 is a perspective perspective view showing the heat exchanger of the first embodiment. is there. In addition, illustration of a fin is abbreviate | omitted in FIG.
As shown in FIG. 6, the heat exchanger 30 </ b> B of the first embodiment includes a heat exchange part 31 </ b> B, a housing 32, a partition member 37, and a casing 38. The partition member 37 and the casing 38 have an integral structure.

前記熱交換部31Bは、図7に示すように、その内側に略円筒形状のケーシング38を備え、このケーシング38の内側の空間に、図5と同様に流路断面の長さが異なる加熱流体管部31e,31f,31f,31g,31gが設けられて、加熱流体経路S1と被加熱流体経路S2とが構成されている。   As shown in FIG. 7, the heat exchanging portion 31 </ b> B includes a substantially cylindrical casing 38 inside thereof, and a heating fluid having a different flow path cross-sectional length in the space inside the casing 38 as in FIG. 5. Tube portions 31e, 31f, 31f, 31g, and 31g are provided, and a heated fluid path S1 and a heated fluid path S2 are configured.

前記仕切り材37は、加熱流体経路S1の並び方向の両端部に設けられる弓型の仕切部37a,37bと、加熱流体経路S1の流路断面の長手方向(上下方向)の両端部に設けられる円弧形状の仕切部37c,37dと、が1枚のプレートで中央部に穴37sが形成されるようにして構成されている。   The partition members 37 are provided at both ends in the longitudinal direction (vertical direction) of the cross section of the flow path of the heating fluid path S1 and arcuate partition parts 37a and 37b provided at both ends in the arrangement direction of the heating fluid path S1. The arc-shaped partitioning portions 37c and 37d are configured such that a hole 37s is formed in the center portion with a single plate.

前記ケーシング38は、並び方向の両端部が扁平に形成された筒形状であり、図8に示すように、前記仕切り材37と一体構造、すなわちプレス成形などで一体に形成されている。また、ケーシング38は、配管5aから被加熱流体が導入される流入部E2と、配管5bから被加熱流体が流出する流出部E3とのほぼ間に位置する長さで形成されている。なお、仕切り材37は、ケーシング38の流入部E2側の縁部に対して外向きに形成されている。   The casing 38 has a cylindrical shape in which both end portions in the arrangement direction are formed flat. As shown in FIG. 8, the casing 38 is integrally formed with the partition member 37, that is, by press molding or the like. Further, the casing 38 is formed with a length that is located approximately between the inflow portion E2 into which the fluid to be heated is introduced from the pipe 5a and the outflow portion E3 from which the fluid to be heated flows out from the pipe 5b. The partition member 37 is formed outward with respect to the edge portion of the casing 38 on the inflow portion E2 side.

また、前記ケーシング38内には、加熱流体経路S1と加熱流体経路S1との間にフィン(フィン構造)34A、最外層経路にフィン(フィン構造)34Bがそれぞれ配設されている(図7参照)。   Further, in the casing 38, a fin (fin structure) 34A is disposed between the heating fluid path S1 and the heating fluid path S1, and a fin (fin structure) 34B is disposed in the outermost layer path (see FIG. 7). ).

以上説明した第実施形態の熱交換器30Bでは、参考例と同様に、仕切り材37によって流入部E2から導入された被加熱流体の流れの流配分布を均一にすることができ、温度むらが発生するのを防止できる。 In the heat exchanger 30B of the first embodiment described above, similarly to the reference example , the flow distribution of the flow of the heated fluid introduced from the inflow portion E2 by the partition member 37 can be made uniform, and the temperature unevenness Can be prevented.

また、第実施形態によれば、ケーシング38から流出部E3に流出した被加熱流体が、ケーシング38とハウジング32(筒体32a)との間に形成された空間に滞留するので、熱交換部31Bからの放熱を抑制し、熱変換効率を上げることが可能になる。 Further, according to the first embodiment, the heated fluid that has flowed out of the casing 38 to the outflow portion E3 stays in the space formed between the casing 38 and the housing 32 (tubular body 32a). It is possible to suppress heat dissipation from 31B and increase heat conversion efficiency.

また、第実施形態によれば、仕切部37a,37bとともに、加熱流体経路S1の並び方向とは異なる部分に仕切部37c,37dを設けて熱交換部31Bの外周全体を囲う形状にしたので、熱変換効率を向上できる。 In addition, according to the first embodiment, the partition portions 37a and 37b and the partition portions 37c and 37d are provided in portions different from the arrangement direction of the heating fluid path S1, so that the entire outer periphery of the heat exchange portion 31B is enclosed. , Heat conversion efficiency can be improved.

また、第実施形態によれば、図8に示すように、ケーシング38に、加熱流体管部31e,31f,31f,31g,31gを挿入し、各加熱流体管部31e〜31g間にフィン34A、および最外層経路にフィン34Bをろう付けした状態で、ケーシング38が熱交換部31Bの治具となってハウジング32に取り付けることができるので製作性を向上できる。また、ハウジング32にフィン34A,34Bを接合する必要がないので、フィン34A,34Bのろう付けの接合率を高くできる。なお、製造工程では、このように加熱流体管部31e〜31gおよびフィン34A,34Bが取り付けられたケーシング38を筒体32aに挿入した後に、筒体32aの両側に閉塞板32b,32cを溶接することで熱交換器30Bが得られる。 Further, according to the first embodiment, as shown in FIG. 8, the heating fluid pipe portions 31e, 31f, 31f, 31g, and 31g are inserted into the casing 38, and the fins 34A are interposed between the heating fluid pipe portions 31e to 31g. In the state where the fins 34B are brazed to the outermost layer path, the casing 38 can be attached to the housing 32 as a jig of the heat exchanging portion 31B, so that the manufacturability can be improved. Further, since it is not necessary to join the fins 34A and 34B to the housing 32, the joining rate of the brazing of the fins 34A and 34B can be increased. In the manufacturing process, after the casing 38 to which the heated fluid pipe portions 31e to 31g and the fins 34A and 34B are attached is inserted into the cylindrical body 32a, the blocking plates 32b and 32c are welded to both sides of the cylindrical body 32a. Thus, the heat exchanger 30B is obtained.

また、第実施形態によれば、第1実施形態と同様に、最外層経路にフィン34Bを設けることにより、フィン34B自体が緩衝材の役割をなし、加熱流体管部31e〜31gが熱変形したとしても応力を逃がすことができる。 Further, according to the first embodiment, like the first embodiment, by providing the fins 34B in the outermost path, the fins 34B itself without the role of buffer material, a heating fluid pipe portion 31e~31g thermal deformation Even so, the stress can be released.

(第実施形態)
図9は第実施形態の熱交換器を備えた燃焼ヒータを示す断面図、図10は図9のD−D断面図である。なお、図9では、フィンの図示を省略している。
この第実施形態の熱交換器30Cは、第実施形態の仕切り材37と同様な形状の仕切り材39を備え、この仕切り材39が、ケーシング38に、仕切り材37とは逆側の端部に一体に形成されるように構成されている。すなわち、仕切り材39は、図10に示すように、加熱流体経路S1の並び方向の両端部に設けられる弓型の仕切部39a,39bと、加熱流体経路S1の流路断面の長手方向(図10の上下方向)の両端部に設けられる円弧形状の仕切部39c,39dと、が1枚のプレートで形成されている。その他の構成は、第実施形態と同様であり、同一の符号を付してその説明を省略する。
( Second Embodiment)
FIG. 9 is a cross-sectional view showing a combustion heater provided with the heat exchanger of the second embodiment, and FIG. 10 is a cross-sectional view taken along the line DD of FIG. In FIG. 9, the fins are not shown.
The heat exchanger 30C according to the second embodiment includes a partition member 39 having the same shape as the partition member 37 according to the first embodiment, and the partition member 39 is connected to the casing 38 at an end opposite to the partition member 37. It is comprised so that it may be integrally formed in a part. That is, as shown in FIG. 10, the partition member 39 includes arcuate partition portions 39a and 39b provided at both ends in the arrangement direction of the heating fluid path S1, and the longitudinal direction of the flow path cross section of the heating fluid path S1 (see FIG. Arc-shaped partition portions 39c and 39d provided at both end portions in the vertical direction (10) are formed by a single plate. Other configurations are the same as those of the first embodiment, and the same reference numerals are given and description thereof is omitted.

図9に示すように、ハウジング32とケーシング38との間が、仕切り材37,39によって密閉されることで、環状(断面図示省略)の断熱層Qが形成されている。なお、断熱層Qは、空気層であってもよく、あるいはグラスウールなどの断熱材を入れてもよい。   As shown in FIG. 9, the space between the housing 32 and the casing 38 is hermetically sealed with partition members 37 and 39, so that an annular heat insulating layer Q (not shown) is formed. The heat insulating layer Q may be an air layer or a heat insulating material such as glass wool.

このように、第実施形態の熱交換器30Cによれば、断熱層Qが形成されるので、熱交換部31Cからの放熱を防ぎ、熱変換効率を向上できる。また、仕切り材37,39を設けることにより温度むらを防止できる。 Thus, according to the heat exchanger 30C of 2nd Embodiment, since the heat insulation layer Q is formed, the thermal radiation from 31 C of heat exchange parts can be prevented, and heat conversion efficiency can be improved. Further, by providing the partition members 37 and 39, temperature unevenness can be prevented.

本実施形態の熱交換器を搭載したシステムの一例を示す構成図である。It is a lineblock diagram showing an example of a system carrying a heat exchanger of this embodiment. 第1実施形態の熱交換器を備えた燃焼ヒータを示す外観斜視図である。It is an external appearance perspective view which shows the combustion heater provided with the heat exchanger of 1st Embodiment. 図2のA−A断面図である。It is AA sectional drawing of FIG. 図3のB−B断面図である。It is BB sectional drawing of FIG. 参考例としての熱交換部を示す断面図である。It is sectional drawing which shows the heat exchange part as a reference example . 実施形態の熱交換器を備えた燃焼ヒータを示す断面図である。It is sectional drawing which shows the combustion heater provided with the heat exchanger of 1st Embodiment. 図6のC−C断面図である。It is CC sectional drawing of FIG. 実施形態の熱交換器を示す透視斜視図である。It is a see-through | perspective perspective view which shows the heat exchanger of 1st Embodiment. 実施形態の熱交換器を備えた燃焼ヒータを示す断面図である。It is sectional drawing which shows the combustion heater provided with the heat exchanger of 2nd Embodiment. 図9のD−D断面図である。It is DD sectional drawing of FIG.

符号の説明Explanation of symbols

30A,30B,30C 熱交換器
31A,31B,31C 熱交換部
32 ハウジング
33a〜33d,37,39 仕切り材
34A,34B フィン
37s 穴
38 ケーシング
Q 断熱層
S1 加熱流体経路
S2 被加熱流体経路
30A, 30B, 30C Heat exchanger 31A, 31B, 31C Heat exchange part 32 Housing 33a-33d, 37, 39 Partition material 34A, 34B Fin 37s Hole 38 Casing Q Heat insulation layer S1 Heating fluid path S2 Heated fluid path

Claims (3)

加熱流体が流通する流路断面が細長形状に形成された複数の加熱流体経路、および被加熱流体が流通する被加熱流体経路を有し、前記各加熱流体経路が前記被加熱流体経路内に互いに間隔を開けて並列に配置された熱交換部を覆う略円筒形状のケーシングと、
内側に前記ケーシングが挿入される円筒状のハウジングと、を備え、
前記加熱流体経路は、この加熱流体経路の並び方向の中央が最も長く、前記並び方向の両端部が最も短くなるように、前記加熱流体経路の長さが前記中央から前記両端部にかけて短くなるように形成され、
前記ケーシングは、前記加熱流体経路の並び方向の両端部が扁平に形成されるとともに、前記被加熱流体が導入される流入部と前記被加熱流体が流出する流出部との間に位置する長さで形成され、
前記加熱流体経路の並び方向の両端部に設けられる弓形の仕切部と、前記加熱流体経路の流路断面の長手方向の両端部に設けられる円弧形状の仕切部とが、1枚のプレートで中央部に穴が形成されるように構成された仕切り材をさらに備え、
前記仕切り材が、前記流入部側の縁部に前記ケーシングと一体に形成されるとともに前記ハウジングと密着するように配置したことを特徴とする熱交換器。
A plurality of heating fluid paths in which a cross section of the flow path through which the heated fluid flows is formed in an elongated shape; and a heated fluid path through which the heated fluid flows; and each of the heated fluid paths is mutually in the heated fluid path A substantially cylindrical casing covering the heat exchanging portions arranged in parallel with a gap therebetween,
A cylindrical housing into which the casing is inserted, and
The heating fluid path is configured such that the length of the heating fluid path is shortened from the center to the both ends so that the center of the heating fluid path is longest and both ends of the heating direction are shortest. Formed into
The casing is formed such that both ends of the heating fluid path in the arrangement direction are flat and is positioned between an inflow portion into which the heated fluid is introduced and an outflow portion from which the heated fluid flows out. Formed with
An arcuate partition provided at both ends of the heating fluid path in the arrangement direction and an arcuate partition provided at both ends in the longitudinal direction of the flow path cross section of the heating fluid path are arranged in the center with one plate. It further comprises a partition material configured to form a hole in the part,
The heat exchanger according to claim 1, wherein the partition member is formed integrally with the casing at an edge portion on the inflow portion side so as to be in close contact with the housing.
前記仕切り材が前記ケーシングの前記流入部側の縁部とともに前記流出部側の縁部に設けられ、前記ケーシングと前記ハウジングとの間に前記各仕切り材で密閉された環状の断熱層を有することを特徴とする請求項に記載の熱交換器。 The partition material is provided on the edge portion on the outflow portion side together with the edge portion on the inflow portion side of the casing, and has an annular heat insulating layer sealed with the partition materials between the casing and the housing. The heat exchanger according to claim 1 . 少なくとも前記被加熱流体の最外経路は、フィン構造を有していることを特徴とする請求項1または請求項2に記載の熱交換器。 At least the outermost layer path of the heated fluid, the heat exchanger according to claim 1 or claim 2, characterized in that it has a fin structure.
JP2005355579A 2005-12-09 2005-12-09 Heat exchanger Expired - Fee Related JP4533308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355579A JP4533308B2 (en) 2005-12-09 2005-12-09 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005355579A JP4533308B2 (en) 2005-12-09 2005-12-09 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2007162956A JP2007162956A (en) 2007-06-28
JP4533308B2 true JP4533308B2 (en) 2010-09-01

Family

ID=38246061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355579A Expired - Fee Related JP4533308B2 (en) 2005-12-09 2005-12-09 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4533308B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930447B2 (en) * 2008-04-15 2012-05-16 トヨタ自動車株式会社 Exhaust heat recovery unit
JP7146193B2 (en) * 2019-03-27 2022-10-04 東京瓦斯株式会社 Exhaust heat recovery burner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103795U (en) * 1979-12-28 1981-08-13
JPS5736477U (en) * 1980-08-07 1982-02-26
JPS57150793A (en) * 1981-03-11 1982-09-17 Mitsubishi Heavy Ind Ltd Heat exchanger
JPS63116763U (en) * 1987-01-23 1988-07-28
JP2000061240A (en) * 1998-08-18 2000-02-29 Denso Corp Deodorizing device
JP2004060932A (en) * 2002-07-25 2004-02-26 Toyo Radiator Co Ltd Heat exchanger
JP2005524044A (en) * 2002-04-25 2005-08-11 ベール ゲーエムベーハー ウント コー カーゲー Exhaust heat exchanger for automobile
JP2005326098A (en) * 2004-05-14 2005-11-24 T Rad Co Ltd Heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103795U (en) * 1979-12-28 1981-08-13
JPS5736477U (en) * 1980-08-07 1982-02-26
JPS57150793A (en) * 1981-03-11 1982-09-17 Mitsubishi Heavy Ind Ltd Heat exchanger
JPS63116763U (en) * 1987-01-23 1988-07-28
JP2000061240A (en) * 1998-08-18 2000-02-29 Denso Corp Deodorizing device
JP2005524044A (en) * 2002-04-25 2005-08-11 ベール ゲーエムベーハー ウント コー カーゲー Exhaust heat exchanger for automobile
JP2004060932A (en) * 2002-07-25 2004-02-26 Toyo Radiator Co Ltd Heat exchanger
JP2005326098A (en) * 2004-05-14 2005-11-24 T Rad Co Ltd Heat exchanger

Also Published As

Publication number Publication date
JP2007162956A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP6601970B2 (en) Integrated gas management device for fuel cell systems
JP5284966B2 (en) Solid oxide fuel cell with heat exchanger
CN101194386B (en) Compact fuel cell apparatus
US9123946B2 (en) Fuel cell stack
JP4418358B2 (en) Heat exchanger
JP5109252B2 (en) Fuel cell
JP4667298B2 (en) Heat exchanger and heat exchange type reformer
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
JP2008226677A (en) Fuel cell
JP2008235009A (en) Separator for fuel cell
JP2005285682A (en) Fuel cell stack
JP4533308B2 (en) Heat exchanger
JP4320011B2 (en) Catalytic combustor
JP6572604B2 (en) Solid oxide fuel cell module
JP2009140614A (en) Fuel cell
JP4706173B2 (en) Fuel cell stack
JP2005533359A (en) Fuel cell stack comprising a counter-flow cooling system and a plurality of coolant accumulation ducts arranged parallel to the stack axis
JP2018085183A (en) Hydrogen storage unit and fuel cell
KR20220107283A (en) Cell units and cell stacks
JP4945963B2 (en) Fuel cell
ES2405746T3 (en) Flow hood of fuel cell stacking
JP2008293808A (en) Separator and fuel cell
JP2865025B2 (en) Molten carbonate fuel cell
JP4498797B2 (en) Fuel cell
JP2006216328A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees